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1. Introdu
tion

The mi
ropolar 
uid model is an essential generalization of the well-established

Navier{Stokes model in the sense that it takes into a

ount the mi
rostru
ture of

the 
uid. It may represent 
uids 
onsisting of randomly oriented (or spheri
al)

parti
les suspended in a vis
ous medium, when the deformation of 
uid parti
les is

ignored. Mi
ropolar 
uids were introdu
ed in [5℄. They are non{Newtonian 
uids

with nonsymmetri
 stress tensor.

The governing system of equations of mi
ropolar 
uids expresses the balan
e of

momentum, mass, and moment of momentum [5℄, [16℄, whi
h is the following:

v

t

� (� + �

r

)�v + (v � r)v +rp = 2�

r

rotw + f(1.1)

div v = 0(1.2)

w

t

� (


a

+ 


d

)�w � (


0

+ 


d

� 


a

)rdivw + (v � r) w + 4�

r

w = 2�

r

rotv + g(1.3)

where v = (v

1

; v

2

; v

3

) is the velo
ity �eld, p is the pressure, and w = (w

1

; w

2

; w

3

) is

the mi
rorotation �eld interpreted as the angular velo
ity �eld of rotation of parti-


les. The �elds f = (f

1

; f

2

; f

3

) and g = (g

1

; g

2

; g

3

) are external for
es and moments,

respe
tively. Positive 
onstants �; �

r

; 


0

; 


a

; 


d

represent vis
osity 
oeÆ
ients, � is the

usual Newtonian vis
osity and �

r

is 
alled the mi
rorotation vis
osity. It is assumed

that the density of the 
uid is equal to one.

Observe that if the mi
rorotation vis
osity �

r

equals zero then system (1.1), (1.2)

redu
es to the Navier{Stokes system and the velo
ity �eld is independent of the

mi
rorotation �eld. Thus, the size of the mi
rorotation vis
osity allows us to mea-

sure, in a 
ertain sense, the deviation of 
ows of mi
ropolar 
uids from that of the

Navier{Stokes model.

Several experiments show that solutions of the mi
ropolar 
uid model better de-

s
ribe behavior of numerous real 
uids (eg., blood, 
f., e.g., [23℄, [24℄, [19℄) then


orresponding solutions of the Navier{Stokes model, espe
ially, when the 
hara
ter-

isti
 dimensions of the 
ow (eg. the diameter of the 
hannel) be
ome small. It well

agrees with our expe
tations that the in
uen
e of the internal stru
ture of the 
uid

is the greater, the smaller the 
hara
teristi
 dimensions of the 
ow.



Stationary mi
ropolar 
uids with data in L

2

3

For 
ows in narrow �lms the mi
rostru
ture plays an important role as it usually

in
reases the load 
apa
ity and stabilizes the 
ow; 
f., e.g., [6℄, [26℄. In general, as

part of the momentum is lost in rotating of the parti
les, the 
ow of a mi
ropolar


uid is less prone to instability then that of a 
lassi
al 
uid. Stability problems for

mi
ropolar 
uids were studied, e.g., in [1℄, [11℄, [12℄ and [25℄, and 
ontrol problems

in [21℄.

In this paper we are interested in the system (1.1)-(1.3) in a stationary regime, i.e.

v

t

= w

t

= 0, in a bounded domain 
 with irregular boundary data on �
, i.e.

with boundary data that belong to L

2

(�
). The system (1.1)-(1.3) in a stationary

regime was studied by  Lukaszewi
z [17℄ in a bounded domain 
 with null Diri
hlet's

boundary 
onditions (see also [16℄), and in [4℄ in the 
ase of exterior domain. The


ase where the boundary data are not null but suÆ
iently regular, su
h that they


an be extended to the interior of the domain 
 a

ordingly with tra
e theorems,


an be treated in a similar way as in [16℄. (The 
ase of stationary Navier-Stokes

system with data in H

1=2

(�
) goes ba
k to the 
lassi
al method of Leray, see e.g.

[29℄, and with data in in W

1�1=q;q

(�), 3=2 < q < 2, was solved in [28℄.) However,

if they are not regular, for instan
e, if the boundary data are not the tra
es at the

boundary of 
 of some fun
tions in Sobolev spa
es on 
, then the problem is quite

more diÆ
ult. This problem for the Stokes equations was treated by Con
a [2℄,

where the 
on
ept of very weak solution was introdu
ed (see the Appendix A in [2℄

or [3℄). Then, more re
ently, Marusi�
-Paloka proved the existen
e of a very weak

solution for the stationary Navier-Stokes equations.

There are some physi
al motivations for 
onsidering 
uid equations with irregular

boundary data, e.g. in [2℄ it is 
onsidered the Stokes equations modeling a 
uid in

a domain 
ontaining a sieve and then it is shown that when the sieve be
omes �ner

and �ner the solution of the problem 
onverges to a solution of a Stokes problem

with boundary data only in L

2

. Other examples, for the stationary Navier-Stokes

equations with boundary data in some Sobolev spa
e W

1�1=q;q

, are pointed out

in [28℄, namely, the problem of a stationary 
uid in \domain with a 
avity", i.e.

the union of a semi-spa
e with a bounded domain (the \
avity"), and the Taylor
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problem, i.e. the problem of equilibrium of a 
uid between two 
o-
entered 
ylinders

with the external 
ylinder �xed and the internal one in a rotational motion about

its axis.

The main idea used by Con
a in [2℄ is the transposition method (see e.g. [15℄), whi
h

is very useful for linear equations. Marusi�
-Paloka [18℄ was able to extend Con
a's

result, �rst for small data by using a linearization of the Navier-Stokes equations

and an iterative argument (in fa
t, the Bana
h's �xed point theorem) based on

penalisation method and an estimate on the Oseen's problem solution, and then for

no small data assumption by splitting the data into a small irregular part and a

large regular part.

We 
ombine ideas from Con
a [2℄, Marusi�
-Paloka [18℄, and  Lukaszewi
z [17℄, to

obtain the existen
e of a very weak solution for the stationary mi
ropolar 
uid

equations. That is, �rst we use the transposition method for obtaining a solution to

the mi
rorotational �eld equation, whi
h depends on the velo
ity �eld v that lives

in L

3

(
). This mi
rorotational �eld solution obeys a good estimate with respe
t

to v, as we prove below, provided v is split into a small irregular part in L

3

(
)

and a regular part u

"

in H

1

(
) (see Lemma 3.1). To attain that, we needed to

prove a regularity result for a se
ond order linear strongly ellipti
 system with an

irregular 
oeeÆ
ient (see the proof of Lemma 3.1). Then taking the small part of

v as a solution for the Navier-Stokes equations, via Marusi�
-Paloka's theorem, we

prove the existen
e of u

"

using an appropriate Leray-Hopf extension of a smooth

approximation of the boundary value for v, and the Leray-S
hauder �xed point

theorem, following [17℄.

