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Abstract We prove a X-version of the Bieri-Newmann-Strebel’s result that
for a finitely presented group G without free subgroups of rank two X'(G)¢ has no
antipodal points [6]. More precisely we prove that for such a group G

conv<z(RsoXH(G)¢) C Ry o X2 (G)°
If G is a finitely generated nilpotent-by-abelian group we show
conv<z(Rso X1 (G)°) C Ry oX*(G, Z)°

The latter result is used in constructing a counter example to a conjecture of H.
Meinert [14] about homological properties of subgroups of constructible nilpotent-
by-abelian groups.

1. Introduction.

In this paper we refine some results of R. Bieri, W. Neumann and R. Strebel
and give a counter example to a H. Meinert’s conjecture about finiteness prop-
erties of subgroups and higher invariants of constructible nilpotent—by-abelian
groups. The counter example will show that ¥™—Conjecture type formula (origi-
nally suggested for metabelian groups) does not hold for constructible nilpotent-
by-abelian groups. A soluble group is constructible (in the sense of Baumslag
and Bieri [1]) if it can be built from the trivial group using finite extensions and
ascending HNN-extensions. One of the characterising properties of constrictible
nilpotent—by—abelian groups is that the geometric invarint £1(G)¢ = S(G)\ X(G)
lies in an open half subspace [8, Thm A]. The homological geometric invariants
{E™(G, A) }men of a (left) ZG-module A are defined by

Y"(G,A) ={[x] € S(G) | Ais of type F P, over the monoid ring ZG,},
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where S(G) is the set of the equivalence classes [x] = Rsox for non-trivial char-
acters x € Hom(G,R) and G, = {g € G | x(g) > 0}. If the torsion free part of
the abelianization of G has rank n we can identify S(G) with the unit sphere in
the euclidean space R™. The geometric homotopical invariants {E¥™(G)}en are
homotopical versions of the homological geometric invariants {¥" (G, Z) }men and
are defined only for groups of homotopical type F,,,. We omit the definition but
note that by [7, Thm 6.4] £}(G) = LG, Z).

The geometric invariant $!(G) was first introduced for metabelain groups
in [9] (with a definition different from the above one). There Bieri and Strebel
show that a finitely generated metabelian group is finitely presented if and only if
¥1(G)¢ does not have antipodal points. Even in the non-metabelian case one of
the directions of this result holds, more precisely by [6, Thm C] if G is a finitely
presented group without non—abelian free subgroups the invariant X!(G)¢ has no
antipodal points. The ideas introduced in the proofs of the above results can be
modified to prove the following two theorems. In the case of a finitely presented
abelian-by-nilpotent group G Theorem A2 is proved in [13, Thm 8.1] with methods
different from ours.

Theorem Al. If G is a finitely presented group without non-abelian free
subgroups then
conv<a(Rs0.21(G)) C Rso.2%(G)°.

Theorem A2. If G is a finitely generated nilpotent-by- abelian group
conv<a(Rs0.51(G)) C Rso.X%(G, Z)¢

By definition for a subset X of the eucledian space R" conv<,, X denotes the
convex hull of not more than m elements of X and we view RsoX'(G)¢ as the
subset {x € Hom(G,R) | [x] € X'(G)°} of R* = Hom(G, R).

In general for finitely presented groups ¥2(G,Z)¢ C ¥2?(G)¢. Furthermore
there are examples of finitely presented Artin groups where the inclusion is strict
[17, Main Thm]. Still we do not know whether there is a finitely presented
nilpotent-by-abelian group such that 2(G, Z)¢ # ¥2(G)°. Thus we cannot deduce
Theorem A2 from Theorem A1l and will give separate proofs of these results.

