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Abstrat

Let W � R

n

be a pointed and generating one and denote by S (W ) the

semigroup of matries with positive determinant leaving W invariant. The

purpose of this paper is to prove that S (W ) is path onneted. This result has

the following onsequene: Semigroups with nonempty interior in the group

Sl (n;R) are lassi�ed into types, eah type being labelled by a ag manifold.

The semigroups whose type is given by the projetive spae P

n�1
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the lasses. It is proved here that the semigroups in Sl (n;R) leaving invariant

a pointed and generating one are the only maximal onneted in the lass of

P

n�1
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1 Introdution

Let W be a onvex one in R

n

and form its ompression semigroup of matries

S (W ) = fg 2 Gl

+

(n;R) : gW � Wg;

where Gl

+

(n;R) stands for the group of real matries having positive determinant.

The purpose of this paper is to prove that S (W ) is onneted if mild onditions

on W are assumed. Preisely, reall that W is said to a be pointed one in ase

�v 2 W implies v = 0. Also, W is generating if R

n

= W + (�W ), or equivalently,

if intW 6= ;, where int stands for the interior of a set with respet to the standard

topology of R

n

.

Theorem 1 If W is pointed and generating then S (W ) is path onneted.

Clearly, S (W ) is a losed subsemigroup of Gl

+

(n;R). Moreover, it is known {

and easy to prove { that in ase W is pointed and generating, S (W ) has nonempty

interior in Gl

+

(n;R), taken with its standard topology (.f. Proposition 4 below).

Apart from being fruitful examples of semigroups in Lie groups the interest in

the semigroups S (W ) stays in the fat that they form (in essene) a lass of maximal

semigroups in the speial linear group Sl (n;R). In order to disuss this we note �rst

that the identity matrix 1 as well as the salar matries � � 1, � > 0, are in S (W ).

Analogously, a matrix g 2 S (W ) if and only if (det g)

1=n

g 2 S (W ). Therefore if

we onsider the ompression semigroup

S

W

= S (W ) \ Sl (n;R) = fg 2 Sl (n;R) : gW � Wg;

it follows that S (W ) = R

+

�S

W

and S

W

is the image of S (W ) under the ontinuous

map g 7! (det g)

1=n

g. Hene if one of the semigroups S (W ) or S

W

is onneted,

the same happens to the other. In what follows we take advantage of the theory

of semigroups in semi-simple Lie groups and work within Sl (n;R). The proof of

Theorem 1 will be aomplished by showing that S

W

is onneted.

To see the onnetion between S

W

and maximal semigroups in Sl (n;R) let [W ℄

be the subset of the projetive spae P

n�1

underlying W , that is, [W ℄ is the subset

of lines in R

n

ontained in W [ �W . Put

S[W ℄ = fg 2 Sl (n;R) : g[W ℄ � [W ℄g:

It was proved in [10℄, Theorem 6.12, that S[W ℄ is a maximal semigroup of Sl (n;R)

(see also [9℄, for more details about maximal semigroups). Clearly g 2 S[W ℄ if
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and only if g 2 S

W

or gW � �W . It is rather easy to prove the existene of

g 2 S[W ℄ suh that gW � �W (see Lemma 11, below), so that S

W

is not a maximal

semigroup. However, by proeeding like in the proof that S[W ℄ is onneted we get

that S

W

is a maximal onneted semigroup in the sense that if S

W

� T with T a

onneted subsemigroup of Sl (n;R) then either T = S

W

or T = Sl (n;R).

Corollary 2 S

W

is maximal onneted in Sl (n;R).

