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Abstra
t

We 
onsider an asymmetri
 zero range pro
ess with zero mean in in�nite volume

with random jump rates starting from equilibrium. We investigate large deviations

from hydrodynami
al limit of the empiri
al distribution of parti
les and prove an upper

and lower bound for a large deviation prin
iple. Our main argument is based on a super-

exponential estimate in in�nite volume. We adapt a method developed by Kipnis &

al. (1989) and Benois & al. (1995).

Keywords: Asymmetri
 zero range pro
ess, Hydrodynami
al limit, Large deviations,

Random media.

AMS 1996 
lassi�
ation 60K35, 82C22.

1 Introdu
tion

The zero range pro
ess is one of the simplest parti
le systems that has been su

essfully

investigated re
ently in random or inhomogeneous media (
f. for instan
e Benjamini & al.

(1996), Evans (1996), Krug-Ferrari (1996), Landim (1996), Gielis & al. (1998), Bahadoran

(1998), Sepp�al�ainen-Krug (1999), Koukkous (1999), Andjel & al. (2000)) .

We des
ribe informally the evolution of the pro
ess as follows. On the d-dimensional

latti
e Z

d

, we 
onsider a sequen
e of random variables p = (p

x

)

x2Z

d (
alled an environment)

in [a

0

; a

1

℄ (where 0 < a

0

� a

1

<1). At any x 2 Z

d

, ea
h parti
le at site x jumps to the left

or to the right with a rate depending only on the total number of parti
les at site x before

g;k
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the jump. The random media state therefore that the jump rate is a

elerated or de
elerated

by the value p

x

of p at site x.

Benjamini & al. (1996) have studied the asymmetri
 version of a zero-range pro
ess in

in�nite volume when the environment is an i.i.d. sequen
e of random variables (with a

1

= 1)

and have proved the asymptoti
 hydrodynami
al behavior of the system. Koukkous (1999)

showed the hydrodynami
al limit in the symmetri
 
ase for a stationary and ergodi
 envi-

ronment whose marginal law is absolutely 
ontinuous with respe
t to the Lebesgue measure.

He proved that the empiri
al measure of parti
les 
onverges in probability to the weak solu-

tion of a non-linear di�usion equation whi
h does not depend on the environment p and he

generalized in this way some results of Benjamini & al. (1996).

The equilibrium 
u
tuations (Central limit results for the density �eld) were studied in

G. Gielis & al. (1998). They proved that the density �eld 
onverges weakly to a generalized

Ornstein-Uhlenbe
k pro
ess.

Re
ently, Andjel & al. (2000) showed the 
onvergen
e to the maximal invariant measure

for an asymmetri
 zero range pro
ess with 
onstant rate in inhomogeneous and random

media in dimension 1 starting from an upper-
riti
al non-equilibrium measure.

In this spirit of hydrodynami
al behavior investigation, a natural open question 
an be

formulated as follows: From the hydrodynami
al limit of the empiri
al measure with some


ontinuous density �(�) (with respe
t to Lebesgue measure) and given an event � for whi
h

� =2

�

�, how to 
ontrol the \deviant" behavior of the system inside � ? This is the subje
t of

large deviation prin
iples (LDP) related to hydrodynami
al limit of the empiri
al measure.

In this paper, we investigate a d-dimensional zero mean asymmetri
 zero-range pro
ess

in random media. In the deterministi
 
ase of the environment, the LDP results have been

treated by many authors among whi
h Landim (1992), Benois (1996) and Benois & al.

(1995). In this last arti
le an upper and a lower bound of LDP in in�nite volume of empiri
al

density are proven when the pro
ess starts from equilibrium.

The 
ru
ial ingredient of the proofs fo
uses on the so-
alled super-exponential estimate:

it 
onsists in approximating, by rigorous fun
tions of the density �eld, the 
orrelation �eld

obtained in the 
omputation of some exponential martingales related to the jumps of parti
les

(see Kipnis & al. (1989) and Donsker-Varadhan (1989)). On
e we prove this result, the LDP

result (and also the hydrodynami
al limit ) of the empiri
al measure is obtained by standard

arguments.
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In a random media, the diÆ
ulty in adapting standard arguments relies on the absen
e

of translation invarian
e of the invariant measures for the pro
ess. For this reason, our

approa
h uses essentially both results of Koukkous (1999) and Benois & al. (1995).

The paper is organized as follows: We introdu
e the notations and assumptions used

through the paper and state the main results in Se
tion 2. Se
tion 3 is devoted to the proof

of the super-exponential estimate. In the last se
tion we give a proof of an upper bound of

LDP result. We omit the proof of lower bound sin
e, on
e one has proven the upper bound,

it is similar to the arguments given in Benois & al. (1995) without major modi�
ations.

2 Notation and results

Let 0 < a

0

� a

1

< 1 and 
onsider a sequen
e of random variables fp

x

; x 2 Z

d

g on [a

0

; a

1

℄

distributed a

ording to a stationary and ergodi
 measure m, su
h that its one-dimensional

marginal law is absolutely 
ontinuous with respe
t to the Lebesgue measure. We assume

that mfp : a

0

� p

0

� a

1

g = 1 and for every " > 0, mfp : p

0

2 [a

0

; a

0

+ ")gmfp : p

0

2

(a

1

� "; a

1

℄g > 0.

We denote by X

d

:= N

Z

d

the 
on�guration spa
e and by Greek letters � and � its elements.

As usual �(x) stands for the total number of parti
les at site x for the 
on�guration �. For

ea
h environment p, we are interested in the Markov pro
ess (�

t

)

t�0

on X

d

whose generator

is de�ned by

(L

p

f)(�) =

X

x;y2Z

d

p

x

g(�(x))T (x; y)[f(�

x;y

)� f(�)℄; (1)

where f : X

d

! R is a 
ylinder fun
tion, that is f only depends on � through a �nite

number of 
oordinates. T (�; �) is a transition probability on Z

d

. The fun
tion g is positive

and vanishes at 0: g(0) = 0 < g(k) for all k � 1. In the previous formula, �

x;y

(z) is the


on�guration obtained from � when a parti
le jumps from x to y:

�

x;y

(z) =

8

>

>

>

<

>

>

>

:

�(z) if z 6= x; y

�(x)� 1 if z = x

�(y) + 1 if z = y .

