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Abstrat

We onsider an asymmetri zero range proess with zero mean in in�nite volume

with random jump rates starting from equilibrium. We investigate large deviations

from hydrodynamial limit of the empirial distribution of partiles and prove an upper

and lower bound for a large deviation priniple. Our main argument is based on a super-

exponential estimate in in�nite volume. We adapt a method developed by Kipnis &

al. (1989) and Benois & al. (1995).
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1 Introdution

The zero range proess is one of the simplest partile systems that has been suessfully

investigated reently in random or inhomogeneous media (f. for instane Benjamini & al.

(1996), Evans (1996), Krug-Ferrari (1996), Landim (1996), Gielis & al. (1998), Bahadoran

(1998), Sepp�al�ainen-Krug (1999), Koukkous (1999), Andjel & al. (2000)) .

We desribe informally the evolution of the proess as follows. On the d-dimensional

lattie Z

d

, we onsider a sequene of random variables p = (p

x

)

x2Z

d (alled an environment)

in [a

0

; a

1

℄ (where 0 < a

0

� a

1

<1). At any x 2 Z

d

, eah partile at site x jumps to the left

or to the right with a rate depending only on the total number of partiles at site x before

g;k
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the jump. The random media state therefore that the jump rate is aelerated or deelerated

by the value p

x

of p at site x.

Benjamini & al. (1996) have studied the asymmetri version of a zero-range proess in

in�nite volume when the environment is an i.i.d. sequene of random variables (with a

1

= 1)

and have proved the asymptoti hydrodynamial behavior of the system. Koukkous (1999)

showed the hydrodynamial limit in the symmetri ase for a stationary and ergodi envi-

ronment whose marginal law is absolutely ontinuous with respet to the Lebesgue measure.

He proved that the empirial measure of partiles onverges in probability to the weak solu-

tion of a non-linear di�usion equation whih does not depend on the environment p and he

generalized in this way some results of Benjamini & al. (1996).

The equilibrium utuations (Central limit results for the density �eld) were studied in

G. Gielis & al. (1998). They proved that the density �eld onverges weakly to a generalized

Ornstein-Uhlenbek proess.

Reently, Andjel & al. (2000) showed the onvergene to the maximal invariant measure

for an asymmetri zero range proess with onstant rate in inhomogeneous and random

media in dimension 1 starting from an upper-ritial non-equilibrium measure.

In this spirit of hydrodynamial behavior investigation, a natural open question an be

formulated as follows: From the hydrodynamial limit of the empirial measure with some

ontinuous density �(�) (with respet to Lebesgue measure) and given an event � for whih

� =2

�

�, how to ontrol the \deviant" behavior of the system inside � ? This is the subjet of

large deviation priniples (LDP) related to hydrodynamial limit of the empirial measure.

In this paper, we investigate a d-dimensional zero mean asymmetri zero-range proess

in random media. In the deterministi ase of the environment, the LDP results have been

treated by many authors among whih Landim (1992), Benois (1996) and Benois & al.

(1995). In this last artile an upper and a lower bound of LDP in in�nite volume of empirial

density are proven when the proess starts from equilibrium.

The ruial ingredient of the proofs fouses on the so-alled super-exponential estimate:

it onsists in approximating, by rigorous funtions of the density �eld, the orrelation �eld

obtained in the omputation of some exponential martingales related to the jumps of partiles

(see Kipnis & al. (1989) and Donsker-Varadhan (1989)). One we prove this result, the LDP

result (and also the hydrodynamial limit ) of the empirial measure is obtained by standard

arguments.
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In a random media, the diÆulty in adapting standard arguments relies on the absene

of translation invariane of the invariant measures for the proess. For this reason, our

approah uses essentially both results of Koukkous (1999) and Benois & al. (1995).

The paper is organized as follows: We introdue the notations and assumptions used

through the paper and state the main results in Setion 2. Setion 3 is devoted to the proof

of the super-exponential estimate. In the last setion we give a proof of an upper bound of

LDP result. We omit the proof of lower bound sine, one one has proven the upper bound,

it is similar to the arguments given in Benois & al. (1995) without major modi�ations.

2 Notation and results

Let 0 < a

0

� a

1

< 1 and onsider a sequene of random variables fp

x

; x 2 Z

d

g on [a

0

; a

1

℄

distributed aording to a stationary and ergodi measure m, suh that its one-dimensional

marginal law is absolutely ontinuous with respet to the Lebesgue measure. We assume

that mfp : a

0

� p

0

� a

1

g = 1 and for every " > 0, mfp : p

0

2 [a

0

; a

0

+ ")gmfp : p

0

2

(a

1

� "; a

1

℄g > 0.

We denote by X

d

:= N

Z

d

the on�guration spae and by Greek letters � and � its elements.

As usual �(x) stands for the total number of partiles at site x for the on�guration �. For

eah environment p, we are interested in the Markov proess (�

t

)

t�0

on X

d

whose generator

is de�ned by

(L

p

f)(�) =

X

x;y2Z

d

p

x

g(�(x))T (x; y)[f(�

x;y

)� f(�)℄; (1)

where f : X

d

! R is a ylinder funtion, that is f only depends on � through a �nite

number of oordinates. T (�; �) is a transition probability on Z

d

. The funtion g is positive

and vanishes at 0: g(0) = 0 < g(k) for all k � 1. In the previous formula, �

x;y

(z) is the

on�guration obtained from � when a partile jumps from x to y:

�

x;y

(z) =

8

>

>

>

<

>

>

>

:

�(z) if z 6= x; y

�(x)� 1 if z = x

�(y) + 1 if z = y .

For every non-negative real ' we denote by �

p

'

the produt measure on X

d

whose marginals

are de�ned by

�

p

'

f� : �(x) = kg =

1

Z('p

�1

x

)

('p

�1

x

)

k

g(k)!

; for all k � 0;
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where g(k)! = g(1)g(2):::g(k) if k > 0 and g(0)! = 1. Those measures (see Benjamini & al.

