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1. Introdution

The miropolar uid model is an essential generalization of the well-established

Navier{Stokes model in the sense that it takes into aount the mirostruture of

the uid. It may represent uids onsisting of randomly oriented (or spherial)

partiles suspended in a visous medium, when the deformation of uid partiles is

ignored. Miropolar uids were introdued in [5℄. They are non{Newtonian uids

with nonsymmetri stress tensor.

The governing system of equations of miropolar uids expresses the balane of

momentum, mass, and moment of momentum [5℄, [16℄, whih is the following:

v

t

� (� + �

r

)�v + (v � r)v +rp = 2�

r

rotw + f(1.1)

div v = 0(1.2)

w

t

� (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)rdivw + (v � r) w + 4�

r

w = 2�

r

rotv + g(1.3)

where v = (v

1

; v

2

; v

3

) is the veloity �eld, p is the pressure, and w = (w

1

; w

2

; w

3

) is

the mirorotation �eld interpreted as the angular veloity �eld of rotation of parti-

les. The �elds f = (f

1

; f

2

; f

3

) and g = (g

1

; g

2

; g

3

) are external fores and moments,

respetively. Positive onstants �; �

r

; 

0

; 

a

; 

d

represent visosity oeÆients, � is the

usual Newtonian visosity and �

r

is alled the mirorotation visosity. It is assumed

that the density of the uid is equal to one.

Observe that if the mirorotation visosity �

r

equals zero then system (1.1), (1.2)

redues to the Navier{Stokes system and the veloity �eld is independent of the

mirorotation �eld. Thus, the size of the mirorotation visosity allows us to mea-

sure, in a ertain sense, the deviation of ows of miropolar uids from that of the

Navier{Stokes model.

Several experiments show that solutions of the miropolar uid model better de-

sribe behavior of numerous real uids (eg., blood, f., e.g., [23℄, [24℄, [19℄) then

orresponding solutions of the Navier{Stokes model, espeially, when the harater-

isti dimensions of the ow (eg. the diameter of the hannel) beome small. It well

agrees with our expetations that the inuene of the internal struture of the uid

is the greater, the smaller the harateristi dimensions of the ow.
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For ows in narrow �lms the mirostruture plays an important role as it usually

inreases the load apaity and stabilizes the ow; f., e.g., [6℄, [26℄. In general, as

part of the momentum is lost in rotating of the partiles, the ow of a miropolar

uid is less prone to instability then that of a lassial uid. Stability problems for

miropolar uids were studied, e.g., in [1℄, [11℄, [12℄ and [25℄, and ontrol problems

in [21℄.

In this paper we are interested in the system (1.1)-(1.3) in a stationary regime, i.e.

v

t

= w

t

= 0, in a bounded domain 
 with irregular boundary data on �
, i.e.

with boundary data that belong to L

2

(�
). The system (1.1)-(1.3) in a stationary

regime was studied by  Lukaszewiz [17℄ in a bounded domain 
 with null Dirihlet's

boundary onditions (see also [16℄), and in [4℄ in the ase of exterior domain. The

ase where the boundary data are not null but suÆiently regular, suh that they

an be extended to the interior of the domain 
 aordingly with trae theorems,

an be treated in a similar way as in [16℄. (The ase of stationary Navier-Stokes

system with data in H

1=2

(�
) goes bak to the lassial method of Leray, see e.g.

[29℄, and with data in in W

1�1=q;q

(�), 3=2 < q < 2, was solved in [28℄.) However,

if they are not regular, for instane, if the boundary data are not the traes at the

boundary of 
 of some funtions in Sobolev spaes on 
, then the problem is quite

more diÆult. This problem for the Stokes equations was treated by Cona [2℄,

where the onept of very weak solution was introdued (see the Appendix A in [2℄

or [3℄). Then, more reently, Marusi�-Paloka proved the existene of a very weak

solution for the stationary Navier-Stokes equations.

There are some physial motivations for onsidering uid equations with irregular

boundary data, e.g. in [2℄ it is onsidered the Stokes equations modeling a uid in

a domain ontaining a sieve and then it is shown that when the sieve beomes �ner

and �ner the solution of the problem onverges to a solution of a Stokes problem

with boundary data only in L

2

. Other examples, for the stationary Navier-Stokes

equations with boundary data in some Sobolev spae W

1�1=q;q

, are pointed out

in [28℄, namely, the problem of a stationary uid in \domain with a avity", i.e.

the union of a semi-spae with a bounded domain (the \avity"), and the Taylor
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problem, i.e. the problem of equilibrium of a uid between two o-entered ylinders

with the external ylinder �xed and the internal one in a rotational motion about

its axis.

The main idea used by Cona in [2℄ is the transposition method (see e.g. [15℄), whih

is very useful for linear equations. Marusi�-Paloka [18℄ was able to extend Cona's

result, �rst for small data by using a linearization of the Navier-Stokes equations

and an iterative argument (in fat, the Banah's �xed point theorem) based on

penalisation method and an estimate on the Oseen's problem solution, and then for

no small data assumption by splitting the data into a small irregular part and a

large regular part.

We ombine ideas from Cona [2℄, Marusi�-Paloka [18℄, and  Lukaszewiz [17℄, to

obtain the existene of a very weak solution for the stationary miropolar uid

equations. That is, �rst we use the transposition method for obtaining a solution to

the mirorotational �eld equation, whih depends on the veloity �eld v that lives

in L

3

(
). This mirorotational �eld solution obeys a good estimate with respet

to v, as we prove below, provided v is split into a small irregular part in L

3

(
)

and a regular part u

"

in H

1

(
) (see Lemma 3.1). To attain that, we needed to

prove a regularity result for a seond order linear strongly ellipti system with an

irregular oeeÆient (see the proof of Lemma 3.1). Then taking the small part of

v as a solution for the Navier-Stokes equations, via Marusi�-Paloka's theorem, we

prove the existene of u

"

using an appropriate Leray-Hopf extension of a smooth

approximation of the boundary value for v, and the Leray-Shauder �xed point

theorem, following [17℄.