For every non-negative real ' we denote by �

p

'

the produ
t measure on X

d

whose marginals

are de�ned by

�

p

'

f� : �(x) = kg =

1

Z('p

�1

x

)

('p

�1

x

)

k

g(k)!

; for all k � 0;

3



where g(k)! = g(1)g(2):::g(k) if k > 0 and g(0)! = 1. Those measures (see Benjamini & al.

(1996)) are invariant for the pro
ess. In this formula, Z : R

+

! R

+

is the partition fun
tion

Z(') =

X

k�0

'

k

g(k)!

:

Let '

�

be the radius of 
onvergen
e of Z(�); we assume that

lim

'"'

�

Z(') = +1: (2)

Denote by �

'

(�) := �

1

'

(�) the invariant measure of the pro
ess (�

t

)

t�0

when m is the Dira


measure 
on
entrated on the set fp : p

x

= 1; x 2 Z

d

g (see Andjel (1982)). We de�ne

M : [0; '

�

)! R

+

by M(') = �

'

[�(0)℄, the expe
ted number of parti
les at 0 with respe
t to

�

'

.

A simple 
omputation shows that M(') = '�

'

logZ(') and from assumption (2) we


he
k that M is an in
reasing, 
ontinuous, one-to-one fun
tion from [0; '

�

) to R

+

.

We de�ne the \density" of parti
les (i.e. the expe
ted number of parti
les at 0) with

respe
t to the random media by the 
ontinuous and in
reasing fun
tion R : [0; a

0

'

�

) ! R

+

su
h that

R(') = m[M('p

�1

0

)℄

and in order to ensure the existen
e of an invariant measure for any given value of the density,

we assume that

lim

'"a

0

'

�

R(') =1: (3)

Under this assumption the fun
tion R is one to one from [0; a

0

'

�

) to R

+

. We denote by �

its inverse (whi
h is also a 
ontinuous in
reasing bije
tion).

For a density � > 0 we write

��

p

�

= �

p

�(�)

We easily 
he
k that

�(�) = ��

p

�

�

p

x

g(�(x))

�

for all x 2 Z

d

:

In the following we state all the hypotheses assumed throughout this paper.

[H1℄ The transition probability T (�; �) on Z

d

is a zero-mean irredu
ible translation in-

variant probability with �nite range. That is

T (x; y) = T (0; y � x) =: T (y � x);

there exists a 
onstant A > 0 su
h that T (x) = 0 if jxj � A

and

X

x2Z

d

x T (x) = 0:
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[H2℄ The rate fun
tion g has bounded variation:

g

�

= sup

k

jg(k + 1)� g(k)j <1:

Under the hypotheses [H1℄ and [H2℄, Andjel (1982) has proven the existen
e of a unique

Markov pro
ess with 
orresponding generator de�ned by (1) in deterministi
 environment

(i.e. p � 1). His proof applies also in our 
ase.

Let (�

ij

)

f1�i;j�dg

be a symmetri
 nonnegative de�nite matrix de�ned by the 
ovarian
e

matrix of the transition probability T (�):

�

ij

=

X

y2Z

d

y

i

y

j

T (y) where y = (y

1

; � � � ; y

d

)

[H3℄ In order to avoid the degenerate 
ase of the hydrodynami
 equation, we assume

(�

ij

)

f1�i;j�dg

to be a positive de�nite matrix. That is there exists � > 0 su
h that

X

i;j

�

ij

x

i

x

j

� �

X

i

x

2

i

; for all x = (x

1

; � � � ; x

d

) 2 R

d

:

[H4℄ To ensure some �nite exponential moments of �(x) under the measures �

p

'

we shall

assume that there exists a 
onvex and in
reasing fun
tion ! : R

+

�! R

+

su
h that

(i) !(0) = 0;

(ii) lim

x!1

(

!(x)

x

) =1 and

(iii) for all density ' there exists a positive 
onstant � := �(') su
h that

�

'

�

exp f�!(�(0))g

�

<1:

This last assumption ensures also that Z(�) has in�nite radius of 
onvergen
e. It holds for

exemple if g(k + 1)� g(k) � g

�

0

for some 
onstant g

�

0

and k suÆ
iently large.

We will denote by !

�

the Legendre transform of ! given by:

!

�

(x) = sup

�>0

f�x� !(�)g: (4)

In the next paragraphs, we de�ne the state spa
e of the pro
ess and its topology. Denote by

C(R

d

) (resp. C

K

(R

d

)) the spa
e of 
ontinuous (resp. with 
ompa
t support) fun
tions on R

d

with 
lassi
 uniform norm. LetM

+

denote the spa
e of positive Radon measures on R

d

with

the weak topology indu
ed by C

K

(R

d

) via h�;Hi =

R

H d� for H 2 C

K

(R

d

) and � 2 M

+

.

We �x a positive time parameter T > 0. For ea
h realization of the environment p

and all �xed positive density �, P

N

�;p

will denote the probability measure on the path spa
e
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D([0; T ℄;X

d

) 
orresponding to the Markov pro
ess (�

t

)

t2[0;T ℄

with generator N

2

L

p

starting

from the measure ��

p

�

. By E

N

�;p

we denote the expe
tation under P

N

�;p

.

Let �

N

:

be the empiri
al measure de�ned on D([0; T ℄;M

+

) by

�

N

t

(du) =

1

N

d

X

x2Z

d

�

t

(x)Æ

x=N

(du);

for 0 � t � T . Let Q

N

�;p

denote the measure on the path spa
e D([0; T ℄;M

+

) asso
iated to

the pro
ess �

N

:

with generator N

2

L

p

starting from ��

p

�

.

To investigate the large deviations of the empiri
al measure, we shall 
onsider some small

perturbations of the zero range pro
ess as mentionned earlier. For this, we will need the

following notation.

