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Abstrat

Walsh funtions on S

2

are introdued and onsidered. We are

demonstrating di�erent properties of suh funtions and establishing

sharp orders of � - entropy for a wide range of multiplier operators

on S

2

. The analysis is essentially based on martingale tehnique and

estimates of volumes of speial onvex bodies whih are of independent

interest.

1 Introdution

The Walsh funtions form an orthonormal system whih has found a lot of

appliations in many di�erent situations (e.g., data transmission, �ltering,

pattern reognition, image enhanement, et). In the setion 2 we are in-

troduing Walsh system on S

2

and presenting di�erent properties of suh

funtions. In the setion 3 we are establishing general upper bounds for en-

tropy of multiplier operators. Finally, in the setion 4 general lower bounds

are found.

Let us remind some de�nitions. Let X and Y be a Banah spaes with

unit balls B

X

and B

Y

respetively. A �nite set of points x

1

; :::; x

m

is alled

�-net for B

X

in Y if for eah x 2 B

X

there is at least one point x

k

of the net

suh that kx� x

k

k

Y

� �. The logarithm

H

�

= log

2

N

�

(B

X

);

�
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where N

�

(B

X

) := minfn : fx

1

; :::; x

n

g is an � net for B

X

in Y g, is the

entropy of the set B

X

in Y .

The de�nition has its roots in the notion of the metri entropy of a set

whih Kolmogorov introdued in the 1930s (see [10℄). �-Entropy is onneted

with the omplexity of the tabulation problem and information theory (see

[11℄).

In this paper there are several universal onstants whih enter into the

estimates. These onstants are mostly denoted by the letters K;C;C

1

; C

2

; :::

We did not arefully distinguish between the di�erent onstants, neither did

we try to get good estimates for them. The same letter will be used to

denote di�erent universal onstants in di�erent parts of the paper. For easy

of notation we will wright a

n

� b

n

for two sequenes, if a

n

� Cb

n

for n 2 IN

and a

n

� b

n

if C

1

b

n

� a

n

� C

2

b

n

for all n 2 IN and some onstants C;C

1

and C

2

. Through the text [a℄ means entire part of a 2 IR.

2 Walsh Funtions on S

2

In this setion we de�ne real-valued funtions  

n

; n 2 IN

2

, on the 2-dimensional

unit sphere S

2

= fx 2 IR

3

: jxj = 1g in the Eulidean spae IR

3

, taking only

the values �1, whih we all Walsh funtions on S

2

. We prove several prop-

erties of these funtions, in partiular we prove that f 

n

: n 2 IN

2

g is a

omplete orthonormal subset of the Hilbert spae L

2

(S

2

).

We de�ne the appliation � : D = [0; �℄� [0; 2�℄! S

2

by

�(�

1

; �

2

) = (os �

1

; sin �

1

os �

2

; sin �

1

sin �

2

):

The Lebesgue normalized measure on S

2

will be denoted by dx and the

Lebesgue measure of a measurable set A � S

2

by jAj. If f 2 L

1

(S

2

), we have

that

Z

S

2

f(x)dx =

1

4�

Z

2�

0

d�

2

Z

�

0

f(�(�

1

; �

2

)) sin �

1

d�

1

:

If k; j 2 IN = f0; 1; 2; : : :g and 1 � j � 2

k

, we write

I

k;2

j

= [(j � 1)2

�k+1

�; j2

�k+1

�)

and

I

k;1

j

= [a

k

j�1

; a

k

j

); 1 � j � 2

k

� 1; I

k;1

2

k

= [a

k

2

k

�1

; a

k

2

k

℄;

2



where 0 = a

k

0

< a

k

1

< : : : < a

k

2

k

= � and

Z

a

k

j

a

k

j�1

sin tdt =

Z

I

k;1

j

sin tdt = 2

�k+1

; 1 � j � 2

k

:

The Rademaher funtions r

(1)

k

: [0; �℄! IR and r

(2)

k

: [0; 2�℄! IR, k 2 IN,

are de�ned by

r

(i)

k

=

2

k+1

X

j=1

(�1)

j+1

�

I

k+1;i

j

; i = 1; 2;

where �

A

is the harateristi funtion of the set A.