Besides the existene of solutions, we obtain a result of ontinuous dependene on

the boundary data for w and given external fores, whih implies, in partiular,

uniqueness of solution.

The plan of the paper is as follows. In Setion 2. we introdue our main problem,

give the notations used throughout the paper and the de�nition of a very weak

solution. Then we state our main theorem and make some brief omments on the

relation between very weak and weak solutions. We end the Setion showing that
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the very weak solution has a \trae"on the boundary of the domain that oinides

with the boundary data and with the usual trae when the boundary are regular

and the very weak solution is a weak solution. Setion 3. deals with the system for

the mirorotational �eld w assuming that v is split into an appropriate sum, as

explained above. In Setion 4. we show a way of reduing the system for v to a new

system for an unknown u in the spae V of divergent free funtions in H

1

0

(
). That

is, v = u

"

+ v

"

, where v

"

is the small part of v in L

3

(
). This small part v

"

is a

very weak solution of the stationary Navier-Stokes system, whih exists due to the

Marusi�-Paloka's theorem [18℄, with null external fore and with a boundary data

very small in the norm of L

2

(�
), depending on a smooth approximation v

"

0

of v

0

.

The part u

"

is the \large"regular part of v in H

1

(
). It is equal to u +

f

v

"

0

, where

f

v

"

0

is an appropriate Leray-Hopf extension of v

"

0

to 
 whih is in V, and u is the

new unknown whih satis�es its own system shown in Setion 4.. This system for u

is a nonlinear one, where the nonlinearities ome from the term (u � r)u and from

w that depends on v. In Setion 5. we prove the existene of a solution u in V for

this system using the Leray-Shauder �xed point theorem, with the help of a good

hoie of v

"

0

and

f

v

"

0

. Finally, in Setion 6 we prove the ontinuous dependene of

the very weak solution on the data f , g and w

0

.

2. The equations of stationary miropolar

uids, notations, and de�nition of a very weak

solution

We begin this Setion wtih the presentation of the problem we study is this paper.

Then we give the notation used throughout the paper, the de�nition of a very weak

solution, and state our main theorem. We end it with a brief explanation on the

de�nition of a very weak solution, its relation with a weak solution and show that a

very weak solution attains the boundary data in a \trae"sense.

Let 
 be an open, bounded and onneted set in R

3

with a boundary of lass C

2

,
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whih we denote by �. We are interested in solving the following boundary value

problem.

Problem 2.1 Assume that v

0

2 L

2

(�) with

Z

�

v

0

� nds = 0, where n is the unit

outward normal on �, w

0

2 L

2

(�), f , g 2 L

2

(
), and prove existene of funtions

v 2 L

3

(
); w 2 L

2

(
) suh that, together with some distribution p, satisfy in a

very weak sense

���v + (v � r)v +rp = arotw + f(2.1)

divv = 0(2.2)

���w + (v � r)w � �rdivw + w = arotv + g;(2.3)

in 
, with boundary data

vj

�

= v

0

(2.4)

wj

�

= w

0

:(2.5)

In (2.1)-(2.3) and hereafter, for short we write � = � + �

r

, a = 2�

r

, � = 

a

+ 

d

,

� = 

o

+ 

d

� 

a

, and  = 4�

r

(f. Setion 1.).
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Notations: Throughout this paper we �x the following notations:

x : A generi point in 
 ( x = (x

1

; x

2

; x

3

) )

� : The boundary of 


n : The unit outward normal on �

W

k;p

: The Sobolev spae of order k modelled in L

p

(
;R

3

)

W

k;p

0

: The spae of funtion in W

k;p

whose derivatives up to the

order k � 1 have null trae in �

H

k

: W

k;2

H

k

0

: W

k;2

0

V : The losure in H

1

0

of the funtions in C

1

0

with null divergent

(( ; )) : The inner produt in V, given by

((u;v))

def

=

Z




ru:rv =

Z




�v

i

�x

j

�u

i

�x

j

;

u = (u

1

; u

2

; u

3

); v = (v

1

; v

2

; v

3

) 2 V; where here, and in what

follows, we use the notation of repeated indies, with summation

from 1 to 3.

�'

�n

: For ' 2 W

2;p

; ' = ('

1

; '

2

; '

3

); this notation stands for the Jaobian

matrix r' times n; i.e.

�'

�n

def

= (r')n = ((r'

1

) � n; (r'

2

) � n; (r'

3

) � n) = (

�'

1

�n

;

�'

2

�n

;

�'

3

�n

)

jj jj : The norm assoiated with (( )) in H

1

0

or V

jj jj

k;p

: The norm of W

k;p

jj jj

k

: The norm of H

k

( ; ) : The inner produt of L

2

j ; j : The norm of L

2

j ; j

p

: The norm of L

p

B( ; ; ) The trilinear form given by B(u;v;w)

def

= ( (u � r)v ; w )

 : A universal onstant, i.e. some positive onstant that

does not depend on the unknowns:
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De�nition 2.1 (Very weak solution) : Let v

0

2 L

2

(�) suh that

Z

�

v

0

�nds = 0, w

0

2 L

2

(�), and f ; g 2 L

2

(
). A triple (v;w; p) in L

3

�L

2

�W

�1;3

is a very weak solution of Problem 2.1 if

(v;r�) =

Z

�

(v

0

� n)�ds(2.6)

for all � in W

1;3=2

,

��(v;�') � B(v; ';v)� (p; div')(2.7)

= a(w; rot') + (f ; ')� �

Z

�

v

0

�

�'

�n

ds

for all ' in W

2;3=2

\W

1;3=2

0

, and

��(w;� ) � B(v;  ;w)� �(w;rdiv ) + (w;  )(2.8)

= a(v; rot ) + (g;  )

��

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds

for all  in H

2

\H

1

0

.

The main goal of this paper is to prove the following theorems.

Theorem 2.1 (Existene) There exists a very weak solution of Problem 2.1 in

the sense of the above de�nition, provided the visosity � is larger than some onstant

depending only on 
 and on the parameters a, �, �, and .