Let C

l;k

K

([0; T ℄�R

d

) denote the spa
e of 
ompa
t support fun
tions with l 2 N 
ontinuous

derivatives in time and k 2 N 
ontinuous derivatives in spa
e. Let C

�

(R

d

) be the set de�ned

by

C

�

(R

d

) = C(R

d

) \ fu : R

d

! R

+

; u(x) = � for jxj suÆ
iently largeg:

For a �xed 
 in C

�

(R

d

) and for some smooth fun
tion H in C

1;2

K

([0; T ℄� R

d

) we 
onsider

the Markov pro
ess generated by

N

2

(L

p;H

N;t

f)(�) = N

2

X

x;y2Z

d

p

x

g(�(x))T (y)e

fH(t;

x+y

N

)�H(t;

x

N

)g

[f(�

x;x+y

)� f(�)℄;

where f is a 
ylinder fun
tion. Let ��

p


;N

be the initial produ
t measure of this pro
ess with

marginals

��

p


;N

f�; �(x) = kg = ��

p


(x=N)

f�; �(x) = kg

for all x 2 Z

d

and k 2 N. We therefore denote by P

p;H


;N

and Q

p;H


;N

the small perturbations of

P

N

�;p

and Q

N

�;p

respe
tively.

For any path � 2 D([0; T ℄;M

+

), denote by u

t

the Radon-Nikodym derivative of � with

respe
t to the Lebesgue measure �: u

t

=

d�

t

d�

. Let A = A(�) be the spa
e path of � 2

D([0; T ℄;M

+

) su
h that u

t

is the solution of the PDE

(E)

8

<

:

�

t

u = (�=2)4(�(u))�

P

d

i=1

�

x

i

(�(u)�

x

i

H)

u(0; �) = 
(�) :

for some 
 2 C

�

(R

d

) and some H 2 C

1;3

K

([0; T ℄� R

d

): 4 stands the Lapla
ian operator.

The following notation is devoted to the de�nition of the rate fun
tional of the large

deviation prin
iple for (�

N

:

)

0�t�T

.
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For H 2 C

1;2

K

([0; T ℄� R

d

), we de�ne J

H

: D([0; T ℄;M

+

)! R [ f1g by

J

H

(�) = J

1

H

(�)� J

2

H

(�)

where

J

1

H

(�) =

�

u

T

; H

T

�

�

�

u

0

; H

0

�

�

Z

T

0

�

u

t

; �

t

H

t

�

dt;

J

2

H

(�) =

�

2

Z

T

0

�

�(u

t

);

d

X

i=1

�

�

2

x

i

H

t

+ (�

x

i

H

t

)

2

��

dt;

su
h that J

H

(�) = 1 outside D([0; T ℄;M

+

) or if �

t

is not absolutely 
ontinuous with

respe
t to the Lebesgue measure � for some 0 � t � T .

We are now ready to de�ne the part of the large deviations rate fun
tion, I

0

(�) : D([0; T ℄;M

+

)!

[0;1℄ 
oming from the sto
hasti
 evolution:

I

0

(�) = sup

H2C

1;2

K

([0;T ℄�R

d

)

J

H

(�):

The other part of the large deviations rate fun
tion 
oin
ides with the behaviour of

deviations 
oming from the initial state. Let h(�j�) be the entropy de�ned for a positive

fun
tion 
 : R

d

! R

+

by

h(
j�) =

Z

R

d

(


(x) log

�

�(
(x))

�(�)

�

� E

m

�

log

�

Z(�(
(x))p

�1

0

)

Z(�(�)p

�1

0

)

��

)

dx:

Thus, the rate fun
tion of the large deviation prin
iple is de�ned for a density � > 0 by

I

�

(�) = I

0

(�) + h(u

0

j�):

From now on, for ea
h x 2 Z

d

, we denote by �

l

(x) the mean density of parti
les in a box

of length (2l + 1) 
entered at x :

�

l

(x) =

1

(2l + 1)

d

X

jy�xj�l

�(y):

For ea
h 
ylinder fun
tion  : X

d

! R, we de�ne

~

 (�) := m

�

�

p

�(�)

( )

�

; (5)

and we say that 	 is a Lips
hitz fun
tion if

9k

0

2 N and 


0

> 0 su
h that

�

�

�

�

	(�)� 	(�)

�

�

�

�

� 


0

X

jxj�k

0

�

�

�

�

�(x)� �(x)

�

�

�

�

;

for all � and � in X

d

.

Denote by �

x

the shift operator de�ned by �

x

 (�(�)) =  (�

x

�(�)) where �

x

�(y) = �(x+ y).

We 
an now state our results:
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Theorem 2.1 Let 	 be a 
ylinder Lips
hitz fun
tion and H 2 C

0;2

K

([0; T ℄ � R

d

). Under

hypotheses [H1℄ to [H4℄, for all Æ > 0 we have

lim

"!0

lim

N!1

1

N

d

log P

N

�;p

"

�

�

�

�

�

Z

T

0

W

H;	

N;"

(t; �

t

) dt

�

�

�

�

�

> Æ

#

= �1 (6)

m-almost surely, where

W

H;	

N;"

(t; �) =

1

N

d

X

x

H(t; x=N)

�

�

x

	(�)�

~

	(�

"N

(x))

�

:

This theorem, 
alled the super-exponential estimate, will be a 
ru
ial argument in the

proof of the following large deviations prin
iple:

Theorem 2.2 Under hypotheses [H1℄ to [H4℄, for every 
losed subset C and every open

subset O of D([0; T ℄;M

+

), we have

lim sup

N!1

1

N

d

logQ

N

�;p

(C) � � inf

�2C

I

�

(�)

and

lim inf

N!1

1

N

d

logQ

N

�;p

(O) � � inf

�2O\A

I

�

(�)

m-almost surely.

Remarks:

Before starting to prove our results, we would like to mention some remarks and 
laims

that we will use and whose proofs will be omitted. For 
omplete details the reader is refered

to Kipnis-Landim's book (1999) and Benois & al. (1995).

[R1℄ From Lemma I.3.5 of Kipnis-Landim's book (1999), the fun
tion de�ned by

' �! �

'

for ' > 0, is an in
reasing fun
tion (see also the proof of lemma 4.3 in Benois &

al. (1995)). Therefore, assumption [H4℄ implies that for a �xed environment p de�ned in

the beginning of the last se
tion, for all x 2 Z

d

and ' > 0, there exists � := �(x; ') > 0 su
h

that

�

p

'

�

exp f�!(�(x))g

�

<1 m-almost surely.

