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Abstrat. We establish in this paper existene results for ritial strongly inde�nite semi-

linear ellipti systems de�ned on both bounded domains and R

N

.

x1. Introdution

Our primary objetive is to investigate the existene of solutions of the semilinear ellipti

system

(1.1) ��u+ u = jvj

q�1

v + g(x; v); ��v + v = juj

p�1

u+ f(x; u) in R

N

;

(1.2) u(x)! 0 and v(x)! 0 as jxj ! 1;

where

1

p+1

+

1

q+1

=

N�2

N

; p; q > 1; whih is known as the ritial hyperbola. The system is

variational. Critial points of the assoiated funtional

I(z) =

Z

R

N

(ru � rv + uv) dx�

1

p+ 1

Z

R

N

juj

p+1

dx�

1

q + 1

Z

R

N

jvj

q+1

dx

�

Z

R

N

(F (x; u) +G(x; v)) dx;

de�ned on a suitable funtion spae are weak solutions of (1.1)-(1.2), where z = (u; v); F (x; u) =

R

u

0

f(x; t) dt; G(x; v) =

R

v

0

g(x; t) dt. Speial features of the funtional I are that it has

a strongly inde�nite quadrati part and the growths of u and v in nonlinear terms are

mutually omplement. The problem an be studied by Linking type theorems based on
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a hoie of frational Sobolev spaes. In bounded domains, the ompatness will be re-

mained in the subritial ase, i.e. p and q satisfy

1

p+1

+

1

q+1

>

N�2

N

; p; q > 1, and f and g

ontain lower growth terms. The problem in bounded domains has been studied by many

authors, partiularly, we refer [16℄ and [20℄. On the other hand, nonexistene results an

be found via Pohozaev's type identity for Hamiltonian system in [25℄, [29℄ for the ritial

ase:

1

p+1

+

1

q+1

=

N�2

N

; p; q > 1. Atually, in this ase a lak of ompat Sobolev inlu-

sions leads a failure of (PS) ondition in general. The existene problem beomes deliate.

In [10℄, Br�ezis and Nirenberg have shown that a positive solution exists for ritial salar

semilinear ellipti equations. Cruial point in their arguments is that (PS)



ondition is

valid for  in an interval related to the best Sobolev onstant, then solutions an be found

by ritial point theory in the interval. Inspired of work [10℄, Hulshof et al in [19℄ proved

the existene of solutions for the system

�

��v = �u+ juj

p�1

u; ��u = �v + jvj

q�1

v; in 
;

u = v = 0 on �


with proper � and �. They used a dual variational method originally due to [12℄. This

approah was also used in [4℄ as an alternative for the methods in [10℄. The main advantage

of the argument is that the assoiated dual funtional possesses a geometry of the mountain

pass. It is easier to get ontrol of ritial values desribed by Mountain Pass Theorem than

that by Linking Theorem. A existene result then an be obtained by ombining loal

ompatness and the Mountain Pass Theorem.

Our problem is setting in R

N

. There is a lak of ompatness due to the fat that

R

N

is unbounded whih is other than ritial ase. For subritial autonomous systems,

Figueiredo and the author [17℄ proved the existene of positive radial solutions. We de-

ompose spaes by spetral family of operators and apply Linking Theorem. In general

ase, one an only expet loal ompatness beause as we show in setion 4, there are

energy levels of assoiated funtional whih are obstale points of the ompatness. So

in our ase, we enounter two types of the loss of ompatness aused by both ritial

exponents and unbounded domains. To study the existene, We begin with a problem in

a bounded domain 


(1.3) ��u+ u = jvj

q�1

v + g(x; v); ��v + v = juj

p�1

u+ f(x; u) in 
;
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(1.4) u(x) = 0; v(x) = 0 on �
:

Let f

1

(x; t) := jtj

p�1

t + f(x; t); g

1

(x; t) := jtj

q�1

t + g(x; t);F(x; t) =

R

t

0

f

1

(x; s) ds and

G(x; t) =

R

t

0

g

1

(x; s) ds. We assume that

(H1). f; g : R

N

�R ! R are measurable in �rst variable, ontinuous in seond variable,

f(x; 0) = g(x; 0) = 0. Both F(x; t) and G(x; t) are inreasing and stritly onvex in t.