Given n 2 IN; n � 1, let n

1

; : : : ; n

k

2 IN suh that n

1

> n

2

> � � � > n

k

� 0

and n = 2

n

1

+ 2

n

2

+ � � � + 2

n

k

. The Walsh funtions '

(1)

n

: [0; �℄ ! IR and

'

(2)

n

: [0; 2�℄! IR are de�ned by

'

(i)

n

(t) = r

(i)

n

1

(t)r

(i)

n

2

(t) � � � r

(i)

n

k

(t); i = 1; 2

and '

(1)

0

(t) = 1; t 2 [0; �℄; '

(2)

0

(t) = 1; t 2 [0; 2�℄. Reall that f'

(2)

n

: n 2 INg

is a omplete orthonormal subset of L

2

([0; 2�℄) (see [9℄).

Let m;n; p 2 IN; m = n+ p; p � 1. We have that

I

n+1;1

j

=

2

p

[

l=1

I

n+p+1

(j�1)2

p

+l

and hene we an write

r

(1)

m

(t) =

2

n+1

X

j=1

2

p

X

l=1

(�1)

l+1

�

I

n+p+1

(j�1)2

p

+l

(t);

r

(1)

n

(t) =

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

�

I

n+p+1

(j�1)2

p

+l

(t):

Therefore

r

(1)

m

(t)r

(1)

n

(t) =

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

(�1)

l+1

�

I

n+p+1

(j�1)2

p

+l

(t)

and thus

Z

�

0

r

(1)

m

(t)r

(1)

n

(t) sin tdt = 2

�(n+p)

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

(�1)

l+1

= 0:
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By this way we an show that, for m;n 2 IN; m 6= n,

Z

�

0

'

(1)

m

(t)'

(1)

n

(t) sin tdt = 0

Let (
; H; P ) be a probability spae. For f 2 L

1

(
; H; P ) and a sub-

�-�eld E of H we denote by E[f jE℄ the onditional expetation of f with

respet to E. If the �-�eld E is atomi, that is, if there exists a partition

fB

j

: j 2 Lg of 
,L � IN, suh that B

j

2 E and P (B

j

) > 0 for all j 2 L,

then

E[f jE℄(!) =

X

j2L

 

1

P (B

j

)

Z

B

j

fdP

!

�

B

j

(!) =

X

j2L

�

Z




f�

j

dP

�

�

j

(!);

where

�

j

=

1

(P (B

j

))

1=2

�

B

j

:

Thus f�

j

: j 2 Lg is an orthonormal basis of L

2

(
; E).

Now, let (H)

n�0

be an inreasing sequene of sub-�-�elds of H suh

that H is generated by the union of the �-�elds H

n

; n � 0. A martin-

gale with respet to (H

n

)

n�0

is a sequene of funtions (f

n

)

n�0

suh that

f

n

2 L

1

(
; H

n

; P ) and f

n

= E[f

n+1

jH

n

℄ for all n � 0. If f 2 L

1

(
; H; P ),

then (f

n

)

n�0

where f

n

= E[f jH

n

℄ is a martingale. Given a martingale

(f

n

)

n�0

, we assoiate with it the sequene of di�erenes (d

n

)

n�0

; d

0

= f

0

; d

n

=

f

n

� f

n�1

; n � 1.

Let v = (v

n

)

n�1

be a preditable sequene, that is, v

n

: 
 ! IR is H

n�1

-

measurable, n � 1 and let (d

n

)

n�1

be the sequene of di�erenes of a mar-

tingale f = (f

n

)

n�0

. Then the sequene (g

n

)

n�0

de�ned by g

n

=

P

n

k=1

v

k

d

k

is a martingale, known as the transform of the martingale f by v.

