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Abstra
t

Walsh fun
tions on S

2

are introdu
ed and 
onsidered. We are

demonstrating di�erent properties of su
h fun
tions and establishing

sharp orders of � - entropy for a wide range of multiplier operators

on S

2

. The analysis is essentially based on martingale te
hnique and

estimates of volumes of spe
ial 
onvex bodies whi
h are of independent

interest.

1 Introdu
tion

The Walsh fun
tions form an orthonormal system whi
h has found a lot of

appli
ations in many di�erent situations (e.g., data transmission, �ltering,

pattern re
ognition, image enhan
ement, et
). In the se
tion 2 we are in-

trodu
ing Walsh system on S

2

and presenting di�erent properties of su
h

fun
tions. In the se
tion 3 we are establishing general upper bounds for en-

tropy of multiplier operators. Finally, in the se
tion 4 general lower bounds

are found.

Let us remind some de�nitions. Let X and Y be a Bana
h spa
es with

unit balls B

X

and B

Y

respe
tively. A �nite set of points x

1

; :::; x

m

is 
alled

�-net for B

X

in Y if for ea
h x 2 B

X

there is at least one point x

k

of the net

su
h that kx� x

k

k

Y

� �. The logarithm

H

�

= log

2

N

�

(B

X

);

�
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where N

�

(B

X

) := minfn : fx

1

; :::; x

n

g is an � net for B

X

in Y g, is the

entropy of the set B

X

in Y .

The de�nition has its roots in the notion of the metri
 entropy of a set

whi
h Kolmogorov introdu
ed in the 1930s (see [10℄). �-Entropy is 
onne
ted

with the 
omplexity of the tabulation problem and information theory (see

[11℄).

In this paper there are several universal 
onstants whi
h enter into the

estimates. These 
onstants are mostly denoted by the letters K;C;C

1

; C

2

; :::

We did not 
arefully distinguish between the di�erent 
onstants, neither did

we try to get good estimates for them. The same letter will be used to

denote di�erent universal 
onstants in di�erent parts of the paper. For easy

of notation we will wright a

n

� b

n

for two sequen
es, if a

n

� Cb

n

for n 2 IN

and a

n

� b

n

if C

1

b

n

� a

n

� C

2

b

n

for all n 2 IN and some 
onstants C;C

1

and C

2

. Through the text [a℄ means entire part of a 2 IR.

2 Walsh Fun
tions on S

2

In this se
tion we de�ne real-valued fun
tions  

n

; n 2 IN

2

, on the 2-dimensional

unit sphere S

2

= fx 2 IR

3

: jxj = 1g in the Eu
lidean spa
e IR

3

, taking only

the values �1, whi
h we 
all Walsh fun
tions on S

2

. We prove several prop-

erties of these fun
tions, in parti
ular we prove that f 

n

: n 2 IN

2

g is a


omplete orthonormal subset of the Hilbert spa
e L

2

(S

2

).

We de�ne the appli
ation � : D = [0; �℄� [0; 2�℄! S

2

by

�(�

1

; �

2

) = (
os �

1

; sin �

1


os �

2

; sin �

1

sin �

2

):

The Lebesgue normalized measure on S

2

will be denoted by dx and the

Lebesgue measure of a measurable set A � S

2

by jAj. If f 2 L

1

(S

2

), we have

that

Z

S

2

f(x)dx =

1

4�

Z

2�

0

d�

2

Z

�

0

f(�(�

1

; �

2

)) sin �

1

d�

1

:

If k; j 2 IN = f0; 1; 2; : : :g and 1 � j � 2

k

, we write

I

k;2

j

= [(j � 1)2

�k+1

�; j2

�k+1

�)

and

I

k;1

j

= [a

k

j�1

; a

k

j

); 1 � j � 2

k

� 1; I

k;1

2

k

= [a

k

2

k

�1

; a

k

2

k

℄;

2



where 0 = a

k

0

< a

k

1

< : : : < a

k

2

k

= � and

Z

a

k

j

a

k

j�1

sin tdt =

Z

I

k;1

j

sin tdt = 2

�k+1

; 1 � j � 2

k

:

The Radema
her fun
tions r

(1)

k

: [0; �℄! IR and r

(2)

k

: [0; 2�℄! IR, k 2 IN,

are de�ned by

r

(i)

k

=

2

k+1

X

j=1

(�1)

j+1

�

I

k+1;i

j

; i = 1; 2;

where �

A

is the 
hara
teristi
 fun
tion of the set A.

