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Abstra
t

Let W � R

n

be a pointed and generating 
one and denote by S (W ) the

semigroup of matri
es with positive determinant leaving W invariant. The

purpose of this paper is to prove that S (W ) is path 
onne
ted. This result has

the following 
onsequen
e: Semigroups with nonempty interior in the group

Sl (n;R) are 
lassi�ed into types, ea
h type being labelled by a 
ag manifold.

The semigroups whose type is given by the proje
tive spa
e P

n�1

form one of

the 
lasses. It is proved here that the semigroups in Sl (n;R) leaving invariant

a pointed and generating 
one are the only maximal 
onne
ted in the 
lass of

P

n�1

.
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1 Introdu
tion

Let W be a 
onvex 
one in R

n

and form its 
ompression semigroup of matri
es

S (W ) = fg 2 Gl

+

(n;R) : gW � Wg;

where Gl

+

(n;R) stands for the group of real matri
es having positive determinant.

The purpose of this paper is to prove that S (W ) is 
onne
ted if mild 
onditions

on W are assumed. Pre
isely, re
all that W is said to a be pointed 
one in 
ase

�v 2 W implies v = 0. Also, W is generating if R

n

= W + (�W ), or equivalently,

if intW 6= ;, where int stands for the interior of a set with respe
t to the standard

topology of R

n

.

Theorem 1 If W is pointed and generating then S (W ) is path 
onne
ted.

Clearly, S (W ) is a 
losed subsemigroup of Gl

+

(n;R). Moreover, it is known {

and easy to prove { that in 
ase W is pointed and generating, S (W ) has nonempty

interior in Gl

+

(n;R), taken with its standard topology (
.f. Proposition 4 below).

Apart from being fruitful examples of semigroups in Lie groups the interest in

the semigroups S (W ) stays in the fa
t that they form (in essen
e) a 
lass of maximal

semigroups in the spe
ial linear group Sl (n;R). In order to dis
uss this we note �rst

that the identity matrix 1 as well as the s
alar matri
es � � 1, � > 0, are in S (W ).

Analogously, a matrix g 2 S (W ) if and only if (det g)

1=n

g 2 S (W ). Therefore if

we 
onsider the 
ompression semigroup

S

W

= S (W ) \ Sl (n;R) = fg 2 Sl (n;R) : gW � Wg;

it follows that S (W ) = R

+

�S

W

and S

W

is the image of S (W ) under the 
ontinuous

map g 7! (det g)

1=n

g. Hen
e if one of the semigroups S (W ) or S

W

is 
onne
ted,

the same happens to the other. In what follows we take advantage of the theory

of semigroups in semi-simple Lie groups and work within Sl (n;R). The proof of

Theorem 1 will be a

omplished by showing that S

W

is 
onne
ted.

To see the 
onne
tion between S

W

and maximal semigroups in Sl (n;R) let [W ℄

be the subset of the proje
tive spa
e P

n�1

underlying W , that is, [W ℄ is the subset

of lines in R

n


ontained in W [ �W . Put

S[W ℄ = fg 2 Sl (n;R) : g[W ℄ � [W ℄g:

It was proved in [10℄, Theorem 6.12, that S[W ℄ is a maximal semigroup of Sl (n;R)

(see also [9℄, for more details about maximal semigroups). Clearly g 2 S[W ℄ if
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and only if g 2 S

W

or gW � �W . It is rather easy to prove the existen
e of

g 2 S[W ℄ su
h that gW � �W (see Lemma 11, below), so that S

W

is not a maximal

semigroup. However, by pro
eeding like in the proof that S[W ℄ is 
onne
ted we get

that S

W

is a maximal 
onne
ted semigroup in the sense that if S

W

� T with T a


onne
ted subsemigroup of Sl (n;R) then either T = S

W

or T = Sl (n;R).

Corollary 2 S

W

is maximal 
onne
ted in Sl (n;R).

