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1. Introduction

The micropolar fluid model is an essential generalization of the well-established
Navier-Stokes model in the sense that it takes into account the microstructure of
the fluid. It may represent fluids consisting of randomly oriented (or spherical)
particles suspended in a viscous medium, when the deformation of fluid particles is
ignored. Micropolar fluids were introduced in [5]. They are non-Newtonian fluids
with nonsymmetric stress tensor.

The governing system of equations of micropolar fluids expresses the balance of

momentum, mass, and moment of momentum [5], [16], which is the following:
(1.1) vy — (v + v, ) AV + (v - V)v + Vp = 2u, rotw + f

(1.
1

2)divv =0
(1.3) wy — (¢q 4+ ca) AW — (cp + ¢4 — ¢)Vdivw + (v - V) w + 4, w = 2v, rotv + g

where v = (v, v9,v3) is the velocity field, p is the pressure, and w = (wy, wo, ws) is
the microrotation field interpreted as the angular velocity field of rotation of parti-
cles. The fields f = (f1, fo, f3) and g = (g1, g2, g3) are external forces and moments,
respectively. Positive constants v, v, ¢, ¢4, ¢q represent viscosity coefficients, v is the
usual Newtonian viscosity and v, is called the microrotation viscosity. It is assumed
that the density of the fluid is equal to one.

Observe that if the microrotation viscosity v, equals zero then system (1.1), (1.2)
reduces to the Navier-Stokes system and the velocity field is independent of the
microrotation field. Thus, the size of the microrotation viscosity allows us to mea-
sure, in a certain sense, the deviation of flows of micropolar fluids from that of the
Navier—Stokes model.

Several experiments show that solutions of the micropolar fluid model better de-
scribe behavior of numerous real fluids (eg., blood, cf., e.g., [23], [24], [19]) then
corresponding solutions of the Navier-Stokes model, especially, when the character-
istic dimensions of the flow (eg. the diameter of the channel) become small. It well
agrees with our expectations that the influence of the internal structure of the fluid

is the greater, the smaller the characteristic dimensions of the flow.
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For flows in narrow films the microstructure plays an important role as it usually
increases the load capacity and stabilizes the flow; cf., e.g., [6], [26]. In general, as
part of the momentum is lost in rotating of the particles, the flow of a micropolar
fluid is less prone to instability then that of a classical fluid. Stability problems for
micropolar fluids were studied, e.g., in [1], [11], [12] and [25], and control problems
in [21].

In this paper we are interested in the system (1.1)-(1.3) in a stationary regime, i.e.
v; = w; = 0, in a bounded domain 2 with irregular boundary data on 012, i.e.
with boundary data that belong to L?*(9€2). The system (1.1)-(1.3) in a stationary
regime was studied by Lukaszewicz [17] in a bounded domain €2 with null Dirichlet’s
boundary conditions (see also [16]), and in [4] in the case of exterior domain. The
case where the boundary data are not null but sufficiently regular, such that they
can be extended to the interior of the domain 2 accordingly with trace theorems,
can be treated in a similar way as in [16]. (The case of stationary Navier-Stokes
system with data in H'/?(9%2) goes back to the classical method of Leray, see e.g.
[29], and with data in in W'=Y/99(T"), 3/2 < ¢ < 2, was solved in [28].) However,
if they are not regular, for instance, if the boundary data are not the traces at the
boundary of €2 of some functions in Sobolev spaces on €2, then the problem is quite
more difficult. This problem for the Stokes equations was treated by Conca [2],
where the concept of very weak solution was introduced (see the Appendix A in [2]
or [3]). Then, more recently, Marusic-Paloka proved the existence of a very weak

solution for the stationary Navier-Stokes equations.

There are some physical motivations for considering fluid equations with irregular
boundary data, e.g. in [2] it is considered the Stokes equations modeling a fluid in
a domain containing a sieve and then it is shown that when the sieve becomes finer
and finer the solution of the problem converges to a solution of a Stokes problem
with boundary data only in L?. Other examples, for the stationary Navier-Stokes
equations with boundary data in some Sobolev space W' 1/%¢ are pointed out
in [28], namely, the problem of a stationary fluid in “domain with a cavity”, i.e.

the union of a semi-space with a bounded domain (the “cavity”), and the Taylor
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problem, i.e. the problem of equilibrium of a fluid between two co-centered cylinders
with the external cylinder fixed and the internal one in a rotational motion about

its axis.

The main idea used by Conca in [2] is the transposition method (see e.g. [15]), which
is very useful for linear equations. Marusi¢-Paloka [18] was able to extend Conca’s
result, first for small data by using a linearization of the Navier-Stokes equations
and an iterative argument (in fact, the Banach’s fixed point theorem) based on
penalisation method and an estimate on the Oseen’s problem solution, and then for
no small data assumption by splitting the data into a small irregular part and a

large regular part.

