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Abstract

We consider an asymietric zero range process with zero mean in infinite volume
with random jump rates starting from equilibrium. We investigate large deviations
from hydrodynamical limit of the empirical distribution of particles and prove an upper
and lower bound for a large deviation principle. Our main argument is based on a super-
exponential estimate in infinite volume. We adapt a method developed by Kipnis &
al. (1989) and Benois & al. (1995).
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1 Introduction

The zero range process is one of the simplest particle systems that has been successfully
investigated recently in random or inhomogeneous media (cf. for instance Benjamini & al.
(1996), Evans (1996), Krug-Ferrari (1996), Landim (1996), Gielis & al. (1998), Bahadoran
(1998), Seppélidinen-Krug (1999), Koukkous (1999), Andjel & al. (2000)) .

We describe informally the evolution of the process as follows. On the d-dimensional
lattice 24, we consider a sequence of random variables p = (p;)gcza (called an environment)
in [ag, a1] (where 0 < ag < a; < 00). At any = € Z¢ each particle at site 2 jumps to the left

or to the right with a rate depending only on the total number of particles at site x before
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the jump. The random media state therefore that the jump rate is accelerated or decelerated
by the value p, of p at site x.

Benjamini & al. (1996) have studied the asymmetric version of a zero-range process in
infinite volume when the environment is an i.i.d. sequence of random variables (with a; = 1)
and have proved the asymptotic hydrodynamical behavior of the system. Koukkous (1999)
showed the hydrodynamical limit in the symmetric case for a stationary and ergodic envi-
ronment whose marginal law is absolutely continuous with respect to the Lebesgue measure.
He proved that the empirical measure of particles converges in probability to the weak solu-
tion of a non-linear diffusion equation which does not depend on the environment p and he
generalized in this way some results of Benjamini & al. (1996).

The equilibrium fluctuations (Central limit results for the density field) were studied in
G. Gielis & al. (1998). They proved that the density field converges weakly to a generalized
Ornstein-Uhlenbeck process.

Recently, Andjel & al. (2000) showed the convergence to the maximal invariant measure
for an asymmetric zero range process with constant rate in inhomogeneous and random

media in dimension 1 starting from an upper-critical non-equilibrium measure.

In this spirit of hydrodynamical behavior investigation, a natural open question can be
formulated as follows: From the hydrodynamical limit of the empirical measure with some
continuous density ju(-) (with respect to Lebesgue measure) and given an event I' for which
1 ¢ T, how to control the “deviant” behavior of the system inside I' ? This is the subject of

large deviation principles (LDP) related to hydrodynamical limit of the empirical measure.

In this paper, we investigate a d-dimensional zero mean asymmetric zero-range process
in random media. In the deterministic case of the environment, the LDP results have been
treated by many authors among which Landim (1992), Benois (1996) and Benois & al.
(1995). In this last article an upper and a lower bound of LDP in infinite volume of empirical

density are proven when the process starts from equilibrium.

The crucial ingredient of the proofs focuses on the so-called super-exponential estimate:
it consists in approximating, by rigorous functions of the density field, the correlation field
obtained in the computation of some exponential martingales related to the jumps of particles
(see Kipnis & al. (1989) and Donsker-Varadhan (1989)). Once we prove this result, the LDP
result (and also the hydrodynamical limit ) of the empirical measure is obtained by standard

arguments.



In a random media, the difficulty in adapting standard arguments relies on the absence
of translation invariance of the invariant measures for the process. For this reason, our

approach uses essentially both results of Koukkous (1999) and Benois & al. (1995).

The paper is organized as follows: We introduce the notations and assumptions used
through the paper and state the main results in Section 2. Section 3 is devoted to the proof
of the super-exponential estimate. In the last section we give a proof of an upper bound of
LDP result. We omit the proof of lower bound since, once one has proven the upper bound,

it is similar to the arguments given in Benois & al. (1995) without major modifications.

2 Notation and results

Let 0 < ap < a; < oo and consider a sequence of random variables {p,, = € 2%} on [ag, a,]
distributed according to a stationary and ergodic measure m, such that its one-dimensional
marginal law is absolutely continuous with respect to the Lebesgue measure. We assume
that m{p : ap < pp < a1} = 1 and for every ¢ > 0, m{p : py € [ap,a0 +¢)}m{p : po €
(a1 —e,a1]} > 0.