There is a onverse to this orollary, ensuring that a semigroup in a ertain lass

of maximal onneted subsemigroups of Sl (n;R) must be S

W

for some pointed and

generating one W . This is the lass of semigroups whose type is the projetive

spae P

n�1

. We refer the reader to [8℄ and [9℄ for the de�nition of the type of a

semigroup and in partiular of the type of S

W

(see also [7℄ for a disussion spei�

to semigroups in Sl (n;R)). It was observed in [8℄, Example 4.10, that if a semigroup

is onneted and of type P

n�1

then it is ontained in S

W

for some pointed generating

one W � R

n

. Therefore we get from the fat that S

W

is onneted the following

haraterization of the maximal onneted semigroups of the projetive spae type:

Corollary 3 Let C stand for the lass of semigroups S � Sl (n;R), with intS 6= ;,

whih are maximal onneted of type P

n�1

. Then

C = fS

W

: W � R

n

is a pointed generating oneg:

Finally we mention that the semigroup of all matries leaving invariant a one

W { without any determinantal restrition { is trivially a onvex one in the spae

of matries, and hene onneted. Our results, however, refer to the semigroups

S (W ) and S

W

whih are far from being onvex ones.

2 S

W

is onneted

In this setion we prove the main result of this paper, namely Theorem 1. From now

on we let W � R

n

stand for a pointed generating onvex one. As before denote by

S

W

the semigroup of matries in Sl (n;R) leaving W invariant.

We refer the reader to Hilgert, Hofmann and Lawson [2℄ for the general theory

of semigroups. In partiular, the onept of Lie wedge L (S) of a semigroup S �

Sl (n;R) is de�ned by

L (S) = fX 2 sl (n;R) : exp (tX) 2 lS for all t � 0g
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where sl (n;R) is the Lie algebra of trae zero n � n-matries. In what follows we

denote by S

inf

the semigroup generated by L (S

W

), namely

S

inf

= hexp (L (S

W

))i:

Sine S

W

is losed, it follows that S

inf

is a subsemigroup of S

W

. Furthermore,

being generated by one-parameter semigroups S

inf

ontains the identity and is path

onneted. It is a onsequene of the next statement that L (S) is a generating

one in sl (n;R), implying that S

inf

has nonempty interior in Sl (n;R) and that the

interior of S

W

is dense in S

W

, i.e., S

W

= l (intS

W

).

Proposition 4 Suppose that V � R

n

is a odimension one subspae with V \W =

f0g. Take a basis

� = ff

1

; : : : ; f

n

g

of R

n

suh that f

1

2 W and ff

2

; : : : ; f

n

g � V . Let H 2 sl (n;R) be suh that its

matrix with respet to � is

H = diagfn� 1;�1; : : : ;�1g:

Then H 2 L (S

W

). Moreover, if f

1

2 intW then H 2 intL (S

W

) so that exp (tH) �

intS

W

for all t > 0.

Proof: Take x 2 W , x 6= 0. Sine V \W = f0g, it follows that B = (f

1

+ V ) \W

is a one basis of W in the aÆne subspae f

1

+ V . Hene up to multipliation by a

positive salar we have

x = f

1

+ a

2

f

2

+ � � �+ a

n

f

n

:

Therefore,

Hx = (n� 1) f

1

� (a

2

f

2

+ � � �+ a

n

f

n

)

= nf

1

� x;

that is, x+Hx = nf

1

2 W . By the invariane theorem for ones (see [2℄, Theorem

I.5.27), it follows that exp tH 2 S

W

for all t � 0, whih means that H 2 L (S

W

).

Now, assume that f

1

2 intW . Note that the one basis B is ompat sine W is

a pointed one. Also, the map

(A; x) 2 sl (n;R) � R

n

7�! x + Ax 2 R

n
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is ontinuous. Hene, given x 2 B and a neighborhood U of nf