Theorem 2.1 ([8, p.29℄) Let (
; H; P ) and (H

n

)

n�0

be as above and let

1 � p < 1, f 2 L

p

(
; H; P ) and f

n

= E[f jH

n

℄; n � 0. Then the sequene

(f

n

)

n�0

onverges a.e. and in the norm of L

p

(
; H; P ) to the funtion f .

Theorem 2.2 ([4℄) For 1 < p < 1 let p

�

be the maximum of p and

q where 1=p + 1=q = 1. Let (v

k

)

k�1

be a preditable sequene uniformly

bounded in absolute value by 1 and given an integrable funtion f let f

n

=

E[f jH

n

℄; d

n

= f

n

� f

n�1

.
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(i) If 1 < p < 1 and f 2 L

p

(
; H; P ), then the series

P

1

k=1

v

k

d

k

on-

verges in L

p

(
; H; P ) and

k

1

X

k=1

v

k

d

k

k

p

� (p

�

� 1)kfk

p

:

Moreover, the onstant p

�

� 1 is the best possible.

(ii) If f 2 L

1

(
; H; P ), then for all � > 0,

�P (f! : sup

n�1

j

n

X

k=1

v

k

(!)d

k

(!)j > �g) � 2kfk

1

:

For k 2 IN and x 2 S

2

we de�ne

R

(1)

k

(x) =

2

k+1

X

j=1

(�1)

j+1

�

�(I

k+1;1

j

�[0;2�))

(x);

R

(2)

k

(x) =

2

k+1

X

j=1

(�1)

j+1

�

�([0;�℄�I

k+1;2

j

)

(x):

If n = 2

n

1

+2

n

2

+ � � �+2

n

k

with n

1

> n

2

> � � � > n

k

� 0 we de�ne for i = 1; 2,

 

(i)

n

(t) = R

(i)

n

1

(t)R

(i)

n

2

(t) � � �R

(i)

n

k

(t);  

(i)

0

� 1:

For m = (m

1

; m

2

) 2 IN

2

we de�ne

 

m

(x) =  

(1)

m

1

(x) 

(2)

m

2

(x):

For k 2 IN; k � 1 we de�ne

G

k

= fI

k�1;1

j

� I

k;2

l

: 1 � j � 2

k�1

; 1 � l � 2

k

g;

A

k

= f�(G) : G 2 G

k

g; A

0

= fS

2

g;

C

k

= f0; 1; 2; : : : ; 2

k�1

� 1g � f0; 1; 2; : : : ; 2

k

� 1g;

B

k

= C

k

n C

k�1

; k � 2; B

1

= C

1

:

We denote by F

k

; k � 0, the �-�eld of subsets of S

2

generated by the partition

A

k

of S

2

.

Let us denote by #F the ardinality of a �nite set F . Then #C

k

=

#A

k

= 2

2k�1

and #B

k

= 3 2

2(k�1)�1

.

5



Now we will de�ne an ordering on IN

2

.

Let n = (n

1

; n

2

); m = (m

1

; m

2

) 2 IN

2

. If there exists k 2 IN suh that

n;m 2 B

k

, we de�ne

n < m() n

1

< m

1

or n

1

= m

1

and n

2

< m

2

If n 2 B

k

and m 2 B

l

for k 6= l, we de�ne

n < m() k < l:

We de�ne an ordering � on IN

2

by

n � m() n = m or n < m:

It is easy to see that the relation � is a total ordering on IN

2

.

Lemma 2.1 f 

n

: n 2 C

k

g is an orthonormal basis of L

2

(S

2

; F

k

); k �

1.