There is a 
onverse to this 
orollary, ensuring that a semigroup in a 
ertain 
lass

of maximal 
onne
ted subsemigroups of Sl (n;R) must be S

W

for some pointed and

generating 
one W . This is the 
lass of semigroups whose type is the proje
tive

spa
e P

n�1

. We refer the reader to [8℄ and [9℄ for the de�nition of the type of a

semigroup and in parti
ular of the type of S

W

(see also [7℄ for a dis
ussion spe
i�


to semigroups in Sl (n;R)). It was observed in [8℄, Example 4.10, that if a semigroup

is 
onne
ted and of type P

n�1

then it is 
ontained in S

W

for some pointed generating


one W � R

n

. Therefore we get from the fa
t that S

W

is 
onne
ted the following


hara
terization of the maximal 
onne
ted semigroups of the proje
tive spa
e type:

Corollary 3 Let C stand for the 
lass of semigroups S � Sl (n;R), with intS 6= ;,

whi
h are maximal 
onne
ted of type P

n�1

. Then

C = fS

W

: W � R

n

is a pointed generating 
oneg:

Finally we mention that the semigroup of all matri
es leaving invariant a 
one

W { without any determinantal restri
tion { is trivially a 
onvex 
one in the spa
e

of matri
es, and hen
e 
onne
ted. Our results, however, refer to the semigroups

S (W ) and S

W

whi
h are far from being 
onvex 
ones.

2 S

W

is 
onne
ted

In this se
tion we prove the main result of this paper, namely Theorem 1. From now

on we let W � R

n

stand for a pointed generating 
onvex 
one. As before denote by

S

W

the semigroup of matri
es in Sl (n;R) leaving W invariant.

We refer the reader to Hilgert, Hofmann and Lawson [2℄ for the general theory

of semigroups. In parti
ular, the 
on
ept of Lie wedge L (S) of a semigroup S �

Sl (n;R) is de�ned by

L (S) = fX 2 sl (n;R) : exp (tX) 2 
lS for all t � 0g

3



where sl (n;R) is the Lie algebra of tra
e zero n � n-matri
es. In what follows we

denote by S

inf

the semigroup generated by L (S

W

), namely

S

inf

= hexp (L (S

W

))i:

Sin
e S

W

is 
losed, it follows that S

inf

is a subsemigroup of S

W

. Furthermore,

being generated by one-parameter semigroups S

inf


ontains the identity and is path


onne
ted. It is a 
onsequen
e of the next statement that L (S) is a generating


one in sl (n;R), implying that S

inf

has nonempty interior in Sl (n;R) and that the

interior of S

W

is dense in S

W

, i.e., S

W

= 
l (intS

W

).

Proposition 4 Suppose that V � R

n

is a 
odimension one subspa
e with V \W =

f0g. Take a basis

� = ff

1

; : : : ; f

n

g

of R

n

su
h that f

1

2 W and ff

2

; : : : ; f

n

g � V . Let H 2 sl (n;R) be su
h that its

matrix with respe
t to � is

H = diagfn� 1;�1; : : : ;�1g:

Then H 2 L (S

W

). Moreover, if f

1

2 intW then H 2 intL (S

W

) so that exp (tH) �

intS

W

for all t > 0.

Proof: Take x 2 W , x 6= 0. Sin
e V \W = f0g, it follows that B = (f

1

+ V ) \W

is a 
one basis of W in the aÆne subspa
e f

1

+ V . Hen
e up to multipli
ation by a

positive s
alar we have

x = f

1

+ a

2

f

2

+ � � �+ a

n

f

n

:

Therefore,

Hx = (n� 1) f

1

� (a

2

f

2

+ � � �+ a

n

f

n

)

= nf

1

� x;

that is, x+Hx = nf

1

2 W . By the invarian
e theorem for 
ones (see [2℄, Theorem

I.5.27), it follows that exp tH 2 S

W

for all t � 0, whi
h means that H 2 L (S

W

).