We denote by X, := N‘ the configuration space and by Greek letters 7 and £ its elements.
As usual n(z) stands for the total number of particles at site x for the configuration . For

each environment p, we are interested in the Markov process (1;),-, on X4 whose generator
is defined by

(Lof)m) = 32 peg(@)T (@, y)[f(n™") — f(0)], (1)

a:,yEZd
where f : X4 — R is a cylinder function, that is f only depends on n through a finite
number of coordinates. T'(-,) is a transition probability on z? The function g is positive
and vanishes at 0: ¢(0) = 0 < g(k) for all £ > 1. In the previous formula, n*¥(z) is the

configuration obtained from 7 when a particle jumps from x to y:

n(z) if 2 # 2,y
n"Y(z) =9 nlx)—-1 ifz==x

ny)+1 ifz=y

For every non-negative real ¢ we denote by v# the product measure on X; whose marginals

are defined by
1 (pp;h)"
wp,t) g(k)!

vP{n in(r) =k} = 7 for all £ >0,



where g(k)! = ¢(1)g(2)...g(k) if £ > 0 and ¢(0)! = 1. Those measures (see Benjamini & al.

(1996)) are invariant for the process. In this formula, Z : Ry — R, is the partition function
k

Z(p) =3

S0 9(k)!

Let ¢* be the radius of convergence of Z(-); we assume that

lim Z () = +o0. (2)
eTp*

Denote by v,(-) := v,(-) the invariant measure of the process (1;);>0 when m is the Dirac
measure concentrated on the set {p : p, = 1,2 € Z%} (see Andjel (1982)). We define
M :[0,¢%) = Ry by M(p) = v,[n(0)], the expected number of particles at 0 with respect to

V.

A simple computation shows that M(yp) = ¢0,log Z(y¢) and from assumption (2) we
check that M is an increasing, continuous, one-to-one function from [0, ¢*) to R;..

We define the “density” of particles (i.e. the expected number of particles at 0) with
respect to the random media by the continuous and increasing function R : [0, app*) — RT
such that

R(p) = m[M(pp,*)]
and in order to ensure the existence of an invariant measure for any given value of the density,

we assume that
lim R(p) = oo. (3)

ptapp*
Under this assumption the function R is one to one from [0, agp*) to Ry. We denote by @

its inverse (which is also a continuous increasing bijection).

For a density p > 0 we write

We easily check that
P(p) = b [pxg(n(:r))] for all x € z%

In the following we state all the hypotheses assumed throughout this paper.

[H1] The transition probability T(-,-) on z? is a zero-mean irreducible translation in-
variant probability with finite range. That is
there exists a constant A > 0 such that T(z) =0 if |z| > A
and > xT(z)=0.

zezd
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[H2] The rate function g has bounded variation:
g =suplg(k+1) — g(k)| < oo

Under the hypotheses [H1] and [H2], Andjel (1982) has proven the existence of a unique
Markov process with corresponding generator defined by (1) in deterministic environment
(i.e. p=1). His proof applies also in our case.

Let (Uij){lgi,jgd} be a symmetric nonnegative definite matrix defined by the covariance

matrix of the transition probability 7'(-):

Oij = Z viy; T (y) where y = (y1,--+,Ya)
yezd
[H3] In order to avoid the degenerate case of the hydrodynamic equation, we assume

(04){1<i,j<a) to be a positive definite matrix. That is there exists x > 0 such that

> ojjwim; > HZ.T?, for all = = (y,---,24) € R%.
irj i
[H4] To ensure some finite exponential moments of 7(z) under the measures v¥ we shall
assume that there exists a convex and increasing function w : Ry — Ry such that
(i) w(0) = 0,
(i) limy, o0 (4%) = 00 and

(iii) for all density ¢ there exists a positive constant 6 := 0(p) such that

v, | exp [ (n(0)}] < oc.