(H2) lim

t!0

f(x; t)=t = 0; lim

t!0

g(x; t)=t = 0; 8x 2 R

N

:

(H3)

lim

t!1

f(x; t)

jtj

p�1

t

= 0; lim

t!1

g(x; t)

jtj

q�1

t

= 0; 8x 2 R

N

:

(H4). There are onstants 2 < � � p+ 1; 2 < � � q + 1 suh that

0 < �F (x; t) � tf(x; t); 0 < �G(x; t) � tg(x; t); if jtj > 0:

We shall use the ground state (u; v) of

��u = v

q

; ��v = u

p

; in R

N

to push the ritial value desribed by the mountain pass below

1

N

S

N

2

p;q

, where S

p;q

is de�ned

in Setion 3. u and v are radial funtions. Let u

�

(x) = �

�

N

p+1

u(

x

�

); v

�

(x) = �

�

N

q+1

v(

x

�

).

Denote �(�) = ku

�

k

2

2

+ kv

�

k

2

2

:= �

1

(�) + �

2

(�). The asymptoti behaviours of ku

�

k

2

2

and

kv

�

k

2

2

as �! 0 are given in [19℄.

(H5). There exist funtions

�

f(t) and �g(t) suh that f(x; t) �

�

f(t); g(x; t) � �g(t) and

both

lim

�!0

�

N

�

1

(�)

Z

1=�

0

�

F (�

�

N

p+1

u(r))r

N�1

dr =1;

and lim

�!0

�

N

�

2

(�)

Z

1=�

0

�

G(�

�

N

q+1

v(r))r

N�1

dr =1

if both

�

f 6� 0 and �g 6� 0. Otherwise, we assume one of the limits holds with � replaing �

i

.

Assumption (H5) is a Br�ezis and Nirenberg type ondition, it an be veri�ed in details

as [10℄.
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Theorem A. Assume (H1) - (H5), problem (1.3)-(1.4) possesses at least a nontrivial

solution; Furthermore, if 
 is a ball and f = f(jxj; t); g = g(jxj; t), then problem (1.3) -

(1.4) has a nontrivial radial solution.

Using Theorem A we prove the existene result for problem (1.1) -(1.2) by approximation

arguments. We onstrut a Palais-Smale sequene of the funtional related to problem

(1.1) - (1.2) by Theorem A. In setion 4, we prove a global ompat result for Palais-Smale

sequenes. The result allows us to show Palais - Smale sequenes are relatively ompat

for the values in ertain intervals. In setion 6, we verify a ondition foring ritial values

desribed by the Mountain Pass Theorem into a given interval. Therefore, the Palais-Smale

sequene has a strongly onverging subsequene. The limit funtion will be a solution of

(1.1) - (1.2). Before stating the result, we assume further that

(H6) f(x; t)!

�

f(t); g(x; t)! �g(t) uniformly for t bounded as jxj ! 1;

jf(x; t)�

�

f(t)j � �(R)jtj; jg(x; t)� �g(t)j � �(R)jtj; whenever jxj � R; jtj � Æ

for some onstants R > 0 and Æ > 0, where �(R)! 0 as R!1.

(H7) measfx 2 R

N

: f(x; t) 6�

�

f(t)g > 0 or measfx 2 R

N

: g(x; t) 6� �g(t)g > 0:

(H8)

�

f

1

(t)=t and �g

1

(t)=t are inreasing in t:

We put the same

�

f and �g in (H5) and (H6) for simpliity although they may be hosen

in a di�erent way.

Theorem B. Assume (H1) - (H8), problem (1.1)-(1.2) possesses at least a nontrivial

solution; Furthermore, if f = f(jxj; t); g = g(jxj; t), then problem (1.1) - (1.2) has a

nontrivial radial solution.

We may see in partiular that funtions f(u) = juj

�1

u and g(v) = jvj

�

v, where 1 <

 < p; 1 < � < q, ful�ll all assumptions (H1) - (H8). Other examples an be onstruted

as one in [32℄.
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In setion 2, we prove deaying laws for solutions of (1.1) - (1.2) in a speial ase.

Existene results are given in setion 3 for bounded domains and in setion 5 for R

N

. We

also show in setion 5 that there exists a ground state for problem

(1.5) ��u+ u = jvj

q�1

v + �g(v); ��v + v = juj

p�1

u+

�

f(u) in R

N

;

(1.6) u(x)! 0; v(x)! 0 as jxj ! 0:

The proofs of Theorems A and B are ompleted in setion 6.