Now, assume that f

1

2 intW . Note that the 
one basis B is 
ompa
t sin
e W is

a pointed 
one. Also, the map

(A; x) 2 sl (n;R) � R

n

7�! x + Ax 2 R

n
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is 
ontinuous. Hen
e, given x 2 B and a neighborhood U of nf

1

in W , there are

neighborhoods O

x

of H and C

x

of x su
h that for A 2 O

x

and y 2 C

x

, it holds

y + Ay 2 U � W . By 
ompa
tness of B there exists a neighborhood O of H su
h

that x + Ax 2 U for all x 2 B and A 2 O. It follows that the open set O is


ontained in L (S

W

), implying that H 2 int (L (S

W

)). Clearly, this implies that

tH 2 int (L (S

W

)) for all t > 0. Hen
e, using the fa
t that the exponential map-

ping is a di�eomorphism around the identity we 
on
lude that exp (tH) 2 intS

W

for

small values of t > 0. Therefore the formula exp (tH) = exp ((t=n)H)

n

implies that

exp (tH) 2 intS

W

for all t > 0. 2

Taking H as in this proposition with f

1

2 intW we have that exp (tH) 2 intS

W

if t > 0, hen
e for all g 2 S

W

, exp (tH) g and g exp (tH) belong to intS

W

if t > 0.

Therefore, any g 2 S

W


an be linked to intS

W

by a 
ontinuous path inside S

W

.

Sin
e this fa
t is used in the proof that S

W

is 
onne
ted we emphasize it.

Corollary 5 Let H be as in the previous proposition with f

1

2 intW . Take g 2 S

W

.

Then exp (tH) g and g exp (tH) belong to intS

W

if t > 0.

Before pro
eeding we note the following simple, but useful, fa
t about matri
es

in intS

W

:

Lemma 6 If g 2 intS

W

then gW � intW [ f0g.

Proof: If x 6= 0, the assignment h 2 Sl (n;R) 7! hx 2 R

n

is an open mapping

be
ause Sl (n;R) a
ts transitively on R

n

n f0g. Hen
e (intS

W

) x = fhx : h 2 intS

W

g

is open if x 6= 0. Sin
e (intS

W

)x � W , it follows that gx 2 intW for all x 2 W ,

x 6= 0. 2

The following statement is 
entral in the proof that S

W

is 
onne
ted, it 
on
erns

the Jordan de
omposition of the matri
es in intS

W

.

Lemma 7 Let g 2 intS

W

be given. Then there exists a basis � = ff

1

; : : : ; f

n

g of

R

n

with f

1

2 intW and

spanff

2

; : : : ; f

n

g \W = 0;

su
h that the matrix of g with respe
t to � is written in blo
ks as

g =

�

� 0

0 h

�

where � > 0 and h is an (n� 1)� (n� 1)-matrix with det h > 0. Furthermore � is

a prin
ipal eigenvalue, i.e., j�j < � if � is an eigenvalue of h.

5



This lemma is well known in the theory of matri
es (see Berman and Plemmons

[1℄). Below we o�er another proof of it, having a Lie theoreti
 
avor..

2.1 Proof of Theorem 1

In view of Corollary 5, in order to prove that S

W

is path 
onne
ted it is enough to

show that intS

W

is path 
onne
ted. We prove this by exhibiting, for any g 2 intS

W

,

a path in S

W

joining it to S

inf

. Sin
e S

inf

is path 
onne
ted, this implies that intS

W

is path 
onne
ted as well.

Fix g 2 intS

W

, and let � = ff

1

; : : : ; f

n

g be a basis given by Lemma 7, providing

a blo
k de
omposition of g.

Let P � Sl (n;R) be the subgroup of those linear maps whose matri
es with

respe
t to � have the same blo
k stru
ture as g:

P = f

�

� 0

0 Q

�

: � > 0; Q 2 Gl

+

(n� 1;R) ; � detQ = 1g:

Clearly, P is a 
losed and 
onne
ted subgroup of Sl (n;R). By 
onstru
tion, g 2

(intS

W

) \ P . Let H 2 sl (n;R) be su
h that its matrix with respe
t to . � is

H = diagfn� 1;�1; : : : ;�1g: (1)

The properties of � and Proposition 4 imply that H 2 intL (S

W

) and exp (tH) 2

(intS

inf

) \ P for all t > 0. Put

� = (intS

inf

) \ P:

Then � is a semigroup with nonempty interior in P (with respe
t to the topology

of P ).

De�ne the map � : P ! Sl (n� 1;R) by

�

�

� 0

0 Q

�

= (detQ)

�1=n�1

Q = �

1=n�1

Q:

It is 
he
ked immediately that � is a surje
tive homomorphism. Hen
e it is an open

mapping, so that � (�) is a semigroup with nonempty interior in Sl (n� 1;R).