Besides the existen
e of solutions, we obtain a result of 
ontinuous dependen
e on

the boundary data for w and given external for
es, whi
h implies, in parti
ular,

uniqueness of solution.

The plan of the paper is as follows. In Se
tion 2. we introdu
e our main problem,

give the notations used throughout the paper and the de�nition of a very weak

solution. Then we state our main theorem and make some brief 
omments on the

relation between very weak and weak solutions. We end the Se
tion showing that
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the very weak solution has a \tra
e"on the boundary of the domain that 
oin
ides

with the boundary data and with the usual tra
e when the boundary are regular

and the very weak solution is a weak solution. Se
tion 3. deals with the system for

the mi
rorotational �eld w assuming that v is split into an appropriate sum, as

explained above. In Se
tion 4. we show a way of redu
ing the system for v to a new

system for an unknown u in the spa
e V of divergent free fun
tions in H

1

0

(
). That

is, v = u

"

+ v

"

, where v

"

is the small part of v in L

3

(
). This small part v

"

is a

very weak solution of the stationary Navier-Stokes system, whi
h exists due to the

Marusi�
-Paloka's theorem [18℄, with null external for
e and with a boundary data

very small in the norm of L

2

(�
), depending on a smooth approximation v

"

0

of v

0

.

The part u

"

is the \large"regular part of v in H

1

(
). It is equal to u +

f

v

"

0

, where

f

v

"

0

is an appropriate Leray-Hopf extension of v

"

0

to 
 whi
h is in V, and u is the

new unknown whi
h satis�es its own system shown in Se
tion 4.. This system for u

is a nonlinear one, where the nonlinearities 
ome from the term (u � r)u and from

w that depends on v. In Se
tion 5. we prove the existen
e of a solution u in V for

this system using the Leray-S
hauder �xed point theorem, with the help of a good


hoi
e of v

"

0

and

f

v

"

0

. Finally, in Se
tion 6 we prove the 
ontinuous dependen
e of

the very weak solution on the data f , g and w

0

.

2. The equations of stationary mi
ropolar


uids, notations, and de�nition of a very weak

solution

We begin this Se
tion wtih the presentation of the problem we study is this paper.

Then we give the notation used throughout the paper, the de�nition of a very weak

solution, and state our main theorem. We end it with a brief explanation on the

de�nition of a very weak solution, its relation with a weak solution and show that a

very weak solution attains the boundary data in a \tra
e"sense.

Let 
 be an open, bounded and 
onne
ted set in R

3

with a boundary of 
lass C

2

,
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whi
h we denote by �. We are interested in solving the following boundary value

problem.

Problem 2.1 Assume that v

0

2 L

2

(�) with

Z

�

v

0

� nds = 0, where n is the unit

outward normal on �, w

0

2 L

2

(�), f , g 2 L

2

(
), and prove existen
e of fun
tions

v 2 L

3

(
); w 2 L

2

(
) su
h that, together with some distribution p, satisfy in a

very weak sense

���v + (v � r)v +rp = arotw + f(2.1)

divv = 0(2.2)

���w + (v � r)w � �rdivw + 
w = arotv + g;(2.3)

in 
, with boundary data

vj

�

= v

0

(2.4)

wj

�

= w

0

:(2.5)

In (2.1)-(2.3) and hereafter, for short we write � = � + �

r

, a = 2�

r

, � = 


a

+ 


d

,

� = 


o

+ 


d

� 


a

, and 
 = 4�

r

(
f. Se
tion 1.).
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Notations: Throughout this paper we �x the following notations:

x : A generi
 point in 
 ( x = (x

1

; x

2

; x

3

) )

� : The boundary of 


n : The unit outward normal on �

W

k;p

: The Sobolev spa
e of order k modelled in L

p

(
;R

3

)

W

k;p

0

: The spa
e of fun
tion in W

k;p

whose derivatives up to the

order k � 1 have null tra
e in �

H

k

: W

k;2

H

k

0

: W

k;2

0

V : The 
losure in H

1

0

of the fun
tions in C

1

0

with null divergent

(( ; )) : The inner produ
t in V, given by

((u;v))

def

=

Z




ru:rv =

Z




�v

i

�x

j

�u

i

�x

j

;

u = (u

1

; u

2

; u

3

); v = (v

1

; v

2

; v

3

) 2 V; where here, and in what

follows, we use the notation of repeated indi
es, with summation

from 1 to 3.

�'

�n

: For ' 2 W

2;p

; ' = ('

1

; '

2

; '

3

); this notation stands for the Ja
obian

matrix r' times n; i.e.

�'

�n

def

= (r')n = ((r'

1

) � n; (r'

2

) � n; (r'

3

) � n) = (

�'

1

�n

;

�'

2

�n

;

�'

3

�n

)

jj jj : The norm asso
iated with (( )) in H

1

0

or V

jj jj

k;p

: The norm of W

k;p

jj jj

k

: The norm of H

k

( ; ) : The inner produt
 of L

2

j ; j : The norm of L

2

j ; j

p

: The norm of L

p

B( ; ; ) The trilinear form given by B(u;v;w)

def

= ( (u � r)v ; w )


 : A universal 
onstant, i.e. some positive 
onstant that

does not depend on the unknowns:
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De�nition 2.1 (Very weak solution) : Let v

0

2 L

2

(�) su
h that

Z

�

v

0

�nds = 0, w

0

2 L

2

(�), and f ; g 2 L

2

(
). A triple (v;w; p) in L

3

�L

2

�W

�1;3

is a very weak solution of Problem 2.1 if

(v;r�) =

Z

�

(v

0

� n)�ds(2.6)

for all � in W

1;3=2

,

��(v;�') � B(v; ';v)� (p; div')(2.7)

= a(w; rot') + (f ; ')� �

Z

�

v

0

�

�'

�n

ds

for all ' in W

2;3=2

\W

1;3=2

0

, and

��(w;� ) � B(v;  ;w)� �(w;rdiv ) + 
(w;  )(2.8)

= a(v; rot ) + (g;  )

��

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds

for all  in H

2

\H

1

0

.