[R2℄ Assumption [H4℄ ensures that the fun
tion !

�

de�ned by (4) is also a 
ontinuous


onvex fun
tion su
h that !

�

(0) = 0.

[R3℄ A simple 
omputation shows that from the se
ond 
ondition in [H4℄, for every

" > 0 the fun
tion !

�1

(r) � "r is negative for ea
h r � C

2

("), for some 
onstant C

2

(")

dependent only on ".
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[R4℄ By de�nition of ! in [H4℄, the fun
tion de�ned on R

�

+

by 
(r) =

!(r)

r

is an

in
reasing fun
tion.

[R5℄ For ea
h 
ylinder Lips
hitz fun
tion 	(�), the fun
tion

~

	(�) given by (5) is also

a Lips
hitz fun
tion (see Lemma I.3.6 of Kipnis-Landim (1999)). Moreover one 
an 
he
k

that

~

	(k) � Ck for all k 2 Z for some 
onstant C.

The strategy adopted to prove our results is similar to the one presented in Benois &

al. (1995). However, we use some arguments developed in Koukkous (1999) in order to

over
ome the failed translation invarian
e propriety of the invariant measure of zero range

pro
ess in random media. We thus detail only the main di�eren
es.

From now on, to keep the notation simple, we will restri
t our study to the one-dimensional


ase. The reader 
an extend the proofs to any dimension without more diÆ
ulty.

3 Proof of Theorem 2.1

Let G be a positive 
ontinuous fun
tion on R de�ned by

G(x) = sup

y2[x�1;x+1℄

max

�

jH(y)j; j�

y

H(y)j; j�

2

y

H(y)j

�

: (7)

We have

P

N

�;p

�

Z

T

0

W

H;	

N;"

(t; �

t

) dt > Æ

#

� P

N

�;p

�

Z

T

0

�

W

H;	

N;"

(t; �

t

) dt�

�

N

X

x

G

�

x

N

�

!(�

t

(x))

�

dt > Æ=2

�

+P

N

�;p

�

Z

T

0

�

N

X

x

G

�

x

N

�

!(�

t

(x)) dt > Æ=2

�

: (8)

for every � > 0.

By T
heby
he� exponential inequality the �rst term in the left hand side in (8) is bounded

above by

expf�N�Æ=2gE

N

�;p

"

exp �

Z

T

0

�

NW

H;	

N;"

(t; �

t

)� �

X

x

G

�

x

N

�

!(�

t

(x))

�

dt

#

for every � > 0.

Therefore, we have to prove two Lemmas:

Lemma 3.1 For every G 2 C

K

(R),

lim

A!1

lim

N!1

1

N

log P

N

�;p

�

Z

T

0

1

N

X

x

G(x=N)!(�

t

(x)) dt > A

�

= �1 (9)

9



m-almost surely.

Lemma 3.2 For any � > 0 and � > 0

lim

"!0

lim

N!1

1

N

log E

N

�;p

"

exp �

Z

T

0

�

W

H;	

N;"

(t; �

t

)� �

X

x

G

�

x

N

�

!(�

t

(x))

�

dt

#

= 0: (10)

m-almost surely.

Proof of Lemma 3.1.

Using respe
tively T
heby
he� exponential inequality and Jensen inequality, we show that

for every positive 
onstant �, the logarithmi
 term in (9) is bounded above by

��AN + log E

N

�;p

"

1

T

Z

T

0

exp

�

X

x

�T G(x=N)!(�

t

(x))

�

dt

#

:

>From the begining of [R1℄ and sin
e the produ
t measure ��

p

�

is invariant for the pro
ess and

p

x

2 [a

0

; a

1

℄, a simple 
omputation shows that the right hand side term in (9) is bounded

above by

lim

A!1

lim

N!1

inf

�>0

(

� �A+

1

N

X

x

log �

�(�)a

�1

0

�

exp

�

�T G(x=N)!(�(0))

��

)

: (11)

Let B > 0 be su
h that

suppG � [�B;B℄:

>From [H4℄, there exists �

0

> 0 su
h that

�

�(�)a

�1

0

"

exp

�

�

0

T kGk

1

!(�(0))

�

#

<1:

The lemma is proved in fa
t that (11) is bounded above by

lim

A!1

�

� �

0

A+ (2B + 1) log �

�(�)a

�1

0

�

e

f�

0

T kGk

1

!(�(0))g

��

:

Proof of Lemma 3.2.

Let

V (�) = �

�

NW

H;	

N;"

(0; �)� �

X

x

G

�

x

N

�

!(�(x))

�

:

Let L

p

V

be the generatorN

2

L

p

+V and L

p;�

V

its adjoint operator, whi
h is equal toN

2

L

�

p

+V . If

we denote by S

V;p

t

the semigroup asso
iated to the generator L

p

V

, by the Feyman-Ka
 formula

the expe
tation in the lemma is equal to

hS

V;p

T

1; 1i � hS

V;p

T

1; S

V;p

T

1i

(1=2)

:

10



Now, if we denote by �

V

the largest eigenvalue of the self-adjoint operator L

p

V

+ L

p;�

V

,

�

t

hS

V;p

t

1; S

V;p

t

1i = h(L

p

V

+ L

p;�

V

)S

V;p

t

1; S

V;p

t

1i � �

V

hS

V;p

t

1; S

V;p

t

1i:

By Gronwall's lemma we show that

hS

V;p

T

1; S

V;p

T

1i � exp

�

T �

V

�

: (12)

Re
all that we did not assume T (�) to be symmetri
 and therefore �

p

�(�)


an be non-reversible

for the pro
ess. However, at this level, our study is dealing with the reversible generator

N

2

(L

p

+ L

�

p

). Thus we 
an assume the generator L

p

to be reversible and T (�) given by

T (x) = (1=2)1

fjxj=1g

.

Let

I

p

x;x+1

(f) =

1

2

Z

p

x

g(�(x))

�

q

f(�

x;x+1

)�

q

f(�)

�

2

��

p

�

( d�);

and D

p

(�) the Diri
hlet form given by

D

p

(f) =

X

x

I

p

x;x+1

(f):

Using the variational formula for the largest eigenvalue of a self-adjoint operator (see ap-

pendix A3.1 of Kipnis-Landim (1999)), from (12) we redu
e the proof of the lemma to show

that for every positive �

lim

"!0

lim

N!1

sup

f

(

Z

�

�

W

H;	

N;"

(�)�

�

N

X

x

G

�

x

N

�

!(�(x))

�

f(�)��

p

�

( d�)�ND

p

(f)

)

� 0:

The supremum is taken over all positive densities fun
tions with respe
t to ��

p

�

.