Theorem 2.2 (Continuous dependene on f, g and w

0

, and uniqueness) Let

(v

i

;w

i

), i = 1; 2 be very weak solutions of Problem 2.1 orresponding to the external

�elds f = f

i

, g = g

i

, and boundary data w

0i

, i = 1; 2, respetively. Then there exists

a onstant �

�

> 0 suh that for all � � �

�

,

jv

1

� v

2

j

3

+ jw

1

�w

2

j � ( jf

1

� f

2

j+ jg

1

� g

2

j + jw

0

1

�w

0

2

j );(2.9)

where the onstant  depends only on the data of the problem and on 
. In partiular,

for � � �

�

the problem is uniquely solvable.
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Remark 2..1 In view of our onstrution of the solution we are not able to prove

the ontinuous dependene of the solution on the boundary data v

0

.

A brief explanation of the de�nition of a very weak solution: The de�nition of

a very weak solution omes out naturally when we multiply the equations in (2.1)-

(2.3) by test funtions �, ',  , respetively, vanishing on the boundary �, formally

integrate by parts, and impose the boundary data (2.4), (2.5). Then it is easy

to hek that the spaes W

2;3=2

\W

1;3=2

0

, H

2

\ H

1

0

and W

1;3=2

are the appropriate

Sobolev spaes to the test funtions ',  and �, respetively, in view of the onditions

v

0

2 L

2

(�) and w

0

2 L

2

(�). When v

0

and w

0

are regular, that is, v

0

;w

0

2 H

1=2

(�),

the onepts of very weak solutions and weak solutions are equivalent.

Next, we show that a very weak solution (v;w) satis�es the boundary onditions

(2.4), (2.5) in the sense that v and w have whole \traes"on � whih are equal to

v

0

and w

0

, respetively. From (2.1) it is lassial that v has a normal trae on �,

whih we denote by 

n

(v), and



n

(v) = v

0

� n(2.10)

in W

�1=3;3

(�). Now, to obtain the tangent trae we onsider the spae (f. [2℄ and

[18℄)

X

def

= f� 2 W

1=3;3=2

(�) : � � n = 0g

and de�ne the funtional 

t

(v) : X ! R by

< 

t

(v); � >

def

=

1

�

f�(v;�') + B(v; ';v) + (p; div') + a(w; rot') + (f ; ')g ;(2.11)

where for a given � 2 X, ' is any funtion in W

2;3=2

\W

1;3=2

0

suh that

�'

�n

j

�

= �.

This map is well de�ned sine v satis�es (2.7), and so

< 

t

(v); � >=

Z

�

v

0

�

�'

�n

ds =

Z

�

v

0

� �ds =

Z

�

v

t

0

� �ds;

for all � 2 X, where v

0

t

def

= v

0

� (v

0

� n)n. From this equality we see that



t

(v) = v

0

t

(2.12)
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regarding 

t

(v), v

0

t

as elements in X

0

{the dual spae of X. From (2.10) and (2.12)

we an onlude that v admits a \trae"on � whih oinides with v

0

.

Using equation (2.8) we get a similar notion of trae for w on �. For this ase

it is onvenient to write the boundary term �

Z

�

w

0

�

� 

�n

ds+ �

Z

�

(w

0

� n)div ds in

the following way:

�

Z

�

w

0

�

� 

�n

ds+ �

Z

�

(w

0

� n)div ds(2.13)

=

Z

�

[�w

t

0

�

� 

�n

+ (w

0

� n)(�n �

� 

�n

+ � div )℄ds

=

Z

�

[�w

t

0

�

� 

�n

+ (�+ �)(w

0

� n) div )℄ds;

where w

t

0

def

= w

0

� (w

0

� n)n. We have used the fat that n �

� 

�n

j

�

= div j

�

for all

 in H

2

\H

1

0

. Now, we onsider the spaes

Y

def

= fg n : g 2 H

1=2

(�;R)g and Z

def

= f� 2 H

1=2

(�;R

3

) ; � � n = 0g;

and de�ne the funtionals 

n

(w) : Y ! R, 

t

(w) : Z ! R, respetively, by

(�+�) < 

n

(w); gn >

def

= �(w;� )+B(v;  ;w)+�(w;r div )+(w;  )+a(v; rot )+(g;  );

� < 

t

(w); � >

def

= �(w;� )+B(v;  ;w)+�(w;r div )+(w;  )+a(v; rot )+(g;  );

where in the �rst ase,  is any funtion in H

2

\H

1

0

suh that

� 

�n

j

�

= g n, and in

the seond ase,  is any funtion in H

2

\H

1

0

suh that

� 

�n

j

�

= �. Sine w satis�es

(2.8) and we have (2.13), it follows that

(� + �) < 

n

(w); g n > =

Z

�

[�w

t

0

� (g n) + (� + �)(w

0

� n)n �

� 

�n

)℄ds

=

Z

�

(� + �)(w

0

� n)n � (g n)ds

for all g n 2 Y . Then



n

(w) = (w

0

� n)n;

as elements in Y

0

. Similarly, we have



t

(w) = w

t

0

in Z

0

. Therefore, w also has a \trae"on � whih oinides with w

0

.
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3. Problem in w

In this setion we study the following problem in w:

Problem 3.1 Given w

0

2 L

2

(�) and v 2 L

3

with divv = 0 (see Remark 3..1

below) and suh that v = u

"

+v

"

where u

"

2 H

1

and v

"

2 L

3

with jv

"

j

3

suÆiently

small, �nd w 2 L

2

suh that (2.8) is satis�ed, i.e.

��(w;� ) � B(v;  ;w)� �(w;rdiv ) + (w;  )(3.1)

= a(v; rot ) + (g;  )

��

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds

for all  in H

1

0

\H

2

.

Remark 3..1 Above, the ondition div v = 0 is understood in the weak sense, i.e.

(v;r�) = 0 for all � 2 W

1;3=2

0

. As a onsequene of this ondition we have that the

bilinear form

B(�;  )

def

= �(r�;  )� B(v;  ; �) + �( div �; div ) + (�;  );(3.2)

whih is assoiated with the left hand side of (3.1), is strongly ellipti, i.e. it is

bilinear ontinuous and oerive. Indeed,

B(v; �; �) = �

1

2

(v;r(j�j

2

)) = 0;(3.3)

for all � 2 H

1

0

, sine div v = 0 and H

1

0

� W

1;3=2

0

.