(1996)) are invariant for the proess. In this formula, Z : R

+

! R

+

is the partition funtion

Z(') =

X

k�0

'

k

g(k)!

:

Let '

�

be the radius of onvergene of Z(�); we assume that

lim

'"'

�

Z(') = +1: (2)

Denote by �

'

(�) := �

1

'

(�) the invariant measure of the proess (�

t

)

t�0

when m is the Dira

measure onentrated on the set fp : p

x

= 1; x 2 Z

d

g (see Andjel (1982)). We de�ne

M : [0; '

�

)! R

+

by M(') = �

'

[�(0)℄, the expeted number of partiles at 0 with respet to

�

'

.

A simple omputation shows that M(') = '�

'

logZ(') and from assumption (2) we

hek that M is an inreasing, ontinuous, one-to-one funtion from [0; '

�

) to R

+

.

We de�ne the \density" of partiles (i.e. the expeted number of partiles at 0) with

respet to the random media by the ontinuous and inreasing funtion R : [0; a

0

'

�

) ! R

+

suh that

R(') = m[M('p

�1

0

)℄

and in order to ensure the existene of an invariant measure for any given value of the density,

we assume that

lim

'"a

0

'

�

R(') =1: (3)

Under this assumption the funtion R is one to one from [0; a

0

'

�

) to R

+

. We denote by �

its inverse (whih is also a ontinuous inreasing bijetion).

For a density � > 0 we write

��

p

�

= �

p

�(�)

We easily hek that

�(�) = ��

p

�

�

p

x

g(�(x))

�

for all x 2 Z

d

:

In the following we state all the hypotheses assumed throughout this paper.

[H1℄ The transition probability T (�; �) on Z

d

is a zero-mean irreduible translation in-

variant probability with �nite range. That is

T (x; y) = T (0; y � x) =: T (y � x);

there exists a onstant A > 0 suh that T (x) = 0 if jxj � A

and

X

x2Z

d

x T (x) = 0:
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[H2℄ The rate funtion g has bounded variation:

g

�

= sup

k

jg(k + 1)� g(k)j <1:

Under the hypotheses [H1℄ and [H2℄, Andjel (1982) has proven the existene of a unique

Markov proess with orresponding generator de�ned by (1) in deterministi environment

(i.e. p � 1). His proof applies also in our ase.

Let (�

ij

)

f1�i;j�dg

be a symmetri nonnegative de�nite matrix de�ned by the ovariane

matrix of the transition probability T (�):

�

ij

=

X

y2Z

d

y

i

y

j

T (y) where y = (y

1

; � � � ; y

d

)

[H3℄ In order to avoid the degenerate ase of the hydrodynami equation, we assume

(�

ij

)

f1�i;j�dg

to be a positive de�nite matrix. That is there exists � > 0 suh that

X

i;j

�

ij

x

i

x

j

� �

X

i

x

2

i

; for all x = (x

1

; � � � ; x

d

) 2 R

d

:

[H4℄ To ensure some �nite exponential moments of �(x) under the measures �

p

'

we shall

assume that there exists a onvex and inreasing funtion ! : R

+

�! R

+

suh that

(i) !(0) = 0;

(ii) lim

x!1

(

!(x)

x

) =1 and

(iii) for all density ' there exists a positive onstant � := �(') suh that

�

'

�

exp f�!(�(0))g

�

<1:

This last assumption ensures also that Z(�) has in�nite radius of onvergene. It holds for

exemple if g(k + 1)� g(k) � g

�

0

for some onstant g

�

0

and k suÆiently large.

We will denote by !

�

the Legendre transform of ! given by:

!

�

(x) = sup

�>0

f�x� !(�)g: (4)

In the next paragraphs, we de�ne the state spae of the proess and its topology. Denote by

C(R

d

) (resp. C

K

(R

d

)) the spae of ontinuous (resp. with ompat support) funtions on R

d

with lassi uniform norm. LetM

+

denote the spae of positive Radon measures on R

d

with

the weak topology indued by C

K

(R

d

) via h�;Hi =

R

H d� for H 2 C

K

(R

d

) and � 2 M

+

.

We �x a positive time parameter T > 0. For eah realization of the environment p

and all �xed positive density �, P

N

�;p

will denote the probability measure on the path spae

5



D([0; T ℄;X

d

) orresponding to the Markov proess (�

t

)

t2[0;T ℄

with generator N

2

L

p

starting

from the measure ��

p

�

. By E

N

�;p

we denote the expetation under P

N

�;p

.

Let �

N

:

be the empirial measure de�ned on D([0; T ℄;M

+

) by

�

N

t

(du) =

1

N

d

X

x2Z

d

�

t

(x)Æ

x=N

(du);

for 0 � t � T . Let Q

N

�;p

denote the measure on the path spae D([0; T ℄;M

+

) assoiated to

the proess �

N

:

with generator N

2

L

p

starting from ��

p

�

.

To investigate the large deviations of the empirial measure, we shall onsider some small

perturbations of the zero range proess as mentionned earlier. For this, we will need the

following notation.

Let C

l;k

K

([0; T ℄�R

d

) denote the spae of ompat support funtions with l 2 N ontinuous

derivatives in time and k 2 N ontinuous derivatives in spae. Let C

�

(R

d

) be the set de�ned

by

C

�

(R

d

) = C(R

d

) \ fu : R

d

! R

+

; u(x) = � for jxj suÆiently largeg:

For a �xed  in C

�

(R

d

) and for some smooth funtion H in C

1;2

K

([0; T ℄� R

d

) we onsider

the Markov proess generated by

N

2

(L

p;H

N;t

f)(�) = N

2

X

x;y2Z

d

p

x

g(�(x))T (y)e

fH(t;

x+y

N

)�H(t;

x

N

)g

[f(�

x;x+y

)� f(�)℄;

where f is a ylinder funtion. Let ��

p

;N

be the initial produt measure of this proess with

marginals

��

p

;N

f�; �(x) = kg = ��

p

(x=N)

f�; �(x) = kg

for all x 2 Z

d

and k 2 N. We therefore denote by P

p;H

;N

and Q

p;H

;N

the small perturbations of

P

N

�;p

and Q

N

�;p

respetively.