We use now some 
omputations from Benois & al. (1995) and Kipnis & al. (1989). Let

W

	

l

(�) =

1

2l + 1

X

jyj�l

	(�(y))�

~

	(�

l

(0))

In this way, we 
an rewrite the term

W

H;	

N;"

(�)�

�

N

X

x

G

�

x

N

�

!(�(x))

as

1

N

X

x

(

H

�

x

N

�

"

�

x

	(�)�

1

2l + 1

X

jy�xj�l

�

y

	(�)

#

�

�

3

G

�

x

N

�

!(�(x))

)

+

1

N

X

x

(

H

�

x

N

�

�

x

W

	

l

(�)�

�

3

G

�

x

N

�

!(�(x))

)

11



+

1

N

X

x

(

H

�

x

N

�

"

~

	(�

l

(x))�

~

	(�

"N

(x))

#

�

�

3

G

�

x

N

�

!(�(x))

)

:

>From the assumption on 	, we 
hek easily that there exist C(	; p) su
h that for all x 2 Z

	(�(x)) � C(	; p)�(x). Then from the de�nitions of !

�

(�) and G(�) (
f. (4) and (7)), the

�rst term in the last expression is bounded above by

1

N

X

x

(

�

�

�

�

1

2l + 1

X

jy�xj�l

H

�

y

N

�

�H

�

x

N

�

�

�

�

�

	(�(x))�

�

3

G

�

x

N

�

!(�(x))

)

�

�

3N

X

x

G

�

x

N

�

(

3C(	; p)l

�N

�(x)� !(�(x))

)

� !

�

(

3C(	; p)l

�N

)

�kGk

1

3

This last term vanishes as N " 1 sin
e !

�

(�) is 
ontinuous and !

�

(0) = 0.

Now, to a
hieve the proof of the lemma 3.2, we shall prove:

Lemma 3.3 For any b > 0

lim

l!1

lim

N!1

sup

f

(

1

N

X

x

Z

�

H

�

x

N

�

�

x

W

	

l

(�)� �G

�

x

N

�

!(�(x))

�

f(�) d��

p

�

( d�)� bND

p

(f)

)

� 0 (13)

m-almost surely. The supremum is taken over all positive densities fun
tions with respe
t to

��

p

�

.

And, thanks to remarks [R5℄, we have to prove that:

Lemma 3.4 For any b > 0

lim

l!1

lim

"!0

lim

N!1

sup

f

(

1

N

X

x

Z

�

H

�

x

N

�

�

�

�

�

�

"N

(x)� �

l

(x)

�

�

�

�

� �G

�

x

N

�

!(�(x))

�

f(�) d��

p

�

( d�)� bND

p

(f)

)

� 0 (14)

m-almost surely. The supremum is taken over all positive densities fun
tions with respe
t to

��

p

�

.

Proof of Lemma 3.3.

Using the 
onvexity of ! and de�nition of G, we 
he
k that

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(x)) �

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

2l + 1

X

jy�xj�l

!(�(y))

=

1

N

X

x

!(�(x))

1

2l + 1

X

jy�xj�l

�

�

�

�

H(y=N)

�

�

�

�

�

1

N

X

x

!(�(x))G

�

x

N

�

(15)

12



At the beginning, we introdu
e some notations in order to deal in our study of (13) with the

boxes of length (2l + 1). Indeed, the term

H

�

x

N

�

�

x

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(x))

depends on � only through �(x� l) � � ��(x+ l). Thus we may restri
t the integral to mi
ro-

s
opi
 blo
ks. Denote by �

l

= f�l � � � lg the box of length (2l + 1) 
entered at the origin.

For a �xed z 2 Z, we denote by �

z;l

the box z + �

l

, by X

l

the 
on�guration spa
e N

�

l

, by

��

p

�;z;l

the produ
t measure ��

�

z

p

�

restri
ted to X

l

, by f

z;l

the density, with respe
t to ��

p

�;z;l

, of

the marginal of the measure f(�)��

�

z

p

�

(d�) on X

l

and by D

p

�;z;l

(h) the Diri
hlet form on X

l

given by

D

p

�;z;l

(h) =

X

jx�yj=1

x;y2�

z;l

Z

p

x

g(�(x))

�

q

h(�

x;y

)�

q

h(�)

�

2

��

p

�;z;l

( d�):

Thus, from (15) and sin
e the Diri
hlet form is 
onvex (by S
hwarz inequality), the

supremum in the lemma is bounded above by the supremum over all positive densities f

(with respe
t to ��

p

�

) of the term

1

N

X

x

(

Z

�

H

�

x

N

�

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(0))

�

f

x;l

��

p

�;x;l

( d�)�

bN

2

C(l)

D

p

�;x;l

(f

x;l

)

)

(16)

As in the proof of lemma 3.1 of Koukkous (1999) we may now 
hara
terize the sites x where

the environment degenerates (behaves badly).

Fix Æ > 0 , � > 0 and n 2 N suÆ
iently large su
h that

a

1

�a

0

n

< Æ. For 0 � j � n � 2, let

I

Æ

j

= [�

j

; �

j+1

[ where �

j

2 [a

0

; a

1

℄ is su
h that

�

j

= a

0

+ (a

1

� a

0

)

 

j

n

!

:

Let I

Æ

n�1

= [�

n�1

; a

1

℄ and noti
e that, for 0 � j � n� 1, we have j�

j+1

� �

j

j < Æ.

Fix k < l and L = [

2l+1

2k+1

℄. We now subdivide �

l

into L disjoint 
ubes of length (2k + 1);

let B

1

; � � � ; B

L

be su
h that

B

i

� �

l

; B

i

\ B

j

= ; for i 6= j and B

i

= x

i

+ �

k

for some x

i

2 Z:

We take B

1

= �

k

and let B

0

= �

l

�[

L

j=1

B

j

. Finally we de�ne B

j

(x) = x+B

j

for 0 � j � L

and x 2 Z .