Theorem A2 will be used in the construction of the promised counter example
of [14, Conj. 13]. One of the objectives of [14] is to discuss finiteness properties of
subgroups of constructible nilpotent—by-abelian groups. Obviously constructible
soluble groups G are of homological type F'P,, but the homological structure of
the subgroups can be much more interesting and dificult to determine. By [7,
Thm 5.1] to understand the homological structure of the subgroups containing
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the derived subgroup we have to calculate the homological geometric invariants
{¥™(G,Z) }men and even in the case of constructible nilpotent—by—abelian groups
G these invariants are not completely understood. Still by [15, Thm B] it is known
that for constructible nilpotent-by-abelian groups

convem (Rs0.21 (G, Z)¢) € Rs0. X" (G, Z)° C conv(Rs.2(G,Z)¢) (1)
and hence
Y°(G,Z)¢ = UpmenE™(G, Z)° = [conv(Rso.X2HG, Z)°)]. (2)

In this paper we keep to the notations of [6] and [7] that slightly defer from
the notations used by H. Meinert and R. Gehrke in whose papers X™(G,Z) is
the relevent set in Hom(G,R) not the projection to S(G). In [14] H. Meinert
shows that for a constructible nilpotent—by—abelian group G each of the following
conditions implies the next one

1. m > dimg span(X1(G,Z)°).

2. All subgroups of G of type F' P, are in fact constructible.

3. ¥"(G,Z)° = X*°(G,Z)".

Furthermore he conjectures that these three conditions are equivalent. But
as the following theorem shows this turns wrong.

Theorem B. There exists a constructible group G, an extension of a nilpotent
of class two group N by an abelian group Q) such that

1. 3 = dimg span(XHG,Z)¢) = dimg Hom(Q, R).

2. There exists a subgroup of G of type F' Py which is not constructible.

3. X3(G,Z)° = (G, Z)° = [convgm, (R0 X (G, Z)°)] where mg = min{m |
conv(Rso X (G, Z)¢) = convep, (RsoXHG, Z)9)} = 3

The last part of Theorem B shows that the first inclusion in (1) can be strict
and thus X" -Conjecture type formula cannot hold even for nilpotent-by-abelian
groups of type F P, (for the definition of the X" -Conjecture see [15, p.386]).
It will be interesting to find a series of constructible nilpotent-by-abelian groups
{Gy}m>1 such that

dimg span(SH (G, 2)°) — min{t | (G, Z)¢ = (G, Z)°} = m.

We do not know whether taking direct products of the counter example given by
Theorem B will give a series with the required properties. The problem is that
there is not complete understanding of how to express {X™(G1 x G2)}men using
only the geometric invariants {¥™(G;)}men. In [16] a direct product formula is
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suggested for the homological and homotopical invariants, but the homotopical
version turns wrong [17, section 6]. Still it is not known whether the homological
version holds. A good description of the known results in this direction can be
found in [13, section 9].

Finally we note that our proof of Theorem B is based on a good description
of the Schur multiplier for nilpotent groups of class 2. It is likely that a generaliza-
tion of this approach should involve better understanding of the higher homology
groups H,,(N,Z) for countably generated nilpotent groups N of arbitrary nilpo-
tency class. Very little is known for these higher homology groups except in the
case when NN is free nilpotent of class 2 (see [21]).

2. Preliminaries
2.1. More about the geometric invariant ¥!(G)

In this section we review the link between valuation theory and the invariant
¢ (Q) established in [3]. By definition for a finitely generated abelian group @
and a finitely generated (left) ZQ—module V'

Ev(Q) =3(Q,V), B¢(Q) = S(Q)\ Zv(Q).

We note that for a finitely generated group G with nilpotent derived subgroup G’
the map ¢ : Hom(G/G',R) — Hom(G, R) induced by the projection G — G /G’
has the property

P(X&,an(G/G") = 21(G)° (3)

i.e. in this case X1 (G)¢ depends only on the metabelian quotient of G. Indeed (3)
is a straight corollary of the definition of the involved geometric invariants and the
fact that a subset of the nilpotent group G’ is a generating set if and only if it is
a generating set modulo G”.