We combine ideas from Conca [2], Marusi¢-Paloka [18], and Lukaszewicz [17], to
obtain the existence of a wvery weak solution for the stationary micropolar fluid
equations. That is, first we use the transposition method for obtaining a solution to
the microrotational field equation, which depends on the velocity field v that lives
in L*(2). This microrotational field solution obeys a good estimate with respect
to v, as we prove below, provided v is split into a small irregular part in L*(Q)
and a regular part u® in H'(Q2) (see Lemma 3.1). To attain that, we needed to
prove a regularity result for a second order linear strongly elliptic system with an
irregular coeefficient (see the proof of Lemma 3.1). Then taking the small part of
v as a solution for the Navier-Stokes equations, via Marusic-Paloka’s theorem, we
prove the existence of u® using an appropriate Leray-Hopf extension of a smooth
approximation of the boundary value for v, and the Leray-Schauder fixed point

theorem, following [17].

Besides the existence of solutions, we obtain a result of continuous dependence on
the boundary data for w and given external forces, which implies, in particular,

uniqueness of solution.

The plan of the paper is as follows. In Section 2. we introduce our main problem,
give the notations used throughout the paper and the definition of a wvery weak
solution. Then we state our main theorem and make some brief comments on the

relation between very weak and weak solutions. We end the Section showing that
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the very weak solution has a “trace”on the boundary of the domain that coincides
with the boundary data and with the usual trace when the boundary are regular
and the very weak solution is a weak solution. Section 3. deals with the system for
the microrotational field w assuming that v is split into an appropriate sum, as
explained above. In Section 4. we show a way of reducing the system for v to a new
system for an unknown u in the space V of divergent free functions in H}(2). That
is, v.= u® + v, where v° is the small part of v in L3(Q2). This small part v is a
very weak solution of the stationary Navier-Stokes system, which exists due to the
Marusi¢-Paloka’s theorem [18], with null external force and with a boundary data
very small in the norm of L?(952), depending on a smooth approximation v§ of vy.
The part u® is the “large”regular part of v in H'(Q). It is equal to u + v§, where
v§ is an appropriate Leray-Hopf extension of v to © which is in V, and u is the
new unknown which satisfies its own system shown in Section 4.. This system for u
is a nonlinear one, where the nonlinearities come from the term (u-V)u and from
w that depends on v. In Section 5. we prove the existence of a solution u in V for
this system using the Leray-Schauder fixed point theorem, with the help of a good
choice of v and ;g. Finally, in Section 6 we prove the continuous dependence of

the very weak solution on the data f, g and wy.

2. The equations of stationary micropolar
fluids, notations, and definition of a very weak

solution

We begin this Section wtih the presentation of the problem we study is this paper.
Then we give the notation used throughout the paper, the definition of a very weak
solution, and state our main theorem. We end it with a brief explanation on the
definition of a very weak solution, its relation with a weak solution and show that a

very weak solution attains the boundary data in a “trace”sense.

Let © be an open, bounded and connected set in R?® with a boundary of class C?,
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which we denote by I'. We are interested in solving the following boundary value

problem.

Problem 2.1 Assume that vy € L*(T) with / vp - nds = 0, where n is the unit
outward normal on I', wy € L*(T'), f, g € L*(f2), and prove existence of functions
v € L}(Q), w € L*(Q) such that, together with some distribution p, satisfy in a

very weak sense

(2.1) —pAV + (v - V)v + Vp = arotw + f
(2.2) divv=0
(2.3) —aAw + (v - V)w — gVdivw + yw = arotv + g,

in 2, with boundary data

(2.4) vir = vy

(2.5) W = wy.

In (2.1)-(2.3) and hereafter, for short we write u = v + v, a = 2v,, @ = ¢4 + ¢y,

B = ¢y + €4 — Cqy and v = 4v, (cf. Section 1.).
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Notations: Throughout this paper we fix the following notations:

T
r:
n :
whke .
kpp .
Wy '

H*
HE -

()

Bn:

Il
[ lkp
1N
(5

A generic point in Q (x = (x1, 22, 23) )

The boundary of €

The unit outward normal on I’

The Sobolev space of order k modelled in L?(Q; R?)

The space of function in W*P whose derivatives up to the
order £ — 1 have null trace in I’

k2

Wi

The closure in Hy of the functions in C§° with null divergent

The inner product in V, given by
(u,v) & /QVu:Vv :/ 9v; Ous

?
Q0x; Ox;
u = (uy,ug,u3), v=(vy,v9,v3) € V, where here, and in what

follows, we use the notation of repeated indices, with summation
from 1 to 3.

For o € W?P ¢ = (1, 2, p3), this notation stands for the Jacobian
matrix Vo times n, i.e.

00 (T = (Ver) m, (Vs) m, (V) - m) = (
The norm associated with (( )) in H or V
The norm of Wk»

The norm of H¥

The inner produtc of L?

The norm of L?