For any path � 2 D([0; T ℄;M

+

), denote by u

t

the Radon-Nikodym derivative of � with

respet to the Lebesgue measure �: u

t

=

d�

t

d�

. Let A = A(�) be the spae path of � 2

D([0; T ℄;M

+

) suh that u

t

is the solution of the PDE

(E)

8

<

:

�

t

u = (�=2)4(�(u))�

P

d

i=1

�

x

i

(�(u)�

x

i

H)

u(0; �) = (�) :

for some  2 C

�

(R

d

) and some H 2 C

1;3

K

([0; T ℄� R

d

): 4 stands the Laplaian operator.

The following notation is devoted to the de�nition of the rate funtional of the large

deviation priniple for (�

N

:

)

0�t�T

.
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For H 2 C

1;2

K

([0; T ℄� R

d

), we de�ne J

H

: D([0; T ℄;M

+

)! R [ f1g by

J

H

(�) = J

1

H

(�)� J

2

H

(�)

where

J

1

H

(�) =

�

u

T

; H

T

�

�

�

u

0

; H

0

�

�

Z

T

0

�

u

t

; �

t

H

t

�

dt;

J

2

H

(�) =

�

2

Z

T

0

�

�(u

t

);

d

X

i=1

�

�

2

x

i

H

t

+ (�

x

i

H

t

)

2

��

dt;

suh that J

H

(�) = 1 outside D([0; T ℄;M

+

) or if �

t

is not absolutely ontinuous with

respet to the Lebesgue measure � for some 0 � t � T .

We are now ready to de�ne the part of the large deviations rate funtion, I

0

(�) : D([0; T ℄;M

+

)!

[0;1℄ oming from the stohasti evolution:

I

0

(�) = sup

H2C

1;2

K

([0;T ℄�R

d

)

J

H

(�):

The other part of the large deviations rate funtion oinides with the behaviour of

deviations oming from the initial state. Let h(�j�) be the entropy de�ned for a positive

funtion  : R

d

! R

+

by

h(j�) =

Z

R

d

(

(x) log

�

�((x))

�(�)

�

� E

m

�

log

�

Z(�((x))p

�1

0

)

Z(�(�)p

�1

0

)

��

)

dx:

Thus, the rate funtion of the large deviation priniple is de�ned for a density � > 0 by

I

�

(�) = I

0

(�) + h(u

0

j�):

From now on, for eah x 2 Z

d

, we denote by �

l

(x) the mean density of partiles in a box

of length (2l + 1) entered at x :

�

l

(x) =

1

(2l + 1)

d

X

jy�xj�l

�(y):

For eah ylinder funtion  : X

d

! R, we de�ne

~

 (�) := m

�

�

p

�(�)

( )

�

; (5)

and we say that 	 is a Lipshitz funtion if

9k

0

2 N and 

0

> 0 suh that

�

�

�

�

	(�)� 	(�)

�

�

�

�

� 

0

X

jxj�k

0

�

�

�

�

�(x)� �(x)

�

�

�

�

;

for all � and � in X

d

.

Denote by �

x

the shift operator de�ned by �

x

 (�(�)) =  (�

x

�(�)) where �

x

�(y) = �(x+ y).

We an now state our results:
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Theorem 2.1 Let 	 be a ylinder Lipshitz funtion and H 2 C

0;2

K

([0; T ℄ � R

d

). Under

hypotheses [H1℄ to [H4℄, for all Æ > 0 we have

lim

"!0

lim

N!1

1

N

d

log P

N

�;p

"

�

�

�

�

�

Z

T

0

W

H;	

N;"

(t; �

t

) dt

�

�

�

�

�

> Æ

#

= �1 (6)

m-almost surely, where

W

H;	

N;"

(t; �) =

1

N

d

X

x

H(t; x=N)

�

�

x

	(�)�

~

	(�

"N

(x))

�

:

This theorem, alled the super-exponential estimate, will be a ruial argument in the

proof of the following large deviations priniple:

Theorem 2.2 Under hypotheses [H1℄ to [H4℄, for every losed subset C and every open

subset O of D([0; T ℄;M

+

), we have

lim sup

N!1

1

N

d

logQ

N

�;p

(C) � � inf

�2C

I

�

(�)

and

lim inf

N!1

1

N

d

logQ

N

�;p

(O) � � inf

�2O\A

I

�

(�)

m-almost surely.

Remarks:

Before starting to prove our results, we would like to mention some remarks and laims

that we will use and whose proofs will be omitted. For omplete details the reader is refered

to Kipnis-Landim's book (1999) and Benois & al. (1995).

[R1℄ From Lemma I.3.5 of Kipnis-Landim's book (1999), the funtion de�ned by

' �! �

'

for ' > 0, is an inreasing funtion (see also the proof of lemma 4.3 in Benois &

al. (1995)). Therefore, assumption [H4℄ implies that for a �xed environment p de�ned in

the beginning of the last setion, for all x 2 Z

d

and ' > 0, there exists � := �(x; ') > 0 suh

that

�

p

'

�

exp f�!(�(x))g

�

<1 m-almost surely.

[R2℄ Assumption [H4℄ ensures that the funtion !

�

de�ned by (4) is also a ontinuous

onvex funtion suh that !

�

(0) = 0.

[R3℄ A simple omputation shows that from the seond ondition in [H4℄, for every

" > 0 the funtion !

�1

(r) � "r is negative for eah r � C

2

("), for some onstant C

2

(")

dependent only on ".
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[R4℄ By de�nition of ! in [H4℄, the funtion de�ned on R

�

+

by 
(r) =

!(r)

r

is an

inreasing funtion.

[R5℄ For eah ylinder Lipshitz funtion 	(�), the funtion

~

	(�) given by (5) is also

a Lipshitz funtion (see Lemma I.3.6 of Kipnis-Landim (1999)). Moreover one an hek

that

~

	(k) � Ck for all k 2 Z for some onstant C.