Given n 2 IN; n � 1, let n

1

; : : : ; n

k

2 IN su
h that n

1

> n

2

> � � � > n

k

� 0

and n = 2

n

1

+ 2

n

2

+ � � � + 2

n

k

. The Walsh fun
tions '

(1)

n

: [0; �℄ ! IR and

'

(2)

n

: [0; 2�℄! IR are de�ned by

'

(i)

n

(t) = r

(i)

n

1

(t)r

(i)

n

2

(t) � � � r

(i)

n

k

(t); i = 1; 2

and '

(1)

0

(t) = 1; t 2 [0; �℄; '

(2)

0

(t) = 1; t 2 [0; 2�℄. Re
all that f'

(2)

n

: n 2 INg

is a 
omplete orthonormal subset of L

2

([0; 2�℄) (see [9℄).

Let m;n; p 2 IN; m = n+ p; p � 1. We have that

I

n+1;1

j

=

2

p

[

l=1

I

n+p+1

(j�1)2

p

+l

and hen
e we 
an write

r

(1)

m

(t) =

2

n+1

X

j=1

2

p

X

l=1

(�1)

l+1

�

I

n+p+1

(j�1)2

p

+l

(t);

r

(1)

n

(t) =

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

�

I

n+p+1

(j�1)2

p

+l

(t):

Therefore

r

(1)

m

(t)r

(1)

n

(t) =

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

(�1)

l+1

�

I

n+p+1

(j�1)2

p

+l

(t)

and thus

Z

�

0

r

(1)

m

(t)r

(1)

n

(t) sin tdt = 2

�(n+p)

2

n+1

X

j=1

(�1)

j+1

2

p

X

l=1

(�1)

l+1

= 0:
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By this way we 
an show that, for m;n 2 IN; m 6= n,

Z

�

0

'

(1)

m

(t)'

(1)

n

(t) sin tdt = 0

Let (
; H; P ) be a probability spa
e. For f 2 L

1

(
; H; P ) and a sub-

�-�eld E of H we denote by E[f jE℄ the 
onditional expe
tation of f with

respe
t to E. If the �-�eld E is atomi
, that is, if there exists a partition

fB

j

: j 2 Lg of 
,L � IN, su
h that B

j

2 E and P (B

j

) > 0 for all j 2 L,

then

E[f jE℄(!) =

X

j2L

 

1

P (B

j

)

Z

B

j

fdP

!

�

B

j

(!) =

X

j2L

�

Z




f�

j

dP

�

�

j

(!);

where

�

j

=

1

(P (B

j

))

1=2

�

B

j

:

Thus f�

j

: j 2 Lg is an orthonormal basis of L

2

(
; E).

Now, let (H)

n�0

be an in
reasing sequen
e of sub-�-�elds of H su
h

that H is generated by the union of the �-�elds H

n

; n � 0. A martin-

gale with respe
t to (H

n

)

n�0

is a sequen
e of fun
tions (f

n

)

n�0

su
h that

f

n

2 L

1

(
; H

n

; P ) and f

n

= E[f

n+1

jH

n

℄ for all n � 0. If f 2 L

1

(
; H; P ),

then (f

n

)

n�0

where f

n

= E[f jH

n

℄ is a martingale. Given a martingale

(f

n

)

n�0

, we asso
iate with it the sequen
e of di�eren
es (d

n

)

n�0

; d

0

= f

0

; d

n

=

f

n

� f

n�1

; n � 1.

Let v = (v

n

)

n�1

be a predi
table sequen
e, that is, v

n

: 
 ! IR is H

n�1

-

measurable, n � 1 and let (d

n

)

n�1

be the sequen
e of di�eren
es of a mar-

tingale f = (f

n

)

n�0

. Then the sequen
e (g

n

)

n�0

de�ned by g

n

=

P

n

k=1

v

k

d

k

is a martingale, known as the transform of the martingale f by v.

Theorem 2.1 ([8, p.29℄) Let (
; H; P ) and (H

n

)

n�0

be as above and let

1 � p < 1, f 2 L

p

(
; H; P ) and f

n

= E[f jH

n

℄; n � 0. Then the sequen
e

(f

n

)

n�0


onverges a.e. and in the norm of L

p

(
; H; P ) to the fun
tion f .