For x 2 Z, n 2 N, 0 � j � n� 1 and 1 � i � L, N

l;k;Æ

x;j;i

(p) is the average number of sites

y in B

i

(x) su
h that p

y

2 I

Æ

j

:

N

l;k;Æ

x;j;i

(p) =

1

(2k + 1)

X

z2B

i

(x)

1

fp

z

2I

Æ

j

g

:

13



For � > 0, we let

A

l;k;Æ

x;i;�

=

�

p;

�

�

�

�

N

l;k;Æ

x;j;i

(p)�m(I

Æ

j

)

�

�

�

�

� � for all j; 0 � j � n� 1

�

:

To keep notation simple, we denote A

l;k;Æ

0;1;�

by A

l;k;Æ

�

. Let

A

l;k;Æ

x;�

=

�

p;

1

L

L

X

i=1

1

fp2A

l;k;Æ

x;i;�

g

� 1� �

�

:

>From the de�nition of !

�

and the property of 	(�) and

~

	(�) given in the remarks [R5℄, a

simple 
omputation shows that the integral term in (16) is bounded by

C

1

= �kHk

1

!

�

�

2C(	; p)

�

�

: (17)

Therefore, the supremum over all positive densities f (with respe
t to ��

p

�

) of the term

(16) is bounded above by

1

N

X

x

sup

p2A

l;k;Æ

0;�

sup

h2B

l

p

(

Z

�

H

�

x

N

�

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(0))

�

h(�)��

p

�;0;l

( d�)�

bN

2

C(l)

D

p

�;0;l

(h)

)

+ C

1

1

N

X

x

1

fp=2A

l;k;Æ

x;�

g

(18)

where B

l

p

is the set of positive density fun
tions with respe
t to ��

p

�;0;l

.

By ergodi
ity and stationary of the environment law, the se
ond term 
onverges m-almost

surely, as N " 1, to

C

1

m

�

p =2 A

l;k;Æ

0;�

�

:

Again the ergodi
ity of m ensures that this expression vanishes as l " 1 and k " 1 after-

wards. Now, let us turn to the �rst term in (18). If we denote

E

p

h

[f ℄ =

Z

h(�)f(�) d��

p

�;0;l

(�);

the integral term in (18) is bounded above by

2C(	)

�

�

�

�

H

�

x

N

�

�

�

�

�

(

E

p

h

�

�

l

(0)

�

�

�

2C(	)

E

p

h

�

!(�

l

(0))

�

)

:

Re
all that ! is a 
onvex and in
reasing fun
tion. Thus, by Jensen's inequality, the last

expression is bounded above by

2C(	)

�

�

�

�

H

�

x

N

�

�

�

�

�

(

!

�1

"

E

p

h

�

!(�

l

(0))

�

#

�

�

2C(	)

E

p

h

�

!(�

l

(0))

�

)

:

14



>From the remarks [R3℄, we 
laim that there exists a �nite 
onstant C

2

= C

2

(�; C(	))

su
h that the integral term in (18) is negative if E

p

h

�

�

l

(0)

�

� C

2

. Let B > 0 be su
h that

suppH � [�B;B℄, then from (17) and the last 
laim, we 
he
k that the �rst term in (18) is

bounded above by

(2B + 1)kHk

1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(

2C

1

C(l)

bN

2

;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

where B

p

l

(a; b) is de�ned for positive 
onstant a and b by

B

p

l

(a; b) =

(

f 2 B

p

l

: D

p

�;0;l

(f) � a and E

p

f

�

!(�

l

(0))

�

� b

)

:

The weak topology of the set of probability measures on X

l

ensures that, by de�nition,

B

p

l

(

2C

1

C(l)

bN

2

; C

2

) is one of its 
ompa
t subsets. Therefore, by the lower semi-
ontinuity of the

Diri
hlet form, we know that

lim

N!1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(

2C

1

C(l)

bN

2

;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

� sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(0;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

: (19)

>From the assumption on 	 (and

~

	), for every positive 
onstant C

3

, the term in absolute

value is bounded above by

2C(	)

Z

1

f�

l

(0)�C

3

g

�

l

(0)f(�)��

p

�;0;l

( d�) +

�

�

�

�

�

Z

W

	

l

(�)1

f�

l

(0)�C

3

g

f(�)��

p

�;0;l

( d�)

�

�

�

�

�

:

By remarks [R4℄, the �rst term in the last expression is bounded above by

2C(	)

�

C

3

!(C

3

)

�

Z

!(�

l

(0))f(�)��

p

�;0;l

( d�) = 2C(	)

�

C

3

!(C

3

)

�

E

p

f

�

!(�

l

(0))

�

� 2C

2

C(	)

�

C

3

!(C

3

)

�

for all f 2 B

p

l

(0; C

2

). From (H4), this last term vanishes as C

3

" 1. At this point, we

a
hieve by proving that

lim

k!1

lim

l!1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(0;C

2

)

�

�

�

�

�

Z

W

	

l

(�)1

f�

l

(0)�C

3

g

f(�)��

p

�;0;l

( d�)

�

�

�

�

�

� C(Æ; �) (20)
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where C(Æ; �) vanishes as � # 0 and Æ # 0 afterwards. We omit this proof sin
e it is developed

in the proof of lemma 3.1 in Koukkous (1999).

Proof of Lemma 3.4.

First of all, we approximate (repla
e) the average over a small ma
ros
opi
 box by an

average over large mi
ros
opi
 boxes. More pre
isely, for N suÆ
iently large we 
he
k that

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

�

�

�

�

�

"N

(x)� �

l

(x)

�

�

�

�

�

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

j

1

(2"N + 1)

X

2l+1<jyj�"N

j�

l

(x)� �

l

(x+ y)j+O

�

l

"N

�

X

x

G

�

x

N

�

�(x)

�

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

j�

l

(x)� �

l

(x + y)j+

�

N

X

x

G

�

x

N

�

!(�(x))

De�ne

!

l

(�; �; x; z) =

 

!(�

l

(x)) + !(�

l

(z))

!