The strategy adopted to prove our results is similar to the one presented in Benois &

al. (1995). However, we use some arguments developed in Koukkous (1999) in order to

overome the failed translation invariane propriety of the invariant measure of zero range

proess in random media. We thus detail only the main di�erenes.

From now on, to keep the notation simple, we will restrit our study to the one-dimensional

ase. The reader an extend the proofs to any dimension without more diÆulty.

3 Proof of Theorem 2.1

Let G be a positive ontinuous funtion on R de�ned by

G(x) = sup

y2[x�1;x+1℄

max

�

jH(y)j; j�

y

H(y)j; j�

2

y

H(y)j

�

: (7)

We have

P

N

�;p

�

Z

T

0

W

H;	

N;"

(t; �

t

) dt > Æ

#

� P

N

�;p

�

Z

T

0

�

W

H;	

N;"

(t; �

t

) dt�

�

N

X

x

G

�

x

N

�

!(�

t

(x))

�

dt > Æ=2

�

+P

N

�;p

�

Z

T

0

�

N

X

x

G

�

x

N

�

!(�

t

(x)) dt > Æ=2

�

: (8)

for every � > 0.

By Thebyhe� exponential inequality the �rst term in the left hand side in (8) is bounded

above by

expf�N�Æ=2gE

N

�;p

"

exp �

Z

T

0

�

NW

H;	

N;"

(t; �

t

)� �

X

x

G

�

x

N

�

!(�

t

(x))

�

dt

#

for every � > 0.

Therefore, we have to prove two Lemmas:

Lemma 3.1 For every G 2 C

K

(R),

lim

A!1

lim

N!1

1

N

log P

N

�;p

�

Z

T

0

1

N

X

x

G(x=N)!(�

t

(x)) dt > A

�

= �1 (9)
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m-almost surely.

Lemma 3.2 For any � > 0 and � > 0

lim

"!0

lim

N!1

1

N

log E

N

�;p

"

exp �

Z

T

0

�

W

H;	

N;"

(t; �

t

)� �

X

x

G

�

x

N

�

!(�

t

(x))

�

dt

#

= 0: (10)

m-almost surely.

Proof of Lemma 3.1.

Using respetively Thebyhe� exponential inequality and Jensen inequality, we show that

for every positive onstant �, the logarithmi term in (9) is bounded above by

��AN + log E

N

�;p

"

1

T

Z

T

0

exp

�

X

x

�T G(x=N)!(�

t

(x))

�

dt

#

:

>From the begining of [R1℄ and sine the produt measure ��

p

�

is invariant for the proess and

p

x

2 [a

0

; a

1

℄, a simple omputation shows that the right hand side term in (9) is bounded

above by

lim

A!1

lim

N!1

inf

�>0

(

� �A+

1

N

X

x

log �

�(�)a

�1

0

�

exp

�

�T G(x=N)!(�(0))

��

)

: (11)

Let B > 0 be suh that

suppG � [�B;B℄:

>From [H4℄, there exists �

0

> 0 suh that

�

�(�)a

�1

0

"

exp

�

�

0

T kGk

1

!(�(0))

�

#

<1:

The lemma is proved in fat that (11) is bounded above by

lim

A!1

�

� �

0

A+ (2B + 1) log �

�(�)a

�1

0

�

e

f�

0

T kGk

1

!(�(0))g

��

:

Proof of Lemma 3.2.

Let

V (�) = �

�

NW

H;	

N;"

(0; �)� �

X

x

G

�

x

N

�

!(�(x))

�

:

Let L

p

V

be the generatorN

2

L

p

+V and L

p;�

V

its adjoint operator, whih is equal toN

2

L

�

p

+V . If

we denote by S

V;p

t

the semigroup assoiated to the generator L

p

V

, by the Feyman-Ka formula

the expetation in the lemma is equal to

hS

V;p

T

1; 1i � hS

V;p

T

1; S

V;p

T

1i

(1=2)

:

10



Now, if we denote by �

V

the largest eigenvalue of the self-adjoint operator L

p

V

+ L

p;�

V

,

�

t

hS

V;p

t

1; S

V;p

t

1i = h(L

p

V

+ L

p;�

V

)S

V;p

t

1; S

V;p

t

1i � �

V

hS

V;p

t

1; S

V;p

t

1i:

By Gronwall's lemma we show that

hS

V;p

T

1; S

V;p

T

1i � exp

�

T �

V

�

: (12)

Reall that we did not assume T (�) to be symmetri and therefore �

p

�(�)

an be non-reversible

for the proess. However, at this level, our study is dealing with the reversible generator

N

2

(L

p

+ L

�

p

). Thus we an assume the generator L

p

to be reversible and T (�) given by

T (x) = (1=2)1

fjxj=1g

.

Let

I

p

x;x+1

(f) =

1

2

Z

p

x

g(�(x))

�

q

f(�

x;x+1

)�

q

f(�)

�

2

��

p

�

( d�);

and D

p

(�) the Dirihlet form given by

D

p

(f) =

X

x

I

p

x;x+1

(f):

Using the variational formula for the largest eigenvalue of a self-adjoint operator (see ap-

pendix A3.1 of Kipnis-Landim (1999)), from (12) we redue the proof of the lemma to show

that for every positive �

lim

"!0

lim

N!1

sup

f

(

Z

�

�

W

H;	

N;"

(�)�

�

N

X

x

G

�

x

N

�

!(�(x))

�

f(�)��

p

�

( d�)�ND

p

(f)

)

� 0:

The supremum is taken over all positive densities funtions with respet to ��

p

�

.