Now, exp (tH) 2 �, for all t > 0. Sin
e

exp (tH) = diagfe

t(n�1)

; e

�t

; : : : ; e

�t

g;

it follows that � (exp (tH)) = 1. Therefore, 1 2 � (�) implying that � (�) =

Sl (n� 1;R) be
ause Sl (n� 1;R) is 
onne
ted. Combining this fa
t together with

the de�nition of � we get the

6



Lemma 8 For all h

0

2 Sl (n� 1;R) there exists a > 0 su
h that

g

0

=

�

a 0

0 a

�1=n�1

h

0

�

2 � = (intS

inf

) \ P � intS

inf

(2)

Let us show now that there is a path linking the given g 2 intS

W

to S

inf

. We


an write

g =

�

� 0

0 h

�

=

�

� 0

0 (det h)

1=n�1

h

0

�

=

�

� 0

0 �

�1=n�1

h

0

�

where h

0

= (det h)

�1=n�1

h 2 Sl (n� 1;R). For this h

0

, the above lemma ensures the

existen
e of a > 0 su
h that the 
orresponding g

0

as in (2) belongs to �. There are

the following possibilities:

1. � � a. Then e

(n�1)T

� = a for some T � 0. Hen
e if H is given by (1) then

exp (TH) g =

 

e

(n�1)T

� 0

0

�

e

(n�1)T

�

�

�1=n�1

h

0

!

:

Substituting in this equality e

(n�1)T

� = a we get from (2) that

exp (TH) g = g

0

2 S

inf

:

Sin
e exp (tH) g 2 intS

W

for all t � 0, the path t 7! exp (tH) g, t 2 [0; T ℄,

joins g to g

0

2 S

inf

, without leaving intS

W

.

2. � > a. In this 
ase we reverse the roles of g and g

0

to get T > 0 su
h that

exp (TH) g

0

= g, providing the path t 7! exp (tH) g

0

, t 2 [0; T ℄, linking g

0

to g

inside intS

W

.

Therefore for arbitrary g 2 intS

W

there exists a path inside intS

W

joining g to

S

inf


on
luding the proof of Theorem 1.

2.2 Proof of Lemma 7

We start with the following lemma whi
h holds for an arbitrary semigroup S 
on-

tained in Sl (n;R) and having nonempty interior.
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Lemma 9 Given h 2 intS let V � R

n

be an h-invariant subspa
e with dimV � 2

and su
h that j�j is 
onstant as � runs through the eigenvalues of the restri
tion

�

h

of h to V . Then S is transitive on the rays of V . Pre
isely, let P

V

be the subgroup

P

V

= fh 2 Sl (n;R) : hV = V g:

Then � = S \ P

V

is a semigroup with nonempty interior in P

V

and for two rays r

1

and r

2

in V , starting at the origin, there exists h

0

2 � su
h that h

0

r

1

= r

2

.

Proof: The �rst step in the proof 
onsists in proje
ting � to the group Sl (V ), of

unimodular linear maps of V . This need to be done only if V is a proper subspa
e.

In this 
ase the restri
tion of P

V

to V is the whole linear group Gl (V ), whi
h has

two 
onne
ted 
omponents, say Gl

�

(V ), with 1 2 Gl

+

(V ). Clearly h 2 � so that �

is a semigroup with nonempty interior in P

V

. Denote also by � its restri
tion to V .

It follows that �

+

= � \Gl

+

(V ) also has nonempty interior, be
ause Q

2

2 Gl

+

(V )

if Q 2 Gl (V ).

Consider the onto homomorphism  : Gl

+

(V )! Sl (V ) given by

Q 2 Gl

+

(V ) 7�! (detQ)

1=k

Q; k = dimV:

The image �

1

=  (�

+

) is a semigroup with nonempty interior in Sl (V ).

Now, the restri
tion

�

h of h to V belongs to int�. By assumption the eigenvalues

of

�

h are of the form

e

a

(
os �

1

+ i sin �

1

) ; : : : ; e

a

(
os �

s

+ i sin �

s

) ;

with �xed a. So that

�

h de
omposes in Jordan blo
ks of the types

e

a

0

B

�

1 �

.