Lemma 3.1 There exists a unique solution of Problem 3.1. Moreover, the following

estimate holds:

jwj � (1 + jju

"

jj

1

);(3.4)

where  is independent of v.

Proof: We use the transposition method [15℄. Let

L( )

def

= ��� � (v � r) � �rdiv +  ;(3.5)
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the adjoint operator assoiated with the left hand side of (3.1). Given h 2 L

2

, let  

be the unique weak solution in H

1

0

of the adjoint equation L( ) = h, i.e.

B(�;  ) = (h; �)(3.6)

for all � 2 H

1

0

. Existene and uniqueness of suh solution  in H

1

0

easily follows

from Lax-Milgram's lemma, sine divv = 0 (f. Remark 3..1 above). Besides, we

an easily get the estimates

jj jj � �

�1

jhj; j j � 

�1

jhj(3.7)

by taking � =  in (3.6).

Next we prove higher regularity of the solution of (3.6), i.e. we show that  2 H

2

.

Moreover, we obtain the following estimate:

jj jj

2

� (1 + jju

"

jj

2

1

)jhj;(3.8)

where  is independent of v. Although the operator L (de�ned in (3.5)) is strongly

ellipti, this not follows straightforward from known results for ellipti systems be-

ause the operator L ontains an irregular oeÆient for the derivatives of the �rst

order, namely, v is in L

3

, and we do not assume it is bounded, i.e. in L

1

(
). We do

not know if  2 H

2

or if (3.8) holds true for a general v in L

3

. In our ase we gain

that result due to the speial form of v that is deomposed as a sum of a \regular

part"u

"

in H

1

and a small part v

"

in L

3

. In Setion 4. we obtain the very weak

solution of Problem 2.1 with v in L

3

by writing v as a suh deomposition.

To attain our purpose of showing that  is in H

2

and to show that we have the

estimate (3.8) we �rst regularize v by making the onvolution of it with a smooth

family of molli�ers f�

�

g; � > 0. Then writing v

�

def

= v��

�

= u

"

��

�

+v

"

��

�

� u

"

�

+v

"

�

we let  

�

be the solution in H

1

0

of the following regularization of system L( ) = h:

��� 

�

� �rdiv 

�

+  

�

= F

�

;(3.9)

where

F

�

def

= h + (v

�

� r) 

�

= h+ (u

"

�

� r) 

�

+ (v

"

�

� r) 

�

:
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Sine u

"

�

;v

"

�

2 C

1

(
) and r 

�

2 L

2

, we have that F

�

2 L

2

, thus by Ne�as result

on strongly ellipti systems (Theorem 5 in [20℄) we obtain

jj 

�

jj

2

� jF

�

j;(3.10)

where  is independent of v

�

. But

j(u

"

�

� r) 

�

j � ju

"

�

j

6

jr j

3

� jju

"

�

jj

1

jr 

�

j

3

� jju

"

�

jj

1

jj 

�

jj

1=2

jj 

�

jj

1=2

2

�



2

4�

jju

"

�

jj

2

1

jj 

�

jj+ �jj 

�

jj

2

�



2

4�

jju

"

jj

2

1

jj 

�

jj+ �jj 

�

jj

2

;

(3.11)

for any � > 0. (On the seond inequality above we used the Gagliardo-Nirenberg

(see e.g. [8℄) inequality

jjujj

W

k;p � jjujj

�

W

m;q

juj

1��

r

with k = 1, p = n = 3, m = q = 2; � = 1=2 and r = 6.) Besides,

j(v

"

�

� r) 

�

j � jv

"

�

j

3

jr 

�

j

6

� �jj 

�

jj

2

� jv

"

j

3

jr 

�

j

6

� �jj 

�

jj

2

;

(3.12)

if jv

"

j

3

� �. Then, using (3.11) and (3.12) in (3.10) with an appropriate �, we

obtain

jj 

�

jj

2

� (jhj+ jju

"

jj

2

1

jj 

�

jj):

As

jj 

�

jj � jhj;

we arrive at (3.8) with  

�

in plae of  . Then we pass to the limit for a subsequene of

f�g and get (3.8). Here we used Banah-Alaoglu's theorem in H

2

and the uniqueness

of solution of (3.6) in H

1

0

.

Now we onsider the map that takes h in L

2

into the unique solution  of (3.6)

whih is in H

2

. Sine we have (3.8) and the equation (3.6) is linear, this is a

ontinuous linear map from L

2

into H

2

. Then the expression

l(h)

def

= a(v; rot ) + (g;  )� �

Z

�

w

0

�

� 

�n

ds� �

Z

�

(w

0

� n)div ds
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(given by the right hand side of (3.1)) de�nes a ontinuous linear funtional in h

ating on L

2

. Writing (3.1) in the form

(w; h) = l(h)(3.13)

for all h 2 L

2

, we onlude diretly from the Riesz representation theorem that

there exists a unique w in L

2

suh that (3.13) holds. This prove the existene and

uniqueness part of the Lemma.

Next we proeed to get the estimate (3.4). Setting h = w in (3.13) we get

jwj

2

= l(w)

= a(v; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n)div ds;

(3.14)

where L( ) = w, that is,  2 H

1

0

\H

2

and

��� � (v � r) � �rdiv +  = w:(3.15)

We shall show that the right hand side of (3.14) an be estimated by (1 +

jju

"

jj

1

)jwj, where  is independent of v.

Multiplying (3.15) by  and integrating in 
 we obtain, in partiular

�jj jj

2

+ j j

2

� (w;  ) �

1

2

jwj

2

+



2

j j

2

;

whene

jj jj �

1

p

2�

jwj and j j �

1



jwj:(3.16)

The diÆult term in (3.14) is

Z

�

w

0

� 

�n

ds. To estimate it we need to use the fat

that

jzj

L

2

(�)

� (jrzj

1=2

jzj

1=2

+ jzj)(3.17)

for any z in H

1

(
). This estimate an be inferred from

jzj

L

2

(�)

� jrzj

1=2

jzj

1=2

for all z 2 H

1

(
) with null average in 
 (see e.g. [10℄, p.50) by applying it to z

minus its average in 
.
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Now we an estimate the terms on the right hand side of (3.14) in terms of w.