Theorem 2.2 ([4℄) For 1 < p < 1 let p

�

be the maximum of p and

q where 1=p + 1=q = 1. Let (v

k

)

k�1

be a predi
table sequen
e uniformly

bounded in absolute value by 1 and given an integrable fun
tion f let f

n

=

E[f jH

n

℄; d

n

= f

n

� f

n�1

.
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(i) If 1 < p < 1 and f 2 L

p

(
; H; P ), then the series

P

1

k=1

v

k

d

k


on-

verges in L

p

(
; H; P ) and

k

1

X

k=1

v

k

d

k

k

p

� (p

�

� 1)kfk

p

:

Moreover, the 
onstant p

�

� 1 is the best possible.

(ii) If f 2 L

1

(
; H; P ), then for all � > 0,

�P (f! : sup

n�1

j

n

X

k=1

v

k

(!)d

k

(!)j > �g) � 2kfk

1

:

For k 2 IN and x 2 S

2

we de�ne

R

(1)

k

(x) =

2

k+1

X

j=1

(�1)

j+1

�

�(I

k+1;1

j

�[0;2�))

(x);

R

(2)

k

(x) =

2

k+1

X

j=1

(�1)

j+1

�

�([0;�℄�I

k+1;2

j

)

(x):

If n = 2

n

1

+2

n

2

+ � � �+2

n

k

with n

1

> n

2

> � � � > n

k

� 0 we de�ne for i = 1; 2,

 

(i)

n

(t) = R

(i)

n

1

(t)R

(i)

n

2

(t) � � �R

(i)

n

k

(t);  

(i)

0

� 1:

For m = (m

1

; m

2

) 2 IN

2

we de�ne

 

m

(x) =  

(1)

m

1

(x) 

(2)

m

2

(x):

For k 2 IN; k � 1 we de�ne

G

k

= fI

k�1;1

j

� I

k;2

l

: 1 � j � 2

k�1

; 1 � l � 2

k

g;

A

k

= f�(G) : G 2 G

k

g; A

0

= fS

2

g;

C

k

= f0; 1; 2; : : : ; 2

k�1

� 1g � f0; 1; 2; : : : ; 2

k

� 1g;

B

k

= C

k

n C

k�1

; k � 2; B

1

= C

1

:

We denote by F

k

; k � 0, the �-�eld of subsets of S

2

generated by the partition

A

k

of S

2

.

Let us denote by #F the 
ardinality of a �nite set F . Then #C

k

=

#A

k

= 2

2k�1

and #B

k

= 3 2

2(k�1)�1

.
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Now we will de�ne an ordering on IN

2

.

Let n = (n

1

; n

2

); m = (m

1

; m

2

) 2 IN

2

. If there exists k 2 IN su
h that

n;m 2 B

k

, we de�ne

n < m() n

1

< m

1

or n

1

= m

1

and n

2

< m

2

If n 2 B

k

and m 2 B

l

for k 6= l, we de�ne

n < m() k < l:

We de�ne an ordering � on IN

2

by

n � m() n = m or n < m:

It is easy to see that the relation � is a total ordering on IN

2

.

Lemma 2.1 f 

n

: n 2 C

k

g is an orthonormal basis of L

2

(S

2

; F

k

); k �

1.

Proof. Let n = (n

1

; n

2

); m = (m

1

; m

2

) 2 C

k

. It follows from De�nition

1.1 that

 

n

(�(�

1

; �

2

)) = '

(1)

n

1

(�

1

)'

(2)

n

2

(�

2

);  

m

(�(�

1

; �

2

)) = '

(1)

m

1

(�

1

)'

(2)

m

2

(�

2

):

and hen
e

Z

S

2

 

n

(x) 

m

(x)dx =

1

4�

Z

2�

0

d�

2

Z

�

0

 

n

(�(�

1

; �

2

)) 

m

(�(�

1

; �

2

)) sin �

1

d�

1

=

1

4�

Z

�

0

'

(1)

n

1

(�

1

)'

(1)

m

1

(�

1

) sin �

1

d�

1

Z

2�

0

'

(2)

n

2

(�

2

)'

(2)

m

2

(�

2

)d�

2

:

Suppose n 6= m. If n

2

6= m

2

, then

Z

2�

0

'

(2)

n

2

(�

2

)'

(2)

m

2

(�

2

)d�

2

= 0;

sin
e f'

(2)

k

: k 2 INg is an orthonormal subset of L

2

([0; 2�℄), and if n

1

6= m

1

,

it follows from (1.1) that

Z

�

0

'