This last assumption ensures also that Z(-) has infinite radius of convergence. It holds for
exemple if g(k + 1) — g(k) > g for some constant ¢ and k sufficiently large.
We will denote by w* the Legendre transform of w given by:

wi(z) = sup{az — w(a)}. (4)

In the next paragraphs, we define the state space of the process and its topology. Denote by
C(R?) (resp. Cx(R?)) the space of continuous (resp. with compact support) functions on R
with classic uniform norm. Let M denote the space of positive Radon measures on R? with
the weak topology induced by Cx(R?) via (7, H) = [H dr for H € Cx(R?) and 7 € M.
We fix a positive time parameter 7 > 0. For each realization of the environment p

and all fixed positive density p, ]P’ixp will denote the probability measure on the path space



0,7],Xq4 Corresponding to the Markov process (1;)icio71 With generator N2L, starting
[ ’7—] I4

from the measure 5. By E pp we denote the expectation under ]P’f,\fp

Let 7 be the empirical measure defined on D([0, 7], M ) b

Z nt x/N du)

zEZd

for 0 <t < T. Let Q), denote the measure on the path space D([0, 7], M) associated to

the process 7"V with generator N?L, starting from 7% .

To investigate the large deviations of the empirical measure, we shall consider some small
perturbations of the zero range process as mentionned earlier. For this, we will need the
following notation.

Let C¥([0, 7] x R?) denote the space of compact support functions with { € N continuous
derivatives in time and k € N continuous derivatives in space. Let C,(R?) be the set defined
by

C,(RY) = C(RY) N{u: R — RY; wu(x)=p for |z|sufficiently large}.

For a fixed 7 in C,(R?) and for some smooth function H in C;*([0, 7] x R*) we consider
the Markov process generated by

N2(LRT ) = N Y pag(n(a))T (y)e O

R

where f is a cylinder function. Let Df;, y be the initial product measure of this process with

marginals
vh v, n(z) =k} =05y {n,n(x) = k}
for all z € z% and k € N. We therefore denote by ]Pp’N and N the small perturbations of
]P’i,\:p and Qgp respectively.
For any path 7 € D([0,T], M. ), denote by u, the Radon-Nikodym derivative of = with

respect to the Lebesgue measure A\: u, = 9%, Let A = A(p) be the space path of 7 €
D([0,7T], M) such that u; is the solution of the PDE
du = (0/)D(B() — T, 0,,(B(u)0,, H)
(E) ’ ’
w(0,:) =7()

for some v € C,(R?) and some H € C;*([0, 7] x R?). A stands the Laplacian operator.

The following notation is devoted to the definition of the rate functional of the large

deviation principle for (7)o<;<7



For H € C*([0,T] x R?), we define Ji : D([0,T], M) = RU {co} by

Tu(m) = T () — Ty ()

Th(n) = <uT, HT> _ <u0,H0> _ /OT <ut, ath> dt,
=3 o .0

such that Jy(-) = oo outside D([O,ﬂ,M+) or if 7; is not absolutely continuous with

where

respect to the Lebesgue measure \ for some 0 < ¢ < 7.

We are now ready to define the part of the large deviations rate function, Zo(+) : D([0, T], M) —
[0, 00] coming from the stochastic evolution:

To(m) = sup T ().
HeC?([0,T]xRY)

The other part of the large deviations rate function coincides with the behaviour of
deviations coming from the initial state. Let h(:|p) be the entropy defined for a positive
function v : R — R* by

h(vlp) = /Rd {7(37) log <%> —En [log <Z(Z<Iz((1)7((;)x)2;9{))1)>]} dz.

Thus, the rate function of the large deviation principle is defined for a density p > 0 by

Zy(m) = Zo(m) + h(uo|p).

From now on, for each z € z% we denote by n'(x) the mean density of particles in a box
of length (21 + 1) centered at x :
!
0 (z) = > nly
20 +1) 1) Wap

For each cylinder function v : X; — R, we define

Voo (®)] )

P(p) :=m

and we say that U is a Lipschitz function if

Y

ko € N and ¢y > 0 such that ‘\If(n) - \If(f)‘ <c Y,
|lz|<ko

for all n and £ in Xg.

Denote by 7, the shift operator defined by 7,4 (n(+)) = ¥ (7n(:)) where 7.n(y) = n(x + y).

We can now state our results:



Theorem 2.1 Let V be a cylinder Lipschitz function and H € Cp*([0,T] x &Y). Under
hypotheses [H1] to [HY], for all § > 0 we have

lim lim —log]ID > | = —o0 (6)

e—0 N—oo p,p[

m-almost surely, where

WES (1) = <7 3 H /) [ ) = 07 )]

This theorem, called the super-exponential estimate, will be a crucial argument in the

proof of the following large deviations principle:

Theorem 2.2 Under hypotheses [H1] to [H}], for every closed subset C and every open
subset O of D([0,T], M), we have

limsup log @),(C) < — inf Z,()

and

N N
el a8 9eel0) = — Il B ()

m-almost surely.