The norm of L?P

The trilinear form given by B(u,v,w) & ((u-V)v, w)

dp1 Opy 8903)
On’ On’ On

A universal constant, i.e. some positive constant that

does not depend on the unknowns.
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Definition 2.1 (Very weak solution). Let vo € L*T) such that
/ vo-nds =0, wg € LA(I), and f,g € L*(). A triple (v, w,p) in L3 x L* x W13
r

s a very weak solution of Problem 2.1 if

(2.6) (v,V0) = / (vp - n)bds

r

for all § in WH3/2,
(27) _:U’(VJ A()O) - B(V, 2 V) - (pa div ()0)
d¢
_ £ o) — / L9y
a(w, rotp) + (£,0) —p | vo- 5 ds
for all @ in W22 W2, and
(28) —@(W7A¢) - B(Va¢,w) - ﬁ(Wanwlb) +7(W7w)
= a(v,roty) + (g,)
oY .
—a/ wo - —ds — ﬂ/ (wo - n)dinpds
r On r
for all v in H> N Hy.
The main goal of this paper is to prove the following theorems.

Theorem 2.1 (Existence) There exists a very weak solution of Problem 2.1 in
the sense of the above definition, provided the viscosity p is larger than some constant

depending only on €2 and on the parameters a, «, (3, and .

Theorem 2.2 (Continuous dependence on f, g and w;, and uniqueness) Let
(vi, w;), it = 1,2 be very weak solutions of Problem 2.1 corresponding to the external
fields £ =1;, g = g;, and boundary data wo;, 1 = 1,2, respectively. Then there exists

a constant p* > 0 such that for all p > p*,

(2.9) [vi — vals + w1 — wo| < e [fi — B + [g1 — &2| + [Wo1r — Wosl),

where the constant ¢ depends only on the data of the problem and on €. In particular,

for u > p* the problem is uniquely solvable.
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Remark 2..1 In view of our construction of the solution we are not able to prove

the continuous dependence of the solution on the boundary data vy.

A brief explanation of the definition of a very weak solution: The definition of
a very weak solution comes out naturally when we multiply the equations in (2.1)-
(2.3) by test functions 6, ¢, 1, respectively, vanishing on the boundary I', formally
integrate by parts, and impose the boundary data (2.4), (2.5). Then it is easy
to check that the spaces W22 0 W2 H?n H} and W'3/2 are the appropriate
Sobolev spaces to the test functions ¢, ¥ and 6, respectively, in view of the conditions
vy € L*(I') and wg € L%(I'). When v, and wyq are regular, that is, vo, wo € HY/2(I),
the concepts of very weak solutions and weak solutions are equivalent.

Next, we show that a very weak solution (v, w) satisfies the boundary conditions
(2.4), (2.5) in the sense that v and w have whole “traces”on I' which are equal to
vo and wyg, respectively. From (2.1) it is classical that v has a normal trace on T,

which we denote by v,(v), and
(2.10) Yn(V) =vp-n

in W~1/33(T"). Now, to obtain the tangent trace we consider the space (cf. [2] and

[18])
XY Lcew B2y ¢.n=0}

and define the functional v(v) : X — R by
ef 1 .
(24(v), ¢ >= o v, 29) + B(v, 0,v) + (p, div) + alw, rot o) + (£, ©)}

0
where for a given ¢ € X, ¢ is any function in W22 Wy*? such that 8£|p =C.
n

This map is well defined since v satisfies (2.7), and so

0
<) ¢ o= [ vorSEds = [ vo-cds= [ vi-cas

for all ( € X, where v,* def vo — (Vo - n)n. From this equality we see that

(2.12) Y (V) = v



10 Lukaszewicz, Medar & Santos

regarding 7(v), vo' as elements in X'~the dual space of X. From (2.10) and (2.12)
we can conclude that v admits a “trace”on I' which coincides with vy.

Using equation (2.8) we get a similar notion of trace for w on I'. For this case

0
it is convenient to write the boundary term a/ Wy - 8—wds + ﬁ/ (wo - n)divepds in
r n r

the following way:
oY :
(2.13) a/ wo - —ds + ﬂ/ (wo - n)divipds
r Oon r

= /F[awg-g—ﬁ—l-(wo-n)(ozn-g—ﬁ—i-ﬁdivz/})]ds

= [ lowt- g_‘ﬁ +(a+ B)(wo - m) div )]|ds,

e 0 :
where wt % wy — (wp - n)n. We have used the fact that n - a—wh“ = divy|r for all
n

¢ in H*N H}. Now, we consider the spaces

Y= {gn: ge H'A(ISR)} and 2= {¢e H/(I3RY); €-n =0},
and define the functionals v,(w):Y — R, w%(w): Z — R, respectively, by
(a+8) < 7a(W), g0 >% a(w, AP)+B(v, ¥, w)+5(w, V div i) +7(w, ) +a(v, 10te)+(g, ),
0 < (W), € >E a(w, M) BV, b, w)+5(w, V div ) +y(w, ) +a(v, 1ot 1) +(g, ),
where in the first case, v is any function in H? N Hy such that g—zh = gn, and in

0y

the second case, ¢ is any function in H?N H} such that 3

—|r = &. Since w satisfies
n
(2.8) and we have (2.13), it follows that

(+ ) < Y(w),gn> = /F[awg “(gn)+ (a+ f)(wp-n)n - g—z/:)]ds
= /F(a + f)(wg-n)n - (gn)ds
for all gn € Y. Then
Ta(W) = (Wo - )n,
as elements in Y. Similarly, we have