S2. Deay of solutions at infinity

In this setion we prove a deaying law for strong solutions of problem (1.1) - (1.2) in

the ase p = q = 2

�

� 1; where 2

�

=

2N

N�2

; N � 3. By a strong solution of (1.1) - (1.2) we

mean a solution (u; v) of (1.1) - (1.2) satisfying u; v 2 W

2;2

�

0

. Moreover, if f and g are

independent of x, positive solutions of problem (1.1) - (1.2) are radial and exponentially

deaying.

Lemma 2.1. Assume (H1) - (H3). Let (u; v) be a strong solution of (1.1) - (1.2). Then,

it belongs to L



for  2 [2;1).

Proof. The arguments are similar to that of [17℄, we outline the proof.

A bootstrap argument [13℄ shows that u and v are ontinuous funtions.

For eah k > 0, we de�ne the open set




k

= fx 2 R

N

: ju(x)j+ jv(x)j < kg:

Now given x

o

2 R

N

, there exist k

o

> 0 and r > 0 suh that the open ball B

r

(x

o

) � 


k

,

for all k � k

o

. Let R(k) = supfr > 0 : B

r

(x

o

) � 


k

g. Clearly R(k) ! +1 as k ! +1.

Let � 2 C

1

o

(R

N

) be a funtion suh that

�(x) = 1; for x 2 B

1=2

(0); �(x) = 0; forx 2 R

N

nB

1

(0);

0 � �(x) � 1 and jr�(x)j � onst, for all x 2 R

N

:
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De�ne �

R

(x) = �(

x�x

o

R

) for R := R(k). Multiplying �rst equation in (1.1) by �

2

R

juj

s�1

u,

with s > 1, and integrating by parts, we obtain as [17℄ that

Z

R

N

jr(�

R

ujuj

s�2

2

)j

2

dx

�

3(s+ 1)

2

8(s� �)

Z

R

N

�

2

R

juj

s�1

u(jvj

2

�

�2

v + g(x; v)) dx+ C(�)

Z

R

N

juj

s+1

jr�

R

j

2

dx

=:

3(s+ 1)

2

8(s� �)

I

1

+ C(�)I

2

;

(2.1)

where C(�) is a onstant depending on �. We next use Sobolev embedding to estimate the

left side of (2.1) from below:

(2.2) (

Z

R

N

(�

2

R

juj

s+1

)

N

N�2

dx)

N�2

N

�

3(s+ 1)

2

8(s� �)

I

1

+ C(�)I

2

:

To estimate I

1

, we denote 
(m) := fx 2 R

N

: jv(x)j � mg for some m > 0. By H�older's

inequality we obtain

j

Z

R

N

�

2

R

juj

s

jvj

2

�

�2

v dxj

� j

Z


(m)

�

2

R

juj

s

jvj

2

�

�2

v dxj+ j

Z

R

N

n
(m)

�

2

R

juj

s

jvj

2

�

�2

v dxj

�

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx+m

4

N�2

Z

R

N

n
(m)

�

2

R

juj

s

jvj dx

�

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx+m

4

N�2

Z

R

N

�

2

R

juj

s

jvj dx:(2.3)

Using H�older's inequality again, we have

(2.4)

Z

R

N

�

2

R

juj

s

jvj dx � C

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx

and

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx

� [

Z

R

N

(�

2

R

juj

s+1

)

N

N�2

dx℄

s

s+1

N�2

N

[

Z

R

N

(�

2

R

jvj

s+1

)

N

N�2

dx℄

1

s+1

N�2

N

[

Z


(m)

jvj

2

�

dx℄

2

N

:

(2.5)



ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS 7

Let A = [

R

R

N

(�

2

R

juj

s+1

)

N

N�2

dx℄

N�2

N

and B = [

R

R

N

(�

2

R

jvj

s+1

)

N

N�2

dx℄

N�2

N

. It follows from

(2.3) - (2.5) that

Z

R

N

�

2

R

juj

s

jvj

2

�

�1

dx

� A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(m)

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx:

(2.6)

By (H1) - (H3) we have

jg(x; v)j � C(jvj

2

�

�1

+ jvj);

whih together with (2.4) and (2.6) yield that

(2.7) I

1

� CA

s

s+1

B

1

s+1

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(m)