The main goal of this paper is to prove the following theorems.

Theorem 2.1 (Existen
e) There exists a very weak solution of Problem 2.1 in

the sense of the above de�nition, provided the vis
osity � is larger than some 
onstant

depending only on 
 and on the parameters a, �, �, and 
.

Theorem 2.2 (Continuous dependen
e on f, g and w

0

, and uniqueness) Let

(v

i

;w

i

), i = 1; 2 be very weak solutions of Problem 2.1 
orresponding to the external

�elds f = f

i

, g = g

i

, and boundary data w

0i

, i = 1; 2, respe
tively. Then there exists

a 
onstant �

�

> 0 su
h that for all � � �

�

,

jv

1

� v

2

j

3

+ jw

1

�w

2

j � 
( jf

1

� f

2

j+ jg

1

� g

2

j + jw

0

1

�w

0

2

j );(2.9)

where the 
onstant 
 depends only on the data of the problem and on 
. In parti
ular,

for � � �

�

the problem is uniquely solvable.
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Remark 2..1 In view of our 
onstru
tion of the solution we are not able to prove

the 
ontinuous dependen
e of the solution on the boundary data v

0

.

A brief explanation of the de�nition of a very weak solution: The de�nition of

a very weak solution 
omes out naturally when we multiply the equations in (2.1)-

(2.3) by test fun
tions �, ',  , respe
tively, vanishing on the boundary �, formally

integrate by parts, and impose the boundary data (2.4), (2.5). Then it is easy

to 
he
k that the spa
es W

2;3=2

\W

1;3=2

0

, H

2

\ H

1

0

and W

1;3=2

are the appropriate

Sobolev spa
es to the test fun
tions ',  and �, respe
tively, in view of the 
onditions

v

0

2 L

2

(�) and w

0

2 L

2

(�). When v

0

and w

0

are regular, that is, v

0

;w

0

2 H

1=2

(�),

the 
on
epts of very weak solutions and weak solutions are equivalent.

Next, we show that a very weak solution (v;w) satis�es the boundary 
onditions

(2.4), (2.5) in the sense that v and w have whole \tra
es"on � whi
h are equal to

v

0

and w

0

, respe
tively. From (2.1) it is 
lassi
al that v has a normal tra
e on �,

whi
h we denote by 


n

(v), and




n

(v) = v

0

� n(2.10)

in W

�1=3;3

(�). Now, to obtain the tangent tra
e we 
onsider the spa
e (
f. [2℄ and

[18℄)

X

def

= f� 2 W

1=3;3=2

(�) : � � n = 0g

and de�ne the fun
tional 


t

(v) : X ! R by

< 


t

(v); � >

def

=

1

�

f�(v;�') + B(v; ';v) + (p; div') + a(w; rot') + (f ; ')g ;(2.11)

where for a given � 2 X, ' is any fun
tion in W

2;3=2

\W

1;3=2

0

su
h that

�'

�n

j

�

= �.

This map is well de�ned sin
e v satis�es (2.7), and so

< 


t

(v); � >=

Z

�

v

0

�

�'

�n

ds =

Z

�

v

0

� �ds =

Z

�

v

t

0

� �ds;

for all � 2 X, where v

0

t

def

= v

0

� (v

0

� n)n. From this equality we see that




t

(v) = v

0

t

(2.12)
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regarding 


t

(v), v

0

t

as elements in X

0

{the dual spa
e of X. From (2.10) and (2.12)

we 
an 
on
lude that v admits a \tra
e"on � whi
h 
oin
ides with v

0

.

Using equation (2.8) we get a similar notion of tra
e for w on �. For this 
ase

it is 
onvenient to write the boundary term �

Z

�

w

0

�

� 

�n

ds+ �

Z

�

(w

0

� n)div ds in

the following way:

�

Z

�

w

0

�

� 

�n

ds+ �

Z

�

(w

0

� n)div ds(2.13)

=

Z

�

[�w

t

0

�

� 

�n

+ (w

0

� n)(�n �

� 

�n

+ � div )℄ds

=

Z

�

[�w

t

0

�

� 

�n

+ (�+ �)(w

0

� n) div )℄ds;

where w

t

0

def

= w

0

� (w

0

� n)n. We have used the fa
t that n �

� 

�n

j

�

= div j

�

for all

 in H

2

\H

1

0

. Now, we 
onsider the spa
es

Y

def

= fg n : g 2 H

1=2

(�;R)g and Z

def

= f� 2 H

1=2

(�;R

3

) ; � � n = 0g;

and de�ne the fun
tionals 


n

(w) : Y ! R, 


t

(w) : Z ! R, respe
tively, by

(�+�) < 


n

(w); gn >

def

= �(w;� )+B(v;  ;w)+�(w;r div )+
(w;  )+a(v; rot )+(g;  );

� < 


t

(w); � >

def

= �(w;� )+B(v;  ;w)+�(w;r div )+
(w;  )+a(v; rot )+(g;  );

where in the �rst 
ase,  is any fun
tion in H

2

\H

1

0

su
h that

� 

�n

j

�

= g n, and in

the se
ond 
ase,  is any fun
tion in H

2

\H

1

0

su
h that

� 

�n

j

�

= �. Sin
e w satis�es

(2.8) and we have (2.13), it follows that

(� + �) < 


n

(w); g n > =

Z

�

[�w

t

0

� (g n) + (� + �)(w

0

� n)n �

� 

�n

)℄ds

=

Z

�

(� + �)(w

0

� n)n � (g n)ds

for all g n 2 Y . Then




n

(w) = (w

0

� n)n;

as elements in Y

0

. Similarly, we have




t

(w) = w

t

0

in Z

0

. Therefore, w also has a \tra
e"on � whi
h 
oin
ides with w

0

.
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3. Problem in w

In this se
tion we study the following problem in w:

Problem 3.1 Given w

0

2 L

2

(�) and v 2 L

3

with divv = 0 (see Remark 3..1

below) and su
h that v = u

"

+v

"

where u

"

2 H

1

and v

"

2 L

3

with jv

"

j

3

suÆ
iently

small, �nd w 2 L

2

su
h that (2.8) is satis�ed, i.e.