V(W) = Wg

in Z'. Therefore, w also has a “trace”on I' which coincides with wy.
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3. Problem in w

In this section we study the following problem in w:
Problem 3.1 Given wy € L*(I') and v € L? with divv = 0 (see Remark 3..1
below) and such that v = u® + v where u® € H' and v* € L? with |v®|; sufficiently

small, find w € L? such that (2.8) is satisfied, i.e.
(3.1) —a(w,A¢) = B(v, ¢, w) = (w, Vdive) +v(w, )
= a(v,rot ) + (g,7)
—a/ng : g—ids - oz/r(wg -n)divipds

for all ¢ in Hy N H%

Remark 3..1 Above, the condition divv = 0 is understood in the weak sense, i.e.
(v,V0) =0 for all 6 € W01’3/2. As a consequence of this condition we have that the

bilinear form

(32)  Blo,v) € a(Ve, ) — B(v,,¢) + B(dive, dive) + v(¢,),

which is associated with the left hand side of (3.1), is strongly elliptic, i.e. it is

bilinear continuous and coercive. Indeed,

1
(3-3) B(v,6,6) = —5(v, V(I¢[") =0,
for all ¢ € HY, since divv =0 and H} c W2,

Lemma 3.1 There exists a unique solution of Problem 3.1. Moreover, the following
estimate holds:
(3.4) [w| < e(1+ [[u[]y),

where ¢ is independent of v.

Proof: We use the transposition method [15]. Let

(3.5) L) ¥ —alyp — (v- V)¢ — BVdive + 71,
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the adjoint operator associated with the left hand side of (3.1). Given h € L?, let ¢

be the unique weak solution in H} of the adjoint equation L(t)) = h, i.e.

(3.6) B(¢,4) = (h, 9)

for all ¢ € Hj. Existence and uniqueness of such solution ¢ in Hj easily follows
from Lax-Milgram’s lemma, since divv = 0 (c¢f. Remark 3..1 above). Besides, we

can easily get the estimates
(3.7) Il < a7'hl, gl <7A

by taking ¢ =1 in (3.6).
Next we prove higher regularity of the solution of (3.6), i.e. we show that ¢ € H?

Moreover, we obtain the following estimate:
(3.8) 1]z < e(1 + [Juf][D)]A],

where ¢ is independent of v. Although the operator L (defined in (3.5)) is strongly
elliptic, this not follows straightforward from known results for elliptic systems be-
cause the operator L contains an irregular coefficient for the derivatives of the first
order, namely, v is in L?, and we do not assume it is bounded, i.e. in L*>°(£2). We do
not know if ) € H? or if (3.8) holds true for a general v in L?. In our case we gain
that result due to the special form of v that is decomposed as a sum of a “regular
part”’u® in H' and a small part v¢ in L3. In Section 4. we obtain the very weak
solution of Problem 2.1 with v in L? by writing v as a such decomposition.

To attain our purpose of showing that v is in H? and to show that we have the
estimate (3.8) we first regularize v by making the convolution of it with a smooth
family of mollifiers {p, },7 > 0. Then writing v, def VEpy =0 xpy+Vikp, = up 4V

we let 1), be the solution in Hy of the following regularization of system L(v)) = h:
(3.9) —aAy, — Vdivy, + vy, = F,

where

Fy € ht (v V) = h+ (0 - V)i, + (v - V)b,
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Since u;, v¢, € C*(Q) and Vi, € L?, we have that F;, € L?, thus by Necas result

on strongly elliptic systems (Theorem 5 in [20]) we obtain
(3.10) [[9nll2 < el B3],

where ¢ is independent of v,,. But

(W - V)| < s (Vs < el w1 [Vesy|s
el |1 1]y |11/2][ 0y ][5
s 2]y + o[y |2
2 e[ 1214l + ol |2

for any o > 0. (On the second inequality above we used the Gagliardo-Nirenberg

(3.11)

IN I/\ IN

(see e.g. [8]) inequality

[lallwes < cllullfymq lul,™

withk=1,p=n=3, m=¢=2,0=1/2 and r = 6.) Besides,

(v - V)| < [vals [Vyls < oclliyl2

(3.12)
< |VE[s [Vidyls < oclty]l2,

if |v¥]3 < o. Then, using (3.11) and (3.12) in (3.10) with an appropriate o, we
obtain
[1ull2 < e(1p] + ([0 [3][¢5]1)-
As
[[thy]| < |,

we arrive at (3.8) with 1, in place of 1p. Then we pass to the limit for a subsequence of
{n} and get (3.8). Here we used Banach-Alaoglu’s theorem in H? and the uniqueness
of solution of (3.6) in H}.