Proof. Let n = (n

1

; n

2

); m = (m

1

; m

2

) 2 C

k

. It follows from De�nition

1.1 that

 

n

(�(�

1

; �

2

)) = '

(1)

n

1

(�

1

)'

(2)

n

2

(�

2

);  

m

(�(�

1

; �

2

)) = '

(1)

m

1

(�

1

)'

(2)

m

2

(�

2

):

and hene

Z

S

2

 

n

(x) 

m

(x)dx =

1

4�

Z

2�

0

d�

2

Z

�

0

 

n

(�(�

1

; �

2

)) 

m

(�(�

1

; �

2

)) sin �

1

d�

1

=

1

4�

Z

�

0

'

(1)

n

1

(�

1

)'

(1)

m

1

(�

1

) sin �

1

d�

1

Z

2�

0

'

(2)

n

2

(�

2

)'

(2)

m

2

(�

2

)d�

2

:

Suppose n 6= m. If n

2

6= m

2

, then

Z

2�

0

'

(2)

n

2

(�

2

)'

(2)

m

2

(�

2

)d�

2

= 0;

sine f'

(2)

k

: k 2 INg is an orthonormal subset of L

2

([0; 2�℄), and if n

1

6= m

1

,

it follows from (1.1) that

Z

�

0

'

(1)

n

1

(�

1

)'

(1)

m

1

(�

1

) sin �

1

d�

1

= 0:

Therefore we have that

Z

S

2

 

n

(x) 

m

(x)dx = 0:
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Sine  

n

(x) = �1 for all x 2 S

2

, then

Z

S

2

j 

n

(x)j

2

dx =

Z

S

2

dx = 1:

It is easy to see that  

n

is F

k

-measurable for all n 2 C

k

and thus we an

onlude that f 

n

: n 2 C

k

g is an orthonormal subset of L

2

(S

2

; F

k

).

The set f

1

jAj

1=2

�

A

: A 2 A

k

g is an orthonormal basis of L

2

(S

2

; F

k

) and

hene the dimension of L

2

(S

2

; F

k

) is #A

k

= #C

k

. Therefore f 

n

: n 2 C

k

g

is an orthonormal basis of L

2

(S

2

; F

k

).

For f 2 L

1

(S

2

) and n 2 IN

2

we de�ne

S

n

(f)(x) =

X

m�n



m

(f) 

m

(x)

where



m

(f) =

Z

S

2

f(x) 

m

(x)dx:

Lemma 2.2 Let a

k

= (2

k�1

� 1; 2

k

� 1); k � 1. If f 2 L

1

(S

2

) then

E[f jF

k

℄ = S

a

k

(f):

Proof. Let f

k

= E[f jF

k

℄. Sine f

k

2 L

2

(S

2

; F

k

) and f�

A

=

1

jAj

1=2

�

A

:

A 2 A

k

g is an orthonormal basis of L

2

(S

2

; F

k

), then

f

k

=

X

A2A

k

�

Z

S

2

f

k

�

A

dx

�

�

A

=

X

A2A

k

�

Z

S

2

f�

A

dx

�

�

A

and thus



m

(f

k

) =

X

A2A

k

�

Z

S

2

f�

A

dx

��

Z

S

2

 

m

�

A

dx

�

=

Z

S

2

f

0

�

X

A2A

k

�

Z

S

2

 

m

�

A

dx

�

�

A

1

A

dx =

Z

S

2

f 

m

dx = 

m

(f):

But by Lemma 1.1, f 

n

: n 2 C

k

g is an orthonormal basis of L

2

(S

2

; F

k

) and

hene

f

k

=

X

m2C

k



m

(f

k

) 

m

=

X

m�a

k



m

(f) 

m

= S

a

k

(f):

7



Theorem 2.3 f 

n

: n 2 IN

2

g is an omplete orthonormal subset of

L

2

(S

2

).

