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Abstract

Walsh functions on S? are introduced and considered. We are
demonstrating different properties of such functions and establishing
sharp orders of € - entropy for a wide range of multiplier operators
on S?. The analysis is essentially based on martingale technique and
estimates of volumes of special convex bodies which are of independent
interest.

1 Introduction

The Walsh functions form an orthonormal system which has found a lot of
applications in many different situations (e.g., data transmission, filtering,
pattern recognition, image enhancement, etc). In the section 2 we are in-
troducing Walsh system on S? and presenting different properties of such
functions. In the section 3 we are establishing general upper bounds for en-
tropy of multiplier operators. Finally, in the section 4 general lower bounds
are found.

Let us remind some definitions. Let X and Y be a Banach spaces with
unit balls By and By respectively. A finite set of points 1, ..., x,, is called
e-net for By in Y if for each x € By there is at least one point z; of the net
such that ||z — zx||y < €. The logarithm

H. = logy, N.(By),
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where N(Byx) := min{n : {z,...,x,} is an € net for Bx in Y }, is the
entropy of the set By in Y.

The definition has its roots in the notion of the metric entropy of a set
which Kolmogorov introduced in the 1930s (see [10]). e-Entropy is connected
with the complexity of the tabulation problem and information theory (see
11)).

In this paper there are several universal constants which enter into the
estimates. These constants are mostly denoted by the letters K,C,Cy, Cy, ...
We did not carefully distinguish between the different constants, neither did
we try to get good estimates for them. The same letter will be used to
denote different universal constants in different parts of the paper. For easy
of notation we will wright a,, > b,, for two sequences, if a,, > Cb,, for n € IN
and a, < b, if Cib, < a, < Csb, for all n € IN and some constants C, Cy
and Cy. Through the text [a] means entire part of a € RR.

2 Walsh Functions on 5?2

In this section we define real-valued functions 1, n € IN?, on the 2-dimensional
unit sphere S? = {z € R? : |x| = 1} in the Euclidean space R?, taking only
the values &1, which we call Walsh functions on S?. We prove several prop-
erties of these functions, in particular we prove that {¢,, : n € ]N2} is a
complete orthonormal subset of the Hilbert space Lo (S?).

We define the application £ : D = [0, 7] x [0,27] — S? by

£(61,02) = (cos by, sin b cos by, sin by sin 65).

The Lebesgue normalized measure on S? will be denoted by dr and the
Lebesgue measure of a measurable set A C S? by |A|. If f € L;(S?), we have
that
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where 0 = af < af < ... <ak, =7 and

ak
[ sintdt= [ sintar =27, 1< g <ok
a I

Jj—1 J

The Rademacher functions r,(cl) : [0, 7] = R and r,(f) :[0,27] = R, k € N,
are defined by

) 2k+1
7“](;) = Z (—1)j+1XI](c+1,i, 1=1,2;
j=1

where x4 is the characteristic function of the set A.

Givenn € N,n > 1, let ny,...,ng € IN such that ny >ny > --->mn, >0
and n = 2™ + 2" 4 ... 4+ 2™, The Walsh functions ¢{!) : [0,7] — R and

(2):]0,27] — R are defined by
A0 = O e, =12

and cp(()l)(t) =1,t € [0, 7]; o (t) = 1,t € [0,27]. Recall that {¢(® : n € N}
is a complete orthonormal subset of L*([0, 27]) (see [9]).

Let m,n,p e N,m =n+p,p > 1. We have that

n+1,1 n+p+1
I - U I] 1)2P+1

and hence we can write
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By this way we can show that, for m,n € IN, m # n,

/ o( )sintdt =0

Let (2, H, P) be a probability space. For f € L'(Q,H, P) and a sub-
o-field E of H we denote by E[f|E] the conditional expectation of f with
respect to E. If the o-field E is atomic, that is, if there exists a partition
{Bj :j €L} of Q,L C N, such that B; € E and P(B;) > 0 for all j € L,
then

E[f|E](w)=Z( 55 s fdP> w0 =X ([, ) o)

JjeL
where

" BB

Thus {n; : j € L} is an orthonormal basis of L*({, E).

Now, let (H),>o be an increasing sequence of sub-o-fields of H such
that H is generated by the union of the o-fields H,,n > 0. A martin-
gale with respect to (Hy),>o is a sequence of functions (f,),>o such that
fn € LYQ, H,,P) and f,, = E[f,1|H,) for alln > 0. If f € L'(Q, H, P),
then (fn)n>0 where f, = E[f|Hy] is a martingale. Given a martingale
(fn)n>0, we associate with it the sequence of differences (d,),>0, do = fo,dn
fn - fn—l;n Z L.