Now we consider the map that takes h in L? into the unique solution ¢ of (3.6)
which is in H?. Since we have (3.8) and the equation (3.6) is linear, this is a

continuous linear map from L? into H2. Then the expression

1(h) ¥ a(v, rot) + (g, ¥) — a/ Wy —ds - ﬂ/ wy - n)divepds



14 Lukaszewicz, Medar & Santos

(given by the right hand side of (3.1)) defines a continuous linear functional in h

acting on L?. Writing (3.1) in the form
(3.13) (w,h) =I(h)

for all h € L?, we conclude directly from the Riesz representation theorem that
there exists a unique w in L? such that (3.13) holds. This prove the existence and

uniqueness part of the Lemma.
Next we proceed to get the estimate (3.4). Setting h = w in (3.13) we get

wl* = i(w)

(3.14) = a(v,roty)) + (g, ¥) — a/ Wog awds - ﬂ/ (Wo - m)divipds,
r

where L(¢)) = w, that is, v» € H} N H? and
(3.15) —aAyY — (v- V) — pVdivy + vy = w.

We shall show that the right hand side of (3.14) can be estimated by c¢(1
||u®||1)|w|, where ¢ is independent of v.

Multiplying (3.15) by ¢ and integrating in €2 we obtain, in particular

1 v
a|[]]? + [0 < (w, ) < 5IWI2 + 5|«/}|2,

whence

(3.16) 9]l < lw| and |y < - IWI

1
V2ary
The difficult term in (3.14) is / wo22ds. To estimate it we need to use the fact
r
that

(3.17) [#lrary < e(IV2]V2[2]2 + ]2))
for any z in H'(Q). This estimate can be inferred from
[#lrary < V2|72

for all z € H'(2) with null average in Q (see e.g. [10], p.50) by applying it to z

minus its average in €.
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Now we can estimate the terms on the right hand side of (3.14) in terms of w.
Using (3.16), (3.17) with z = V4, and (3.8), we have:

a(v,roty)) < alvl||¢]] < vIw] < e(1 + [[u][1)|w],

a
V2ary
1
(8. ¥) < Igllv] < ;|g||W| < (1 + [[u[f)[wl,

a/ Wo%ds < a|wolr2m)| VY| 2(r)
r
1/2
< alwolszaye([[15 %[0 ]12 + (1w )
< ac|wO|Lzm (1 + el )2 w] 2 w2 + |w])
< (1 + [Juf]]y)|w]
and

B (wo - m)divirds < eBlwoluamlw < e+ [[0°[|1) wl.

In conclusion, (3.14) together with the above estimates gives (3.4). H
We finish this Section with the following Lemma which will be used in the end
of the proof of Lemma 5.2.

Lemma 3.2 Let (uf) be a bounded sequence in H', v, o u;, + v°, and w,, the

unique solution of Problem 3.1 with v = v,,. Then there exists a subsequence (W)

that is strongly convergent in L2.

Proof: From inequality (3.4) we conclude that the sequence (w,,) is bounded in
L?. Thus, there exists a subsequence (w,, ) that is weakly convergent in L?. From

(3.14) written for wy,, and w,,, we get

(318, |* — (Wi |? = a(vi, — Vs 106 Yn) + a(Viy, 108 (Y — Y)))
(gawnk 1%)

—a / Wo w’” d’”k _3 / wo - 1) div (b, — tn, )ds

where L(t,, ) = w,, and L(v,,) = w,,.
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From the boundedness of (w,) in L? and inequality (3.8) it follows that the
sequence (¢, ) is bounded in H2. From the compact embedding H' << L3/? we
conclude the existence of a subsequence (v, ), m = 1,2,..., such that (V,, )
converges strongly in L*2. Since H? «— H3?(T') << H'(T), we can assume also
that [V (¢n,  — ¥nk;)| 20y converges to zero as m, i go to infinity. Taking that into

account, we can see easily from (3.18) that
W, |7 — Wi, > =0,

as m,i go to infinity. This, together with the weak convergence of (wy, ) in L?

gives the strong convergence of (wy, ) in L*. H

4. Problem in v and a related problem

Assume that w € L? is given and consider the problem (2.6), (2.7) in v. We want to
get rid of the pressure (it can be recovered when needed from De Rham’s Lemma)
and to this end we take test functions that are divergent free. Then the problem
(2.6), (2.7) reduces to the following one.

Problem 4.1 Given w € L? vy € L*(I') and f € L?, find v € L? such that

(4.1) (v, V) = / (vo - n)0ds
I
for all  in W%/2, and
dp
(42)  =pl(v,Ap) = B(v,0,v) = alw 1ot ) + (£,¢) = [ vo- SEds
r on

for all ¢ in W23/2 WOI’?’/2 with dive = 0.
Now, we introduce a problem that is related to Problem 4.1. Assume that v is

a solution of Problem 4.1 and that we can write v in the form
(4.3) v=u+v- (¢>0)

where u® is a “large regular part”: u® € H', divu® =0, u®|p = v§ (v§ is a smooth

approximation of vy in L*(T") such that |vo — v§|,2qy << 1) and v® is a “small
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regular part”: v¢ € L and is very weak solution of the problem (cf. Lemma 4.2
below):

—puAVE 4+ (v -V)vE+Vp" =0 in Q
(4.4) divve =0 in €

vE|p = vy — V§.