1

in W , there are

neighborhoods O

x

of H and C

x

of x suh that for A 2 O

x

and y 2 C

x

, it holds

y + Ay 2 U � W . By ompatness of B there exists a neighborhood O of H suh

that x + Ax 2 U for all x 2 B and A 2 O. It follows that the open set O is

ontained in L (S

W

), implying that H 2 int (L (S

W

)). Clearly, this implies that

tH 2 int (L (S

W

)) for all t > 0. Hene, using the fat that the exponential map-

ping is a di�eomorphism around the identity we onlude that exp (tH) 2 intS

W

for

small values of t > 0. Therefore the formula exp (tH) = exp ((t=n)H)

n

implies that

exp (tH) 2 intS

W

for all t > 0. 2

Taking H as in this proposition with f

1

2 intW we have that exp (tH) 2 intS

W

if t > 0, hene for all g 2 S

W

, exp (tH) g and g exp (tH) belong to intS

W

if t > 0.

Therefore, any g 2 S

W

an be linked to intS

W

by a ontinuous path inside S

W

.

Sine this fat is used in the proof that S

W

is onneted we emphasize it.

Corollary 5 Let H be as in the previous proposition with f

1

2 intW . Take g 2 S

W

.

Then exp (tH) g and g exp (tH) belong to intS

W

if t > 0.

Before proeeding we note the following simple, but useful, fat about matries

in intS

W

:

Lemma 6 If g 2 intS

W

then gW � intW [ f0g.

Proof: If x 6= 0, the assignment h 2 Sl (n;R) 7! hx 2 R

n

is an open mapping

beause Sl (n;R) ats transitively on R

n

n f0g. Hene (intS

W

) x = fhx : h 2 intS

W

g

is open if x 6= 0. Sine (intS

W

)x � W , it follows that gx 2 intW for all x 2 W ,

x 6= 0. 2

The following statement is entral in the proof that S

W

is onneted, it onerns

the Jordan deomposition of the matries in intS

W

.

Lemma 7 Let g 2 intS

W

be given. Then there exists a basis � = ff

1

; : : : ; f

n

g of

R

n

with f

1

2 intW and

spanff

2

; : : : ; f

n

g \W = 0;

suh that the matrix of g with respet to � is written in bloks as

g =

�

� 0

0 h

�

where � > 0 and h is an (n� 1)� (n� 1)-matrix with det h > 0. Furthermore � is

a prinipal eigenvalue, i.e., j�j < � if � is an eigenvalue of h.
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This lemma is well known in the theory of matries (see Berman and Plemmons

[1℄). Below we o�er another proof of it, having a Lie theoreti avor..

2.1 Proof of Theorem 1

In view of Corollary 5, in order to prove that S

W

is path onneted it is enough to

show that intS

W

is path onneted. We prove this by exhibiting, for any g 2 intS

W

,

a path in S

W

joining it to S

inf

. Sine S

inf

is path onneted, this implies that intS

W

is path onneted as well.

Fix g 2 intS

W

, and let � = ff

1

; : : : ; f

n

g be a basis given by Lemma 7, providing

a blok deomposition of g.

Let P � Sl (n;R) be the subgroup of those linear maps whose matries with

respet to � have the same blok struture as g:

P = f

�

� 0

0 Q

�

: � > 0; Q 2 Gl

+

(n� 1;R) ; � detQ = 1g:

Clearly, P is a losed and onneted subgroup of Sl (n;R). By onstrution, g 2

(intS

W

) \ P . Let H 2 sl (n;R) be suh that its matrix with respet to . � is

H = diagfn� 1;�1; : : : ;�1g: (1)

The properties of � and Proposition 4 imply that H 2 intL (S

W

) and exp (tH) 2

(intS

inf

) \ P for all t > 0. Put

� = (intS

inf

) \ P:

Then � is a semigroup with nonempty interior in P (with respet to the topology

of P ).

De�ne the map � : P ! Sl (n� 1;R) by

�

�

� 0

0 Q

�

= (detQ)

�1=n�1

Q = �

1=n�1

Q:

It is heked immediately that � is a surjetive homomorphism. Hene it is an open

mapping, so that � (�) is a semigroup with nonempty interior in Sl (n� 1;R).