We use now some omputations from Benois & al. (1995) and Kipnis & al. (1989). Let

W

	

l

(�) =

1

2l + 1

X

jyj�l

	(�(y))�

~

	(�

l

(0))

In this way, we an rewrite the term

W

H;	

N;"

(�)�

�

N

X

x

G

�

x

N

�

!(�(x))

as

1

N

X

x

(

H

�

x

N

�

"

�

x

	(�)�

1

2l + 1

X

jy�xj�l

�

y

	(�)

#

�

�

3

G

�

x

N

�

!(�(x))

)

+

1

N

X

x

(

H

�

x

N

�

�

x

W

	

l

(�)�

�

3

G

�

x

N

�

!(�(x))

)

11



+

1

N

X

x

(

H

�

x

N

�

"

~

	(�

l

(x))�

~

	(�

"N

(x))

#

�

�

3

G

�

x

N

�

!(�(x))

)

:

>From the assumption on 	, we hek easily that there exist C(	; p) suh that for all x 2 Z

	(�(x)) � C(	; p)�(x). Then from the de�nitions of !

�

(�) and G(�) (f. (4) and (7)), the

�rst term in the last expression is bounded above by

1

N

X

x

(

�

�

�

�

1

2l + 1

X

jy�xj�l

H

�

y

N

�

�H

�

x

N

�

�

�

�

�

	(�(x))�

�

3

G

�

x

N

�

!(�(x))

)

�

�

3N

X

x

G

�

x

N

�

(

3C(	; p)l

�N

�(x)� !(�(x))

)

� !

�

(

3C(	; p)l

�N

)

�kGk

1

3

This last term vanishes as N " 1 sine !

�

(�) is ontinuous and !

�

(0) = 0.

Now, to ahieve the proof of the lemma 3.2, we shall prove:

Lemma 3.3 For any b > 0

lim

l!1

lim

N!1

sup

f

(

1

N

X

x

Z

�

H

�

x

N

�

�

x

W

	

l

(�)� �G

�

x

N

�

!(�(x))

�

f(�) d��

p

�

( d�)� bND

p

(f)

)

� 0 (13)

m-almost surely. The supremum is taken over all positive densities funtions with respet to

��

p

�

.

And, thanks to remarks [R5℄, we have to prove that:

Lemma 3.4 For any b > 0

lim

l!1

lim

"!0

lim

N!1

sup

f

(

1

N

X

x

Z

�

H

�

x

N

�

�

�

�

�

�

"N

(x)� �

l

(x)

�

�

�

�

� �G

�

x

N

�

!(�(x))

�

f(�) d��

p

�

( d�)� bND

p

(f)

)

� 0 (14)

m-almost surely. The supremum is taken over all positive densities funtions with respet to

��

p

�

.

Proof of Lemma 3.3.

Using the onvexity of ! and de�nition of G, we hek that

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(x)) �

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

2l + 1

X

jy�xj�l

!(�(y))

=

1

N

X

x

!(�(x))

1

2l + 1

X

jy�xj�l

�

�

�

�

H(y=N)

�

�

�

�

�

1

N

X

x

!(�(x))G

�

x

N

�

(15)

12



At the beginning, we introdue some notations in order to deal in our study of (13) with the

boxes of length (2l + 1). Indeed, the term

H

�

x

N

�

�

x

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(x))

depends on � only through �(x� l) � � ��(x+ l). Thus we may restrit the integral to miro-

sopi bloks. Denote by �

l

= f�l � � � lg the box of length (2l + 1) entered at the origin.

For a �xed z 2 Z, we denote by �

z;l

the box z + �

l

, by X

l

the on�guration spae N

�

l

, by

��

p

�;z;l

the produt measure ��

�

z

p

�

restrited to X

l

, by f

z;l

the density, with respet to ��

p

�;z;l

, of

the marginal of the measure f(�)��

�

z

p

�

(d�) on X

l

and by D

p

�;z;l

(h) the Dirihlet form on X

l

given by

D

p

�;z;l

(h) =

X

jx�yj=1

x;y2�

z;l

Z

p

x

g(�(x))

�

q

h(�

x;y

)�

q

h(�)

�

2

��

p

�;z;l

( d�):

Thus, from (15) and sine the Dirihlet form is onvex (by Shwarz inequality), the

supremum in the lemma is bounded above by the supremum over all positive densities f

(with respet to ��

p

�

) of the term

1

N

X

x

(

Z

�

H

�

x

N

�

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(0))

�

f

x;l

��

p

�;x;l

( d�)�

bN

2

C(l)

D

p

�;x;l

(f

x;l

)

)

(16)

As in the proof of lemma 3.1 of Koukkous (1999) we may now haraterize the sites x where

the environment degenerates (behaves badly).

Fix Æ > 0 , � > 0 and n 2 N suÆiently large suh that

a

1

�a

0

n

< Æ. For 0 � j � n � 2, let

I

Æ

j

= [�

j

; �

j+1

[ where �

j

2 [a

0

; a

1

℄ is suh that

�

j

= a

0

+ (a

1

� a

0

)

 

j

n

!

:

Let I

Æ

n�1

= [�

n�1

; a

1

℄ and notie that, for 0 � j � n� 1, we have j�

j+1

� �

j

j < Æ.

Fix k < l and L = [

2l+1

2k+1

℄. We now subdivide �

l

into L disjoint ubes of length (2k + 1);

let B

1

; � � � ; B

L

be suh that

B

i

� �

l

; B

i

\ B

j

= ; for i 6= j and B

i

= x

i

+ �

k

for some x

i

2 Z:

We take B

1

= �

k

and let B

0

= �

l

�[

L

j=1

B

j

. Finally we de�ne B

j

(x) = x+B

j

for 0 � j � L

and x 2 Z .

For x 2 Z, n 2 N, 0 � j � n� 1 and 1 � i � L, N

l;k;Æ

x;j;i

(p) is the average number of sites

y in B

i

(x) suh that p

y

2 I

Æ

j

:

N

l;k;Æ

x;j;i

(p) =

1

(2k + 1)

X

z2B

i

(x)

1

fp

z

2I

Æ

j

g

:

13



For � > 0, we let

A

l;k;Æ

x;i;�

=

�

p;

�

�

�

�

N

l;k;Æ

x;j;i

(p)�m(I

Æ

j

)

�

�

�

�

� � for all j; 0 � j � n� 1

�

:

To keep notation simple, we denote A

l;k;Æ

0;1;�

by A

l;k;Æ

�

. Let

A

l;k;Æ

x;�

=

�

p;

1

L

L

X

i=1

1

fp2A

l;k;Æ

x;i;�

g

� 1� �

�

:

>From the de�nition of !