.

.

0 1

1

C

A

e

a

0

B

B

B

B

B

�


os �

j

� sin �

j

sin �

j


os �

j

�

.

.

.

0


os �

j

� sin �

j

sin �

j


os �

j

1

C

C

C

C

C

A

:

In 
ase �

j

= 2�q

j

, j = 1; : : : ; s, with q

j

rational, a qui
k glan
e at these blo
ks

show that some power of

�

h has real eigenvalues so that there exists h

1

2 int� whose

restri
tion

�

h

1

to V has the form

�

h

1

= �

0

B

�

1 �

.

.

.

0 1

1

C

A

(3)
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with � > 0. The existen
e of su
h

�

h

1

, 
oming from the semigroup, 
an be ensured

without the restri
tive assumption that the eigenvalues of

�

h are rational multiples

of �. In fa
t, sin
e h 2 int�, there exists h

2

2 int� having the same blo
k stru
ture

as h and su
h that the arguments of the eigenvalues of the restri
tion of h

2

to V are

rational multiples of 2�. Thus we 
an argue with h

2

in pla
e of h to get the desired

element

�

h

1

like in (3).

Now,

 

�

�

h

1

�

=

0

B

�

1 �

.

.

.

1

1

C

A

:

This implies that �

1

= Sl (V ). In fa
t,  

�

�

h

1

�

2 int�

1

and  

�

�

h

1

�


an be approxi-

mated by a matrix of the form exp (X) with X having purely imaginary eigenvalues.

This permits to show that 1 2 int�

1


on
luding that �

1

= Sl (V ) (see [6℄, Lemma

4.1, for details).

From �

1

= Sl (V ) and dimV � 2 it follows at on
e that �

1

is transitive on the

rays of V . The lemma is then a dire
t 
onsequen
e of the de�nition of  . 2

An appli
ation of the above lemma to g yields the

Corollary 10 Fix g 2 intS

W

. Let V � R

n

be a g-invariant subspa
e su
h that j�j

is 
onstant as � runs through the eigenvalues of the restri
tion of g to V . Then

dimV = 1 if V \W 6= 0.

Proof: If V \W 6= 0 there exists a ray of V 
ontained inW . On the other hand the

lemma implies that S

W

is transitive on the rays of V if dimV � 2. Hen
e V � W

if dimV � 2 
ontradi
ting the assumption that W is a pointed 
one. 2

In order to 
ontinue we put

� = maxfj�j : � is an eigenvalue of gg

for a �xed g 2 intS

W

. Let V

+

be the dire
t sum of the generalized eigenspa
es V

�

=

ker (g � �)

n

, with j�j = �. Also, let V

�

be the sum of the remaining generalized

eigenspa
es of g. We 
laim that V

+

\ W 6= f0g. To see this write for u 2 R

n

,

u = u

+

+ u

�

with u

�

2 V

�

. Then as k ! +1, (1=�)

k

g

k

u

�


onverges to zero.

Furthermore, the fa
t that the eigenvalues of g in V

+

have 
onstant modulus �,

implies that there exists a subsequen
e k

l

su
h that lim(1=�)

k

l

g

k

l

u

+

= v, as l !

9



+1. This limit is not zero if u

+

6= 0. Thus when u

+

6= 0, (1=�)

k

l

g

k

l

u 
onverges

to v 2 V

+

. In parti
ular take u 2 W su
h that u

+

6= 0. The existen
e of su
h u

follows from the assumption that W is generating. Then 0 6= v 2 V

+

\W be
ause

(1=�)

k

l

g

k

l

u 2 W and W is 
losed, showing the 
laim.

By Corollary 10 we 
on
lude that dimV

+

= 1. Hen
e there exists just one

eigenvalue, say �

max

, with j�

max

j = �, whi
h is by for
e real. Furthermore the

eigenspa
e V

+

is 
ontained in W [ (�W ) and sin
e gW � W , it follows that

�

max

> 0.

Take an eigenve
tor f

1

2 V

+

\W . Then �

max

f

1

= gf

1

2 intW by Lemma 6.