(1)

n

1

(�

1

)'

(1)

m

1

(�

1

) sin �

1

d�

1

= 0:

Therefore we have that

Z

S

2

 

n

(x) 

m

(x)dx = 0:
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Sin
e  

n

(x) = �1 for all x 2 S

2

, then

Z

S

2

j 

n

(x)j

2

dx =

Z

S

2

dx = 1:

It is easy to see that  

n

is F

k

-measurable for all n 2 C

k

and thus we 
an


on
lude that f 

n

: n 2 C

k

g is an orthonormal subset of L

2

(S

2

; F

k

).

The set f

1

jAj

1=2

�

A

: A 2 A

k

g is an orthonormal basis of L

2

(S

2

; F

k

) and

hen
e the dimension of L

2

(S

2

; F

k

) is #A

k

= #C

k

. Therefore f 

n

: n 2 C

k

g

is an orthonormal basis of L

2

(S

2

; F

k

).

For f 2 L

1

(S

2

) and n 2 IN

2

we de�ne

S

n

(f)(x) =

X

m�n




m

(f) 

m

(x)

where




m

(f) =

Z

S

2

f(x) 

m

(x)dx:

Lemma 2.2 Let a

k

= (2

k�1

� 1; 2

k

� 1); k � 1. If f 2 L

1

(S

2

) then

E[f jF

k

℄ = S

a

k

(f):

Proof. Let f

k

= E[f jF

k

℄. Sin
e f

k

2 L

2

(S

2

; F

k

) and f�

A

=

1

jAj

1=2

�

A

:

A 2 A

k

g is an orthonormal basis of L

2

(S

2

; F

k

), then

f

k

=

X

A2A

k

�

Z

S

2

f

k

�

A

dx

�

�

A

=

X

A2A

k

�

Z

S

2

f�

A

dx

�

�

A

and thus




m

(f

k

) =

X

A2A

k

�

Z

S

2

f�

A

dx

��

Z

S

2

 

m

�

A

dx

�

=

Z

S

2

f

0

�

X

A2A

k

�

Z

S

2

 

m

�

A

dx

�

�

A

1

A

dx =

Z

S

2

f 

m

dx = 


m

(f):

But by Lemma 1.1, f 

n

: n 2 C

k

g is an orthonormal basis of L

2

(S

2

; F

k

) and

hen
e

f

k

=

X

m2C

k




m

(f

k

) 

m

=

X

m�a

k




m

(f) 

m

= S

a

k

(f):

7



Theorem 2.3 f 

n

: n 2 IN

2

g is an 
omplete orthonormal subset of

L

2

(S

2

).

Proof. Let f 2 L

2

(S

2

). By Lemma 2.2 we have that S

a

k

(f) = E[f jF

k

℄; k �

1. Then (S

a

k

(f))

k�1

is a martingale and by Theorem I we have that S

a

k

(f)!

f in the norm of L

2

(S

2

), when k ! 1. Suppose that f is orthonormal to

 

m

for all m 2 IN

2

. Then a

m

(f) = 0 for all m 2 IN

2

and hen
e S

a

k

(f) � 0.

But S

a

k

! f and thus f � 0.

The next result follows immediately from Theorem 2.2 and Lemma 2.2.

Theorem 2.4 For 1 < p <1 let p

�

be the maximum of p and q where

1=p+1=q = 1. Let (v

k

)

k�1

be a sequen
e of fun
tions on S

2

uniformly bounded

in absolute value by 1, su
h that v

k

is F

k�1

-measurable, k � 1, and given an

integrable fun
tion f : S

2

! IR and k � 1, let

d

k

(f) = S

a

k

(f)� S

a

k�1

(f) =

X

m2B

k




m

(f) 

m

:

(i) If 1 < p <1 and f 2 L

p

(S

2

), then the series

P

1

k=1

v

k

d

k

(f) 
onverges in

L

p

(S

2

) and

k

1

X

k=1

v

k

d

k

(f)k

p

� (p

�

� 1)kfk

p

:

Moreover, the 
onstant p

�

� 1 is the best possible.