�

and the property of 	(�) and

~

	(�) given in the remarks [R5℄, a

simple omputation shows that the integral term in (16) is bounded by

C

1

= �kHk

1

!

�

�

2C(	; p)

�

�

: (17)

Therefore, the supremum over all positive densities f (with respet to ��

p

�

) of the term

(16) is bounded above by

1

N

X

x

sup

p2A

l;k;Æ

0;�

sup

h2B

l

p

(

Z

�

H

�

x

N

�

W

	

l

(�)� �

�

�

�

�

H

�

x

N

�

�

�

�

�

!(�

l

(0))

�

h(�)��

p

�;0;l

( d�)�

bN

2

C(l)

D

p

�;0;l

(h)

)

+ C

1

1

N

X

x

1

fp=2A

l;k;Æ

x;�

g

(18)

where B

l

p

is the set of positive density funtions with respet to ��

p

�;0;l

.

By ergodiity and stationary of the environment law, the seond term onverges m-almost

surely, as N " 1, to

C

1

m

�

p =2 A

l;k;Æ

0;�

�

:

Again the ergodiity of m ensures that this expression vanishes as l " 1 and k " 1 after-

wards. Now, let us turn to the �rst term in (18). If we denote

E

p

h

[f ℄ =

Z

h(�)f(�) d��

p

�;0;l

(�);

the integral term in (18) is bounded above by

2C(	)

�

�

�

�

H

�

x

N

�

�

�

�

�

(

E

p

h

�

�

l

(0)

�

�

�

2C(	)

E

p

h

�

!(�

l

(0))

�

)

:

Reall that ! is a onvex and inreasing funtion. Thus, by Jensen's inequality, the last

expression is bounded above by

2C(	)

�

�

�

�

H

�

x

N

�

�

�

�

�

(

!

�1

"

E

p

h

�

!(�

l

(0))

�

#

�

�

2C(	)

E

p

h

�

!(�

l

(0))

�

)

:

14



>From the remarks [R3℄, we laim that there exists a �nite onstant C

2

= C

2

(�; C(	))

suh that the integral term in (18) is negative if E

p

h

�

�

l

(0)

�

� C

2

. Let B > 0 be suh that

suppH � [�B;B℄, then from (17) and the last laim, we hek that the �rst term in (18) is

bounded above by

(2B + 1)kHk

1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(

2C

1

C(l)

bN

2

;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

where B

p

l

(a; b) is de�ned for positive onstant a and b by

B

p

l

(a; b) =

(

f 2 B

p

l

: D

p

�;0;l

(f) � a and E

p

f

�

!(�

l

(0))

�

� b

)

:

The weak topology of the set of probability measures on X

l

ensures that, by de�nition,

B

p

l

(

2C

1

C(l)

bN

2

; C

2

) is one of its ompat subsets. Therefore, by the lower semi-ontinuity of the

Dirihlet form, we know that

lim

N!1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(

2C

1

C(l)

bN

2

;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

� sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(0;C

2

)

�

�

�

�

�

Z

W

	

l

(�)f(�)��

p

�;0;l

( d�)

�

�

�

�

�

: (19)

>From the assumption on 	 (and

~

	), for every positive onstant C

3

, the term in absolute

value is bounded above by

2C(	)

Z

1

f�

l

(0)�C

3

g

�

l

(0)f(�)��

p

�;0;l

( d�) +

�

�

�

�

�

Z

W

	

l

(�)1

f�

l

(0)�C

3

g

f(�)��

p

�;0;l

( d�)

�

�

�

�

�

:

By remarks [R4℄, the �rst term in the last expression is bounded above by

2C(	)

�

C

3

!(C

3

)

�

Z

!(�

l

(0))f(�)��

p

�;0;l

( d�) = 2C(	)

�

C

3

!(C

3

)

�

E

p

f

�

!(�

l

(0))

�

� 2C

2

C(	)

�

C

3

!(C

3

)

�

for all f 2 B

p

l

(0; C

2

). From (H4), this last term vanishes as C

3

" 1. At this point, we

ahieve by proving that

lim

k!1

lim

l!1

sup

p2A

l;k;Æ

0;�

sup

f2B

p

l

(0;C

2

)

�

�

�

�

�

Z

W

	

l

(�)1

f�

l

(0)�C

3

g

f(�)��

p

�;0;l

( d�)

�

�

�

�

�

� C(Æ; �) (20)
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where C(Æ; �) vanishes as � # 0 and Æ # 0 afterwards. We omit this proof sine it is developed

in the proof of lemma 3.1 in Koukkous (1999).

Proof of Lemma 3.4.

First of all, we approximate (replae) the average over a small marosopi box by an

average over large mirosopi boxes. More preisely, for N suÆiently large we hek that

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

�

�

�

�

�

"N

(x)� �

l

(x)

�

�

�

�

�

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

j

1

(2"N + 1)

X

2l+1<jyj�"N

j�

l

(x)� �

l

(x+ y)j+O

�

l

"N

�

X

x

G

�

x

N

�

�(x)

�

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

j�

l

(x)� �

l

(x + y)j+

�

N

X

x

G

�

x

N

�

!(�(x))

De�ne

!

l

(�; �; x; z) =

 

!(�

l

(x)) + !(�

l

(z))

!

W

l

A

(�; �; x; z) = j�

l

(x)� �

l

(y)j1

f�

l

(x)_�

l

(z)�Ag

and to keep notation simple, we denoteW

l

A

(�; �; 0; 0) byW

l

A

(�; �) and !

l

(�; �; 0; 0) by !

l

(�; �).