Remarks:

Before starting to prove our results, we would like to mention some remarks and claims
that we will use and whose proofs will be omitted. For complete details the reader is refered
to Kipnis-Landim’s book (1999) and Benois & al. (1995).

[R1] From Lemma 1.3.5 of Kipnis-Landim’s book (1999), the function defined by
¢ — v, for ¢ > 0, is an increasing function (see also the proof of lemma 4.3 in Benois &
al. (1995)). Therefore, assumption [H4| implies that for a fixed environment p defined in
the beginning of the last section, for all z € ¢ and ¢ > 0, there exists 6 := 0(z, p) > 0 such
that

VPl exp {fw(n(x))}| < oo m-almost surely.

[R2] Assumption [H4| ensures that the function w* defined by (4) is also a continuous
convex function such that w*(0) = 0.

[R3] A simple computation shows that from the second condition in [H4], for every
e > 0 the function w™!(r) — er is negative for each r > Cy(e), for some constant Cy(e)

dependent only on €.



[R4] By definition of w in [H4|, the function defined on R} by Q(r) = @ is an
increasing function.

[R5]  For each cylinder Lipschitz function ¥(-), the function ¥(-) given by (5) is also
a Lipschitz function (see Lemma 1.3.6 of Kipnis-Landim (1999)). Moreover one can check
that ¥(k) < Ck for all k € 7 for some constant C.

The strategy adopted to prove our results is similar to the one presented in Benois &
al. (1995). However, we use some arguments developed in Koukkous (1999) in order to
overcome the failed translation invariance propriety of the invariant measure of zero range

process in random media. We thus detail only the main differences.

From now on, to keep the notation simple, we will restrict our study to the one-dimensional

case. The reader can extend the proofs to any dimension without more difficulty.

3 Proof of Theorem 2.1

Let G be a positive continuous function on R defined by

Gla)= _swp  max{|HW), 3H W) 54| (7

yElz—1,2+1

We have
ng{/OTW{,{f’(t,nt) dt > 6
gpgp{/;{wﬁ{f(t,m t——ZG( )w ))} dt>6/2}
M,U”}ZG( Jolm@) dt > 672 ®)

for every 5 > 0.
By Tchebycheff exponential inequality the first term in the left hand side in (8) is bounded
above by

exp{—N06§/2}E]

et [ (MW 0 - 556 Jwlnta] 0
for every 6 > 0.

Therefore, we have to prove two Lemmas:

Lemma 3.1 For every G € Ck(R),

Tim  lim —log]P’pp[/ ZG z/N)w(n(x)) dt > A| = —o0 9)

A—o00 N—oo



m-almost surely.

Lemma 3.2 For any 6 >0 and 3> 0

expd [ (Wi m) - ﬁgG(%)w(m(m)} dt] —0. (10

Ty i o8 %0

m-almost surely.

Proof of Lemma 3.1.
Using respectively Tchebycheff exponential inequality and Jensen inequality, we show that

for every positive constant 6, the logarithmic term in (9) is bounded above by

—0AN + log Efj\fp

% /07’ exp { > HTG(x/N)w(nt(x))} dtl .

(From the begining of [R1] and since the product measure 7} is invariant for the process and
Pz € |ap, a1], a simple computation shows that the right hand side term in (9) is bounded

above by

A—o00 N—oo 0>0 0

T Tm o { e % 3 108 g [exp {QTG(x/N)w(n(O))H } (11)

Let B > 0 be such that
suppG C [-B, B].

iFrom [H4], there exists 6, > 0 such that

< oQ.

Va0 (BTG o (00)

The lemma is proved in fact that (11) is bounded above by

fm { — 00 A+ (2B + 1) log 1.