The structure of ¥y (@) can be described by the real valuations of the ring
Vo = ZQ/I where [ is the annihilator of V in ZQ. More precisely by [3, Thm 8.1]

2V (@) = [Vo@)208v(Q) \ {0}] (4)

where the union is over all non-negative valuations v of Z and AY,(Q) is the set of
all real characters of () that can be extended to valuations (in Bourbaki sense) of Vj
which restriction to the image of Z in V} is induced by v. In [3] A}, (Q) is described
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as a rationally defined polyhedron i.e. a finite union of finite intersections of closed
affine subspaces of @ ®z R defined by equations with rational coefficients.

2.2. The Schur multiplier for nilpotent groups

It is well known that for a group G the Schur multiplier Hy(G, Z) is isomorphic
to
RN [F, F]
(R, F]

where F'is a free group and F/R ~ G. In [20, Section 7, Thm M] we showed a
more detailed description of the Schur multiplier for some nilpotent of class two
groups. This description generalizes results from [11].

More precisely suppose G is a nilpotent of class two group with the additional
property that the torsion part of the abelianization of G' has finite exponent. As
shown in [20,Thm M] there is a short exact sequence 0 - A — H2(G,Z) - B — 0,
where B is the kernel of the commutator map V Ay, V. — W for V = G/|G, ]
and W = [G,G] and A is the quotient of V' ®; W through the additive subgroup
generated by the elements of Jacoby type vy ® [vg, v3] 4+ v2 ® [v3, v1] + v3 ® [v1, V2]
for v; € V and the elements [n] ® n® where [n] = nW runs through the torsion
part of V' and s is the order of [n] (note [n] ® n® is independent of the choice of
representative n for [n]).

We claim that this description of the Schur multiplier is invariant under any
automorphism ¢ of G. The main part of [20, section 7.3] is devoted to the con-
struction of a special central extension of G' which implies that for some image T’
of Hy(G,Z) there is a short exact sequence 1 - A — T — B — 1. Furthermore
by [11] there is an exact sequence 1 — ~3(F)/([F, R] N v3(F)) — Ha(G,Z) —
B — 1, where v3(F') is the 3-rd term of the lower central series of F'. Since the
commutator map maps A surjectively to vy3(F)/([F, R] N v3(F')) we deduce that
A ~ v(F)/([F,R]N~3(F)) and T ~ Hs(G,Z). In addition the basis X of F
could be chosen to be the union of free orbits under the action of the cyclic group
generated by ¢ and so the description of the Schur multiplier is invariant under (.

3. Proof of Theorem A2

We note that if ¥2(G,Z)¢ = S(G) there is nothing to prove. So we can
assume Y2(G,Z) # 0. By [7, Thm 5.1] G is of homological type FP,, if and only
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if ¥™ (G, Z) is non-empty, in particular G is of type F Ps.

Let F be a free group with a finite basis X’ such that G ~ F/R for some normal
subgroup R of F. Since G is of type F P, by [2, Prop. 1.4] the abelianization of
R is finitely generated as a (left) ZG—module, where G acts via conjugation. Let
R ={r1,...,7m} be a generating set of R/[R, R| over G. Then we define I'; to be
the combinatorial 2-complex associated to the presentation < X' | R > i.e. I'; has
sets of vertices, edges and 2-cells respectively G, G x X and G x R. The vertices
of the edge (g, z) are g and gz and the boundary of (g,r;) is a path at g given by
spelling out the relation r;. The group G acts freely and cocompactly on I'; via
left multiplication and I'; is 1-acyclic.