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx:

We onlude from (2.1) and (2.7) that

(2.8) A � C(�)fA

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx+ I

2

g:

A similar expression an be obtained with the roles of A and B exhanged:

(2.9) B � C(�)fA

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx+ I

2

g:

Assuming that

R

R

N

juj

s+1

dx < 1 and

R

R

N

jvj

s+1

dx < 1 we obtain from (2.8) and (2.9)

that

(2.10) A � C(�)A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(�);

(2.11) B � C(�)A

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+ C(�):

Multipling (2.10) by (2.11) we obtain

AB � C(�)fAB[

Z


(m)

juj

2

�

dx℄

2

N

[

Z


(m)

jvj

2

�

dx℄

2

N

+ A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+A

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+ 1g:

(2.12)
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Sine

Z

R

N

juj

2

�

dx <1 and

Z

R

N

jvj

2

�

dx <1;

we may hoose m > 0 large enough suh that

Z


(m)

juj

2

�

dx and

Z


(m)

jvj

2

�

dx

small, and we get

(2.13) AB � C(�)[A

s=(s+1)

B

1=(s+1)

+A

1=(s+1)

B

s=(s+1)

+ 1℄:

Letting k!1, we have R!1 and it yields from (2.13) that

Z

R

N

juj

(s+1)N=(N�2)

dx <1 and

Z

R

N

jvj

(s+1)N=(N�2)

dx <1:

Repeating this proedure we see that u; v 2 L



for  = (s + 1)(

N

N�2

)

2

. So we may

start with s = 2

�

� 1 and obtain u; v 2 L



for all  = 2

�

(

2

�

2

)

n

; n = 1; 2; � � �: Using the

Riesz-Thorin interpolation theorem [8℄, we onlude that u; v 2 L



for all  � 2

�

. The

assertion follows. �

Using results in Lemma 2.1 we may prove following deaying laws for strong solutions

of (1.1) - (1.2) as [17℄.

Proposition 2.2. Assume (H1) - (H3) and p = q = 2

�

� 1. The strong solutions (u; v) of

(1.1) - (1.2) satisfy

(2.14) lim

jxj!+1

jru(x)j = 0; lim

jxj!+1

jrv(x)j = 0:

Furthermore, if f and g are independent of x, (u; v) are radially symmetri and satisfy

u(r) = o(e

��r

); v(r) = o(e

��r

); u

r

(r) = o(e

��

1

r

);

v

r

(r) = o(e

��

1

r

); u

rr

(r) = o(e

��

2

r

); u

rr

(r) = o(e

��

2

r

);

where 0 < �; �

1

; �

2

< 1:
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S3. Existene results in bounded domains

Let T = �� + id. For 0 � s � 2, we de�ne the spae E

s

as the domain D(T

s=2

) of

A

s

:= T

s=2

. It is well known that the inlusions E

s

! L



(
) is ontinuous if 2 �  �

2N=(N � 2s) and it is ompat if 2 <  < 2N=(N � 2s) provided that 
 is bounded.

We write p + 1 =

2N

N�2s

and q + 1 =

2N

N�2t

with s + t = 2. Denote E = E

s

� E

t

,

X = L

p+1

(
) � L

q+1

(
) and X

�

= L

p+1

p

(
) � L

q+1

q

(
). Critial points of the strongly

inde�nite funtional

I(z) =

Z




(rurv + uv) dx�

Z




[

1

p+ 1

juj

p+1

+ F (x; u)℄ dx�

Z




[

1

q + 1

jvj

q+1

+G(x; v)℄ dx

de�ned on E with z = (u; v) are solutions of (1.3)-(1.4). However, to get ontrol of

energy levels of assoiate funtional, we onsider the dual funtional J of I. We reall

the following fats. For eah x, the Legendre-Fenhel transformations F

�

(x; s) of F(x; t),

G

�

(x; s) of G(x; t) are de�ned by

(3.1) F

�

(x; s) = sup

t2R

fst�F(x; t)g; G

�

(x; s) = sup

t2R

fst� G(x; t)g

respetively. Equivalently, we have

(3.2) F

�

(x; s) = st� F(x; t) with s = f

1

(x; t); t = F

�

0

s

(x; s);

(3.3) G

�

(x; s) = st� G(x; t) with s = g

1

(x; t); t = G

�

0

1

(x; s):

In the same way, we de�ne

�

F

�

and

�

G

�

for

�

F(t) :=

1

p+1

jtj

p+1

+

�

F (t) and

�

G(t) :=

1

q+1

jtj

q+1

+

�

G(t) respetively. By (H6) and properties of Legendre-Fenhel transformation, we have

(3.4) F

�

(x; s) �

�

F

�

(s); G

�

(x; s) �

�

G

�

(s):

Assume (H1) - (H4). The following properties of F

�

;G

�

an be veri�ed as [3℄, [14℄ and

[26℄.