According to the definition of a very weak solution, we have, in particular,

(4.5) —u(ve, Ap) — B(v®, ¢, v®) = —u/ (pds

for all ¢ € W23/2 A W*? with dive = 0. From (4.2), (4.3) and (4.5) it follows
that

—u(ut, Ap) = B(u®, 0, v) + B(v", i, u°) + a(w, rotp) + u/“%an

Observe that v§ is smooth and that u® belongs to H'. We can integrate by parts
on the left hand side of this equation to get

(4.6) p((u®, ) = Bu®, p,v) + B(v:, p,u’) + a(w, rot @) + (f, ).

Now we write u® in the form

(4.7) u = v§+u,

where v§ is a suitable Leray-Hopf extension of v§ to Q (cf. Lemma 4.1 below), and
u € V. From (4.6) and (4.7) we can derive the equation for u. We also write

(4.8) v=u+vi=vitu+vi=u+ Ve

where V¢ & v + v°. We observe that V¢ belongs to L? and Ve = vo. Applying
(4.7) and (4.8) to (4.6) we obtain

p((u, @) = B(u,p,u)+ B(VE p,u)+ B(u,p, V) + a(w, rotp)
+(f7 90) - :U’((;ga 90)) + B(GEJ 2 VE) + B(VE, QO,;E)

Denote
(4.9) L(u, ) € BV p,u) + Blu,p,Ve), Vv 4ve
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and
(4.10)< F, 0 > (£,0) — u((v§, 9)) + B(v§, 9)) + B(ve, 0, V) + B(v*, 0, v§).

Then
(4.11) 1((u, ) = B(u, ¢, u) + L(u, ) + a(w, 1ot o)+ < F,p >
for all ¢ € W22 W2 with dive = 0. If u is a solution of problem (4.11) then

it is also a variational solution, that is,
(4.12) 1((u, ) = B(u, ¢, u) + L(u, ) + a(w, rot p)+ < F,p >

for all o € V, as from (4.9), (4.10) we can see that L(u, ¢), < F,¢ >, and B(u, ¢, u)
are continuous in ¢ with respect to the H' topology.

Let us assume now that u € V is a solution of (4.12). From the above consid-
erations it follows then that v =u+ V¢, V* = GE + v®, is a very weak solution of
Problem 4.1.

In the next section we prove existence of a very weak solution of Problem 2.1,
where the velocity field is of the form v =u+ V® = u® + u, with u € V, and with
yed Vi +ve, u° ©ut v§, suitably constructed on the basis of the boundary data
vo € L?.

For the just mentioned construction we use the following Lemmas.

Lemma 4.1 (Leray-Hopf extension) Let 2 be an open connected and bounded
set in R® of class C? and zy € H'Y*(T') with / zo - nds = 0. Then for every o > 0
r

there exists a function zy such that
7o € H'(Q), divzg=0 inQ, zy=12¢ onl,

and

|B(u, Zo, u)| < o full*

forallueV.

Proof: See [29],Chapter II, §1.4 and Appendix 1. H
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Lemma 4.2 (Marusié-Paloka) Let Q C R? be a bounded domain in R® with a
boundary T' of class C*. Consider the following boundary value problem for the
Navier-Stokes equations with data g in L*(T) satisfying / g -nds =0:

r

—uAz+ (z-V)z+Vp=0 in
divz =0 in )
Z=g on .

If |g| L2y is sufficiently small then there exists a unique very weak solution z in L3
of the above problem. Furthermore, there is a constant ¢, depending only on p such
that

(4.13) I2)5 < _Culgley

H— Cl|g|L2(F).

Proof: See Theorem 4 in [18]. B

5. Existence theorem

At the beginning of this Section we shall show how to construct a map A:V — V
whose fixed point gives a very weak solution of Problem 2.1 in the sense of Definition
2.1. Then we prove two lemmas which yield the proof of Theorem 2.1.

We start with vo € L*(I')-the irregular boundary condition. We take a smooth
approximation v§ of vq in L?(I") such that [vo—v{§|.2(r) is small enough with respect
to p, and let v® to be a very weak solution of (4.4) (cf. Lemma 4.2); we take
|vo — v§|r2(ry so small that the Problem 3.1 has a solution for each u® in H' and
that the last inequality in (5.4) below holds true. Then we construct the Leray-Hopf

extension v§ of v satisfying
(5.1) B(u, v5,u) < |ful

for all u € V (cf. Lemma 4.1).
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Now, for u € V, we define v =u+v§+v: = u° + v, u° def u + v§, and for this
v we solve Problem 3.1 in w. Having w—the unique solution of Problem 3.1, we can
define A(u) € V by the relation

(5.2) E(A(u), ) = a(w, rot o)+ < F, o > +B(u, ¢, u)

for all ¢ € V, where E(u, ¢) ¥ 1((u, ¢)) — L(u, ) (£ defined in (4.9)) is continuous
and coercive under our assumptions. For each w € L? and u € V the right hand
side of (5.2) defines a linear and bounded functional in ¢ on V. Thus, by the
Lax-Milgram lemma, the map A is well defined.