(ii) If f 2 L

1

(S

2

), then for all � > 0,

�jfx : sup

n�1

j

n

X

k=1

v

k

(x)d

k

(f)(x)j > �gj � 2kfk

1

:

3 Upper Bounds

Let  

1

;  

2

; ::: be a basis in a real Bana
h spa
e X,

x =

1

X

k=1

x

k

 

k

with unit ballB

X

= fxjkxk � 1g (we will spe
ify then the system f 

k

g as the

system of Walsh fun
tions on S

2

with the �xed ordering). Let � = f�

k

g

k2IN

,

8



�

k

6= 0, j�

1

j � j�

2

j � :::; �

N

� :::, k 2 IN be a multiplier operator

�x =

1

X

k=1

�

k

x

k

 

k

:

Let us put P

N

x =

P

N

k=1

x

k

 

k

,

B

N

= B \ L

N

; �U

2

= fyjy = �x; kxk � 1g; (�U

2

)

N

= �U

2

\ L

N

;

P

N

B = fz 2 L

N

jz = P

N

x; x 2 Bg P

N

�U

2

= fz 2 L

N

jz = P

N

x; x 2 �U

2

g;




N

(�U

2

) = supfkx� P

N

xkjx 2 �U

2

g;

�

N

(�U

2

) =

�

supfk�

�1

xkjkxk � 1; x 2 L

N

�

�1

:

Using the results of the se
tion 2 it is easy to 
he
k that

�

N

= j�

N

j; 


N

= j�

N+1

j:

It is known that (see [10℄ p. 280)

H

�

N

(�U

2

; L

2

(S

2

))

� �N log

2

�

N

+

N

X

k=1

log

2

j�

k

j+N log

2

2kP

n

k;

where �

N

= �

N

+ 


N

. It is easy to verify that C

1

= kP

N

k = 1 and

H

2�

N

(�U

2

; L

2

(S

2

))

� �N log

2

j�

N

j+

N

X

k=1

log

2

j�

k

j+N: (1)

4 Lower Bounds

The problem of estimating of the entropy from below usually splits into two

parts: redu
tion to some �nite dimensional problem in Eu
lidean spa
e, and

obtaining a lower estimate for volume of spe
ial body in IR

n

.

As regards the �rst part of the problem, in many 
ases its solution is rela-

tively simple; therefore the main diÆ
ulty is to obtain proper lower estimates

of volumes for spe
ial 
onvex bodies in Eu
lidean spa
e whi
h are 
onne
ted

with the stru
ture of Walsh system on S

2

.
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4.1 The Redu
tion

Suppose that the multiplier sequen
e � = f�

m

g is non-en
reasing and posi-

tive. In general 
ase we should 
onsider a proper rearrangement, �

�

N

= j�

m

N

j,

j�

k

1

j � j�

k

2

j � ::: � j�

k

N

j � :::.

We will show that for a �xed N 2 IN and � > 0 there are [C=�℄

N

fun
tions

in �U

1

su
h that for all 1 � m

1

6= m

2

� [C=�℄

N

,

kf

m

1

� f

m

2

k

L

1

(S

2

)

� �

N

�

2

=2: (2)

Let us put T

N

= linf 

1

; :::;  

N

g. It is easy to 
he
k that for any t

N

2 T

N

kt

N

k

V

= inf

�2T

?

N

kt

N

� �k

L

1

(S

2

)

;

where � 2 T

?

N

means

R

S

2

� � t

N

dx = 0, 8t

N

2 T

N

and V = J(B

N

1

)

o

(see (5)

and (10) for the de�nition).

If there is su
h absolute 
onstant 0 < C < 1 that for all N 2 IN

V ol

N

((B

N

1

)

o

) � C

N

V ol

N

(B

N

2

); (3)

then the 
ardinality of minimal � - net for (B

N

1

)

o

in the Eu
lidean norm is

� (C=�)

N

. Hen
e there are [C=�℄

N

polynomials t

m

N

2 J(B

N

1

)

o

, 1 � m � [
=�℄

N

su
h that kt

m

1

N

� t

m

2

N

k

L

2

(S

2

)

� �, 1 � m

1

6= m

2

� [C=�℄

N

. Let us put

f

m

= �(t

m

N

� �

m

), 1 � m � [
=�℄

N

and �

1=2

= f�

1=2

k

g, then f

m

2 �U

1

and

kf

m

1

� f

m

2

k

L

1

(S

2

)

� �

N

� 2

�1

�

�

k�

1=2

(t

m

1

N

� t

m

2

N

)k

2

L

2

(S

2

)

+ k�

1=2

(�

m

1

� �

m

2

)k

2

L

2

(S

2

)

�

� �

N

� �

2

=2;

sin
e �

m

2 T

?