Hen
e f

1

2 intW . Therefore, the proof of Lemma 7 follows as soon as we show that

V

�

\W = f0g.

To 
he
k that V

�

\W = f0g we note �rst that V

�

\ intW = f0g, sin
e otherwise

W would meet both half-spa
es determined by the 
odimension one subspa
e V

�

.

But this would 
ontradi
t the fa
t that W is a pointed 
one. In fa
t, for v

1

and v

2

in di�erent sides of V

�

the ray de�ned by g

k

v

1

approa
hes, say, the ray spanned by

f

1

, as k ! +1, whereas the ray g

k

v

2

approa
hes the ray spanned by �f

1

. Sin
e

g

k

v, v 2 W , does not leave W , we would have �f

1

2 W . Finally,

g

�

V

�

\W

�

= gV

�

\ gW � V

�

\ (intW [ f0g)

be
ause gW � intW [f0g by Lemma 6. Hen
e g (V

�

\W ) = f0g so that V

�

\W =

f0g 
on
luding the proof of Lemma 7.

3 Complements

This se
tion is devoted to the proof of some fa
ts related to the main result. We

start with the

Proof of Corollary 2: Let T be a 
onne
ted semigroup with nonempty interior


ontaining S

W

properly. Note �rst that T is not 
ontained in S[W ℄. To see this

suppose to the 
ontrary that T � S[W ℄. Then Tx � W [ (�W ) for all x 2 W .

However, T is 
onne
ted so that if 0 6= x 2 W then Tx is 
ontained in a 
onne
ted


omponent of (W [ (�W )) n f0g, whi
h is by for
e W be
ause Tx is 
onne
ted

and 
ontains x, as 1 2 T . Therefore, T � S

W


ontradi
ting the assumption on T .

Now, the proof that T = Sl (n;R) follows the same steps as the proof that S[W ℄ is

maximal (see [10℄, Theorem 6.12). We sket
h it: By Proposition 4, any line outside

[W ℄ is spanned by an eigenve
tor of some h 2 intS

W

. This implies that [W ℄ and

10



P

n�1

n [W ℄ are the two 
ontrol sets of S

W

in P

n�1

. Therefore S

W

is transitive in

int[W ℄ as well as in P

n�1

n [W ℄. Sin
e T is not 
ontained in S[W ℄, there exists g 2 T

su
h that gx 2 P

n�1

n [W ℄ for some x 2 int[W ℄. Also for any y 2 P

n�1

there exists

g

1

2 S

W

with g

1

y 2 int[W ℄ (be
ause [W ℄ is the invariant 
ontrol set of S

W

in P

n�1

).

It follows that T a
ts transitively in P

n�1

. Thus T = Sl (n;R), by [10℄, Theorem

6.2. �

Now, we dis
uss the relation between S

W

and S[W ℄. By de�nition S[W ℄ =

S

W

[ S

jj

W

, where

S

jj

W

= fg 2 Sl (n;R) : gW � �Wg:

The following lemma shows that S

jj

W

is not empty.

Lemma 11 S

W

is properly 
ontained in S[W ℄.

Proof: We must show that there exists g 2 Sl (n;R) su
h that gW � �W .

For this purpose take H = diagfn � 1;�1; : : : ;�1g with respe
t to a basis � =

ff

1

; : : : ; f

n

g satisfying the requirements of Proposition 4, namely f

1

2 intW and

spanff

2

; : : : ; f

n

g \ W = f0g. Sin
e Sl (n;R) a
ts transitively on R

n

, there exists

g

1

2 Sl (n;R) su
h that g

1

f

1

= �f

1

. By 
ontinuity U = g

�1

1

(int (�W )) is a neigh-

borhood of f

1

. Now, by 
onstru
tion of H there exists a large enough t > 0 su
h

that if h = exp tH then hW � U . Hen
e g

1

hW � �W so that g = g

1

h belongs to

S[W ℄ but not to S

W

. 2

Clearly, there are the in
lusions S

W

S

jj

W

� S

jj

W

and

�

S

jj

W

�

2

� S

W

. The former

shows in parti
ular that S

jj

W

has nonempty interior. In 
ase n is even, �1 2 Sl (n;R),

hen
e �1 2 S

jj

W

for any W . A
tually, �1 maps W exa
tly onto �W hen
e the

following statement implies that in even dimensions, S

jj

W

= �S

W

.