Observe that each fixed point u of the map A defines a pair (v, w) = (u*+V*, w),
ye & v§ + v°, which is a very weak solution of Problem 2.1; (v, w) satisfies (4.1),
(4.2) and (3.1). Using the De Rham lemma we show then that there exists a p €
W13 such that the triple (v, w, p) satisfies all conditions in Definition 2.1.

For 4 big enough, we can prove that the operator A is completely continuous
and that all u € V such that for some A € [0, 1] it is u = A Au are contained in a ball
[lu|| < M. The existence of a fixed point of A follows then from the Leray-Schauder

fixed point theorem.

Lemma 5.1 If u is sufficiently large then there exists a constant M > 0 such that
for allu € V satisfying the equation u = AAu for some A € [0, 1] we have ||u|| < M.

Proof: If A =0 then u=0. Now, if 0 < A <1 then setting Au = fu in (5.2) with

¢ = u, we obtain
(5.3) pllul)? = L(u,u) = Ma(w, rotu)+ < F,u >}.

By the definition of £ (see (4.9)) together with the fact that divV® = 0 and
Ve = v§+v*, and by the estimates (5.1) and (4.13) in Lemma 4.2 with g = v — v§
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(cf. problem (4.4)) we have

|L(u,u)| = |B(u,u, V)| = B(u,u vo) + B(u, u, ve)|
(u VO: )+B(u uvva)|

-
(5.4)
< [l + c[v]s|[ulP
c1plvg—vol,2
< (& + et ulf? < 4full,

for |v§ — vo|r2r) sufficiently small with respect to .
Also, by (3.4),

< alwl[[ul] < (1 + [|u®[1)]|u]]
(5.5) < (L [[ufly + [[vel[)l[al] < e(X + [[uf| + [[v§]1)] ull
<

clful[* + lful| < 4l[ul[* + | ful|
for u large enough, and, by the definition of F (see (4.10)),
(5.6) < Fu>=(fu) - p((vj, ) + B(vi,u, V) + B(v",u,v5) < cllul|.
From (5.3), together with (5.4)—(5.6), we obtain the desired result. l

Lemma 5.2 The operator A is completely continuous.

Proof: Let (u,) be a bounded sequence in V. We shall show that then (Au,, ) is a

Cauchy sequence in V (for a subsequence (ny)). Let

(5.7) E(Au,,, ¢) = a(w, rotp)+ < F,p > +B(u,, ¢, u,)

(5.8) E(Au,, ¢) = a(w,, rot)+ < F,¢ > +B(u,, ¢, u,)
for all o € V, where

(5.9) (Wi, —@AY + (v, - V) — BV d1v2/) + 1)
= a(Vp, rot ) + (g, ) — a/ WO—dS — ﬂ/ wo - n) div ¢ds
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(5.10) (W, —aA + (vn : )2/) °AY dlvw + 1)
= a(vy, rot) + / wo—ds - ﬂ/ wy - n) div ¢ds,

def %
Ve =u,+V, v,=u,+V" V°=vj+v.

Taking the difference of (5.7) and (5.8) we obtain

(5 11) E(Aum - Aun; QO) = U,(Wm — Wp, rot gp)
. +B(u,, — u,, ¢, u,) + B(u,, ¢, u, —u,).

Set ¢ = Au,, — Au,, and we have

)| Auy, — Au, [P < alwy, — Wy [ A, — Auy|
Fe([[un]| + [[un| D[ Avy — A, [ [an — s,

where for obtaining the left hand side we used E(u, ¢) o p((a, ) — L(u, ) and

the estimate for £(u,u) in (5.4). Thus
(5.12) %,u||./4um — Au,|| <a|w, — wy,
Fe(|lum [ 4 |Jun ) [um — wnls.

Now, as (u,,) is a bounded sequence in V), there exists a subsequence (we denote
it also by (u,)) that is convergent is L3. Moreover, in view of Lemma 3.1, (w,,)
converges in L?. Thus, by (5.12), (Au,) is a Cauchy sequence in V. In consequence,
the operator A is compact.

Observe that from inequality (5.12) the continuity of A in V immediately follows.
|

6. Continuous dependence on the data

f, g and w
In this section we prove Theorem 2.2. Let

(61) /u((uia ¢)) - B(uia ¢7 11) + E(uia ¢) + G(Wi, rot ¢)+ < -,Fia ¢ >
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where

(6.2) L(u;, ¢) ¥ BV, é,w) + Buy, ¢, Ve), VEEv+ve

and
(6.3) < Find >E (£, 0) — u((vG, 0)) + B(vG, 8)) + B(v5, ¢, V) + B(v", 6, vp).

for i = 1,2 and ¢ € H;. We recall that v¢ is the very weak solution of (4.4) with
ve|p = vy — v§, where v§ is a smooth approximation of v, such that divv§ = 0,
and |vo — v§|s is very small with respect to p (cf. (5.4)), and v is a Leray-Hopf
extension of v§ satisfying (5.1).