Lemma 3.1. F

�

;G

�

2 C

1

and

(3.5) F

�

(x; s) � (1�

1

�

)sF

�

0

s

(x; s); G

�

(x; s) � (1�

1

�

)sG

�

0

s

(x; s);

(3.6) F

�

(x; s) � Cjsj

p+1

p

� C; G

�

(x; s) � Cjsj

q+1

q

� C:
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Lemma 3.2. There exist Æ > 0; C

Æ

and C

0

Æ

> 0 suh that

F

�

(x; s) �

(

C

Æ

jsj

2

; if jsj � Æ

C

0

Æ

jsj

p+1

p

; if jsj � Æ

; G

�

(x; s) �

(

C

Æ

jsj

2

; if jsj � Æ

C

0

Æ

jsj

q+1

q

; if jsj � Æ

;

where C

Æ

; C

0

Æ

!1 as Æ ! 0.

Let

A =

�

0 T

T 0

�

; K = A

�1

=

�

0 T

�1

T

�1

0

�

:

The dual funtional

J(w) =

Z




(F

�

(x;w

1

) + G

�

(x;w

2

)) dx�

1

2

Z




< w;Kw > dx;

of I is well de�ned and C

1

on X

�

. A ritial point w of J satis�es

(��+ id)

�1

w

2

= F

�

0

s

(x;w

1

); (��+ id)

�1

w

1

= G

�

0

s

(x;w

2

):

Let

u = (��+ id)

�1

w

2

; v = (��+ id)

�1

w

1

:

Then (u; v) satis�es (1.3) - (1.4). We dedue by (3.2) and (3.3) that I(z) = J(w). Suh a

result is also valid for solutions of (1.1)-(1.2). Now we use the Mountain Pass Theorem to

�nd ritial points of J .

Following arguments of [6℄, we know that assumption (H2) implies F

�

(x; t)=t

2

! 1

and G

�

(x; t)=t

2

!1. Thus, 0 is a loal minimum of J . Preisely,

Lemma 3.3. Suppose (H2). There exist onstants �; � > 0, independent of 
, suh that

J(w) � � > 0 if kwk

X

�

= �:

By (H1), (H2) and (H4), we have

(3.7) F(x; t) � Cjtj

�

; G(x; t) � Cjtj

�

;

it yields

(3.8) F

�

(x; s) � Cjsj

�

��1

; G

�

(x; s) � Cjsj

�

��1

:
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Lemma 3.4. There exist T > 0 and w 2 X

�

suh that J(tw) � 0 whenever t � T .

Proof. Taking w 2 X

�

; w 6� 0 suh that

Z




< w;Kw > dx > 0;

whene by (3.8)

J(tw) � t

�

��1

Z




jw

1

j

�

��1

dx+ t

�

��1

Z




jw

2

j

�

��1

dx�

1

2

t

2

Z




< w;Kw > dx:

for t > 0. Sine

�

��1

;

�

��1

< 2, the assertion follows. �

In order to �nd ritial points of J , the Palais - Smale ondition has to be onsidered.

We say that J satis�es (PS)



ondition if any sequene fw

n

g � X

�

suh that J(w

n

) !

; J

0

(w

n

)! 0 as n!1 has a subsequene onverging strongly in X

�

. De�ne

S

p;q

= inffk�uk

L

q+1

q

: u 2W

2;

q+1

q

(
) \W

1;

q+1

q

o

(
); kuk

L

p+1
= 1g:

S

p;q

is independent of 
, depends only on p and q.