A—o0

e{aoTnanw(n(o»}] }

Proof of Lemma 3.2.
Let

V(o) = 0NWE 0.0) = 8 G Jwlnta)) |

Let L}, be the generator N*L£,+V and L}/" its adjoint operator, which is equal to NLs+V. If
we denote by Stv’p the semigroup associated to the generator £, by the Feyman-Kac formula

the expectation in the lemma is equal to
(S7P1,1) < (Sy*1, Syr1)t/2,

10



Now, if we denote by Ay the largest eigenvalue of the self-adjoint operator £}, + £
QS PL, 8, "1) = (L} + LV7)S) "1, 8,"1) < A (971, 5,71,
By Gronwall’s lemma we show that
(Y1, 5Y71) < exp {T)\V}. (12)

Recall that we did not assume 7°(+) to be symmetric and therefore yg( ») can be non-reversible
for the process. However, at this level, our study is dealing with the reversible generator

N?*(L, + L;). Thus we can assume the generator £, to be reversible and T'(-) given by
T(x) = (1/2)Lja=1).-

Let
15 =5 [peatnte) [T - 1)

and D, (-) the Dirichlet form given by

= Z I:Ic),:c-l-l(f)

Using the variational formula for the largest eigenvalue of a self-adjoint operator (see ap-

1/” (dn),

pendix A3.1 of Kipnis-Landim (1999)), from (12) we reduce the proof of the lemma to show

that for every positive 6

@Eﬁ{ Jolwitron - 2 X6 (5 )etten] s dn)—NDp(f)}so.

The supremum is taken over all positive densities functions with respect to 5.

We use now some computations from Benois & al. (1995) and Kipnis & al. (1989). Let

1

WZ‘II(TI) = 21—+1

U(n(y)) — ¥(n'(0))

ly|<!

In this way, we can rewrite the term



1 T\ %, = N B [
ry2{a () [H00 @ - 0 | - S6 (5 Jwtaton )
;From the assumption on ¥, we chek easily that there exist C'(¥, p) such that for all z € Z
U(n(z)) < C(¥,p)n(x). Then from the definitions of w*(-) and G(-) (cf. (4) and (7)), the

first term in the last expression is bounded above by
Y x p (x >
— H{=)-H|—=)V — =G| —=
Z{‘% +1, |<l <N> (N)‘ (@) =36\ ¥ “’(77(5”))}

< %;G(%){%nu) ~li(a) }

iy {3c<w,p>1}ﬁ||c:||oo
= BN 3

This last term vanishes as N 1 oo since w*(+) is continuous and w*(0) = 0.

Now, to achieve the proof of the lemma 3.2, we shall prove:

Lemma 3.3 For any b > 0

lim lim sup
=00 N—oo

x _
(0 [ () = 56 (5 )otutan)] o) asgam ~ vyl <0 a3
m-almost surely. The supremum is taken over all positive densities functions with respect to

/P
l/p.

And, thanks to remarks [R5], we have to prove that:

Lemma 3.4 For any b > 0

lim lim lim sup
l—00 =0 N—oo f

{%2 [ 1 (5| @) = 0'@)| - 86 (5 Jwnta))] £y doz( dn) - bNDp(f)} <0 (14)

m-almost surely. The supremum is taken over all positive densities functions with respect to

4
l/p.

Proof of Lemma 3.3.

Using the convexity of w and definition of GG, we check that
(%)) <
1

= N ;W(U(ff))%—H Z

ly—a|<l
¥ 206 () (15)

12

1

1) £ winw)

ly—x|<l

H(y/N)|

VAN



At the beginning, we introduce some notations in order to deal in our study of (13) with the
boxes of length (20 + 1). Indeed, the term

(e (3

depends on 7 only through n(x —1)---n(x +1). Thus we may restrict the integral to micro-
scopic blocks. Denote by A; = {—[---1} the box of length (2] + 1) centered at the origin.

For a fixed 2 € Z, we denote by A,; the box z + A;, by X! the configuration space N, by
pzl the product measure 1/0”’ restricted to X', by f,; the density, with respect to 7

T of
the marginal of the measure f(1)79:?(dn) on X' and by D) (k) the Dirichlet form on X'

p,2,l
given by
p,z l Z /pxg |:\/h’ “ y \/h’ :| p z, l 77)
lz—y|=1
z,y€N, N

Thus, from (15) and since the Dirichlet form is convex (by Schwarz inequality), the
supremum in the lemma is bounded above by the supremum over all positive densities f

(with respect to #7) of the term

S s (ot - rina) o

As in the proof of lemma 3.1 of Koukkous (1999) we may now characterize the sites © where
the environment degenerates (behaves badly).
Fix 0 > 0, a > 0 and n € N sufficiently large such that “=% < 4. For 0 < j <n — 2, let
I]‘S = [B;, Bj11| where ; € [ay, a1] is such that

B =ap+ (a1 — a0)<%>.