Now we assume Theorem A2 is wrong and fix a character x € Hom(G,R)
such that that

X € (R50.2%(G, Z)) N convea(Rso. 51 (G)C). (5)

Since [x] € ¥£%(G,Z) the proof of [7, Thm 4.2] shows that I'; can be embedded in
a 2—complex I' such that I' is 1-acyclic, G acts cocompactly and freely on I' and
the maximal subcomplex T'y of I' contained in h;*([0,00)) is 1-acyclic, where hy
is an x—equivariant regular height function of I' such that the restriction of h, on
the set G of vertices of I' is x i.e.

hy:I' - R

is a continuous function such that h,(gz) = hy(z) + x(g9) for g € G,z € I' and
the restriction of h, on a cell attains its extremes on the boundary. The proof of
[7, Thm 4.2] shows that the embeding of I'; in I" can be achieved by performing a
finite sequence of elementary homotopy expansitions.

As [G, ] acts discretely and freely on I' the vertical maps in the following
commutative diagram are covering maps, the horizontal maps are the obvious

inclusions
Iy — r

+ +
V=0/GG — W=I/[G,G]

In general we do not know whether I'y is 1-connected, it depends on whether
[x] € £2(G). Still by Hurewits theorem and the fact that I'y is 1-acyclic we know
that 7 (I'y) is a perfect group. Then

6.6~ M) (©)

where N is the image of 7 (I'y) in w1 (V) and hence N is a perfect group.
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By assumption y can be decomposed as a sum of two non-trivial real char-
acters x1 and xa such that [x1],[x2] € L}(G)¢. Define W; to be the maximal
subcomplex of W contained in h3 '[c, +00) for some negative real number ¢ and a
Xi—equivariant regular height function h,, of W. We set V; = W; NV and note
that since x = x1 + x2 there exists a negative real number ¢y such that for ¢ < ¢
the diameter of the intersection V3 N Vs is larger than the diameter of any 2-cell
of W (remember G acts cocompactly on I' and so on W). Then V =V; U V2 is a
topological decomposition of V i.e. every cell of V' is contained either in V7 or V5.
By Van Kampen theorem

(V) = m1(V1) 2, (vainve) m1(Vz2) (7)

Lemma 1. Suppose the abelianization A; of m1(V;)/ei(m1(ViNV2)) is a non-
trivial abelian group for i € {1,2}, where p; : m (V1 N Va) — w1(V;) is the map
induced by the inclusion. Furthermore if one of the groups Ay or As is cyclic of
order 2 the other is not. Then w1 (V)/N contains a free subgroup of rank two.

Proof. Let pu: 71 (V1) *5, (vinvy) m1(V2) — I1 = Ay % Ay be the surjective map
induced from the surjections 71 (V;) — A;. By the Kurosh subgroup theorem [12,
Ch 7, Thm 8] the derived subgroup of A; x Ay is a free group. As N is perfect
p(N) is a perfect subgroup of the free group [II,II], so should be trivial. Then
the homomorphism g induces a surjection m1(V)/N — II. By the normal form
theorem for amalagamated products II contains a non-cyclic free subgroup and so
does m1(V)/N. This completes the proof.

We remind the reader that G does not contain free non-cyclic subgroups. This
together with (6) and Lemma 1 implies that for some iy € {1,2} either A;) =1
or A;, = Zy, say 1o = 1. In addition by substituting c if necessary with a negative
integer with sufficiently large absolute value we can assume A; = 1 and hence
71(V2) ~ w1 (V) via the inclusion of V5 in V. Now the main idea of the proof of [9,
Lemma 4.7] shows that H;(V2) is a finitely generated module over Z[Q, N Qy,].

In particular
m (V)

H{ (Vo) ~H{(V) = =G"/G" 8
1(V2) ~ Hy(V) V), 1 (V)] / (8)

is finitely generated over Z@Q,, and so
[XQ] € EG’/G” (G) = ZO(G, G//GH) (9)

Finally by (3) Xgr g (G) = £1(G), a contradiction with [x2] ¢ Z*(G).
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4. Proof of Theorem Al.