��(w;� ) � B(v;  ;w)� �(w;rdiv ) + 
(w;  )(3.1)

= a(v; rot ) + (g;  )

��

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds

for all  in H

1

0

\H

2

.

Remark 3..1 Above, the 
ondition div v = 0 is understood in the weak sense, i.e.

(v;r�) = 0 for all � 2 W

1;3=2

0

. As a 
onsequen
e of this 
ondition we have that the

bilinear form

B(�;  )

def

= �(r�;  )� B(v;  ; �) + �( div �; div ) + 
(�;  );(3.2)

whi
h is asso
iated with the left hand side of (3.1), is strongly ellipti
, i.e. it is

bilinear 
ontinuous and 
oer
ive. Indeed,

B(v; �; �) = �

1

2

(v;r(j�j

2

)) = 0;(3.3)

for all � 2 H

1

0

, sin
e div v = 0 and H

1

0

� W

1;3=2

0

.

Lemma 3.1 There exists a unique solution of Problem 3.1. Moreover, the following

estimate holds:

jwj � 
(1 + jju

"

jj

1

);(3.4)

where 
 is independent of v.

Proof: We use the transposition method [15℄. Let

L( )

def

= ��� � (v � r) � �rdiv + 
 ;(3.5)
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the adjoint operator asso
iated with the left hand side of (3.1). Given h 2 L

2

, let  

be the unique weak solution in H

1

0

of the adjoint equation L( ) = h, i.e.

B(�;  ) = (h; �)(3.6)

for all � 2 H

1

0

. Existen
e and uniqueness of su
h solution  in H

1

0

easily follows

from Lax-Milgram's lemma, sin
e divv = 0 (
f. Remark 3..1 above). Besides, we


an easily get the estimates

jj jj � �

�1

jhj; j j � 


�1

jhj(3.7)

by taking � =  in (3.6).

Next we prove higher regularity of the solution of (3.6), i.e. we show that  2 H

2

.

Moreover, we obtain the following estimate:

jj jj

2

� 
(1 + jju

"

jj

2

1

)jhj;(3.8)

where 
 is independent of v. Although the operator L (de�ned in (3.5)) is strongly

ellipti
, this not follows straightforward from known results for ellipti
 systems be-


ause the operator L 
ontains an irregular 
oeÆ
ient for the derivatives of the �rst

order, namely, v is in L

3

, and we do not assume it is bounded, i.e. in L

1

(
). We do

not know if  2 H

2

or if (3.8) holds true for a general v in L

3

. In our 
ase we gain

that result due to the spe
ial form of v that is de
omposed as a sum of a \regular

part"u

"

in H

1

and a small part v

"

in L

3

. In Se
tion 4. we obtain the very weak

solution of Problem 2.1 with v in L

3

by writing v as a su
h de
omposition.

To attain our purpose of showing that  is in H

2

and to show that we have the

estimate (3.8) we �rst regularize v by making the 
onvolution of it with a smooth

family of molli�ers f�

�

g; � > 0. Then writing v

�

def

= v��

�

= u

"

��

�

+v

"

��

�

� u

"

�

+v

"

�

we let  

�

be the solution in H

1

0

of the following regularization of system L( ) = h:

��� 

�

� �rdiv 

�

+ 
 

�

= F

�

;(3.9)

where

F

�

def

= h + (v

�

� r) 

�

= h+ (u

"

�

� r) 

�

+ (v

"

�

� r) 

�

:
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Sin
e u

"

�

;v

"

�

2 C

1

(
) and r 

�

2 L

2

, we have that F

�

2 L

2

, thus by Ne�
as result

on strongly ellipti
 systems (Theorem 5 in [20℄) we obtain

jj 

�

jj

2

� 
jF

�

j;(3.10)

where 
 is independent of v

�

. But

j(u

"

�

� r) 

�

j � ju

"

�

j

6

jr j

3

� 
jju

"

�

jj

1

jr 

�

j

3

� 
jju

"

�

jj

1

jj 

�

jj

1=2

jj 

�

jj

1=2

2

�




2

4�

jju

"

�

jj

2

1

jj 

�

jj+ �jj 

�

jj

2

�




2

4�

jju

"

jj

2

1

jj 

�

jj+ �jj 

�

jj

2

;

(3.11)

for any � > 0. (On the se
ond inequality above we used the Gagliardo-Nirenberg

(see e.g. [8℄) inequality

jjujj

W

k;p � 
jjujj

�

W

m;q

juj

1��

r

with k = 1, p = n = 3, m = q = 2; � = 1=2 and r = 6.) Besides,

j(v

"

�

� r) 

�

j � jv

"

�

j

3

jr 

�

j

6

� �
jj 

�

jj

2

� jv

"

j

3

jr 

�

j

6

� �
jj 

�

jj

2

;

(3.12)

if jv

"

j

3

� �. Then, using (3.11) and (3.12) in (3.10) with an appropriate �, we

obtain

jj 

�

jj

2

� 
(jhj+ jju

"

jj

2

1

jj 

�

jj):

As

jj 

�

jj � 
jhj;

we arrive at (3.8) with  

�

in pla
e of  . Then we pass to the limit for a subsequen
e of

f�g and get (3.8). Here we used Bana
h-Alaoglu's theorem in H

2

and the uniqueness

of solution of (3.6) in H

1

0

.

Now we 
onsider the map that takes h in L

2

into the unique solution  of (3.6)

whi
h is in H

2

. Sin
e we have (3.8) and the equation (3.6) is linear, this is a


ontinuous linear map from L

2

into H

2

. Then the expression

l(h)

def

= a(v; rot ) + (g;  )� �

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds
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(given by the right hand side of (3.1)) de�nes a 
ontinuous linear fun
tional in h

a
ting on L

2

. Writing (3.1) in the form

(w; h) = l(h)(3.13)

for all h 2 L

2

, we 
on
lude dire
tly from the Riesz representation theorem that

there exists a unique w in L

2

su
h that (3.13) holds. This prove the existen
e and

uniqueness part of the Lemma.

Next we pro
eed to get the estimate (3.4). Setting h = w in (3.13) we get

jwj

2

= l(w)

= a(v; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n)div ds;

(3.14)

where L( ) = w, that is,  2 H

1

0

\H

2

and

��� � (v � r) � �rdiv + 
 = w:(3.15)

We shall show that the right hand side of (3.14) 
an be estimated by 
(1 +

jju

"

jj

1

)jwj, where 
 is independent of v.