Using (3.16), (3.17) with z = r , and (3.8), we have:

a(v; rot ) � ajvjjj jj �

a

p

2�

jvj jwj � (1 + jju

"

jj

1

)jwj;

(g;  ) � jgjj j �

1



jgjjwj � (1 + jju

"

jj

1

)jwj;

�

Z

�

w

0

� 

�n

ds � �jw

0

j

L

2

(�)

jr j

L

2

(�)

� �jw

0

j

L

2

(�)

(jj jj

1=2

2

jj jj

1=2

+ jj jj)

� �jw

0

j

L

2

(�)

�

(1 + jju

"

jj

2

1

)

1=2

jwj

1=2

jwj

1=2

+ jwj

�

� (1 + jju

"

jj

1

)jwj

and

�

Z

�

(w

0

� n)div ds � �jw

0

j

L

2

(�)

jwj � (1 + jju

"

jj

1

)jwj:

In onlusion, (3.14) together with the above estimates gives (3.4).

We �nish this Setion with the following Lemma whih will be used in the end

of the proof of Lemma 5.2.

Lemma 3.2 Let (u

"

n

) be a bounded sequene in H

1

, v

n

def

= u

"

n

+ v

"

, and w

n

the

unique solution of Problem 3.1 with v = v

n

. Then there exists a subsequene (w

n

k

)

that is strongly onvergent in L

2

.

Proof: From inequality (3.4) we onlude that the sequene (w

n

) is bounded in

L

2

. Thus, there exists a subsequene (w

n

k

) that is weakly onvergent in L

2

. From

(3.14) written for w

n

k

and w

n

l

, we get

jw

n

k

j

2

� jw

n

l

j

2

= a(v

n

k

� v

n

l

; rot 

n

k

) + a(v

n

k

; rot ( 

n

k

�  

n

l

))(3.18)

+(g;  

n

k

�  

k

l

)

��

Z

�

w

0

�( 

n

l

�  

n

k

)

�n

ds� �

Z

�

(w

0

� n) div ( 

n

l

�  

n

k

)ds;

where L( 

n

k

) = w

n

k

and L( 

n

l

) = w

n

l

.
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From the boundedness of (w

n

) in L

2

and inequality (3.8) it follows that the

sequene ( 

n

k

) is bounded in H

2

. From the ompat embedding H

1

,!,! L

3=2

we

onlude the existene of a subsequene ( 

n

k

m

), m = 1; 2; : : :, suh that (r 

n

k

m

)

onverges strongly in L

3=2

. Sine H

2

,! H

3=2

(�) ,!,! H

1

(�), we an assume also

that jr( 

n

k

m

�  

nk

i

)j

L

2

(�)

onverges to zero as m; i go to in�nity. Taking that into

aount, we an see easily from (3.18) that

jw

n

k

m

j

2

� jw

n

k

i

j

2

! 0;

as m; i go to in�nity. This, together with the weak onvergene of (w

n

k

m

) in L

2

gives the strong onvergene of (w

n

k

m

) in L

2

.

4. Problem in v and a related problem

Assume that w 2 L

2

is given and onsider the problem (2.6), (2.7) in v. We want to

get rid of the pressure (it an be reovered when needed from De Rham's Lemma)

and to this end we take test funtions that are divergent free. Then the problem

(2.6), (2.7) redues to the following one.

Problem 4.1 Given w 2 L

2

, v

0

2 L

2

(�) and f 2 L

2

, �nd v 2 L

3

suh that

(v;r�) =

Z

�

(v

0

� n)�ds(4.1)

for all � in W

1;3=2

, and

��(v;�')� B(v; ';v) = a(w; rot') + (f ; ')� �

Z

�

v

0

�

�'

�n

ds(4.2)

for all ' in W

2;3=2

\W

1;3=2

0

with div' = 0.

Now, we introdue a problem that is related to Problem 4.1. Assume that v is

a solution of Problem 4.1 and that we an write v in the form

v = u

"

+ v

"

(" > 0)(4.3)

where u

"

is a \large regular part": u

"

2 H

1

, divu

"

= 0, u

"

j

�

= v

"

0

(v

"

0

is a smooth

approximation of v

0

in L

2

(�) suh that jv

0

� v

"

0

j

L

2

(�)

<< 1) and v

"

is a \small
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regular part": v

"

2 L

3

and is very weak solution of the problem (f. Lemma 4.2

below):

8

>

>

>

<

>

>

>

:

���v

"

+ (v

"

� r)v

"

+rp

"

= 0 in 


divv

"

= 0 in 


v

"

j

�

= v

0

� v

"

0

:

(4.4)

Aording to the de�nition of a very weak solution, we have, in partiular,

��(v

"

;�')� B(v

"

; ';v

"

) = ��

Z

�

(v

0

� v

"

0

)

�'

�n

ds(4.5)

for all ' 2 W

2;3=2

\W

1;3=2

0

with div' = 0. From (4.2), (4.3) and (4.5) it follows

that

��(u

"

;�') = B(u

"

; ';v) + B(v

"

; ';u

"

) + a(w; rot') + (f ; ')� �

Z

�

v

"

0

�'

�n

ds:

Observe that v

"

0

is smooth and that u

"

belongs to H

1

. We an integrate by parts

on the left hand side of this equation to get

�((u

"

; ')) = B(u

"

; ';v) + B(v

"

; ';u

"

) + a(w; rot') + (f ; '):(4.6)

Now we write u

"

in the form

u

"

=

f

v

"

0

+ u;(4.7)

where

f

v

"

0

is a suitable Leray-Hopf extension of v

"

0

to 
 (f. Lemma 4.1 below), and

u 2 V. From (4.6) and (4.7) we an derive the equation for u. We also write

v = u

"

+ v

"

=

f

v

"

0

+ u + v

"