Let v = (v,),>1 be a predictable sequence, that is, v, : @ = R is H,_;-
measurable, n > 1 and let (d,),>1 be the sequence of differences of a mar-
tingale f = (fy)n>0. Then the sequence (gy),>o defined by g, = > p_, vidy
is a martingale, known as the transform of the martingale f by v.

Theorem 2.1 ([8, p.29]) Let (2, H, P) and (H,)n>o be as above and let
1<p<oo, felP(QHP) and f, = E[f|H,],n > 0. Then the sequence
(fn)n>o converges a.e. and in the norm of LP(2, H, P) to the function f.

Theorem 2.2 ([4]) For 1 < p < oo let p* be the mazimum of p and
q where 1/p +1/q = 1. Let (vg)g>1 be a predictable sequence uniformly
bounded in absolute value by 1 and given an integrable function f let f, =

E[f|Hn]7dn - fn - fnfl-



() If 1 <p<ooand f € LP(Q,H,P), then the series Y p°, vgdy con-
verges in LP(S2, H, P) and

1> vkdilly < (7 = DI llp-
k=1

Moreover, the constant p* — 1 is the best possible.

(ii) If f € L'(Q, H, P), then for all A > 0,

AP({sup | 32 0n(@)de )] > A}) < 2/ 1.

nzl =1

For k € N and z € S? we define

2k+l

1 .
R () = Y ()" Xk xozny (@)
=1
2k+1
) ,
Rl(c )(x) =, (_1)J+1X§([0,7r}><[]’?“’2)(x)'
=1

I[fn=2"42"24...42™ with ny > ny > --- > ng > 0 we define for v =1, 2,

For m = (my,my) € N? we define
Pm(@) = ) ()01 (2)-
For k € IN,k > 1 we define
Gr={I] "' x I 1<j<2t 1<1<2k),

A ={£(G) : G € Gy}, Ay = {57}
Cr =10,1,2,...,28 —1} x {0,1,2,...,2% —1};
By = Cp\ Cy_1,k > 2, B, =C\.

We denote by Fj, k > 0, the o-field of subsets of S? generated by the partition
Ak of SQ.

Let us denote by #F the cardinality of a finite set F. Then #C}\ =
#A, =221 and #B, = 3 22(=D-1,



Now we will define an ordering on IN?.
Let n = (n1,n),m = (my,my) € IN%. If there exists k € IN such that
n, m € By, we define

n<m<=n <mp or ng=my; and ns < My
If n € By and m € B, for k # [, we define
n<m-<=k<I.
We define an ordering < on IN? by
n<m-<<sn=m or n<im.

It is easy to see that the relation < is a total ordering on IN%

Lemma 2.1 {, : n € Ci} is an orthonormal basis of L*(S%, F},), k >
1.

Proof. Let n = (ny,ng),m = (my, my) € Cy. It follows from Definition
1.1 that

Un(€(61,02)) = o (01)02) (02), i (£(01,02)) = o0V (01) L2 (02).

and hence

1 2w ™
52 wn(x)i/)m(ff)dff = E/O d02/0 Q/Jn(f(91, 92))%1(5(91, 92)) sin 61dth =

]_ s . 27
E/o 307(111)(91)90%3(91)Sln91d91/0 012 (0) 2 (02)d,.

Suppose n # m. If ny # my, then

2w
| o200 6)0, = o,

since {cp,(f) : k € N} is an orthonormal subset of L?([0, 27]), and if ny # my,
it follows from (1.1) that

/ (,Dnl 91 91) sin 91d91 =0.
Therefore we have that

o U () (x)dx = 0.



Since 1, (x) = £1 for all z € S?, then

[ W= [ dr=1.

It is easy to see that 1), is Fy-measurable for all n € C; and thus we can
conclude that {¢,, : n € Ci} is an orthonormal subset of L?(S?, Fy).
The set {IA\;WXA : A € A} is an orthonormal basis of L?(S?, F}) and

hence the dimension of L?(S?, F) is #Ax = #Cy. Therefore {v, : n € Cy}
is an orthonormal basis of L*(S?, F;). &

For f € L'(S?) and n € IN? we define
Su(£)(@) = D en(f)m()

m<n

where

e (f) = /S2 f(@)m(x)da.
Lemma 2.2 Let ay = (271 = 1,2 — 1),k > 1. If f € L}(?) then

E[f|F] = Sa, (f)-

Proof. Let f;, = E[f|F]. Since f, € L*(S?% F;) and {ns = \A|+/2XA :
A € Ai} is an orthonormal basis of L?(S?, Fy,), then

fe=> </S2fk77Ad$>77A: > (/S2f77Ad37>77A

en(fi) = X ([, nade) ([, vmnade) =

A€Ag

/52 f (AZA </SZ wmmd:v) nA) dv =

But by Lemma 1.1, {¢, : n € C}} is an orthonormal basis of L?(S?, F},) and
hence

and thus

fk - Z Cm(fk)wm: Z Cm(f)wmzsak(f)'.

meCl m<ay,
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Theorem 2.3 {v¢, : n € 1N2} is an complete orthonormal subset of
L*(S?).