Multiplying (3.15) by  and integrating in 
 we obtain, in parti
ular

�jj jj

2

+ 
j j

2

� (w;  ) �

1

2


jwj

2

+




2

j j

2

;

when
e

jj jj �

1

p

2�


jwj and j j �

1




jwj:(3.16)

The diÆ
ult term in (3.14) is

Z

�

w

0

� 

�n

ds. To estimate it we need to use the fa
t

that

jzj

L

2

(�)

� 
(jrzj

1=2

jzj

1=2

+ jzj)(3.17)

for any z in H

1

(
). This estimate 
an be inferred from

jzj

L

2

(�)

� 
jrzj

1=2

jzj

1=2

for all z 2 H

1

(
) with null average in 
 (see e.g. [10℄, p.50) by applying it to z

minus its average in 
.
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Now we 
an estimate the terms on the right hand side of (3.14) in terms of w.

Using (3.16), (3.17) with z = r , and (3.8), we have:

a(v; rot ) � ajvjjj jj �

a

p

2�


jvj jwj � 
(1 + jju

"

jj

1

)jwj;

(g;  ) � jgjj j �

1




jgjjwj � 
(1 + jju

"

jj

1

)jwj;

�

Z

�

w

0

� 

�n

ds � �jw

0

j

L

2

(�)

jr j

L

2

(�)

� �jw

0

j

L

2

(�)


(jj jj

1=2

2

jj jj

1=2

+ jj jj)

� �
jw

0

j

L

2

(�)

�

(1 + jju

"

jj

2

1

)

1=2

jwj

1=2

jwj

1=2

+ jwj

�

� 
(1 + jju

"

jj

1

)jwj

and

�

Z

�

(w

0

� n)div ds � 
�jw

0

j

L

2

(�)

jwj � 
(1 + jju

"

jj

1

)jwj:

In 
on
lusion, (3.14) together with the above estimates gives (3.4).

We �nish this Se
tion with the following Lemma whi
h will be used in the end

of the proof of Lemma 5.2.

Lemma 3.2 Let (u

"

n

) be a bounded sequen
e in H

1

, v

n

def

= u

"

n

+ v

"

, and w

n

the

unique solution of Problem 3.1 with v = v

n

. Then there exists a subsequen
e (w

n

k

)

that is strongly 
onvergent in L

2

.

Proof: From inequality (3.4) we 
on
lude that the sequen
e (w

n

) is bounded in

L

2

. Thus, there exists a subsequen
e (w

n

k

) that is weakly 
onvergent in L

2

. From

(3.14) written for w

n

k

and w

n

l

, we get

jw

n

k

j

2

� jw

n

l

j

2

= a(v

n

k

� v

n

l

; rot 

n

k

) + a(v

n

k

; rot ( 

n

k

�  

n

l

))(3.18)

+(g;  

n

k

�  

k

l

)

��

Z

�

w

0

�( 

n

l

�  

n

k

)

�n

ds� �

Z

�

(w

0

� n) div ( 

n

l

�  

n

k

)ds;

where L( 

n

k

) = w

n

k

and L( 

n

l

) = w

n

l

.
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From the boundedness of (w

n

) in L

2

and inequality (3.8) it follows that the

sequen
e ( 

n

k

) is bounded in H

2

. From the 
ompa
t embedding H

1

,!,! L

3=2

we


on
lude the existen
e of a subsequen
e ( 

n

k

m

), m = 1; 2; : : :, su
h that (r 

n

k

m

)


onverges strongly in L

3=2

. Sin
e H

2

,! H

3=2

(�) ,!,! H

1

(�), we 
an assume also

that jr( 

n

k

m

�  

nk

i

)j

L

2

(�)


onverges to zero as m; i go to in�nity. Taking that into

a

ount, we 
an see easily from (3.18) that

jw

n

k

m

j

2

� jw

n

k

i

j

2

! 0;

as m; i go to in�nity. This, together with the weak 
onvergen
e of (w

n

k

m

) in L

2

gives the strong 
onvergen
e of (w

n

k

m

) in L

2

.

4. Problem in v and a related problem

Assume that w 2 L

2

is given and 
onsider the problem (2.6), (2.7) in v. We want to

get rid of the pressure (it 
an be re
overed when needed from De Rham's Lemma)

and to this end we take test fun
tions that are divergent free. Then the problem

(2.6), (2.7) redu
es to the following one.

Problem 4.1 Given w 2 L

2

, v

0

2 L

2

(�) and f 2 L

2

, �nd v 2 L

3

su
h that

(v;r�) =

Z

�

(v

0

� n)�ds(4.1)

for all � in W

1;3=2

, and

��(v;�')� B(v; ';v) = a(w; rot') + (f ; ')� �

Z

�

v

0

�

�'

�n

ds(4.2)

for all ' in W

2;3=2

\W

1;3=2

0

with div' = 0.

Now, we introdu
e a problem that is related to Problem 4.1. Assume that v is

a solution of Problem 4.1 and that we 
an write v in the form

v = u

"

+ v

"

(" > 0)(4.3)

where u

"

is a \large regular part": u

"

2 H

1

, divu

"

= 0, u

"

j

�

= v

"

0

(v

"

0

is a smooth

approximation of v

0

in L

2

(�) su
h that jv

0

� v

"

0

j

L

2

(�)

<< 1) and v

"

is a \small
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regular part": v

"

2 L

3

and is very weak solution of the problem (
f. Lemma 4.2

below):

8

>

>

>

<

>

>

>

:

���v

"

+ (v

"

� r)v

"

+rp

"

= 0 in 


divv

"

= 0 in 


v

"

j

�

= v

0

� v

"

0

:

(4.4)

A

ording to the de�nition of a very weak solution, we have, in parti
ular,

��(v

"

;�')� B(v

"

; ';v

"

) = ��

Z

�

(v

0

� v

"

0

)

�'

�n

ds(4.5)

for all ' 2 W

2;3=2

\W

1;3=2

0

with div' = 0. From (4.2), (4.3) and (4.5) it follows

that

��(u

"

;�') = B(u

"

; ';v) + B(v

"

; ';u

"

) + a(w; rot') + (f ; ')� �

Z

�

v

"

0

�'

�n

ds:

Observe that v

"

0

is smooth and that u

"

belongs to H

1

. We 
an integrate by parts

on the left hand side of this equation to get

�((u

"

; ')) = B(u

"

; ';v) + B(v

"