N

for all 1 � m � [C=�℄

N

. Now we have

H

�

2

�

N

=2

� N log

2

�

C

�

�

(4)

Let us put � = C=2, then (4) takes the form

H

C

2

�

N

=8

� N:
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4.2 Finite Dimensional Estimates

The approa
h in part of lower bounds in IR

n

makes essential use of methods

and results from Geometry of Bana
h spa
es. We shall estimate volumes of

ellipsoids of F. John for a spe
ial 
lass of 
onvex bodies in IR

n

. Let us remind

that for a 
onvex body V 2 IR

n

the ellipsoid of F. John E

V

is the ellipsoid of

maximal volume 
ontained in V .

Usually an ellipsoid whi
h determines the Bana
h-Mazur distan
e is suf-

�
iently far from the ellipsoid of F. John and in appli
ations we have a very

little information 
on
erning spe
ial 
onvex bodies in IR

n

whi
h are 
onne
ted

with the stru
ture of a �xed orthonormal system.

This is a sour
e of fundamental diÆ
ulties whi
h o

ur if we try to apply

the results of the Geometry of Bana
h spa
es to various open problems in

fun
tional spa
es.

Just in a few situations it was possible to spe
ify the ellipsoids of F. John

whi
h are 
onne
ted with spe
ial orthonormal systems. For example, using

shift invarian
e of trigonometri
 system it is possible to �nd the F. John

ellipsoids.

General method of estimates of volumes of the F. John ellipsoids in the


ase of bounded orthonormal systems has been o�ered by A. Kushpel (see

e.g. [6℄).

LetX = (IR

n

; k�k) be a Bana
h spa
e. Furthermore, for any �; � 2 IR

n

we

de�ne h�; �i =

P

n

k=1

�

k

�

k

. Let V ol

n

be the standard n-dimensional volume

of subsets in IR

n

.

Let us 
onsider the Walsh system f 

k

gwhi
h is orthonormal in L

2

(S

2

; dx),

where d�(�) is the normalized invariant measure on S

2

. Set 	

n

= spanf 

1

; : : : ;  

n

g

and let J : IR

n

! 	

n

be the 
oordinate isomorphism that assigns to � =

(�

1

; : : : ; �

n

) 2 IR

n

the fun
tion  

�

=

P

n

k=1

�

k

 

k

2 	

n

. The de�nition

k�k

(p)

:= kJ�k

L

p

(S

2

)

indu
es a norm on IR

n

. Let us put

B

n

p

:= f� 2 IR

n

j kJ�k

L

p

(S

2

)

� 1g: (5)

It is easy to see that for any 1 � p � 1 the set B

n

p

is a 
onvex 
entral

symmetri
 body in IR

n

.

The following statement has been o�ered by A. Kushpel (see [6℄).

Theorem 4.2.1 For any n 2 IN and 1 � p � 2

V ol

n

(E

B

n

p

) = V ol

n

(B

n

2

):
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Proof. It is 
lear that for all 1 � p � 2 and n 2 IN

B

(n)

2

� B

(n)

p

;

so that by the de�nition

V ol

n

(E

B

n

p

) � V ol

n

(B

n

2

): (6)

Let t

n

be any polynomial, t

n

(x) =

P

n

k=1

�

k

 

k

, then

kt

n

k

L

1

(S

2

)

=
















n

X

k=1

�

k

 

k
















L

1

(S

2

)

� max

1�k�n

j�

k

j = k�k

l

n

1

;

sin
e Walsh fun
tions  

k

are orthonormal on S

2

and

j 

k

(x)j � 1 for all 1 � k � n and x 2 S

2

. It means that

B

n

1

� Q

n

; (7)

where Q

n

is n-dimensional 
ube. It is known that the Eu
lidean ball B

n

2

is

the unique ellipsoid of maximum volume 
ontained in n-dimensional 
ube

(see [5℄, p. 75), or

E

Q

n

= B

n

2

: (8)

Comparing (7) - (8) we are getting that

V ol

n

(E

B

n

1

) � V ol

n

(B

n

2

): (9)

>From (6) and (9) it follows now that V ol

n

(E

B

n

p

) = V ol

n

(B

n

2

).