Proof. Let f 2 L

2

(S

2

). By Lemma 2.2 we have that S

a

k

(f) = E[f jF

k

℄; k �

1. Then (S

a

k

(f))

k�1

is a martingale and by Theorem I we have that S

a

k

(f)!

f in the norm of L

2

(S

2

), when k ! 1. Suppose that f is orthonormal to

 

m

for all m 2 IN

2

. Then a

m

(f) = 0 for all m 2 IN

2

and hene S

a

k

(f) � 0.

But S

a

k

! f and thus f � 0.

The next result follows immediately from Theorem 2.2 and Lemma 2.2.

Theorem 2.4 For 1 < p <1 let p

�

be the maximum of p and q where

1=p+1=q = 1. Let (v

k

)

k�1

be a sequene of funtions on S

2

uniformly bounded

in absolute value by 1, suh that v

k

is F

k�1

-measurable, k � 1, and given an

integrable funtion f : S

2

! IR and k � 1, let

d

k

(f) = S

a

k

(f)� S

a

k�1

(f) =

X

m2B

k



m

(f) 

m

:

(i) If 1 < p <1 and f 2 L

p

(S

2

), then the series

P

1

k=1

v

k

d

k

(f) onverges in

L

p

(S

2

) and

k

1

X

k=1

v

k

d

k

(f)k

p

� (p

�

� 1)kfk

p

:

Moreover, the onstant p

�

� 1 is the best possible.

(ii) If f 2 L

1

(S

2

), then for all � > 0,

�jfx : sup

n�1

j

n

X

k=1

v

k

(x)d

k

(f)(x)j > �gj � 2kfk

1

:

3 Upper Bounds

Let  

1

;  

2

; ::: be a basis in a real Banah spae X,

x =

1

X

k=1

x

k

 

k

with unit ballB

X

= fxjkxk � 1g (we will speify then the system f 

k

g as the

system of Walsh funtions on S

2

with the �xed ordering). Let � = f�

k

g

k2IN

,

8



�

k

6= 0, j�

1

j � j�

2

j � :::; �

N

� :::, k 2 IN be a multiplier operator

�x =

1

X

k=1

�

k

x

k

 

k

:

Let us put P

N

x =

P

N

k=1

x

k

 

k

,

B

N

= B \ L

N

; �U

2

= fyjy = �x; kxk � 1g; (�U

2

)

N

= �U

2

\ L

N

;

P

N

B = fz 2 L

N

jz = P

N

x; x 2 Bg P

N

�U

2

= fz 2 L

N

jz = P

N

x; x 2 �U

2

g;



N

(�U

2

) = supfkx� P

N

xkjx 2 �U

2

g;

�

N

(�U

2

) =

�

supfk�

�1

xkjkxk � 1; x 2 L

N

�

�1

:

Using the results of the setion 2 it is easy to hek that

�

N

= j�

N

j; 

N

= j�

N+1

j:

It is known that (see [10℄ p. 280)

H

�

N

(�U

2

; L

2

(S

2

))

� �N log

2

�

N

+

N

X

k=1

log

2

j�

k

j+N log

2

2kP

n

k;

where �

N

= �

N

+ 

N

. It is easy to verify that C

1

= kP

N

k = 1 and

H

2�

N

(�U

2

; L

2

(S

2

))

� �N log

2

j�

N

j+

N

X

k=1

log

2

j�

k

j+N: (1)

4 Lower Bounds

The problem of estimating of the entropy from below usually splits into two

parts: redution to some �nite dimensional problem in Eulidean spae, and

obtaining a lower estimate for volume of speial body in IR

n

.

As regards the �rst part of the problem, in many ases its solution is rela-

tively simple; therefore the main diÆulty is to obtain proper lower estimates

of volumes for speial onvex bodies in Eulidean spae whih are onneted

with the struture of Walsh system on S

2

.

9



4.1 The Redution

Suppose that the multiplier sequene � = f�

m

g is non-enreasing and posi-

tive. In general ase we should onsider a proper rearrangement, �

�

N

= j�

m

N

j,

j�

k

1

j � j�

k

2

j � ::: � j�

k

N

j � :::.