Lemma 3.5. Under hypotheses (H1) - (H4), the funtional J satis�es (PS)



ondition

for

(3.9) 0 <  <

2

N

S

N

2

p;q

:

Proof. Let fw

n

g be a sequene satisfying

J(w

n

)!  <

2

N

S

N

2

p;q

J

0

(w

n

)! 0 as n!1;

whih and Lemma 3.1 yield

Z




(F

�

(x;w

1

n

) + G

�

(x;w

2

n

)) dx �

1

2

Z




< w

n

; Kw

n

> dx+ C

�

1

2

Z




(F

�

0

s

(x;w

1

n

)w

1

n

+ G

�

0

s

(x;w

2

n

)w

2

n

) dx+ o(1)kw

n

k

X

�

+ C

�

1

2

�

�� 1

Z




F

�

(x;w

1

n

) dx+

1

2

�

� � 1

Z




G

�

(x;w

2

n

) dx+ C + o(1)kw

n

k

X

�

:
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Therefore

Z




(F

�

(x;w

1

n

) + G

�

(x;w

2

n

)) dx � C + o(1)kw

n

k

X

�

:

By Lemma 3.2, we obtain

kw

1

n

k

p+1

p

L

p+1

p

+ kw

2

n

k

q+1

q

L

q+1

q

� C + o(1)kw

n

k

X

�

:

So kw

n

k

X

�

is bounded.

Let z

n

= Kw

n

. Sine K : X

�

! X is bounded, it follows that

kz

n

k

X

� C;

similarly

kz

n

k

E

� Ckw

n

k

X

�

� C:

Solving the equation Az

n

= w

n

and using ellipti regularity theory, we obtain

z

n

2 [W

2;

q+1

q

(
) \W

1;

q+1

q

o

(
)℄� [W

2;

p+1

p

(
) \W

1;

p+1

p

o

(
)℄

and

ku

n

k

W

2;

q+1

q

(
)\W

1;

q+1

q

o

(
)

� C; kv

n

k

W

2;

p+1

p

(
)\W

1;

p+1

p

o

(
)

� C:

Hene, there exists a subsequene fz

n

k

g of fz

n

g suh that

z

n

k

! z weakly in E and X; and z

n

k

! z in L

�

(
)� L



(
)

as n

k

!1, for 2 � � <

2N

N�2s

; 2 �  <

2N

N�2t

.

Sine fw

n

g is bounded in X

�

, it is straightward that

(3.10) ��u

n

+ u

n

� jv

n

j

q�1

v

n

� g(x; v

n

) = �

1;n

in L

q+1

q

;

(3.11) ��v

n

+ v

n

� ju

n

j

p�1

u

n

� f(x; u

n

) = �

2;n

in L

p+1

p

with k�

n

k

X

�

! 0, where �

n

= (�

1;n

; �

2;n

). We laim that z 6� 0. In fat, if z � 0, we would

have

z

n

k

! 0 strongly in L

�

(
)� L



(
);
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as n

k

!1, (3.10) and (3.11) beome

(3.12) ��u

n

= jv

n

j

q�1

v

n

+ o(1); ��v

n

= ju

n

j

p�1

u

n

+ o(1):

So one has

Z




ru

n

� rv

n

dx =

Z




ju

n

j

p+1

dx+ o(1) =

Z




jv

n

j

q+1

dx+ o(1):

Therefore

Z




j�u

n

j

q+1

q

dx

=

Z




jv

n

j

q

sign(v

n

)(�j�u

n

j

1

q

sign(��u

n

)) dx+ o(1)

� (

Z




jv

n

j

q+1

dx)

q+1

q

(

Z




j�u

n

j

q+1

q

dx)

1

q+1

+ o(1)

whih gives

Z




j�u

n

j

q+1

q

dx �

Z




jv

n

j

q+1

dx+ o(1) =

Z




ju

n

j

p+1

dx+ o(1):

Assuming that

Z




ju

n

j

p+1

dx! k;

Z




jv

n

j

q+1

dx! k;

we obtain

k � S

N

2

p;q

:

On the other hand, the onvergene of fz

n

k

g in L

�

(
)� L



(
) implies that

+ o(1) = I(z

n

)

=

Z




[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx+ o(1)

=

2

N

k + o(1):