; ';u

"

) + a(w; rot') + (f ; '):(4.6)

Now we write u

"

in the form

u

"

=

f

v

"

0

+ u;(4.7)

where

f

v

"

0

is a suitable Leray-Hopf extension of v

"

0

to 
 (
f. Lemma 4.1 below), and

u 2 V. From (4.6) and (4.7) we 
an derive the equation for u. We also write

v = u

"

+ v

"

=

f

v

"

0

+ u + v

"

= u + V

"

;(4.8)

where V

"

def

=

f

v

"

0

+ v

"

. We observe that V

"

belongs to L

3

and V

"

j

�

= v

0

. Applying

(4.7) and (4.8) to (4.6) we obtain

� ((u; ')) = B(u; ';u) + B(V

"

; ';u) + B(u; '; V

"

) + a(w; rot')

+(f ; ')� �((

f

v

"

0

; ')) + B(

f

v

"

0

; '; V

"

) + B(v

"

; ';

f

v

"

0

):

Denote

L(u; ')

def

= B(V

"

; ';u) + B(u; '; V

"

); V

"

def

=

f

v

"

0

+ v

"

(4.9)
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and

< F ; ' >

def

= (f ; ')� �((

f

v

"

0

; ')) + B(

f

v

"

0

; ')) + B(

f

v

"

0

; '; V

"

) + B(v

"

; ';

f

v

"

0

):(4.10)

Then

�((u; ')) = B(u; ';u) + L(u; ') + a(w; rot')+ < F ; ' >(4.11)

for all ' 2 W

2;3=2

\W

1;3=2

0

with div' = 0. If u is a solution of problem (4.11) then

it is also a variational solution, that is,

�((u; ')) = B(u; ';u) + L(u; ') + a(w; rot')+ < F ; ' >(4.12)

for all ' 2 V, as from (4.9), (4.10) we 
an see that L(u; '), < F ; ' >, and B(u; ';u)

are 
ontinuous in ' with respe
t to the H

1

topology.

Let us assume now that u 2 V is a solution of (4.12). From the above 
onsid-

erations it follows then that v = u + V

"

, V

"

=

f

v

"

0

+ v

"

, is a very weak solution of

Problem 4.1.

In the next se
tion we prove existen
e of a very weak solution of Problem 2.1,

where the velo
ity �eld is of the form v = u + V

"

= u

"

+ u, with u 2 V, and with

V

"

def

=

f

v

"

0

+v

"

, u

"

def

= u+

f

v

"

0

, suitably 
onstru
ted on the basis of the boundary data

v

0

2 L

2

.

For the just mentioned 
onstru
tion we use the following Lemmas.

Lemma 4.1 (Leray-Hopf extension) Let 
 be an open 
onne
ted and bounded

set in R

3

of 
lass C

2

and z

0

2 H

1=2

(�) with

Z

�

z

0

� nds = 0. Then for every � > 0

there exists a fun
tion

f

z

0

su
h that

f

z

0

2 H

1

(
); div

f

z

0

= 0 in 
;

f

z

0

= z

0

on �;

and

jB(u;

f

z

0

;u)j � �jjujj

2

for all u 2 V.

Proof: See [29℄,Chapter II, x1.4 and Appendix 1.
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Lemma 4.2 (Marusi�
-Paloka) Let 
 � R

3

be a bounded domain in R

3

with a

boundary � of 
lass C

2

. Consider the following boundary value problem for the

Navier-Stokes equations with data g in L

2

(�) satisfying

Z

�

g � nds = 0:

8

>

>

>

<

>

>

>

:

���z + (z � r)z +rp = 0 in 


div z = 0 in 


z = g on �:

If jgj

L

2

(�)

is suÆ
iently small then there exists a unique very weak solution z in L

3

of the above problem. Furthermore, there is a 
onstant 


1

depending only on � su
h

that

jzj

3

<




1

�jgj

L

2

(�)

�� 


1

jgj

L

2

(�)

:(4.13)

Proof: See Theorem 4 in [18℄.

5. Existen
e theorem

At the beginning of this Se
tion we shall show how to 
onstru
t a map A : V ! V

whose �xed point gives a very weak solution of Problem 2.1 in the sense of De�nition

2.1. Then we prove two lemmas whi
h yield the proof of Theorem 2.1.

We start with v

0

2 L

2

(�){the irregular boundary 
ondition. We take a smooth

approximation v

"

0

of v

0

in L

2

(�) su
h that jv

0

�v

"

0

j

L

2

(�)

is small enough with respe
t

to �, and let v

"

to be a very weak solution of (4.4) (
f. Lemma 4.2); we take

jv

0

� v

"

0

j

L

2

(�)

so small that the Problem 3.1 has a solution for ea
h u

"

in H

1

and

that the last inequality in (5.4) below holds true. Then we 
onstru
t the Leray-Hopf

extension

f

v

"

0

of v

"

0

satisfying

B(u;

f

v

"

0

;u) �

�

2

jjujj

2

(5.1)

for all u 2 V (
f. Lemma 4.1).
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Now, for u 2 V, we de�ne v = u+

f

v

"

0

+ v

"

= u

"

+ v

"

, u

"

def

= u+

f

v

"

0

, and for this

v we solve Problem 3.1 in w. Having w{the unique solution of Problem 3.1, we 
an

de�ne A(u) 2 V by the relation

E(A(u); ') = a(w; rot')+ < F ; ' > +B(u; ';u)(5.2)

for all ' 2 V, where E(u; ')

def

= �((u; '))�L(u; ') (L de�ned in (4.9)) is 
ontinuous

and 
oer
ive under our assumptions. For ea
h w 2 L

2

and u 2 V the right hand

side of (5.2) de�nes a linear and bounded fun
tional in ' on V. Thus, by the

Lax-Milgram lemma, the map A is well de�ned.

Observe that ea
h �xed point u of the mapA de�nes a pair (v;w) = (u

"

+V

"

;w),

V

"

def

=

f

v

"

0

+ v

"

, whi
h is a very weak solution of Problem 2.1; (v;w) satis�es (4.1),

(4.2) and (3.1). Using the De Rham lemma we show then that there exists a p 2

W

�1;3

su
h that the triple (v;w; p) satis�es all 
onditions in De�nition 2.1.