We will show that for a �xed N 2 IN and � > 0 there are [C=�℄

N

funtions

in �U

1

suh that for all 1 � m

1

6= m

2

� [C=�℄

N

,

kf

m

1

� f

m

2

k

L

1

(S

2

)

� �

N

�

2

=2: (2)

Let us put T

N

= linf 

1

; :::;  

N

g. It is easy to hek that for any t

N

2 T

N

kt

N

k

V

= inf

�2T

?

N

kt

N

� �k

L

1

(S

2

)

;

where � 2 T

?

N

means

R

S

2

� � t

N

dx = 0, 8t

N

2 T

N

and V = J(B

N

1

)

o

(see (5)

and (10) for the de�nition).

If there is suh absolute onstant 0 < C < 1 that for all N 2 IN

V ol

N

((B

N

1

)

o

) � C

N

V ol

N

(B

N

2

); (3)

then the ardinality of minimal � - net for (B

N

1

)

o

in the Eulidean norm is

� (C=�)

N

. Hene there are [C=�℄

N

polynomials t

m

N

2 J(B

N

1

)

o

, 1 � m � [=�℄

N

suh that kt

m

1

N

� t

m

2

N

k

L

2

(S

2

)

� �, 1 � m

1

6= m

2

� [C=�℄

N

. Let us put

f

m

= �(t

m

N

� �

m

), 1 � m � [=�℄

N

and �

1=2

= f�

1=2

k

g, then f

m

2 �U

1

and

kf

m

1

� f

m

2

k

L

1

(S

2

)

� �

N

� 2

�1

�

�

k�

1=2

(t

m

1

N

� t

m

2

N

)k

2

L

2

(S

2

)

+ k�

1=2

(�

m

1

� �

m

2

)k

2

L

2

(S

2

)

�

� �

N

� �

2

=2;

sine �

m

2 T

?

N

for all 1 � m � [C=�℄

N

. Now we have

H

�

2

�

N

=2

� N log

2

�

C

�

�

(4)

Let us put � = C=2, then (4) takes the form

H

C

2

�

N

=8

� N:
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4.2 Finite Dimensional Estimates

The approah in part of lower bounds in IR

n

makes essential use of methods

and results from Geometry of Banah spaes. We shall estimate volumes of

ellipsoids of F. John for a speial lass of onvex bodies in IR

n

. Let us remind

that for a onvex body V 2 IR

n

the ellipsoid of F. John E

V

is the ellipsoid of

maximal volume ontained in V .

Usually an ellipsoid whih determines the Banah-Mazur distane is suf-

�iently far from the ellipsoid of F. John and in appliations we have a very

little information onerning speial onvex bodies in IR

n

whih are onneted

with the struture of a �xed orthonormal system.

This is a soure of fundamental diÆulties whih our if we try to apply

the results of the Geometry of Banah spaes to various open problems in

funtional spaes.

Just in a few situations it was possible to speify the ellipsoids of F. John

whih are onneted with speial orthonormal systems. For example, using

shift invariane of trigonometri system it is possible to �nd the F. John

ellipsoids.

General method of estimates of volumes of the F. John ellipsoids in the

ase of bounded orthonormal systems has been o�ered by A. Kushpel (see

e.g. [6℄).

LetX = (IR

n

; k�k) be a Banah spae. Furthermore, for any �; � 2 IR

n

we

de�ne h�; �i =

P

n

k=1

�

k

�

k

. Let V ol

n

be the standard n-dimensional volume

of subsets in IR

n

.