As a result,

 �

2

N

S

N

2

p;q

ontraditing to (3.9) and therefore z 6� 0.
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Let �

n

= u

n

� u; �

n

= v

n

� v. Then (�

n

; �

n

)! (0; 0) weakly in (W

2;

q+1

q

\W

1;

q+1

q

o

)�

(W

2;

p+1

p

\W

1;

p+1

p

o

) and L

p+1

� L

q+1

, and strongly in L

�

� L



for 2 � � <

2N

N�2s

; 2 �  <

2N

N�2t

. Using Br�ezis - Lieb lemma [BL℄, one has

I(z) +

Z




(��

n

��

n

�

1

p+ 1

j�

n

j

p+1

�

1

q + 1

j�

n

j

q+1

) dx = + o(1);

< I

0

(z); z > +

Z




(�2�

n

��

n

� j�

n

j

p+1

� j�

n

j

q+1

) dx = o(1):

Again by (3.12), we may assume that

Z




j�

n

j

p+1

dx! k;

Z




j�

n

j

q+1

dx! k;�

Z




�

n

��

n

dx! k:

Thus

I(z)�

2

N

Z




�

n

��

n

dx = + o(1):

We have either k = 0 or k � S

N

2

p;q

. In the latter ase

 = I(z) +

2

N

k � I(z) +

2

N

S

N

2

p;q

>

2

N

S

N

2

p;q

sine I(z) > 0. This ontradits to (3.9). So k = 0.

Finally, we show that w

n

! w = Az in X

�

. We know from (3.10) and (3.11) that

kw

n

� wk

X

�

� Cfkju

n

j

p

u

n

� juj

p

uk

L

p+1

p

+ kjv

n

j

q

v

n

� jvj

q

vk

L

q+1

q

+ kf(x; v

n

)� f(x; v)k

L

p+1

p

+ kg(x; u

n

)� g(x; u)k

L

q+1

q

+ k�

n

k

X

�

g:

The right side tends to zero as n ! 1 beause (u

n

; v

n

) ! (u; v) strongly in (W

2;

p+1

p

\

W

1;

p+1

p

o

)� (W

2;

q+1

q

\W

1;

q+1

q

o

) and L

p+1

� L

q+1

. The proof is ompleted. �

Let

� = fg 2 C([0; 1℄; X

�

) : g(0) = 0; g(1) = eg;

where e = Tw is seleted in Lemma 3.4. We de�ne

(3.13)  = 




= inf

g2�

sup

t2[0;1℄

J(g(t)):
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Proposition 3.6. Suppose (H1) - (H4). If there exists a path e(t) inX

�

suh that e(0) = 0

and J(e(t)) � 0 for t > 0 large satisfying

(3.14) sup

t�0

J(e(t)) <

2

N

S

N

2

p;q

;

the problem (1.3) - (1.4) possesses a nontrivial solution.

Proof. By (3.14), we may verify that the value  de�ned by (3.13) satis�es

 <

2

N

S

N

2

p;q

:

The assertion follows by Lemmas 3.3 - 3.5 and the Mountain Pass Theorem. �

S4. Global ompatness results

The funtionals

I(z) =

Z

R

N

A

s

u � A

t

v dx�

Z

R

N

[F(x; u)℄ dx+ G(x; v)℄ dx

and

I

1

(z) =

Z

R

N

A

s

u � A

t

v dx�

Z

R

N

[

�

F(u) +

�

G(v)℄ dx

are well de�ned on E = E

s

� E

t

. We show in this setion that the obstale energy levels

for the ompatness of I are the energy levels of I

1

orresponding to the solutions of (1.5)

- (1.6). Regularity theory shows that ritial points of I

1

are atually strong solutions of

(1.5) -(1.6). Furthermore, we have

Lemma 4.1. Suppose (H2), (H3) and (H6). There exists a positive onstant C > 0 suh

that

kzk

E

� C

for all nontrivial solutions z 2 E of (1.5) - (1.6).