We assume the theorem is wrong and there exists a non-trivial real character
x of G such that [x] € £%(G) and x = x1 + x2 for some [x1],[x2] € X(G)¢. Then
there exists a finite presentation < X' | R > of G such that the corresponding com-
binatorial 2-complex I' has the property that its maximal 2-subcomplex I', con-
tained in A3 ([0, 00)) for a regular x—equivariant height function h, is 1-connected.
As in the proof of Theorem A2 we consider the embeding of V' =TI, /[G, G] into
W =T/|G,G] and split W = W7 U Wy as before i.e. W; is a half subcomplex cor-
responding to the character y;. Furthermore we can assume that V = V; U V5 is
topological decomposition for V; = W; N V. Then by [6, Thm 5.1] as [x;] € X' (G)
the map m (W;) — m (W) = [G, G] is not an epimorphism. Using again the Van
Kampen theorem

G, G] =71 (V) = 71 (V1) *r,(vinve) 71(V2)

and as m1 (V') has no free subgroup of rank two either the map m1(V;,) — 71 (V) is
an epimorphism for some iy or the image of 71 (V3N V3) in 71 (V;) has index two for
both ¢ =1 and ¢« = 2. The later could be avoided by translating W;’s if necessary
i.e. if W; is the maximal subcomplex in h ' ([c,00) we change ¢ with a negative
real number with sufficiently big absolute value. As the map m (V) — w1 (W)
induced by the inclusion of V' in W is an isomorphism (remember 1 (V) ~ [G, G])
it follows that the composite

m1(Viy) = w1 (V) = m (W)

is an epimorphism. Since the above composite factors through 71 (W;,) — 71 (W)
it follows that the latter map should be an epimorphism, a contradiction.

5. Finite presentability and finite generation of some tensor products

Lemma 2. Suppose My is a finitely generated ZH —module for some finitely
generated abelian group H and T is a submonoid of H such that ZT s a Noetherian
ring. Then My s finitely generated over ZT' if and only if for every non-negative
valuation v of Z

Ay (H) N {x € Hom(H,R) | x(T) = 0} € {0}
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Proof. The proof is an obvious modification of [4, Lemma 5.1].

Now we adopt some notations from [5, section 4]. We consider a finitely
generated abelian group () and denote by I the ideal of Z[Q x @ x Q] generated
by all elements

d, = H (r® — ) for r € ZQ
1<i<j<3

where () is the pure tensor 1 ® ... ® 7 ®...® 1 with r in the i-th position and 1
elsewhere.

Lemma 3. Suppose G is a finitely presented group, an extension of a nilpotent
group of class two N by an abelian group Q and M = N/[N,N]. We view M as a
(left) Z.(Q)—module, where Q) acts via conjugation. If x is a discrete character of G
such that [x] € ¥?(G,Z) and x(N) =0 then My =M @ M @ M/I(M @ M @ M)
is finitely generated over ZQ), via the diagonal action of Q.

Proof. We want to apply Lemma 2 for H = Q x Q x @, T' the image of (),
under the diagonal map 0 : @ — @ x @ X Q) and the finitely generated ZH-module
My. Let vg € A}, (H) be a non-trivial character. Then vo € A}, rsea, (H) and
by the additive formula [4, Thm 4.2] vy = (vy,v2,v3) with v; € AY(Q). In
particular by (3) and (4)

either [v;] € X4,(Q) ~ X(G)¢ or v; = 0.

Suppose further that vo(T) > 0. Then vy + v2 + v3 = Ay for some non-negative
real number A and without loss of generality we can assume A = 0 or 1. We note
that if all v; are pairwise different then the argument of [5, Thm 4.3, 1st case]
shows that [(v1,ve,v3)] € X, (H) and by the description of ¥ using A we have
vo ¢ A}y, (H), a contradiction. If two v;’s are equal say vy = vg either 2v; +vz = 0
or 2v; + vg = x. By the characterization theorem of finitely presented metabelian
groups [9, Thm A] and the fact that metabelian quotients of finitely presented
groups which do not contain non-cyclic free subgroups are finitely presented [9,
Corollary B| we see that 2v; +v3 # 0 if at least one of v; and vs is non-trivial. At
the same time by Theorem A2 2v; 4+ vz # x. Thus

, (H) N {B € Hom(H,R) | 5(T) = 0} € {0}

and Lemma 2 completes the proof.