Let I | =B, 1,a1] and notice that, for 0 < j <n — 1, we have |3;,1 — 3;| < 0.

Fix k <land L = [%] We now subdivide A; into L disjoint cubes of length (2k + 1);

let By,---, By be such that
B; C Ay, B;iNB;j =0 fori#j and B; = x; + A, for some z; € Z.

We take B; = A, and let By = A, — UleBj. Finally we define Bj(z) =o+ B, for 0 < j < L
and z € Z .

ForxeZ, neN,0<j<n—-land1<i<L, Ni’;f( ) is the average number of sites
y in B;(x) such that p, € I9:

T (2k+1) 2 Ly

z€B;(x)



For a > 0, we let

T, 7,0

AL = {p [N ) - i)

<« for all 7, Ogjgn—l}.

To keep notation simple, we denote Af)’ﬁ’i by ALEC. Let

T,

1 L
Lk, _
Ax,oé _{pa z;l{peAl,k,é}Zl—a}_

;From the definition of w* and the property of ¥(-) and ¥(-) given in the remarks [R5], a

simple computation shows that the integral term in (16) is bounded by

20(;&19))_

Therefore, the supremum over all positive densities f (with respect to #7) of the term
(16) is bounded above by

C1 = Bl H " (17)

3 s sup {15 ) i = ol () otatn | tas 2ot an) = g5 Dt

N 1,k,0 !
T peA0’102 hEBp

|
+ Oy 2 Nty (18)

where B, is the set of positive density functions with respect to 7).
By ergodicity and stationary of the environment law, the second term converges m-almost

surely, as N T oo, to
C’lm{p ¢ Aé’ﬁ"s}.
Again the ergodicity of m ensures that this expression vanishes as [ T oo and k 1 oo after-

wards. Now, let us turn to the first term in (18). If we denote

BLLf] = [ hn)f (1) d7h (),
the integral term in (18) is bounded above by

o (5 ) B0 - sergEtfetion] |

Recall that w is a convex and increasing function. Thus, by Jensen’s inequality, the last

expression is bounded above by

o (5 ) [Br[etwon]| - sergEafetion]

14




;From the remarks [R3], we claim that there exists a finite constant Cy = Cy(5,C(V))
such that the integral term in (18) is negative if E} [77 (0 )] > (5. Let B > 0 be such that
suppH C [—B, B], then from (17) and the last claim, we check that the first term in (18) is
bounded above by

(2B + 1)||H||oo sup sup / A p,o,l( dn)
AlkéfeBp Z(‘lf;(l) )
bN

where B (a,b) is defined for positive constant a and b by
B} (a,b) = {f € By : Dy, (f) <aand E} [w(nl(O))] < b}.

The weak topology of the set of probability measures on X' ensures that, by definition,

D 2010
B( sz

Dirichlet form, we know that

,Cg) is one of its compact subsets. Therefore, by the lower semi-continuity of the

lim  sup sup /VVl pOl( dn)
N—o0 AzksfeBp 26;1]\](;(1) Cs) Y,

< sup sup
Al k é fEBp 0 Cz

7 )| (19

;From the assumption on ¥ (and \If), for every positive constant Cj3, the term in absolute

value is bounded above by

) [ e O 000 1)+ | [0y D720 00

By remarks [R4], the first term in the last expression is bounded above by

20(8)(525) [ O an) = 200) (25 ) B/ O)

gz@cwmw%g>

for all f € BY(0,C5). From (H4), this last term vanishes as C3 1 co. At this point, we
achieve by proving that

< C(6, ) (20)

im lim sup  sup / W ()L )<cnr f (M) 700, ( dn)

k—o00 [—00 Al k 5 fEBp 0,Cs)

15



where C(6, «) vanishes as o | 0 and ¢ | 0 afterwards. We omit this proof since it is developed
in the proof of lemma 3.1 in Koukkous (1999).
Proof of Lemma 3.4.

First of all, we approximate (replace) the average over a small macroscopic box by an

average over large microscopic boxes. More precisely, for N sufficiently large we check that
x

i(5)
N

< Ay T Wi+ 0(4) £ 6( L)

2A+1<|y|<eN

< sXl(Hlamss. T o —dfernls 5 T6(5)e0w)

2A+1<|y|<eN

Define
i €2.2) = (w10 + w(€1))

W,il(’rla 67 x, Z) = |nl(x) ( )|1{77 JVEN(2)<A}
and to keep notation simple, we denote W' (1, &,0,0) by W(n, &) and wi(n, £, 0, 0) by wi(n, £).