Proof. Let f € L?(S?). By Lemma 2.2 we have that S,, (f) = E[f|F], k >
1. Then (S, (f))k>1is a martingale and by Theorem I we have that S, (f) —
f in the norm of L?(S?), when k — oco. Suppose that f is orthonormal to
Yy for all m € IN?. Then a,,(f) = 0 for all m € IN* and hence S, (f) = 0.
But S,, — f and thus f =0. ®

The next result follows immediately from Theorem 2.2 and Lemma 2.2.

Theorem 2.4 For 1 < p < oo let p* be the mazimum of p and q where
1/p+1/q=1. Let (vg)r>1 be a sequence of functions on S* uniformly bounded
in absolute value by 1, such that vy is Fy_1-measurable, k > 1, and given an
integrable function f : S? — IR and k > 1, let

dk(f) = Sak(f) - Sak—l(f) = Z Cm(f)z/)m

me By,

(i) If 1 <p < oo and f € LP(S?), then the series S5, vpdy(f) converges in
L*(S?) and

1>~ okdic ()l < @ = DIIflp-
k=1

Moreover, the constant p* — 1 is the best possible.

(ii) If f € L'(S?), then for all A > 0,

A 51| 3 (1)) > A < 20

3 Upper Bounds

Let 11,15, ... be a basis in a real Banach space X,

=Y iy
k=1
with unit ball Bx = {z|||z|| < 1} (we will specify then the system {1} as the
system of Walsh functions on S? with the fixed ordering). Let A = {\}, N,
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A # 0, |A1] > [A2| > ..., Ay > ..., B € IN be a multiplier operator
k=1

Let us put Pyx = Z;]ﬂvzl Tip W,

BN =BnN LN; AUg = {y|y = A.ZL‘, ||.ZL‘|| S ]_}, (AUQ)N = AU2 N LN,

PyB ={z € Ly|z = Pyxz,x € B} PyAU, = {z € Ly|z = Pyz,x € AU,},

vn (AUs) = sup{||z — Pyx|||z € AU},
By (L) = (sup{ A" ellel] < 1, @ € Ly) .
Using the results of the section 2 it is easy to check that
By = |)\N|; TN = |)\N+1|-
It is known that (see [10] p. 280)
H.,(AUs, Ly(5%))

N
< —Nlog, An + ) logy [Ax| + Nlog, 2[| P,
k=1

where ey = fy + yn. It is easy to verify that C; = ||Py|| = 1 and
Hyy,, (AU, Ly(S?))

N
< —Nlog, |An| + D log, | x| + N.
k=1

4 Lower Bounds

The problem of estimating of the entropy from below usually splits into two
parts: reduction to some finite dimensional problem in Euclidean space, and

obtaining a lower estimate for volume of special body in R".

As regards the first part of the problem, in many cases its solution is rela-
tively simple; therefore the main difficulty is to obtain proper lower estimates
of volumes for special convex bodies in Euclidean space which are connected

with the structure of Walsh system on S2.
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4.1 The Reduction

Suppose that the multiplier sequence A = {\,,} is non-encreasing and posi-
tive. In general case we should consider a proper rearrangement, Ay = [\, |
YR R DY = ) VAN [

We will show that for a fixed N € IN and € > 0 there are [C/e]" functions
in AU, such that for all 1 < my # my < [C/e]V,

1™ = f™ |y (s2) > Ane? /2. (2)
Let us put Ty = lin{¢y, ...,¢n}. It is easy to check that for any tx € Ty

It llv = ;g;% It = DllLoo(s2)s

where ¢ € Ty means [q ¢ - tydz = 0, Viy € Ty and V = J(BY)° (see (5)
and (10) for the definition).
If there is such absolute constant 0 < C' < 1 that for all N € IN

Voln((B')’) = C*Voln(By), (3)

then the cardinality of minimal € - net for (BY)° in the Euclidean norm is

> (C/e)N. Hence there are [C'/€]N polynomials % € J(BN)°, 1 < m < [¢/e]V

such that [[tN* — th2|lr,s2) = 6 1 < my # my < [C/e]V. Let us put

=A@ —¢m), 1< m < [c/e]N and AY2 = {\;/*}, then f,, € AU, and

1™ = ™| Las2)

> Ay 270 (IR = )17 52y + A2 (0™ = 6™) 17 (52
Z )\N . 62/27

since ¢™ € T for all 1 < m < [C/e]Y. Now we have

C
Heyy o 2 Nlog, [:} (4)
Let us put € = C/2, then (4) takes the form

Hezyyys > N.
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4.2 Finite Dimensional Estimates

The approach in part of lower bounds in IR™ makes essential use of methods
and results from Geometry of Banach spaces. We shall estimate volumes of
ellipsoids of F. John for a special class of convex bodies in R". Let us remind
that for a convex body V' € R" the ellipsoid of F. John &y is the ellipsoid of
maximal volume contained in V.