For � big enough, we 
an prove that the operator A is 
ompletely 
ontinuous

and that all u 2 V su
h that for some � 2 [0; 1℄ it is u = �Au are 
ontained in a ball

jjujj � M . The existen
e of a �xed point of A follows then from the Leray-S
hauder

�xed point theorem.

Lemma 5.1 If � is suÆ
iently large then there exists a 
onstant M > 0 su
h that

for all u 2 V satisfying the equation u = �Au for some � 2 [0; 1℄ we have jjujj �M .

Proof: If � = 0 then u = 0. Now, if 0 < � � 1 then setting Au =

1

�

u in (5.2) with

' = u, we obtain

�jjujj

2

� L(u;u) = �fa(w; rotu)+ < F ;u >g:(5.3)

By the de�nition of L (see (4.9)) together with the fa
t that div V

"

= 0 and

V

"

=

f

v

"

0

+v

"

, and by the estimates (5.1) and (4.13) in Lemma 4.2 with g = v

0

�v

"

0
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(
f. problem (4.4)) we have

jL(u;u)j = jB(u;u; V

"

)j = B(u;u;

f

v

"

0

) + B(u;u;v

"

)j

= j � B(u;

f

v

"

0

;u) + B(u;u;v

"

)j

�

�

2

jjujj

2

+ 
jv

"

j

3

jjujj

2

� (

�

2

+ 





1

�jv

"

0

�v

0

j

L

2

(�)

��


1

jv

"

0

�v

0

j

L

2

(�)

)jjujj

2

�

�

4

jjujj

2

;

(5.4)

for jv

"

0

� v

0

j

L

2

(�)

suÆ
iently small with respe
t to �.

Also, by (3.4),

a(w; rotu) � ajwjjjujj � 
(1 + jju

"

jj

1

)jjujj

� 
(1 + jjujj

1

+ jj

f

v

"

0

jj

1

)jjujj � 
(1 + jjujj+ jj

f

v

"

0

jj

1

)jjujj

� 
jjujj

2

+ 


0

jjujj �

�

4

jjujj

2

+ 


0

jjujj

(5.5)

for � large enough, and, by the de�nition of F (see (4.10)),

< F ;u >= (f ;u)� �((

f

v

"

0

;u)) + B(

f

v

"

0

;u; V

"

) + B(v

"

;u;

f

v

"

0

) � 
jjujj:(5.6)

From (5.3), together with (5.4){(5.6), we obtain the desired result.

Lemma 5.2 The operator A is 
ompletely 
ontinuous.

Proof: Let (u

n

) be a bounded sequen
e in V. We shall show that then (Au

n

k

) is a

Cau
hy sequen
e in V (for a subsequen
e (n

k

)). Let

E(Au

m

; ') = a(w

m

; rot')+ < F ; ' > +B(u

m

; ';u

m

)(5.7)

E(Au

n

; ') = a(w

n

; rot')+ < F ; ' > +B(u

n

; ';u

n

)(5.8)

for all ' 2 V, where

(w

m

;��� + (v

m

� r) � �r div + 
 )(5.9)

= a(v

m

; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n) div ds
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(w

n

;��� + (v

n

� r) � �r div + 
 )(5.10)

= a(v

n

; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n) div ds;

v

m

= u

m

+ V

"

; v

n

= u

n

+ V

"

; V

"

def

=

f

v

"

0

+ v

"

:

Taking the di�eren
e of (5.7) and (5.8) we obtain

E(Au

m

�Au

n

; ') = a(w

m

�w

n

; rot')

+B(u

m

� u

n

; ';u

n

) + B(u

m

; ';u

m

� u

n

):

(5.11)

Set ' = Au

m

�Au

n

and we have

3

4

�jjAu

m

�Au

n

jj

2

� ajw

m

�w

n

j jjAu

m

�Au

n

jj

+
(jju

m

jj+ jju

n

jj)jjAu

m

�Au

n

jj ju

m

� u

n

j

3

;

where for obtaining the left hand side we used E(u; ')

def

= �((u; '))� L(u; ') and

the estimate for L(u;u) in (5.4). Thus

3

4

�jjAu

m

�Au

n

jj � ajw

m

�w

n

j

+
(jju

m

jj+ jju

n

jj)ju

m

� u

n

j

3

:

(5.12)

Now, as (u

m

) is a bounded sequen
e in V, there exists a subsequen
e (we denote

it also by (u

n

)) that is 
onvergent is L

3

. Moreover, in view of Lemma 3.1, (w

m

)


onverges in L

2

. Thus, by (5.12), (Au

n

) is a Cau
hy sequen
e in V. In 
onsequen
e,

the operator A is 
ompa
t.

Observe that from inequality (5.12) the 
ontinuity of A in V immediately follows.

6. Continuous dependen
e on the data

f, g and w

0

In this se
tion we prove Theorem 2.2. Let

�((u

i

; �)) = B(u

i

; �;u) + L(u

i

; �) + a(w

i

; rot�)+ < F

i

; � >(6.1)
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where

L(u

i

; �)

def

= B(V

"

; �;u

i

) + B(u

i

; �; V

"

); V

"

def

=

f

v

"

0

+ v

"

(6.2)

and

< F

i

; � >

def

= (f

i

; �)� �((

f

v

"

0

; �)) + B(

f

v

"

0

; �)) + B(

f

v

"

0

; �; V

"

) + B(v

"

; �;

f

v

"

0

):(6.3)

for i = 1; 2 and � 2 H

1

0

. We re
all that v

"

is the very weak solution of (4.4) with

v

"

j

�

= v

0

� v

"

0

, where v

"

0

is a smooth approximation of v

0

su
h that divv

"

0

= 0,

and jv

0

� v

"

0

j

3

is very small with respe
t to � (
f. (5.4)), and

f

v

"

0

is a Leray-Hopf

extension of v

"

0

satisfying (5.1).