= u + V

"

;(4.8)

where V

"

def

=

f

v

"

0

+ v

"

. We observe that V

"

belongs to L

3

and V

"

j

�

= v

0

. Applying

(4.7) and (4.8) to (4.6) we obtain

� ((u; ')) = B(u; ';u) + B(V

"

; ';u) + B(u; '; V

"

) + a(w; rot')

+(f ; ')� �((

f

v

"

0

; ')) + B(

f

v

"

0

; '; V

"

) + B(v

"

; ';

f

v

"

0

):

Denote

L(u; ')

def

= B(V

"

; ';u) + B(u; '; V

"

); V

"

def

=

f

v

"

0

+ v

"

(4.9)
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and

< F ; ' >

def

= (f ; ')� �((

f

v

"

0

; ')) + B(

f

v

"

0

; ')) + B(

f

v

"

0

; '; V

"

) + B(v

"

; ';

f

v

"

0

):(4.10)

Then

�((u; ')) = B(u; ';u) + L(u; ') + a(w; rot')+ < F ; ' >(4.11)

for all ' 2 W

2;3=2

\W

1;3=2

0

with div' = 0. If u is a solution of problem (4.11) then

it is also a variational solution, that is,

�((u; ')) = B(u; ';u) + L(u; ') + a(w; rot')+ < F ; ' >(4.12)

for all ' 2 V, as from (4.9), (4.10) we an see that L(u; '), < F ; ' >, and B(u; ';u)

are ontinuous in ' with respet to the H

1

topology.

Let us assume now that u 2 V is a solution of (4.12). From the above onsid-

erations it follows then that v = u + V

"

, V

"

=

f

v

"

0

+ v

"

, is a very weak solution of

Problem 4.1.

In the next setion we prove existene of a very weak solution of Problem 2.1,

where the veloity �eld is of the form v = u + V

"

= u

"

+ u, with u 2 V, and with

V

"

def

=

f

v

"

0

+v

"

, u

"

def

= u+

f

v

"

0

, suitably onstruted on the basis of the boundary data

v

0

2 L

2

.

For the just mentioned onstrution we use the following Lemmas.

Lemma 4.1 (Leray-Hopf extension) Let 
 be an open onneted and bounded

set in R

3

of lass C

2

and z

0

2 H

1=2

(�) with

Z

�

z

0

� nds = 0. Then for every � > 0

there exists a funtion

f

z

0

suh that

f

z

0

2 H

1

(
); div

f

z

0

= 0 in 
;

f

z

0

= z

0

on �;

and

jB(u;

f

z

0

;u)j � �jjujj

2

for all u 2 V.

Proof: See [29℄,Chapter II, x1.4 and Appendix 1.



Stationary miropolar uids with data in L

2

19

Lemma 4.2 (Marusi�-Paloka) Let 
 � R

3

be a bounded domain in R

3

with a

boundary � of lass C

2

. Consider the following boundary value problem for the

Navier-Stokes equations with data g in L

2

(�) satisfying

Z

�

g � nds = 0:

8

>

>

>

<

>

>

>

:

���z + (z � r)z +rp = 0 in 


div z = 0 in 


z = g on �:

If jgj

L

2

(�)

is suÆiently small then there exists a unique very weak solution z in L

3

of the above problem. Furthermore, there is a onstant 

1

depending only on � suh

that

jzj

3

<



1

�jgj

L

2

(�)

�� 

1

jgj

L

2

(�)

:(4.13)

Proof: See Theorem 4 in [18℄.

5. Existene theorem

At the beginning of this Setion we shall show how to onstrut a map A : V ! V

whose �xed point gives a very weak solution of Problem 2.1 in the sense of De�nition

2.1. Then we prove two lemmas whih yield the proof of Theorem 2.1.

We start with v

0

2 L

2

(�){the irregular boundary ondition. We take a smooth

approximation v

"

0

of v

0

in L

2

(�) suh that jv

0

�v

"

0

j

L

2

(�)

is small enough with respet

to �, and let v

"

to be a very weak solution of (4.4) (f. Lemma 4.2); we take

jv

0

� v

"

0

j

L

2

(�)

so small that the Problem 3.1 has a solution for eah u

"

in H

1

and

that the last inequality in (5.4) below holds true. Then we onstrut the Leray-Hopf

extension

f

v

"

0

of v

"

0

satisfying

B(u;

f

v

"

0

;u) �

�

2

jjujj

2

(5.1)

for all u 2 V (f. Lemma 4.1).
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Now, for u 2 V, we de�ne v = u+

f

v

"

0

+ v

"

= u

"

+ v

"

, u

"

def

= u+

f

v

"

0

, and for this

v we solve Problem 3.1 in w. Having w{the unique solution of Problem 3.1, we an

de�ne A(u) 2 V by the relation

E(A(u); ') = a(w; rot')+ < F ; ' > +B(u; ';u)(5.2)

for all ' 2 V, where E(u; ')

def

= �((u; '))�L(u; ') (L de�ned in (4.9)) is ontinuous

and oerive under our assumptions. For eah w 2 L

2

and u 2 V the right hand

side of (5.2) de�nes a linear and bounded funtional in ' on V. Thus, by the

Lax-Milgram lemma, the map A is well de�ned.

Observe that eah �xed point u of the mapA de�nes a pair (v;w) = (u

"

+V

"

;w),

V

"

def

=

f

v

"

0

+ v

"

, whih is a very weak solution of Problem 2.1; (v;w) satis�es (4.1),

(4.2) and (3.1). Using the De Rham lemma we show then that there exists a p 2

W

�1;3

suh that the triple (v;w; p) satis�es all onditions in De�nition 2.1.

For � big enough, we an prove that the operator A is ompletely ontinuous

and that all u 2 V suh that for some � 2 [0; 1℄ it is u = �Au are ontained in a ball

jjujj � M . The existene of a �xed point of A follows then from the Leray-Shauder

�xed point theorem.

Lemma 5.1 If � is suÆiently large then there exists a onstant M > 0 suh that

for all u 2 V satisfying the equation u = �Au for some � 2 [0; 1℄ we have jjujj �M .