Now, exp (tH) 2 �, for all t > 0. Sine

exp (tH) = diagfe

t(n�1)

; e

�t

; : : : ; e

�t

g;

it follows that � (exp (tH)) = 1. Therefore, 1 2 � (�) implying that � (�) =

Sl (n� 1;R) beause Sl (n� 1;R) is onneted. Combining this fat together with

the de�nition of � we get the
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Lemma 8 For all h

0

2 Sl (n� 1;R) there exists a > 0 suh that

g

0

=

�

a 0

0 a

�1=n�1

h

0

�

2 � = (intS

inf

) \ P � intS

inf

(2)

Let us show now that there is a path linking the given g 2 intS

W

to S

inf

. We

an write

g =

�

� 0

0 h

�

=

�

� 0

0 (det h)

1=n�1

h

0

�

=

�

� 0

0 �

�1=n�1

h

0

�

where h

0

= (det h)

�1=n�1

h 2 Sl (n� 1;R). For this h

0

, the above lemma ensures the

existene of a > 0 suh that the orresponding g

0

as in (2) belongs to �. There are

the following possibilities:

1. � � a. Then e

(n�1)T

� = a for some T � 0. Hene if H is given by (1) then

exp (TH) g =

 

e

(n�1)T

� 0

0

�

e

(n�1)T

�

�

�1=n�1

h

0

!

:

Substituting in this equality e

(n�1)T

� = a we get from (2) that

exp (TH) g = g

0

2 S

inf

:

Sine exp (tH) g 2 intS

W

for all t � 0, the path t 7! exp (tH) g, t 2 [0; T ℄,

joins g to g

0

2 S

inf

, without leaving intS

W

.

2. � > a. In this ase we reverse the roles of g and g

0

to get T > 0 suh that

exp (TH) g

0

= g, providing the path t 7! exp (tH) g

0

, t 2 [0; T ℄, linking g

0

to g

inside intS

W

.

Therefore for arbitrary g 2 intS

W

there exists a path inside intS

W

joining g to

S

inf

onluding the proof of Theorem 1.

2.2 Proof of Lemma 7

We start with the following lemma whih holds for an arbitrary semigroup S on-

tained in Sl (n;R) and having nonempty interior.
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Lemma 9 Given h 2 intS let V � R

n

be an h-invariant subspae with dimV � 2

and suh that j�j is onstant as � runs through the eigenvalues of the restrition

�

h

of h to V . Then S is transitive on the rays of V . Preisely, let P

V

be the subgroup

P

V

= fh 2 Sl (n;R) : hV = V g:

Then � = S \ P

V

is a semigroup with nonempty interior in P

V

and for two rays r

1

and r

2

in V , starting at the origin, there exists h

0

2 � suh that h

0

r

1

= r

2

.

Proof: The �rst step in the proof onsists in projeting � to the group Sl (V ), of

unimodular linear maps of V . This need to be done only if V is a proper subspae.

In this ase the restrition of P

V

to V is the whole linear group Gl (V ), whih has

two onneted omponents, say Gl

�

(V ), with 1 2 Gl

+

(V ). Clearly h 2 � so that �

is a semigroup with nonempty interior in P

V

. Denote also by � its restrition to V .

It follows that �

+

= � \Gl

+

(V ) also has nonempty interior, beause Q

2

2 Gl

+

(V )

if Q 2 Gl (V ).

Consider the onto homomorphism  : Gl

+

(V )! Sl (V ) given by

Q 2 Gl

+

(V ) 7�! (detQ)

1=k

Q; k = dimV:

The image �

1

=  (�

+

) is a semigroup with nonempty interior in Sl (V ).

Now, the restrition

�

h of h to V belongs to int�. By assumption the eigenvalues

of

�

h are of the form

e

a

(os �

1

+ i sin �

1

) ; : : : ; e

a

(os �

s

+ i sin �

s

) ;

with �xed a. So that

�

h deomposes in Jordan bloks of the types

e

a

0

B

�

1 �

.