W

l

A

(�; �; x; z) = j�

l

(x)� �

l

(y)j1

f�

l

(x)_�

l

(z)�Ag

and to keep notation simple, we denoteW

l

A

(�; �; 0; 0) byW

l

A

(�; �) and !

l

(�; �; 0; 0) by !

l

(�; �).

As in the previous proof, we introdu
e an indi
ator fun
tion and in the same way as in

(15), we redu
e our proof to show that, for every positive 
onstant A

lim

l!1

lim

"!0

lim

N!1

sup

f

(

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

(21)

Z

"

W

l

A

(�; �; x; x+ y)� �!

l

(�; �; x; x+ y)

#

f(�)��

�

( d�)� bND

p

(f)

)

� 0

>From the de�nition of

1

(2"N + 1)

X

2l+1<jyj�"N

W

l

A

(�; �; x; x+ y)

and sin
e �

l

(x) and �

l

(x + y) depend on the 
on�guration � only through its values on the

set

�

x;y;l

:= �

x;l

[

�

y + �

x;l

�

;

we shall repla
e f by its 
onditional expe
tation with respe
t to the �-algebra generated by

f�(z); z 2 �

x;y;l

g. Some notation are ne
essary. For all y 2 Z, we de�ne the shift operator

�

y

(�) on environments by (�

y

p)(x) = p(x+ y).

For �xed integer l and environments p and q, we denote by

~

X

l

the 
on�guration spa
e

N

�

l

� N

�

l

, by ��

p;q

�;x;l

the produ
t measure ��

�

x

p

�


 ��

�

x

q

�

restri
ted to

~

X

l

, and by f

p

x;y;l

the
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onditional expe
tation of f with respe
t to the �-algebra generated by f�(z); z 2 �

x;y;l

g.

Thus the supremum in (21) is bounded above by

sup

f

(

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

Z

"

�

x

W

l

A

(�

1

; �

2

)� �!

l

(�

1

; �

2

)

#

f

p

x;y;l

(�

1

; �

2

)��

p;�

y

p

�;x;l

( d�)� bND

p

(f)

)

:

Let us turn now to the Diri
hlet form of f

p

x;y;l

into mi
ros
opi
 boxes �

x;y;l

. Let D

p;q

l

(h)

be

D

p;q

l

(h) = I

p;q

l;1

(h) + I

p;q

l;2

(h) +

X

z;z

0

2�

l

jz�z

0

j=1

I

p;q

z;z

0

;1

(h) +

X

z;z

0

2�

l

jz�z

0

j=1

I

p;q

z;z

0

;2

(h)

where, for ea
h z; z

0

2 �

l

, su
h that jz � z

0

j = 1,

I

p;q

z;z

0

;1

(h) = 1=2

Z

p

z

g(�

1

(z))

h

q

h(�

z;z

0

1

; �

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

z;z

0

;2

(h) = 1=2

Z

q

z

g(�

2

(z))

h

q

h(�

1

; �

z;z

0

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

l;1

(h) = 1=2

Z

p

0

g(�

1

(0))

h

q

h(�

0;�

1

; �

0;+

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

l;2

(h) = 1=2

Z

q

0

g(�

2

(0))

h

q

h(�

0;+

1

; �

0;�

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�):

The 
on�gurations �

0;�

(�) are de�ned by

�

0;�

(z) =

8

<

:

�(z) if z 6= 0

�(0)� 1 if z = 0.

We 
laim that

1

N

X

x

1

(2"N + 1)

X

2l+1<jyj�"N

D

p;�

y

p

l

�

f

p

x;y;l

�

� C(l)"

2

ND

p

(f): (22)

The proof of the 
laim is omitted. We 
an see Lemma 4.3 of Koukkous (1999) for several

details.

>From the same notation in the proof of Lemma 3.3, we separate the sites where the en-

vironment behaves badly and repeat the 
omputation in the begining of (17). Using (22)

and introdu
ing the indi
ator fun
tion of the environements afterwards, our lemma is a


onsequen
e of the following results
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Lemma 3.5

lim

l!1

lim

"!0

lim

N!1

1

(2"N + 1)

X

2l+1<jyj�"N

1

N

X

x

"

1

f�

x

p=2A

l;k;Æ

0;�

g

+ 1

f�

x+y

p=2A

l;k;Æ

0;�

g

#

= 0

m almost surely.

Lemma 3.6 For positive 
onstants a and b, let

B

p;q

l

(a; b) =

(

h � 0;E

��

p;q

�;0;l

[h℄ = 1; D

p;q

l

(h) � a;E

p;q

h

�

!

l

(�

1

; �

2

)

�

� b

)

lim

k!1

lim

l!1

lim

"!0

lim

N!1

sup

p;q2A

l;k;Æ

0;�

sup

h2B

p;q

l

�

(2"N+1)

bN

2

C

1

;C

2

�

E

p;q

h

 

W

l

A

(�

1

; �

2

)

!

� C(Æ; �) (23)

where C(Æ; �) vanishes as � # 0 and Æ # 0 afterwards.

The lemma 3.5 is trivially proved using the ergodi
ity and stationarity of m. (see

Koukkous (1999)).

Sin
e B

p;q

l

�

(2"N+1)

bN

2

C

1

; C

2

�

is a 
ompa
t subset of the probability measures set on X

l

� X

l

endowed with the weak topology, by the lower semi-
ontinuity of the Diri
hlet form, to prove

(23) it is enough to prove that

lim

Æ!0

lim

�!0

lim

k!1

lim

l!1

sup

p;q2A

l;k;Æ

0;�

sup

h2B

p;q

l

(0;C

2

)

E

p;q

h

 

W

l

A

(�

1

; �

2

)

!

= 0:

whi
h is proved in Koukkous (1999) ( see the proof of lemma 4.2 at formula (23)).

4 Proof of Theorem 2.2

The proof of lower bound presented in Benois & al. (1995) is easily adapted for our 
ase using

some 
omputations already developed in the previous proof of super-exponential estimate

and some arguments presented in the below upper bound's proof. We therefore omit details

for the reader.