Proof: If � = 0 then u = 0. Now, if 0 < � � 1 then setting Au =

1

�

u in (5.2) with

' = u, we obtain

�jjujj

2

� L(u;u) = �fa(w; rotu)+ < F ;u >g:(5.3)

By the de�nition of L (see (4.9)) together with the fat that div V

"

= 0 and

V

"

=

f

v

"

0

+v

"

, and by the estimates (5.1) and (4.13) in Lemma 4.2 with g = v

0

�v

"

0
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(f. problem (4.4)) we have

jL(u;u)j = jB(u;u; V

"

)j = B(u;u;

f

v

"

0

) + B(u;u;v

"

)j

= j � B(u;

f

v

"

0

;u) + B(u;u;v

"

)j

�

�

2

jjujj

2

+ jv

"

j

3

jjujj

2

� (

�

2

+ 



1

�jv

"

0

�v

0

j

L

2

(�)

��

1

jv

"

0

�v

0

j

L

2

(�)

)jjujj

2

�

�

4

jjujj

2

;

(5.4)

for jv

"

0

� v

0

j

L

2

(�)

suÆiently small with respet to �.

Also, by (3.4),

a(w; rotu) � ajwjjjujj � (1 + jju

"

jj

1

)jjujj

� (1 + jjujj

1

+ jj

f

v

"

0

jj

1

)jjujj � (1 + jjujj+ jj

f

v

"

0

jj

1

)jjujj

� jjujj

2

+ 

0

jjujj �

�

4

jjujj

2

+ 

0

jjujj

(5.5)

for � large enough, and, by the de�nition of F (see (4.10)),

< F ;u >= (f ;u)� �((

f

v

"

0

;u)) + B(

f

v

"

0

;u; V

"

) + B(v

"

;u;

f

v

"

0

) � jjujj:(5.6)

From (5.3), together with (5.4){(5.6), we obtain the desired result.

Lemma 5.2 The operator A is ompletely ontinuous.

Proof: Let (u

n

) be a bounded sequene in V. We shall show that then (Au

n

k

) is a

Cauhy sequene in V (for a subsequene (n

k

)). Let

E(Au

m

; ') = a(w

m

; rot')+ < F ; ' > +B(u

m

; ';u

m

)(5.7)

E(Au

n

; ') = a(w

n

; rot')+ < F ; ' > +B(u

n

; ';u

n

)(5.8)

for all ' 2 V, where

(w

m

;��� + (v

m

� r) � �r div +  )(5.9)

= a(v

m

; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n) div ds
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(w

n

;��� + (v

n

� r) � �r div +  )(5.10)

= a(v

n

; rot ) + (g;  )� �

Z

�

w

0

� 

�n

ds� �

Z

�

(w

0

� n) div ds;

v

m

= u

m

+ V

"

; v

n

= u

n

+ V

"

; V

"

def

=

f

v

"

0

+ v

"

:

Taking the di�erene of (5.7) and (5.8) we obtain

E(Au

m

�Au

n

; ') = a(w

m

�w

n

; rot')

+B(u

m

� u

n

; ';u

n

) + B(u

m

; ';u

m

� u

n

):

(5.11)

Set ' = Au

m

�Au

n

and we have

3

4

�jjAu

m

�Au

n

jj

2

� ajw

m

�w

n

j jjAu

m

�Au

n

jj

+(jju

m

jj+ jju

n

jj)jjAu

m

�Au

n

jj ju

m

� u

n

j

3

;

where for obtaining the left hand side we used E(u; ')

def

= �((u; '))� L(u; ') and

the estimate for L(u;u) in (5.4). Thus

3

4

�jjAu

m

�Au

n

jj � ajw

m

�w

n

j

+(jju

m

jj+ jju

n

jj)ju

m

� u

n

j

3

:

(5.12)

Now, as (u

m

) is a bounded sequene in V, there exists a subsequene (we denote

it also by (u

n

)) that is onvergent is L

3

. Moreover, in view of Lemma 3.1, (w

m

)

onverges in L

2

. Thus, by (5.12), (Au

n

) is a Cauhy sequene in V. In onsequene,

the operator A is ompat.

Observe that from inequality (5.12) the ontinuity of A in V immediately follows.

6. Continuous dependene on the data

f, g and w

0

In this setion we prove Theorem 2.2. Let

�((u

i

; �)) = B(u

i

; �;u) + L(u

i

; �) + a(w

i

; rot�)+ < F

i

; � >(6.1)
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where

L(u

i

; �)

def

= B(V

"

; �;u

i

) + B(u

i

; �; V

"

); V

"

def

=

f

v

"

0

+ v

"

(6.2)

and

< F

i

; � >

def

= (f

i

; �)� �((

f

v

"

0

; �)) + B(

f

v

"

0

; �)) + B(

f

v

"

0

; �; V

"

) + B(v

"

; �;

f

v

"

0

):(6.3)

for i = 1; 2 and � 2 H

1

0

. We reall that v

"

is the very weak solution of (4.4) with

v

"

j

�

= v

0

� v

"

0

, where v

"

0

is a smooth approximation of v

0

suh that divv

"

0

= 0,

and jv

0

� v

"

0

j

3

is very small with respet to � (f. (5.4)), and

f

v

"

0

is a Leray-Hopf

extension of v

"

0

satisfying (5.1).