As in the previous proof, we introdue an indiator funtion and in the same way as in

(15), we redue our proof to show that, for every positive onstant A

lim

l!1

lim

"!0

lim

N!1

sup

f

(

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

(21)

Z

"

W

l

A

(�; �; x; x+ y)� �!

l

(�; �; x; x+ y)

#

f(�)��

�

( d�)� bND

p

(f)

)

� 0

>From the de�nition of

1

(2"N + 1)

X

2l+1<jyj�"N

W

l

A

(�; �; x; x+ y)

and sine �

l

(x) and �

l

(x + y) depend on the on�guration � only through its values on the

set

�

x;y;l

:= �

x;l

[

�

y + �

x;l

�

;

we shall replae f by its onditional expetation with respet to the �-algebra generated by

f�(z); z 2 �

x;y;l

g. Some notation are neessary. For all y 2 Z, we de�ne the shift operator

�

y

(�) on environments by (�

y

p)(x) = p(x+ y).

For �xed integer l and environments p and q, we denote by

~

X

l

the on�guration spae

N

�

l

� N

�

l

, by ��

p;q

�;x;l

the produt measure ��

�

x

p

�


 ��

�

x

q

�

restrited to

~

X

l

, and by f

p

x;y;l

the

16



onditional expetation of f with respet to the �-algebra generated by f�(z); z 2 �

x;y;l

g.

Thus the supremum in (21) is bounded above by

sup

f

(

1

N

X

x

�

�

�

�

H

�

x

N

�

�

�

�

�

1

(2"N + 1)

X

2l+1<jyj�"N

Z

"

�

x

W

l

A

(�

1

; �

2

)� �!

l

(�

1

; �

2

)

#

f

p

x;y;l

(�

1

; �

2

)��

p;�

y

p

�;x;l

( d�)� bND

p

(f)

)

:

Let us turn now to the Dirihlet form of f

p

x;y;l

into mirosopi boxes �

x;y;l

. Let D

p;q

l

(h)

be

D

p;q

l

(h) = I

p;q

l;1

(h) + I

p;q

l;2

(h) +

X

z;z

0

2�

l

jz�z

0

j=1

I

p;q

z;z

0

;1

(h) +

X

z;z

0

2�

l

jz�z

0

j=1

I

p;q

z;z

0

;2

(h)

where, for eah z; z

0

2 �

l

, suh that jz � z

0

j = 1,

I

p;q

z;z

0

;1

(h) = 1=2

Z

p

z

g(�

1

(z))

h

q

h(�

z;z

0

1

; �

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

z;z

0

;2

(h) = 1=2

Z

q

z

g(�

2

(z))

h

q

h(�

1

; �

z;z

0

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

l;1

(h) = 1=2

Z

p

0

g(�

1

(0))

h

q

h(�

0;�

1

; �

0;+

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�);

I

p;q

l;2

(h) = 1=2

Z

q

0

g(�

2

(0))

h

q

h(�

0;+

1

; �

0;�

2

)�

q

h(�

1

; �

2

)

i

2

��

p;q

�;0;l

(d�):

The on�gurations �

0;�

(�) are de�ned by

�

0;�

(z) =

8

<

:

�(z) if z 6= 0

�(0)� 1 if z = 0.

We laim that

1

N

X

x

1

(2"N + 1)

X

2l+1<jyj�"N

D

p;�

y

p

l

�

f

p

x;y;l

�

� C(l)"

2

ND

p

(f): (22)

The proof of the laim is omitted. We an see Lemma 4.3 of Koukkous (1999) for several

details.

>From the same notation in the proof of Lemma 3.3, we separate the sites where the en-

vironment behaves badly and repeat the omputation in the begining of (17). Using (22)

and introduing the indiator funtion of the environements afterwards, our lemma is a

onsequene of the following results

17



Lemma 3.5

lim

l!1

lim

"!0

lim

N!1

1

(2"N + 1)

X

2l+1<jyj�"N

1

N

X

x

"

1

f�

x

p=2A

l;k;Æ

0;�

g

+ 1

f�

x+y

p=2A

l;k;Æ

0;�

g

#

= 0

m almost surely.

Lemma 3.6 For positive onstants a and b, let

B

p;q

l

(a; b) =

(

h � 0;E

��

p;q

�;0;l

[h℄ = 1; D

p;q

l

(h) � a;E

p;q

h

�

!

l

(�

1

; �

2

)

�

� b

)

lim

k!1

lim

l!1

lim

"!0

lim

N!1

sup

p;q2A

l;k;Æ

0;�

sup

h2B

p;q

l

�

(2"N+1)

bN

2

C

1

;C

2

�

E

p;q

h

 

W

l

A

(�

1

; �

2

)

!

� C(Æ; �) (23)

where C(Æ; �) vanishes as � # 0 and Æ # 0 afterwards.

The lemma 3.5 is trivially proved using the ergodiity and stationarity of m. (see

Koukkous (1999)).

Sine B

p;q

l

�

(2"N+1)

bN

2

C

1

; C

2

�

is a ompat subset of the probability measures set on X

l

� X

l

endowed with the weak topology, by the lower semi-ontinuity of the Dirihlet form, to prove

(23) it is enough to prove that

lim

Æ!0

lim

�!0

lim

k!1

lim

l!1

sup

p;q2A

l;k;Æ

0;�

sup

h2B

p;q

l

(0;C

2

)

E

p;q

h

 

W

l

A

(�

1

; �

2

)

!

= 0:

whih is proved in Koukkous (1999) ( see the proof of lemma 4.2 at formula (23)).

4 Proof of Theorem 2.2

The proof of lower bound presented in Benois & al. (1995) is easily adapted for our ase using

some omputations already developed in the previous proof of super-exponential estimate

and some arguments presented in the below upper bound's proof. We therefore omit details

for the reader.

Let H 2 C

1;2

K

([0; T ℄ �R) and  2 C

�

(R). From Girsanov formula, the Radon-Nikodym

derivative of P

p;H

;N

with respet to P

N

�;p

is given by

expN

(

J

1

H

(�

N

t

) + h

p;N



(�

N

0

j�)�N

Z

t

0

X

x;y

p

x

g(�

s

(x))T (y)

�

e

fH(t;

x+y

N

)�H(t;

x

N

)g

� 1

�

ds

)

(24)
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where h

p;N



(�j�) :M

+

! R is de�ned by

h

p;N



(�j�) =

�

�; log

 

�((�))

�(�)

!