Let H 2 C

1;2

K

([0; T ℄ �R) and 
 2 C

�

(R). From Girsanov formula, the Radon-Nikodym

derivative of P

p;H


;N

with respe
t to P

N

�;p

is given by

expN

(

J

1

H

(�

N

t

) + h

p;N




(�

N

0

j�)�N

Z

t

0

X

x;y

p

x

g(�

s

(x))T (y)

�

e

fH(t;

x+y

N

)�H(t;

x

N

)g

� 1

�

ds

)

(24)
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where h

p;N




(�j�) :M

+

! R is de�ned by

h

p;N




(�j�) =

�

�; log

 

�(
(�))

�(�)

!

�

�

1

N

X

x

log

"

Z(�(
(x=N))p

�1

x

)

Z(�(�)p

�1

x

)

�

:

Upper bound :

The proof is dealing only with a �xed 
ompa
t subset C of D([0; T ℄;M

+

). To extend this

result to a 
losed subset, we need exponential tightness for Q

N

�;p

. It is easily obtained thanks

to the proof presented in Benois (1996) (see also Lemma V.1.5 in Kipnis-Landim (1999)).

For every q > 1,

Q

N

�;p

(C) = E

N

�;p

" 

dP

N

�;p

dP

p;H


;N

!

1=q

 

dP

p;H


;N

dP

N

�;p

!

1=q

1

f�

N

2Cg

#

:

Let #

"

be the approximation of identity de�ned by (2")

�1

1

[�";"℄

(x) and � the 
lassi



onvolution produ
t.

For 0 � s � T , let

u

p;H

";N

(�

s

) =

�

2N

X

k

f�

2

x

H(s; k=N) + [�

x

H(s; k=N)℄

2

gfp

k

g(�

s

(k))� �(�

"N

s

(k))g

and

u

p

N;H

(�

s

) =

1

N

X

k

p

k

g(�

s

(k))

(

X

j

T (j)N

2

�

e

fH(t;

k+j

N

)�H(t;

k

N

)g

� 1

�

�

�

2

�

�

2

x

H(s; k=N) + (�

x

H(s; k=N))

2

�

)

>From (24), a simple 
omputation shows that

�

dP

N

�;p

= dP

p;H


;N

�

is bounded above by

expN

(

� J

1

H

(�

N

T

) + J

2

H

(�

N

� #

"

)� h

p;N




(�

N

0

j�) +

Z

T

0

�

u

p;H

";N

(�

s

) + u

p

N;H

(�

s

)

�

ds

)

Thus,

1

N

logQ

N

�;p

(C) is bounded above by

1

q

sup

�2C

(

� J

1

H

(�

N

T

) + J

2

H

(�

N

� #

"

)� h

p;N




(�

N

0

j�)

)

(25)

+

1

N

logE

N

�;p

" 

dP

p;H


;N

dP

N

�;p

!

1=q

exp

(

N

q

Z

T

0

�

u

p;H

";N

(�

s

) + u

p

N;H

(�

s

)

�

ds

)#

19



Let

�

H be a real 
ontinuous fun
tion with the same support as sup

t

jH

t

j, su
h that it bounds

above sup

0�t�T

[j�

2

x

H

t

j+ (�

x

H

t

)

2

+ jH

t

j℄.

Let C

0

2 N su
h that suppH � [0; T ℄� [�(C

0

� 1); (C

0

+ 1)℄. Using H�older's inequality,

we show that, for q

0

2 R su
h that (1=q) + (1=q

0

) = 1, the se
ond term in (25) is bounded

above by

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

�

Z

T

0

u

p;H

";N

(�

s

) ds�

Z

T

0

�

N

X

k

�

H(

k

N

)!(�

s

(k)) ds

��

#

+

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

Z

T

0

u

p

N;H

(�

s

) ds

�

#

(26)

+

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

�

�

N

Z

T

0

X

k

�

H(

k

N

)!(�

s

(k)) ds

��

#

Using similar arguments as in the proof of lemma 3.2 ( see (11)), we 
he
k that the last

term in (26) is bounded above by

R

1

(�; q;H) =

2C

0

3q

log �

�(�)a

�1

0

�

e

f

3�q

0

T

q

k

�

Hk

1

!(�(0))g

�

whi
h vanishes as � # 0 for ea
h �xed q and H thanks to assumption [H4℄.

>From assumption [H2℄, we 
he
k that g(k) � g

�

k for all k 2 Z and therefore �(�) � g

�

�.

Thus, we repeat the same argument as above, a simple 
omputation shows that the se
ond

term in (26) is bounded above by

R

2

(q;H;N) =

2C

0

3q

0

log �

�(�)a

�1

0

�

e

f

�

N

�(0)g

�

where � = �(T ; g

�

; H; a

1

; q; �).

For ea
h �xed q and H, it is easy to see that R

2

(q;H;N) vanishes as N " 1.

Let us turn to the �rst term in (26) and denote R

3

(�; q;H; ") its limit when N " 1. A

similar 
omputation as in the proof of the super-exponential estimate ( see lemma 3.2 and

its proof), gives that

lim

"!0

R

3

(�; q;H; ") = 0

for all � > 0, q > 1 and smooth fun
tion H.

In the other hand noti
e that by a simple 
omputation and from the ergodi
ity and

stationarity of m, we prove that h

p;N




(�

N

0

j�) 
onverges (uniformly in � 2 C) to h(
j�) when

N " 1.

We therefore proved that lim

N!1

(1=N) logQ

N

�;p

(C) is bounded above by

inf

H;
;q;�;"

(

1

q

sup

�2C

�

� J

1

H

(�) + J

2

H

(� � #

"

)� h(
j�)

�

+R

3

(�; q;H; ") +R

1

(�; q;H)

)
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where the in�mum is taken over all H 2 C

1;2

K

([0; T ℄�R), 
 2 C

�

(R), q > 1, � > 0 and " > 0.

At this level, using the 
ontinuity of J

2

H

(��#

"

) for every �xed H and " > 0, the 
ompa
ity

of C and the arguments developed in (Kipnis & al. (1989)) to permute the supremum and

in�mum, we 
he
k that this last expression is bounded above by

� inf

�2C

sup

H;
;q;�;"

(

1

q

�

� J

1

H

(�) + J

2

H

(� � #

"

)� h(
j�)

�

+R

3

(�; q;H; ") +R

1

(�; q;H)

)

We 
on
lude therefore our proof by letting " # 0. � # 0 and q # 1.
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