.

.

0 1

1

C

A

e

a

0

B

B

B

B

B

�

os �

j

� sin �

j

sin �

j

os �

j

�

.

.

.

0

os �

j

� sin �

j

sin �

j

os �

j

1

C

C

C

C

C

A

:

In ase �

j

= 2�q

j

, j = 1; : : : ; s, with q

j

rational, a quik glane at these bloks

show that some power of

�

h has real eigenvalues so that there exists h

1

2 int� whose

restrition

�

h

1

to V has the form

�

h

1

= �

0

B

�

1 �

.

.

.

0 1

1

C

A

(3)
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with � > 0. The existene of suh

�

h

1

, oming from the semigroup, an be ensured

without the restritive assumption that the eigenvalues of

�

h are rational multiples

of �. In fat, sine h 2 int�, there exists h

2

2 int� having the same blok struture

as h and suh that the arguments of the eigenvalues of the restrition of h

2

to V are

rational multiples of 2�. Thus we an argue with h

2

in plae of h to get the desired

element

�

h

1

like in (3).

Now,

 

�

�

h

1

�

=

0

B

�

1 �

.

.

.

1

1

C

A

:

This implies that �

1

= Sl (V ). In fat,  

�

�

h

1

�

2 int�

1

and  

�

�

h

1

�

an be approxi-

mated by a matrix of the form exp (X) with X having purely imaginary eigenvalues.

This permits to show that 1 2 int�

1

onluding that �

1

= Sl (V ) (see [6℄, Lemma

4.1, for details).

From �

1

= Sl (V ) and dimV � 2 it follows at one that �

1

is transitive on the

rays of V . The lemma is then a diret onsequene of the de�nition of  . 2

An appliation of the above lemma to g yields the

Corollary 10 Fix g 2 intS

W

. Let V � R

n

be a g-invariant subspae suh that j�j

is onstant as � runs through the eigenvalues of the restrition of g to V . Then

dimV = 1 if V \W 6= 0.

Proof: If V \W 6= 0 there exists a ray of V ontained inW . On the other hand the

lemma implies that S

W

is transitive on the rays of V if dimV � 2. Hene V � W

if dimV � 2 ontraditing the assumption that W is a pointed one. 2

In order to ontinue we put

� = maxfj�j : � is an eigenvalue of gg

for a �xed g 2 intS

W

. Let V

+

be the diret sum of the generalized eigenspaes V

�

=

ker (g � �)

n

, with j�j = �. Also, let V

�

be the sum of the remaining generalized

eigenspaes of g. We laim that V

+

\ W 6= f0g. To see this write for u 2 R

n

,

u = u

+

+ u

�

with u

�

2 V

�

. Then as k ! +1, (1=�)

k

g

k

u

�

onverges to zero.

Furthermore, the fat that the eigenvalues of g in V

+

have onstant modulus �,

implies that there exists a subsequene k

l

suh that lim(1=�)

k

l

g

k

l

u

+

= v, as l !

9



+1. This limit is not zero if u

+

6= 0. Thus when u

+

6= 0, (1=�)

k

l

g

k

l

u onverges

to v 2 V

+

. In partiular take u 2 W suh that u

+

6= 0. The existene of suh u

follows from the assumption that W is generating. Then 0 6= v 2 V

+

\W beause

(1=�)

k

l

g

k

l

u 2 W and W is losed, showing the laim.

By Corollary 10 we onlude that dimV

+

= 1. Hene there exists just one

eigenvalue, say �

max

, with j�

max

j = �, whih is by fore real. Furthermore the

eigenspae V

+

is ontained in W [ (�W ) and sine gW � W , it follows that

�

max

> 0.

Take an eigenvetor f

1

2 V

+

\W . Then �

max

f

1

= gf

1

2 intW by Lemma 6.