Lemma 4. Suppose D is a Noetherian subring of the subalgebra of Ss—
invariant elements of Z[Q x Q x Q|. Let M be a finitely generated ZQ-module
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and « : M QM QM — M Q@ M ® M be the linear map sending a pure tensor
mi @mo@mg to m; @ma@maz —ma@mi @m3z —mzRmi Qma+m3zQma@my.
Then M @ M @ M 1s finitely generated as a D—module if and only if the image of
aand MM M/I(M @ M ® M) are finitely generated over D.

Proof. In the case of modules M over F,() the lemma is proved at the end
of [18, Prop. 2]. The proof when M is a ZQ-module is the same. The argument
of [18, Prop 2] is a modification of [5, Prop 4.1].

Proposition 5. Let G be a finitely presented group, an extension of a nilpo-
tent of class two group N by an abelian group @ such that M = N/[N,N] is
torsion-free, [N, N| ~ M Ay M and let x be a discrete character of G with x(IN) =0
and [x] € ¥3(G,Z). Then

1. M® M ® M is finitely generated over ZQ);

2. X ¢ conv<s Ay, (Q) for every non-negative valuation v of 7Z.

Proof. We start with the observation that Z(Q), is Noetherian because x is
discrete. Let R : ... = Ry — Ry — Z be a projective resolution of Z over ZG,,
with R; finitely generated for ¢ < 2. Since Z(Q), is a Noetherian ring the homology
group Hs(R ®zn Z) ~ Hy(N,Z) as a subquotient of a finitely generated module
over ZQ), is finitely generated over Z(Q), itself.

By the description of the Schur multiplier for nilpotent groups discussed in
the preliminaries the quotient of [N, N| ®7 M through the additive subgroup of
elements of Jacoby type is a submodule of Ho(N, Z) and hence is finitely generated
over ZQ)y. As [N, N] is the exterior square of M we have that the above quotient
is isomorphic to the quotient of M ® M ® M through the additive subgroup J
generated by the elements of Jacoby type v1 ® va @ v3 4+ v3 @ V3 @ V1 + V3 R V1 Q V2
and the elements v1 ® vo ® V3 +v2 ® v, vz for v; € M. It is easy to check that J is
in the kernel of the map « defined in Lemma 4 and thus the image of « is finitely
generated over ZQ,. By Lemma 3 the module My =M QM QM/I(MSM M)
is finitely generated over Z(), and finally by Lemma 4 M ® M ® M is finitely
generated over Z(@),. Once we have proved the first part of the proposition using
Lemma 2 we deduce

Agmem (@ x Q@ x Q)N {nc Hom(Q x Q@ x Q,R) | u(d(Qy)) = 0} € {0}

where 0 : Q — Q X Q x @ is the diagonal map. Then x # vy + vs + v3 where

(v1,v2,v3) € AYremen (@ X Q X Q) = A (Q) x A} (Q) x A}, (Q). The latter is
the additive formula for A from [4].
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Proof of Theorem B

Step 1. We construct a group G a split extension of N by () such that @ is
free abelian of rank three, N is nilpotent of nilpotency class two, ¥1(G)¢ contains
precisely three points that lie in an open hemisphere. First we construct a Z—
torsion free ZQ)-module V with the property that 3¢ (Q)) contains precisely three
points that lie in an open hemisphere. We define V = V; & Vo @ V3, where all V;
are isomorphic to Z[%] as abelian groups and () acts on V; via the multiplicative
homomorphism x; : @ — V; such that for a fixed basis {ej, ea, e3} of @ we have
xi(ej) = 293, where 9; ; is the Kroneker symbol. By the additivity of ¥¢ and by
(4)