From (5.4) we have
(6.4) L(u) — Uz, 1y — ) < %Hul ~w %

Then, writing (6.1) for ¢ = 1,2, taking the difference and setting ¢ = u; — uy, we

obtain

%u||u1 —w||? < B(u; —uy,u; — uy,uy) + a(w; — wy, rot (u; —uy) ) + (£ — fo,u; — uy)

< cf|ug| [Juy — wa|]* + a|wy — Wl [[uy — w|| + c[fy — 2] [Juy — uyl],

whence

3
ZM||111 — || < cfjugl| [[ur — wy|| + alwy — wy| + clf; —f5].

From Lemma 5.1 we have that ||uy|| < M, where M is a constant that does not

increase with g, thus for p large enough such that c||ug|| < p/4, we obtain
(6.5) §||u1—u2|| < alwy — W + c|fy — £].

Now, we use equation (3.13). Assume at first that wy; = wg,. Then from (3.13)

written for w = w; and w = wy we have

(6.6Yw1, h1) = a(vy, rot ;) + (g1, Y1) — a/rwo%ds — ﬁ/r(wo -n) div ¢y ds

and

(6.7 wa, ha) = a(va, rot 1) + (82, 1) — a/rwo%ds - B/F(WO -n) div nds,
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where
hiy = LVl (Q/)l) and hy = LV2 (2/)2)7
for
Ly ¥ —aAy — (v- V)i — BV divep + ).
Taking the test functions ¢ and ¢y in (6.6) and (6.7), respectively, such that
Ly, (Y1) = Ly, (12) = wi; — wo and subtracting (6.7) from (6.6) we obtain
lwi — wy|2 = a(vy — vy, Tot ) + a(vy, Tot (¢ — 1))
(6.8) +(81 — 82, ¥2) + (81, ¢1 — )
o woik (v —v)ds + 6 [ (wo-m) div (1 = va)ds.

Now, we estimate the terms on the right hand side of (6.8). The first term is easily

estimated:

a(vi — vg, T0t 1)) = a(uy — Uy, rot1)y) = a( rot (uy — uy), 1)
(6.9) < alluy — wy] [y]

< 3luy — || [wy — wy,

where we used (3.7).

The second term can be estimated as follows:

(6.10) a(vi, rot (1 — o)) < alvi| ||t — ol|.
We have
—O(Awl + (V1 . V)'I,/)l — ﬁV div ¢1 + ')/7,/)1 = W] — Wy

and
—OtA'I,/)Q + (Vg . V)ZbQ — ﬁV div ¢2 + ')/7,/)1 = W] — Wy,

then taking the difference, we get

—aA(hr — tha)  +(vi- V) (1 — h2) — BV div (1 — 2) +7(¢h1 — o)
= —((vi = v2)) - V)i = —((u; —ug) - V)ha.

Multiplying by ¢y — 1, and integrating in {2 we obtain, in particular,

(6.11)

[ty = 2 < cffuy — wa[ [[¢e]],
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so, using again (3.7), it follows that

[lthr = || < ¢fluy — w] [wy — wy.
Using this estimate in (6.10) we obtain
(6.12) |a(v1, Tot (1 — ¥2)| < cfvil |Jur — uaf| [wy — wa.
Next, we have

(6.13) (81 — 82, 12) < g1 — 8|77 |wi — Wy

and

(81,91 — o) <lgul 1 — ¥y
(6.14) < clg ¢ — o]

< clgi |Jur = waf| [wy — wal.
The boundary integrals give, by (6.11) and (3.8),
a/rwoa%i/h — a)ds < alwol|2wyellthr — a2

< cfwolrzm)| (w1 — up) - V) | < efwolr2ry|[ar — aa|| [|¢2]]2
(6.15) < c[wolreyl|ur — ua[(1 + [Jua|?) w1 — Wy
< c[wolreryl|ur — ua[(1 + M?) w1 — Wy

= C|W0|L2(r)||111 - 112|| |W1 - W2|,
and
(616) ﬂ/F(WO . n) div (’Lpl — ¢2)d8 S 6|W0|L2(F)C||ul — 112|| |W1 — Wyol.
From (6.8)-(6.16) we obtain
(6.17) (w1 — wa| < cf[jur — wof[ + [81 — 82])-
Using this estimate in (6.5) we have
[ar — usf| < (g1 — gof + [f1 — )

for p large enough. Then, from (6.17), it follows an estimate of the same type for

|wi — wy|. Therefore, we can write

(6.18) (Vi — Vol + [wy — wy| < c([fy — £ + [g1 — g2]),
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as

Vi — valz = Ju; — sz < ¢f|u; — ugll.

Estimate (6.18) gives the continuous dependence of solutions (v, w) on the data f,
g, provided p is large enough.

Now, to prove (2.9), we observe that if wq; 7# woo then in (6.6) and (6.7) we
have wy; and wy, instead of wy, respectively, and subtracting these equations we

obtain two new terms, namely,
0 .
CY/ (Wo1 — Wog) 5 —thods  and 5/ ((woy — Woga) - ) div ¢ads,
r on r
which can be estimate from above by
c[Woy — Wog| [Wy — Wy,

whence we have (2.9) in view of the above considerations.
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