As in the previous proof, we introduce an indicator function and in the same way as in
(15), we reduce our proof to show that, for every positive constant A

1) [ev i, = (21)

2+1<|y|<eN

1
lim lim lim
o T T sup{NZ

[—o0 €0 N—oo f -

/[Wé(nanaxax_i_y) _ﬁwl(nvnaxax+y) f(n)ﬂp( d77) _bNDP(f)} S 0

.From the definition of

1

[
(2€N+1) Z WA(U:U:»”U;$+?J)

2A+1<|y|<eN

and since n'(z) and n'(z + y) depend on the configuration n only through its values on the

set
Aa:,y,l = Aa:,l U (y + Aa},l))

we shall replace f by its conditional expectation with respect to the o-algebra generated by
{n(z);z € Ayy,}. Some notation are necessary. For all y € Z, we define the shift operator
0,(-) on environments by (6,p)(z) = p(x +y).

For fixed integer [ and environments p and ¢, we denote by X! the configuration space
N4 x N by 78, the product measure v5? © p5=7 restricted to X!, and by fr,. the

16



conditional expectation of f with respect to the o-algebra generated by {n(2);z € Ay}

Thus the supremum in (21) is bounded above by

sl 31 (5 o, =

x 2l4+1<|y|<eN

/szWil(fl;&)—ﬂwl(fla&) fzyz(fla§2) ,I;’zylp( d¢) — bNDp(f)}-

Let us turn now to the Dirichlet form of f7 ; into microscopic boxes A, ;. Let D"!(h)

be
Dy(h) = I7{(h) + Iy (h) + >0 IZ4,(h)+ 30 174 o
z,2/ €N 2,2 €N
|z—z|=1 |z—z|=1
where, for each z,z' € Aj, such that |z — 2| =1,

124,,(h) = 1/2 [ pgléas — e, &)] g (e
107 5(h) = 1/2/Qz (&(2 [\/ (61,67 h(fl,fz)] ZATCS
1240 = 1/2 [ pog(@(0) [Vh(e) ,€87) = /i1, &)] 7ht (de),

178(0) = 1/2 [ aog(& () [V (el *,607) - Jh(gl,@)] 728 dS).
The configurations £%%(-) are defined by

0 (2) { €z 240

We claim that

1

2+1<|y|<eN

(22)

The proof of the claim is omitted. We can see Lemma 4.3 of Koukkous (1999) for several

details.

. From the same notation in the proof of Lemma 3.3, we separate the sites where the en-

vironment behaves badly and repeat the computation in the begining of (17).

Using (22)

and introducing the indicator function of the environements afterwards, our lemma is a

consequence of the following results



Lemma 3.5

ETE - ]‘ ]'
Pl N, 2 N [hazpmy} * 1{ew+yp¢Aa:'zf}] =0

m almost surely.

Lemma 3.6 For positive constants a and b, let

B(a,b) = {h > 0, Eppg (] = 1, DP(h) < 0, B} (61, 60)] < b}

lim lim lim lim  sup sup EP1 <W£(§1,§2)> <C(4, ) (23)

k—oo w00 €0 N—oo pqul,k,s
U0 pepra (“Z%—g”cl,&)
where C(8, &) vanishes as a L 0 and 6 | 0 afterwards.

The lemma 3.5 is trivially proved using the ergodicity and stationarity of m. (see
Koukkous (1999)).

Since Bf’q<(28N+1)Cl, C’2> is a compact subset of the probability measures set on X! x X!

bN?
endowed with the weak topology, by the lower semi-continuity of the Dirichlet form, to prove

(23) it is enough to prove that
lim lim lim lim  sup sup EP? (WA(& f2)> =0.
0—0 a—0 k—oo =00 P,(IEAf)’fZZ& hEBlp’q(O,Cg) h )

which is proved in Koukkous (1999) ( see the proof of lemma 4.2 at formula (23)).

4 Proof of Theorem 2.2

The proof of lower bound presented in Benois & al. (1995) is easily adapted for our case using
some computations already developed in the previous proof of super-exponential estimate
and some arguments presented in the below upper bound’s proof. We therefore omit details
for the reader.