Y7 (Q) = Ui<i<s[AP (Q)]

where vy is the 2-adic valuation on Z. We identify Hom(Q,R) with R® via yu :
Hom(Q,R) — R3 where x(q) = (u(x),q) for every ¢ € Q and x € Hom(Q, R).
Here Q ®7z R ~ R3 is eqipped with the standard inner product ( , ) and ey, e; and
ez 1s an orthornormal basis. Then

Yy (@) = {[(1,0,0)],[(0,1,0)], (0,0, 1)]}-

Define N; to be the nilpotent group of class two with abelianization V and
derived subgroup V Az V and set N to be the direct product of V with Ny. The
action of () on V extends to an action of () on N; and by definition @) acts
diagonally on N = N; x V. Finally we set G to be the split extension of N by
Q. Since X7, (Q) = X4 v (@) = Y1(@)¢ lies in an open hemisphere of S(G) it
follows by [8, Thm A] that G is constructible.

Step 2. We find a subgroup H of @) of rank two such that there is a ZH—
submodule W of V that is 2-tame but not 3-tame. More precisely X, (H) contains
no antipodal points but does not lie in an open hemisphere. We require that
W=a,(WnV,) and WNV; ~ZH/(J; N ZH), where V; = ZQ/ J;.

In general if H is a subgroup of ) the restriction map ¢y : Hom(Q,R) —
Hom(H,R) has the property that

vu (27 (Q)) = iy (H).

This can be seen through the description of ¥¢ using valuations (see (4)). Now we
define H to be the subgroup of Q generated by eje; ', esez . Then wr (35 (Q))
contains precisely 3 characters pi,pe and ps such that py + pe + ps = 0 and
pi + prj # 0 for all 7, j. Thus the image of ¢z does not contain antipodal points
and does not lie in an open hemisphere.

Finally we consider the subgroup W x H of G, where W embeds in the sum-
mand V of N. By the characterization theorem of finitely presented metabelian
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groups [9,Thm A] as X}, (H) has no antipodal points W x H is finitely presented.
As X%, (H) does not lie in an open hemisphere of S(H) the group W x H cannot
be constructible.
Step 3. By (2) to prove the last part of the theorem it is sufficient to show
that
Rso.X%(G, Z)¢ D conve3(Rso. X1 (G, Z)°) (10)

Let [x] be a discrete element of X2(G, Z) such that x(N) = 0. By Proposition 5(2)
and the fact that $1(G)° ~ 3¢, (Q) = [AP(Q)]

X & conv<s(Rs0.5H(G)°)
Thus
dis(Rs0.X%(G,Z)) N {x | x(N) = 0} N convcz(Rs0.XH(G)¢) =0 (11)

We note that by [19, Thm C] the homomorphisms of G that are non—trivial on a
normal locally polycyclic subgroup represent elements of ¥ (G) provided G is of
type Fy,. In particular this holds for o = 1 and hence conv<3(Rs0.2'(G)¢) |n= 0.
Then by (11) dis(R>¢.22(G, Z)) N conv<z(Rs9.LH(G)¢) = 0 and so

dis(conv<3(Rs0.2H(G)¢)) € Rs0.X%(G, Z)". (12)

By [7, Thm A] ¥2(G,Z)¢ is a closed subset of S(G) and by the geometric descrip-
tion of ¥ for modules over abelian groups [3, Thm 8.1, Thm A] ¥1(G)¢ ~ X¢(Q)
is the projection of a rationally defined polyhedron to S(G). Then the discrete
points in [conv<3(Rs.21(G)¢)] form a dense subset and (12) implies

[conv<3(Rs0.51(G)°)] C ¥2(G,Z)¢ = ¥*(G, Z)°,

as required.
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