Hene f

1

2 intW . Therefore, the proof of Lemma 7 follows as soon as we show that

V

�

\W = f0g.

To hek that V

�

\W = f0g we note �rst that V

�

\ intW = f0g, sine otherwise

W would meet both half-spaes determined by the odimension one subspae V

�

.

But this would ontradit the fat that W is a pointed one. In fat, for v

1

and v

2

in di�erent sides of V

�

the ray de�ned by g

k

v

1

approahes, say, the ray spanned by

f

1

, as k ! +1, whereas the ray g

k

v

2

approahes the ray spanned by �f

1

. Sine

g

k

v, v 2 W , does not leave W , we would have �f

1

2 W . Finally,

g

�

V

�

\W

�

= gV

�

\ gW � V

�

\ (intW [ f0g)

beause gW � intW [f0g by Lemma 6. Hene g (V

�

\W ) = f0g so that V

�

\W =

f0g onluding the proof of Lemma 7.

3 Complements

This setion is devoted to the proof of some fats related to the main result. We

start with the

Proof of Corollary 2: Let T be a onneted semigroup with nonempty interior

ontaining S

W

properly. Note �rst that T is not ontained in S[W ℄. To see this

suppose to the ontrary that T � S[W ℄. Then Tx � W [ (�W ) for all x 2 W .

However, T is onneted so that if 0 6= x 2 W then Tx is ontained in a onneted

omponent of (W [ (�W )) n f0g, whih is by fore W beause Tx is onneted

and ontains x, as 1 2 T . Therefore, T � S

W

ontraditing the assumption on T .

Now, the proof that T = Sl (n;R) follows the same steps as the proof that S[W ℄ is

maximal (see [10℄, Theorem 6.12). We sketh it: By Proposition 4, any line outside

[W ℄ is spanned by an eigenvetor of some h 2 intS

W

. This implies that [W ℄ and

10



P

n�1

n [W ℄ are the two ontrol sets of S

W

in P

n�1

. Therefore S

W

is transitive in

int[W ℄ as well as in P

n�1

n [W ℄. Sine T is not ontained in S[W ℄, there exists g 2 T

suh that gx 2 P

n�1

n [W ℄ for some x 2 int[W ℄. Also for any y 2 P

n�1

there exists

g

1

2 S

W

with g

1

y 2 int[W ℄ (beause [W ℄ is the invariant ontrol set of S

W

in P

n�1

).

It follows that T ats transitively in P

n�1

. Thus T = Sl (n;R), by [10℄, Theorem

6.2. �

Now, we disuss the relation between S

W

and S[W ℄. By de�nition S[W ℄ =

S

W

[ S

jj

W

, where

S

jj

W

= fg 2 Sl (n;R) : gW � �Wg:

The following lemma shows that S

jj

W

is not empty.

Lemma 11 S

W

is properly ontained in S[W ℄.

Proof: We must show that there exists g 2 Sl (n;R) suh that gW � �W .

For this purpose take H = diagfn � 1;�1; : : : ;�1g with respet to a basis � =

ff

1

; : : : ; f

n

g satisfying the requirements of Proposition 4, namely f

1

2 intW and

spanff

2

; : : : ; f

n

g \ W = f0g. Sine Sl (n;R) ats transitively on R

n

, there exists

g

1

2 Sl (n;R) suh that g

1

f

1

= �f

1

. By ontinuity U = g

�1

1

(int (�W )) is a neigh-

borhood of f

1

. Now, by onstrution of H there exists a large enough t > 0 suh

that if h = exp tH then hW � U . Hene g

1

hW � �W so that g = g

1

h belongs to

S[W ℄ but not to S

W

. 2

Clearly, there are the inlusions S

W

S

jj

W

� S

jj

W

and

�

S

jj

W

�

2

� S

W

. The former

shows in partiular that S

jj

W

has nonempty interior. In ase n is even, �1 2 Sl (n;R),

hene �1 2 S

jj

W

for any W . Atually, �1 maps W exatly onto �W hene the

following statement implies that in even dimensions, S

jj

W

= �S

W

.