Proposition 12 Suppose that there exists k 2 Sl (n;R) satisfying kW = �W . Then

S

jj

W

= kS

W

= S

W

k.

Proof: Clearly, kS

W

and S

W

k are 
ontained in S

jj

W

. For the reverse in
lusions note

that k

�1

W = �W . Pi
k g 2 S

jj

W

. Then gW � �W , so that gk

�1

W � W and

k

�1

gW � W , that is, gk

�1

and k

�1

g are in S

W

. 2

Under the assumption of this proposition it follows at on
e that S

jj

W

is 
onne
ted.

Sin
e the existen
e of k mappingW onto�W depends on the geometry of the spe
i�


W , we prove next that in general

11



Proposition 13 S

jj

W

is 
onne
ted. Hen
e S

W

and S

jj

W

are the 
onne
ted 
omponents

of S[W ℄.

Proof: Take g; h 2 S

jj

W

. Both gW and hW are pointed generating 
ones 
ontained

in �W . Take H and � like in Proposition 4 with the �rst element f

1

of � 
on-

tained in int (hW ). Like in that proposition H 2 L (S

W

) and for large enough t

0

,

exp (t

0

H) (�W ) � hW . In parti
ular,

exp (t

0

H) (gW ) � hW:

Hen
e h

�1

exp (t

0

H) g 2 S

W

, that is, exp (t

0

H) g 2 hS

W

. Sin
e S

W

is path 
on-

ne
ted, this implies the existen
e of a path in S[W ℄ linking exp (t

0

H) g to h. How-

ever, H 2 L (S

W

), so that exp (t

0

H) g and g are in the same path 
omponent of S

jj

W

,


on
luding the proof of that S

jj

W

is 
onne
ted. 2

In general S

inf

= hexp (L (S

W

))i is a proper subsemigroup of S

W

. As observed

by K.-H. Neeb (personal 
ommuni
ation) the in
lusion S

inf

� S

W

is proper for the

semigroup Sl

+

(n;R) = S

W

of positive matri
es, where W is the orthant

W = O

+

(n) = f(x

1

; : : : ; x

n

) 2 R

n

: x

i

� 0g:

To see this note that in 
ase n � 3 the unit group of S

W

, H (S

W

) = S

W

\ S

�1

W

is

not 
onne
ted. In fa
t, it easy to 
he
k that g must permutes the basi
 ve
tors if

g 2 H (S

W

) so that H (S

W

) = ��A where A is the group of diagonal matri
es with

positive entries and � is the group of permutation matri
es with det = 1. In 
ase

n � 3, � { and hen
e H (S

W

) { is not 
onne
ted. On the other hand, it is a general

fa
t that the unit group of an in�nitesimally generated semigroup like S

inf

must be


onne
ted (see [2℄, Theorem V.2.8).

Finally, we observe that Corollary 3 
ompletely determines the maximal 
on-

ne
ted semigroups of Sl (n;R) for n = 2; 3. In fa
t, for n = 2, any semigroup is

of the proje
tive type so that any maximal 
onne
ted semigroup is S

W

for some

pointed and generating 
one W � R

2

. It should be remarked here that for any su
h


one W there exists g 2 Sl (2;R) su
h that W = gO

+

(2). Sin
e S

gW

= gS

W

g

�1

, it

follows that up to 
onjugation Sl

+

(2;R) is the only maximal 
onne
ted semigroup

of Sl (2;R). For n = 3, there are two types of maximal semigroups, namely a semi-

group is of type P

2

or Gr

2

(3), the Grassmannian of two-dimensional subspa
es of

R

3

. However, if a semigroup is of type Gr

2

(3) then its inverse S

�1

is of proje
tive

type (see [9℄, Proposition 6.3). Therefore there is the following 
hara
terization of

the maximal 
onne
ted semigroups in Sl (3;R):
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Proposition 14 A semigroup S � Sl (3;R), with intS 6= ;, is maximal 
onne
ted

if and only if there exists a pointed and generating 
one W � R

3

su
h that either

S = S

W

or S = S

�1

W

.
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