From (5.4) we have

L(u

1

� u

2

;u

1

� u

2

) �

�

4

jju

1

� u

2

jj

2

:(6.4)

Then, writing (6.1) for i = 1; 2, taking the di�eren
e and setting � = u

1

� u

2

, we

obtain

3

4

�jju

1

� u

2

jj

2

� B(u

1

� u

2

;u

1

� u

2

;u

2

) + a(w

1

�w

2

; rot (u

1

� u

2

) ) + (f

1

� f

2

;u

1

� u

2

)

� 
jju

2

jj jju

1

� u

2

jj

2

+ ajw

1

�w

2

j jju

1

� u

2

jj+ 
jf

1

� f

2

j jju

1

� u

2

jj;

when
e

3

4

�jju

1

� u

2

jj � 
jju

2

jj jju

1

� u

2

jj+ ajw

1

�w

2

j+ 
jf

1

� f

2

j:

From Lemma 5.1 we have that jju

2

jj � M , where M is a 
onstant that does not

in
rease with �, thus for � large enough su
h that 
jju

2

jj � �=4, we obtain

�

2

jju

1

� u

2

jj � ajw

1

�w

2

j+ 
jf

1

� f

2

j:(6.5)

Now, we use equation (3.13). Assume at �rst that w

0

1

= w

0

2

. Then from (3.13)

written for w = w

1

and w = w

2

we have

(w

1

; h

1

) = a(v

1

; rot 

1

) + (g

1

;  

1

)� �

Z

�

w

0

� 

1

�n

ds� �

Z

�

(w

0

� n) div 

1

ds(6.6)

and

(w

2

; h

2

) = a(v

2

; rot 

2

) + (g

2

;  

2

)� �

Z

�

w

0

� 

2

�n

ds� �

Z

�

(w

0

� n) div 

2

ds;(6.7)
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where

h

1

= L

v

1

( 

1

) and h

2

= L

v

2

( 

2

);

for

L

v

def

= ��� � (v � r) � �r div + 
 :

Taking the test fun
tions  

1

and  

2

in (6.6) and (6.7), respe
tively, su
h that

L

v

1

( 

1

) = L

v

2

( 

2

) = w

1

�w

2

and subtra
ting (6.7) from (6.6) we obtain

jw

1

�w

2

j

2

= a(v

1

� v

2

; rot 

2

) + a(v

1

; rot ( 

1

�  

2

))

+(g

1

� g

2

;  

2

) + (g

1

;  

1

�  

2

)

�

Z

�

w

0

�

�n

( 

1

�  

2

)ds+ �

Z

�

(w

0

� n) div ( 

1

�  

2

)ds:

(6.8)

Now, we estimate the terms on the right hand side of (6.8). The �rst term is easily

estimated:

a(v

1

� v

2

; rot 

2

) = a(u

1

� u

2

; rot 

2

) = a( rot (u

1

� u

2

);  

2

)

� ajju

1

� u

2

jj j 

2

j

�

a




jju

1

� u

2

jj jw

1

�w

2

j;

(6.9)

where we used (3.7).

The se
ond term 
an be estimated as follows:

a(v

1

; rot ( 

1

�  

2

)) � ajv

1

j jj 

1

�  

2

jj:(6.10)

We have

��� 

1

+ (v

1

� r) 

1

� �r div 

1

+ 
 

1

= w

1

�w

2

and

��� 

2

+ (v

2

� r) 

2

� �r div 

2

+ 
 

1

= w

1

�w

2

;

then taking the di�eren
e, we get

���( 

1

�  

2

) +(v

1

� r)( 

1

�  

2

)� �r div ( 

1

�  

2

) + 
( 

1

�  

2

)

= �((v

1

� v

2

)) � r) 

2

= �((u

1

� u

2

) � r) 

2

:

(6.11)

Multiplying by  

1

�  

2

and integrating in 
 we obtain, in parti
ular,

jj 

1

�  

2

jj � 
jju

1

� u

2

jj jj 

2

jj;
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so, using again (3.7), it follows that

jj 

1

�  

2

jj � 
jju

1

� u

2

jj jw

1

�w

2

j:

Using this estimate in (6.10) we obtain

ja(v

1

; rot ( 

1

�  

2

)j � 
jv

1

j jju

1

� u

2

jj jw

1

�w

2

j:(6.12)

Next, we have

(g

1

� g

2

;  

2

) � jg

1

� g

2

j


�1

jw

1

�w

2

j(6.13)

and

(g

1

;  

1

�  

2

) � jg

1

j j 

1

�  

2

j

� 
jg

1

j jj 

1

�  

2

jj

� 
jg

1

j jju

1

� u

2

jj jw

1

�w

2

j:

(6.14)

The boundary integrals give, by (6.11) and (3.8),

�

Z

�

w

0

�

�n

 

1

�  

2

)ds � �jw

0

j

L

2

(�)


jj 

1

�  

2

jj

2

� 
jw

0

j

L

2

(�)

j (u

1

� u

2

) � r) 

2

j � 
jw

0

j

L

2

(�)

jju

1

� u

2

jj jj 

2

jj

2

� 
jw

0

j

L

2

(�)

jju

1

� u

2

jj(1 + jju

2

jj

2

)jw

1

�w

2

j

� 
jw

0

j

L

2

(�)

jju

1

� u

2

jj(1 +M

2

)jw

1

�w

2

j

� 
jw

0

j

L

2

(�)

jju

1

� u

2

jj jw

1

�w

2

j;

(6.15)

and

�

Z

�

(w

0

� n) div ( 

1

�  

2

)ds � �jw

0

j

L

2

(�)


jju

1

� u

2

jj jw

1

�w

2

j:(6.16)

From (6.8)-(6.16) we obtain

jw

1

�w

2

j � 
(jju

1

� u

2

jj+ jg

1

� g

2

j):(6.17)

Using this estimate in (6.5) we have

jju

1

� u

2

jj � 
(jg

1

� g

2

j+ jf

1

� f

2

j)

for � large enough. Then, from (6.17), it follows an estimate of the same type for

jw

1

�w

2

j. Therefore, we 
an write

jv

1

� v

2

j

3

+ jw

1

�w

2

j � 
(jf

1

� f

2

j+ jg

1

� g

2

j);(6.18)
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as

jv

1

� v

2

j

3

= ju

1

� u

2

j

3

� 
jju

1

� u

2

jj:

Estimate (6.18) gives the 
ontinuous dependen
e of solutions (v;w) on the data f ,

g, provided � is large enough.

Now, to prove (2.9), we observe that if w

0

1

6= w

0

2

then in (6.6) and (6.7) we

have w

0

1

and w

0

2

instead of w

0

, respe
tively, and subtra
ting these equations we

obtain two new terms, namely,

�

Z

�

(w

0

1

�w

0

2

)

�

�n

 

2

ds and �

Z

�

((w

0

1

�w

0

2

) � n) div 

2

ds;

whi
h 
an be estimate from above by


jw

0

1

�w

0

2

j jw

1

�w

2

j;

when
e we have (2.9) in view of the above 
onsiderations.
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