�

�

1

N

X

x

log

"

Z(�((x=N))p

�1

x

)

Z(�(�)p

�1

x

)

�

:

Upper bound :

The proof is dealing only with a �xed ompat subset C of D([0; T ℄;M

+

). To extend this

result to a losed subset, we need exponential tightness for Q

N

�;p

. It is easily obtained thanks

to the proof presented in Benois (1996) (see also Lemma V.1.5 in Kipnis-Landim (1999)).

For every q > 1,

Q

N

�;p

(C) = E

N

�;p

" 

dP

N

�;p

dP

p;H

;N

!

1=q

 

dP

p;H

;N

dP

N

�;p

!

1=q

1

f�

N

2Cg

#

:

Let #

"

be the approximation of identity de�ned by (2")

�1

1

[�";"℄

(x) and � the lassi

onvolution produt.

For 0 � s � T , let

u

p;H

";N

(�

s

) =

�

2N

X

k

f�

2

x

H(s; k=N) + [�

x

H(s; k=N)℄

2

gfp

k

g(�

s

(k))� �(�

"N

s

(k))g

and

u

p

N;H

(�

s

) =

1

N

X

k

p

k

g(�

s

(k))

(

X

j

T (j)N

2

�

e

fH(t;

k+j

N

)�H(t;

k

N

)g

� 1

�

�

�

2

�

�

2

x

H(s; k=N) + (�

x

H(s; k=N))

2

�

)

>From (24), a simple omputation shows that

�

dP

N

�;p

= dP

p;H

;N

�

is bounded above by

expN

(

� J

1

H

(�

N

T

) + J

2

H

(�

N

� #

"

)� h

p;N



(�

N

0

j�) +

Z

T

0

�

u

p;H

";N

(�

s

) + u

p

N;H

(�

s

)

�

ds

)

Thus,

1

N

logQ

N

�;p

(C) is bounded above by

1

q

sup

�2C

(

� J

1

H

(�

N

T

) + J

2

H

(�

N

� #

"

)� h

p;N



(�

N

0

j�)

)

(25)

+

1

N

logE

N

�;p

" 

dP

p;H

;N

dP

N

�;p

!

1=q

exp

(

N

q

Z

T

0

�

u

p;H

";N

(�

s

) + u

p

N;H

(�

s

)

�

ds

)#
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Let

�

H be a real ontinuous funtion with the same support as sup

t

jH

t

j, suh that it bounds

above sup

0�t�T

[j�

2

x

H

t

j+ (�

x

H

t

)

2

+ jH

t

j℄.

Let C

0

2 N suh that suppH � [0; T ℄� [�(C

0

� 1); (C

0

+ 1)℄. Using H�older's inequality,

we show that, for q

0

2 R suh that (1=q) + (1=q

0

) = 1, the seond term in (25) is bounded

above by

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

�

Z

T

0

u

p;H

";N

(�

s

) ds�

Z

T

0

�

N

X

k

�

H(

k

N

)!(�

s

(k)) ds

��

#

+

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

Z

T

0

u

p

N;H

(�

s

) ds

�

#

(26)

+

1

3Nq

0

logE

N

�;p

"

exp

�

3Nq

0

q

�

�

N

Z

T

0

X

k

�

H(

k

N

)!(�

s

(k)) ds

��

#

Using similar arguments as in the proof of lemma 3.2 ( see (11)), we hek that the last

term in (26) is bounded above by

R

1

(�; q;H) =

2C

0

3q

log �

�(�)a

�1

0

�

e

f

3�q

0

T

q

k

�

Hk

1

!(�(0))g

�

whih vanishes as � # 0 for eah �xed q and H thanks to assumption [H4℄.

>From assumption [H2℄, we hek that g(k) � g

�

k for all k 2 Z and therefore �(�) � g

�

�.

Thus, we repeat the same argument as above, a simple omputation shows that the seond

term in (26) is bounded above by

R

2

(q;H;N) =

2C

0

3q

0

log �

�(�)a

�1

0

�

e

f

�

N

�(0)g

�

where � = �(T ; g

�

; H; a

1

; q; �).

For eah �xed q and H, it is easy to see that R

2

(q;H;N) vanishes as N " 1.

Let us turn to the �rst term in (26) and denote R

3

(�; q;H; ") its limit when N " 1. A

similar omputation as in the proof of the super-exponential estimate ( see lemma 3.2 and

its proof), gives that

lim

"!0

R

3

(�; q;H; ") = 0

for all � > 0, q > 1 and smooth funtion H.

In the other hand notie that by a simple omputation and from the ergodiity and

stationarity of m, we prove that h

p;N



(�

N

0

j�) onverges (uniformly in � 2 C) to h(j�) when

N " 1.

We therefore proved that lim

N!1

(1=N) logQ

N

�;p

(C) is bounded above by

inf

H;;q;�;"

(

1

q

sup

�2C

�

� J

1

H

(�) + J

2

H

(� � #

"

)� h(j�)

�

+R

3

(�; q;H; ") +R

1

(�; q;H)

)
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where the in�mum is taken over all H 2 C

1;2

K

([0; T ℄�R),  2 C

�

(R), q > 1, � > 0 and " > 0.

At this level, using the ontinuity of J

2

H

(��#

"

) for every �xed H and " > 0, the ompaity

of C and the arguments developed in (Kipnis & al. (1989)) to permute the supremum and

in�mum, we hek that this last expression is bounded above by

� inf

�2C

sup

H;;q;�;"

(

1

q

�

� J

1

H

(�) + J

2

H

(� � #

"

)� h(j�)

�

+R

3

(�; q;H; ") +R

1

(�; q;H)

)

We onlude therefore our proof by letting " # 0. � # 0 and q # 1.
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