For a 
onvex 
entrally symmetri
 body V � IR

n

we de�ne the polar body

V

o

of V as following

V

o

= fx 2 IR

n

j sup

y2V

jhx; yij � 1g: (10)

If k � k = k � k

X

is the norm on IR

n

indu
ed by V , then V

o


oin
ides with the

unit ball of the dual spa
e X

�

.

We will need the following de�nition. A normed spa
e X is said to have


otype 2 if there is some 
onstant C su
n that

C � Ave

�=�1










X

�

k

x

k








 �

�










X

x

k










2

�

1=2
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whenever fx

k

g is a �nite sequen
e of ve
tors inX. The smallest su
h 
onstant

C

2

(X) is 
alled 
otype-2 
onstant of X. It is easy to 
he
k

C

2

(L

1

(S

2

)) < 2

1=2

; (11)

(see e.g. [7℄ p. 73℄).

It is known (see [3℄) that if a normed n-dimensional spa
e X with unit

ball V has 
otype 2 then

(V ol

n

V )

1=2

� C � C

2

(X) � (lnC

2

(X))

4

�

 

(V ol

n

B

n

2

)

2

V ol

n

E

V

!

1=n

; (12)

where E

V

is the ellipsoid of F. John for V , and C

2

(X) is the 
otype 2 
onstant

of X. Comparing Theorem 4.2.1, (11) and (12) we are getting the 
ondition

(3).

Finally, 
omparing (1) and (4) we are getting the following result.

Theorem 1.1 (i) Let f�

k

g

k2IN

be an arbitrary sequen
e of real numbers

and f�

�

k

g

k2IN

is a rearrangement of fj�

k

jg

k2IN

in a nonin
reasing order.

There is a positive 
onstant C > 0 su
h that for any n 2 IN and all 1 �

p; q � 1

H

C�

�

n

(�U

p

; L

q

(S

2

)) � n:

(ii) For any 1 � q � 2 � p � 1

H

2�

�

n

(�U

p

; L

q

(S

2

)) � �n log

2

�

�

n

+

n

X

k=1

log

2

�

�

k

+ n:

Referen
es

[1℄ Bordin, B., Kushpel, A. K., Levesley, J., Tozoni, S. (1997), n{Widths

of Multiplier Operators on Two-Point Homogeneous Spa
es, In 46

o

Semin�ario Brasileiro de An�alise, 445-456.

[2℄ Bordin, B., Kushpel, A. K., Levesley, J., Tozoni (1999), n{Widths of

Multiplier Operators on Two-Point Homogeneous Spa
es In Approxi-

mation Theory IX, -v.1, Vanderbilt University Press, Nashville, TN, 23

- 30.

[3℄ Bourgain, J., Milman, V. D. (1987), New volume ratio properties for


onvex symmetri
 bodies in IR

n

, Inventiones mathemati
ae 88, 319-

340.

13



[4℄ D. L. Burkholder, Boundary value problems and sharp inequalities for

martingale transforms, The Ann. Probab. 12 (1984), 647-702.

[5℄ Figiel, T., Lindenstrauss, J. Milman, V. D. (1977), The dimension of

almost spheri
al se
tions of 
onvex bodies, A
ta Math. 139, (1), 53-94.

[6℄ Kushpel, A. K., Levesley, J, Wilderotter, K. (1998), On the asymptot-

i
ally Optimal Rate of Approximation of Multiplier Operators from L

p

into L

q

. Constru
tive Approximation 14, (2), 169-186.

[7℄ Lindenstrauss, J. Tzafriri L, (1977), Classi
al Bana
h spa
es, Vol I,

Springer-Verlag, Berlin.

[8℄ Neveu, j. (1975), Dis
rete Parameter Martingale, North-Holland Pub-

lishing Company, Amsterdam.

[9℄ Paley, R. E. A. C. (1932), A Remarkable series of orthogonal fun
tions,

Pro
. London Math. So
. (2) 34, 241-264.

[10℄ Tikhomirov, V. M. (1976), Some Problems in Approximation Theory,

Nauka, Mos
ow (in Russian).

[11℄ Vitushkin, A. G.(1957), Absolute �-entropy in metri
 spa
es. Do
lady

A
ad. Nauk USSR 117 745-747.

B. Bordin, A. Kushpel, S. Tozoni

IMECC-UNICAMP, CAIXA Postal 6065, 13081-970, Campinas SP, Brazil,

bordin�ime.uni
amp.br

ak99�ime.uni
amp.br

tozoni�ime.uni
amp.br

14