From (5.4) we have

L(u

1

� u

2

;u

1

� u

2

) �

�

4

jju

1

� u

2

jj

2

:(6.4)

Then, writing (6.1) for i = 1; 2, taking the di�erene and setting � = u

1

� u

2

, we

obtain

3

4

�jju

1

� u

2

jj

2

� B(u

1

� u

2

;u

1

� u

2

;u

2

) + a(w

1

�w

2

; rot (u

1

� u

2

) ) + (f

1

� f

2

;u

1

� u

2

)

� jju

2

jj jju

1

� u

2

jj

2

+ ajw

1

�w

2

j jju

1

� u

2

jj+ jf

1

� f

2

j jju

1

� u

2

jj;

whene

3

4

�jju

1

� u

2

jj � jju

2

jj jju

1

� u

2

jj+ ajw

1

�w

2

j+ jf

1

� f

2

j:

From Lemma 5.1 we have that jju

2

jj � M , where M is a onstant that does not

inrease with �, thus for � large enough suh that jju

2

jj � �=4, we obtain

�

2

jju

1

� u

2

jj � ajw

1

�w

2

j+ jf

1

� f

2

j:(6.5)

Now, we use equation (3.13). Assume at �rst that w

0

1

= w

0

2

. Then from (3.13)

written for w = w

1

and w = w

2

we have

(w

1

; h

1

) = a(v

1

; rot 

1

) + (g

1

;  

1

)� �

Z

�

w

0

� 

1

�n

ds� �

Z

�

(w

0

� n) div 

1

ds(6.6)

and

(w

2

; h

2

) = a(v

2

; rot 

2

) + (g

2

;  

2

)� �

Z

�

w

0

� 

2

�n

ds� �

Z

�

(w

0

� n) div 

2

ds;(6.7)
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where

h

1

= L

v

1

( 

1

) and h

2

= L

v

2

( 

2

);

for

L

v

def

= ��� � (v � r) � �r div +  :

Taking the test funtions  

1

and  

2

in (6.6) and (6.7), respetively, suh that

L

v

1

( 

1

) = L

v

2

( 

2

) = w

1

�w

2

and subtrating (6.7) from (6.6) we obtain

jw

1

�w

2

j

2

= a(v

1

� v

2

; rot 

2

) + a(v

1

; rot ( 

1

�  

2

))

+(g

1

� g

2

;  

2

) + (g

1

;  

1

�  

2

)

�

Z

�

w

0

�

�n

( 

1

�  

2

)ds+ �

Z

�

(w

0

� n) div ( 

1

�  

2

)ds:

(6.8)

Now, we estimate the terms on the right hand side of (6.8). The �rst term is easily

estimated:

a(v

1

� v

2

; rot 

2

) = a(u

1

� u

2

; rot 

2

) = a( rot (u

1

� u

2

);  

2

)

� ajju

1

� u

2

jj j 

2

j

�

a



jju

1

� u

2

jj jw

1

�w

2

j;

(6.9)

where we used (3.7).

The seond term an be estimated as follows:

a(v

1

; rot ( 

1

�  

2

)) � ajv

1

j jj 

1

�  

2

jj:(6.10)

We have

��� 

1

+ (v

1

� r) 

1

� �r div 

1

+  

1

= w

1

�w

2

and

��� 

2

+ (v

2

� r) 

2

� �r div 

2

+  

1

= w

1

�w

2

;

then taking the di�erene, we get

���( 

1

�  

2

) +(v

1

� r)( 

1

�  

2

)� �r div ( 

1

�  

2

) + ( 

1

�  

2

)

= �((v

1

� v

2

)) � r) 

2

= �((u

1

� u

2

) � r) 

2

:

(6.11)

Multiplying by  

1

�  

2

and integrating in 
 we obtain, in partiular,

jj 

1

�  

2

jj � jju

1

� u

2

jj jj 

2

jj;
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so, using again (3.7), it follows that

jj 

1

�  

2

jj � jju

1

� u

2

jj jw

1

�w

2

j:

Using this estimate in (6.10) we obtain

ja(v

1

; rot ( 

1

�  

2

)j � jv

1

j jju

1

� u

2

jj jw

1

�w

2

j:(6.12)

Next, we have

(g

1

� g

2

;  

2

) � jg

1

� g

2

j

�1

jw

1

�w

2

j(6.13)

and

(g

1

;  

1

�  

2

) � jg

1

j j 

1

�  

2

j

� jg

1

j jj 

1

�  

2

jj

� jg

1

j jju

1

� u

2

jj jw

1

�w

2

j:

(6.14)

The boundary integrals give, by (6.11) and (3.8),

�

Z

�

w

0

�

�n

 

1

�  

2

)ds � �jw

0

j

L

2

(�)

jj 

1

�  

2

jj

2

� jw

0

j

L

2

(�)

j (u

1

� u

2

) � r) 

2

j � jw

0

j

L

2

(�)

jju

1

� u

2

jj jj 

2

jj

2

� jw

0

j

L

2

(�)

jju

1

� u

2

jj(1 + jju

2

jj

2

)jw

1

�w

2

j

� jw

0

j

L

2

(�)

jju

1

� u

2

jj(1 +M

2

)jw

1

�w

2

j

� jw

0

j

L

2

(�)

jju

1

� u

2

jj jw

1

�w

2

j;

(6.15)

and

�

Z

�

(w

0

� n) div ( 

1

�  

2

)ds � �jw

0

j

L

2

(�)

jju

1

� u

2

jj jw

1

�w

2

j:(6.16)

From (6.8)-(6.16) we obtain

jw

1

�w

2

j � (jju

1

� u

2

jj+ jg

1

� g

2

j):(6.17)

Using this estimate in (6.5) we have

jju

1

� u

2

jj � (jg

1

� g

2

j+ jf

1

� f

2

j)

for � large enough. Then, from (6.17), it follows an estimate of the same type for

jw

1

�w

2

j. Therefore, we an write

jv

1

� v

2

j

3

+ jw

1

�w

2

j � (jf

1

� f

2

j+ jg

1

� g

2

j);(6.18)
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as

jv

1

� v

2

j

3

= ju

1

� u

2

j

3

� jju

1

� u

2

jj:

Estimate (6.18) gives the ontinuous dependene of solutions (v;w) on the data f ,

g, provided � is large enough.

Now, to prove (2.9), we observe that if w

0

1

6= w

0

2

then in (6.6) and (6.7) we

have w

0

1

and w

0

2

instead of w

0

, respetively, and subtrating these equations we

obtain two new terms, namely,

�

Z

�

(w

0

1

�w

0

2

)

�

�n

 

2

ds and �

Z

�

((w

0

1

�w

0

2

) � n) div 

2

ds;

whih an be estimate from above by

jw

0

1

�w

0

2

j jw

1

�w

2

j;

whene we have (2.9) in view of the above onsiderations.
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