Let H € C*([0,7] x R) and v € C,(R). From Girsanov formula, the Radon-Nikodym

derivative of sz% with respect to PJ is given by

t sty N
expN{JI&(wiUm’;’N(wéV 0) = N [ pagln ()T (y) [0 5050 — o ds} (24
T,y
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where 2N (-|p) : My — R is defined by

oo (51 S

Upper bound :
The proof is dealing only with a fixed compact subset C of D([0, 7], M, ). To extend this
result to a closed subset, we need exponential tightness for Qf,v,p. It is easily obtained thanks
to the proof presented in Benois (1996) (see also Lemma V.1.5 in Kipnis-Landim (1999)).

For every ¢ > 1,
N\ 1/ JH N 1/
N (c)=EN AP, \ 7 dPhx q1 veey |-
psp psp dPg’% dPN {mNec}

psp

Let 9. be the approximation of identity defined by (2¢)7'1i_..(x) and * the classic
convolution product.
For 0 <s< T, let

ul' e (115) 2{32 5,k/N) + [0:H (s, k/N)*Hprg(ns (k) — @(n;" (k) }
and
Uiy, (1) = Zpkg ns(k {ZT(j)NZ[ (S -H )} 1]

‘%{azﬂ(s, k/N) + (0.H(s, k/N ))2}}

;From (24), a simple computation shows that ( dPN ,/ dP¥ > is bounded above by

esp ¥ = Th(e) + T 0 = N alo) + [ {2+ 0} as)

Thus, 1 log @) (C) is bounded above by

1
ssup{ = T + T <) - 18V )| )
1 dpri 1/q N T
ryptosEly | (it ) e [ (s + o) as]
PP



Let H be a real continuous function with the same support as sup, |H;|, such that it bounds
above supg (|02 Hy| + (0, Hy)? + |Hy ).

Let Cy € N such that suppH C [0, T] x [-(Co — 1), (Cy + 1)]. Using Holder’s inequality,
we show that, for ¢’ € R such that (1/¢) + (1/¢') = 1, the second term in (25) is bounded
above by

1 3Nq, H TO( _ k
og )y exp (S ([ o) s [ 5 S A0 05}
o e (L [Turtin as [7 £ S Al as
1 N 3Ng' (T
FooeB e {20 780 as) 20

+3]\1[,logE lexp{SNq< /ZH% ))ds)}]

Using similar arguments as in the proof of lemma 3.2 ( see (11)), we check that the last

term in (26) is bounded above by
9 e
Ry(0,q, H) = 52108 Vg [e{%nmmmnw))}]

which vanishes as « | 0 for each fixed ¢ and H thanks to assumption [H4|.
i From assumption [H2], we check that g(k) < g*k for all k € Z and therefore ®(p) < g*p.
Thus, we repeat the same argument as above, a simple computation shows that the second

term in (26) is bounded above by
2C,
Ry(q,H,N) = —?log%

where 3 = 3(T,¢*, H,a1,q,0).

For each fixed g and H, it is easy to see that Ry(q, H, N) vanishes as N 1 oc.

Let us turn to the first term in (26) and denote R3(«, g, H,¢) its limit when N 1T oo. A
similar computation as in the proof of the super-exponential estimate ( see lemma 3.2 and
its proof), gives that

ligr%Rg(a,q,H, £)=0
for all & > 0, ¢ > 1 and smooth function H.

In the other hand notice that by a simple computation and from the ergodicity and
stationarity of m, we prove that h2" (m{’|p) converges (uniformly in 7 € C) to h(v|p) when
N 71 oc.

We therefore proved that limy_,.(1/N)logQ)',(C) is bounded above by
it {Lsup{ = 7h) + Thlo 0 1010} + Ralow 5+ Faloa 1) |

H:’Y:‘I:Oé,g q WEC
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where the infimum is taken over all H € C2*([0, 7] xR), v € C,(R), ¢ > 1, @ > 0 and £ > 0.
At this level, using the continuity of J5(-*9.) for every fixed H and £ > 0, the compacity
of C and the arguments developed in (Kipnis & al. (1989)) to permute the supremum and

infimum, we check that this last expression is bounded above by

“inf s 0= T+ T 00 - MO |+ Rl 1.5) + Fafona )

7€C Hyy,q,00e | G

We conclude therefore our proof by letting € | 0. o | 0 and ¢ | 1.
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