Proposition 12 Suppose that there exists k 2 Sl (n;R) satisfying kW = �W . Then

S

jj

W

= kS

W

= S

W

k.

Proof: Clearly, kS

W

and S

W

k are ontained in S

jj

W

. For the reverse inlusions note

that k

�1

W = �W . Pik g 2 S

jj

W

. Then gW � �W , so that gk

�1

W � W and

k

�1

gW � W , that is, gk

�1

and k

�1

g are in S

W

. 2

Under the assumption of this proposition it follows at one that S

jj

W

is onneted.

Sine the existene of k mappingW onto�W depends on the geometry of the spei�

W , we prove next that in general

11



Proposition 13 S

jj

W

is onneted. Hene S

W

and S

jj

W

are the onneted omponents

of S[W ℄.

Proof: Take g; h 2 S

jj

W

. Both gW and hW are pointed generating ones ontained

in �W . Take H and � like in Proposition 4 with the �rst element f

1

of � on-

tained in int (hW ). Like in that proposition H 2 L (S

W

) and for large enough t

0

,

exp (t

0

H) (�W ) � hW . In partiular,

exp (t

0

H) (gW ) � hW:

Hene h

�1

exp (t

0

H) g 2 S

W

, that is, exp (t

0

H) g 2 hS

W

. Sine S

W

is path on-

neted, this implies the existene of a path in S[W ℄ linking exp (t

0

H) g to h. How-

ever, H 2 L (S

W

), so that exp (t

0

H) g and g are in the same path omponent of S

jj

W

,

onluding the proof of that S

jj

W

is onneted. 2

In general S

inf

= hexp (L (S

W

))i is a proper subsemigroup of S

W

. As observed

by K.-H. Neeb (personal ommuniation) the inlusion S

inf

� S

W

is proper for the

semigroup Sl

+

(n;R) = S

W

of positive matries, where W is the orthant

W = O

+

(n) = f(x

1

; : : : ; x

n

) 2 R

n

: x

i

� 0g:

To see this note that in ase n � 3 the unit group of S

W

, H (S

W

) = S

W

\ S

�1

W

is

not onneted. In fat, it easy to hek that g must permutes the basi vetors if

g 2 H (S

W

) so that H (S

W

) = ��A where A is the group of diagonal matries with

positive entries and � is the group of permutation matries with det = 1. In ase

n � 3, � { and hene H (S

W

) { is not onneted. On the other hand, it is a general

fat that the unit group of an in�nitesimally generated semigroup like S

inf

must be

onneted (see [2℄, Theorem V.2.8).

Finally, we observe that Corollary 3 ompletely determines the maximal on-

neted semigroups of Sl (n;R) for n = 2; 3. In fat, for n = 2, any semigroup is

of the projetive type so that any maximal onneted semigroup is S

W

for some

pointed and generating one W � R

2

. It should be remarked here that for any suh

one W there exists g 2 Sl (2;R) suh that W = gO

+

(2). Sine S

gW

= gS

W

g

�1

, it

follows that up to onjugation Sl

+

(2;R) is the only maximal onneted semigroup

of Sl (2;R). For n = 3, there are two types of maximal semigroups, namely a semi-

group is of type P

2

or Gr

2

(3), the Grassmannian of two-dimensional subspaes of

R

3

. However, if a semigroup is of type Gr

2

(3) then its inverse S

�1

is of projetive

type (see [9℄, Proposition 6.3). Therefore there is the following haraterization of

the maximal onneted semigroups in Sl (3;R):

12



Proposition 14 A semigroup S � Sl (3;R), with intS 6= ;, is maximal onneted

if and only if there exists a pointed and generating one W � R

3

suh that either

S = S

W

or S = S

�1

W

.
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