Usually an ellipsoid which determines the Banach-Mazur distance is suf-
ficiently far from the ellipsoid of F. John and in applications we have a very
little information concerning special convex bodies in IR" which are connected
with the structure of a fixed orthonormal system.

This is a source of fundamental difficulties which occur if we try to apply
the results of the Geometry of Banach spaces to various open problems in
functional spaces.

Just in a few situations it was possible to specify the ellipsoids of F. John
which are connected with special orthonormal systems. For example, using
shift invariance of trigonometric system it is possible to find the F. John
ellipsoids.

General method of estimates of volumes of the F. John ellipsoids in the
case of bounded orthonormal systems has been offered by A. Kushpel (see
e.g. [6]).

Let X = (R", ||||) be a Banach space. Furthermore, for any «, € R" we
define (a, 3) = >p_; axfk. Let Vol,, be the standard n-dimensional volume
of subsets in R".

Let us consider the Walsh system {1, } which is orthonormal in Ly(S?, dz),
where dv(7) is the normalized invariant measure on S%. Set ¥,, = span{ty, ..., 1¥,}
and let J : R" — W, be the coordinate isomorphism that assigns to a =
(aq,...,0p) € R™ the function ¢ = >7 ;artyy € ¥,. The definition
||| ) := || Jex|| 1, (s2) induces a norm on IR™. Let us put

B;’ = {Oé e R | ||Ja||Lp(S2) < 1}. (5)

It is easy to see that for any 1 < p < oo the set B} is a convex central
symmetric body in IR".
The following statement has been offered by A. Kushpel (see [6]).
Theorem 4.2.1 Foranyn &€ IN and1 <p <2

Volu(Eny) = Vol (By).
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Proof. It is clear that forall 1 <p <2 and n € N
B{" ¢ B\,
so that by the definition
Vol,(Epy) > Voln(By). (6)

Let ¢, be any polynomial, t,,(z) = Y>}_; agty, then

Z gy,

tnllz,(s2) =
L1(S2)

> =
max [ax| = ol

since Walsh functions v are orthonormal on S? and
[Yp(x)| < 1foralll <k <nandaz € S? It means that

B! C Q", (7)

where Q" is n-dimensional cube. It is known that the Euclidean ball Bj is
the unique ellipsoid of maximum volume contained in n-dimensional cube
(see [5], p. 75), or

Comparing (7) - (8) we are getting that
(From (6) and (9) it follows now that Vol,,(Epr) = Vol,(B3). ®

For a convex centrally symmetric body V' C IR" we define the polar body
Ve of V as following

={x € R"| sup [{x,y)| < 1}. (10)
yev
If || -] = - ||x is the norm on IR™ induced by V', then V° coincides with the
unit ball of the dual space X*.

We will need the following definition. A normed space X is said to have
cotype 2 if there is some constant C sucn that

0 e[S > ([ Z )
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whenever {z;} is a finite sequence of vectors in X. The smallest such constant
Cy(X) is called cotype-2 constant of X. It is easy to check

Cy(L1(S?)) < 242, (11)

(see e.g. [7] p. 73]).
It is known (see [3]) that if a normed n-dimensional space X with unit
ball V' has cotype 2 then

2y L/n
(Vol,V)Y2 > C - Cy(X) - (In (X)) (M> 1)
VOln(‘:V

where &y is the ellipsoid of F. John for V', and Cy(X) is the cotype 2 constant
of X. Comparing Theorem 4.2.1, (11) and (12) we are getting the condition
(3).

Finally, comparing (1) and (4) we are getting the following result.

Theorem 1.1 (i) Let {\r}, v be an arbitrary sequence of real numbers
and {\j}, v s a rearrangement of {|\r|}, v in a nonincreasing order.
There is a positive constant C' > 0 such that for any n € IN and all 1 <
P,q <00

Hey: (AU, Ly(S?)) > n.

(ii) Forany 1 <¢<2<p <

Hyy- (AU, Lq(SQ)) < —nlogy A! + Z logy A + n.
k=1
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