Let us onsider the Walsh system f 

k

gwhih is orthonormal in L

2

(S

2

; dx),

where d�(�) is the normalized invariant measure on S

2

. Set 	

n

= spanf 

1

; : : : ;  

n

g

and let J : IR

n

! 	

n

be the oordinate isomorphism that assigns to � =

(�

1

; : : : ; �

n

) 2 IR

n

the funtion  

�

=

P

n

k=1

�

k

 

k

2 	

n

. The de�nition

k�k

(p)

:= kJ�k

L

p

(S

2

)

indues a norm on IR

n

. Let us put

B

n

p

:= f� 2 IR

n

j kJ�k

L

p

(S

2

)

� 1g: (5)

It is easy to see that for any 1 � p � 1 the set B

n

p

is a onvex entral

symmetri body in IR

n

.

The following statement has been o�ered by A. Kushpel (see [6℄).

Theorem 4.2.1 For any n 2 IN and 1 � p � 2

V ol

n

(E

B

n

p

) = V ol

n

(B

n

2

):

11



Proof. It is lear that for all 1 � p � 2 and n 2 IN

B

(n)

2

� B

(n)

p

;

so that by the de�nition

V ol

n

(E

B

n

p

) � V ol

n

(B

n

2

): (6)

Let t

n

be any polynomial, t

n

(x) =

P

n

k=1

�

k

 

k

, then

kt

n

k

L

1

(S

2

)

=











n

X

k=1

�

k

 

k











L

1

(S

2

)

� max

1�k�n

j�

k

j = k�k

l

n

1

;

sine Walsh funtions  

k

are orthonormal on S

2

and

j 

k

(x)j � 1 for all 1 � k � n and x 2 S

2

. It means that

B

n

1

� Q

n

; (7)

where Q

n

is n-dimensional ube. It is known that the Eulidean ball B

n

2

is

the unique ellipsoid of maximum volume ontained in n-dimensional ube

(see [5℄, p. 75), or

E

Q

n

= B

n

2

: (8)

Comparing (7) - (8) we are getting that

V ol

n

(E

B

n

1

) � V ol

n

(B

n

2

): (9)

>From (6) and (9) it follows now that V ol

n

(E

B

n

p

) = V ol

n

(B

n

2

).

For a onvex entrally symmetri body V � IR

n

we de�ne the polar body

V

o

of V as following

V

o

= fx 2 IR

n

j sup

y2V

jhx; yij � 1g: (10)

If k � k = k � k

X

is the norm on IR

n

indued by V , then V

o

oinides with the

unit ball of the dual spae X

�

.

We will need the following de�nition. A normed spae X is said to have

otype 2 if there is some onstant C sun that

C � Ave

�=�1







X

�

k

x

k





 �

�







X

x

k







2

�

1=2
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whenever fx

k

g is a �nite sequene of vetors inX. The smallest suh onstant

C

2

(X) is alled otype-2 onstant of X. It is easy to hek

C

2

(L

1

(S

2

)) < 2

1=2

; (11)

(see e.g. [7℄ p. 73℄).

It is known (see [3℄) that if a normed n-dimensional spae X with unit

ball V has otype 2 then

(V ol

n

V )

1=2

� C � C

2

(X) � (lnC

2

(X))

4

�

 

(V ol

n

B

n

2

)

2

V ol

n

E

V

!

1=n

; (12)

where E

V

is the ellipsoid of F. John for V , and C

2

(X) is the otype 2 onstant

of X. Comparing Theorem 4.2.1, (11) and (12) we are getting the ondition

(3).

Finally, omparing (1) and (4) we are getting the following result.

Theorem 1.1 (i) Let f�

k

g

k2IN

be an arbitrary sequene of real numbers

and f�

�

k

g

k2IN

is a rearrangement of fj�

k

jg

k2IN

in a noninreasing order.

There is a positive onstant C > 0 suh that for any n 2 IN and all 1 �

p; q � 1

H

C�

�

n

(�U

p

; L

q

(S

2

)) � n:

(ii) For any 1 � q � 2 � p � 1

H

2�

�

n

(�U

p

; L

q

(S

2

)) � �n log

2

�

�

n

+

n

X

k=1

log

2

�

�

k

+ n:
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