Proof. Suppose z = (u; v) is a solution of (1.5)-(1.6). By assumptions (H2), (H3) and

(H6), we obtain

(4.1)

�

f(u) � C

�

juj

p

+ �u; �g(v) � C

�

jvj

q

+ �v:
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Using H�older's inequality, (4.1) and equations, one has

j

Z

R

N

A

s

�A

t

v dxj � (C

�

kuk

p

L

p+1

+ �kuk

L

2

)k�k

E

s

; 8� 2 E

s

;

it implies

kvk

E

t

� C

�

kuk

p

E

s

+ �kuk

E

s

:

Similarly,

kuk

E

s

� C

�

kvk

q

E

t

+ �kvk

E

t

:

So for � small, it yields

kuk

E

s

+ kvk

E

t

� C(kuk

p

E

s

+ kvk

q

E

t

):

Consequently, either kuk

E

s

� C or kvk

E

t

� C > 0, where C > 0 is independent of

z = (u; v). �

Proposition 4.2. Assume (H1) - (H4) and (H6). Let fz

n

g � E be a sequene suh that

(4.2) I(z

n

)!  <

2

N

S

N

2

p;q

and I

0

(z

n

)! 0 in E

�

as n! 0:

Then there exists a subsequene (still denoted by fz

n

g) for whih the following holds:

there exist an integer k � 0, sequenes fx

i

n

g � R

N

; jx

i

n

j ! 1 as n ! 1 for 1 � i � k, a

solution z of (1.1)-(1.2) and solutions z

i

(1 � i � k) of (1.5)-(1.6) suh that

(4.3) z

n

! z weakly in E;

(4.4) I(z

n

)! I(z) +

k

X

i=1

I

1

(z

i

);

(4.5) z

n

� (z +

k

X

i=1

z

i

(x� x

i

n

))! 0 in E

as n!1, where we agree that in the ase k = 0 the above holds without z

i

; x

i

n

.
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Proof. The result will be derived from the arguments of [5℄ for one equation. First we

show the boundedness of fz

n

g in E. By (4.2), (H2) and (H4) we have

+ �

n

kz

n

k

E

=

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx

+

1

2

Z

R

N

[u

n

f(x; u

n

) + v

n

g(x; v

n

)℄ dx�

Z

R

N

[F (x; u

n

) +G(x; v

n

)℄ dx

�

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

) dx

+ (

�

2

� 1)

Z

R

N

F (x; u

n

) dx+ (

�

2

� 1)

Z

R

N

G(x; v

n

) dx

�

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx+ C

Z

R

N

(ju

n

j

�

+ jv

n

j

�

) dx:

(4.6)

On the other hand, we may dedue as Lemma 4.1 that

(4.7) kv

n

k

E

t

� �ku

n

k

E

s

+ C

�

ku

n

k

p

L

�

+ ku

n

k

p

L

p+1

+ �

n

kz

n

k

E

:

and

(4.8) ku

n

k

E

s

� �kv

n

k

E

t

+ C

�

kv

n

k

q

L

�

+ kv

n

k

q

L

q+1

+ �

n

kz

n

k

E

:

Adding two inequalities we obtain by (4.6) that

kz

n

k

E

= ku

n

k

E

s

+ kv

n

k

E

t

� C[ku

n

k

p

L

�

+ kv

n

k

q

L

�

+ ku

n

k

p

L

p+1

+ kv

n

k

q

L

q+1

+ (�+ �

n

)kz

n

k

E

℄

� C[(�+ �

n

)kz

n

k

E

+ 1℄:(4.9)

Seleting � > 0 small and for n large, it follows that fz

n

g is uniformly bounded in E. So

we may assume

z

n

! z weakly in E;

z

n

! z strongly in L

�

lo

(R

N

)� L



lo

(R

N

);

z

n

! z a:e: in R

N
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as n!1, where 2 � � <

2N

N�2s

; 2 �  <

2N

N�2t

. Denote Q(z) =

R

R

N

A

s

uA

t

v dx, we have

(4.10) Q(z

n

) = Q(z

n

� z) +Q(z) + o(1):

It follows from Br�ezis & Lieb's lemma [9℄ that

(4.11)

Z

R

N

F (x; u

n

) dx =

Z

R

N

F (x; u

n

� u) dx+

Z

R

N

F (x; u) dx+ o(1)

and

(4.12)

Z

R

N

G(x; v

n

) dx =

Z

R

N

G(x; v

n

� v) dx+

Z

R

N

G(x; v) dx+ o(1):

Hene we obtain

(4.13) I(z

n

) = I(z

n

� z) + I(z) + o(1);

(4.14) I

0

(z

n

) = I

0

(z

n

� z) + I

0

(z) + o(1)

as n!1. Let z

1

n

= z

n

� z. We may derive from (H6) as [22℄ and [32℄ that

Z

R

N

u

1

n

[f(x; u

1

n

)�

�

f(u

1

n

)℄ dx! 0 and

Z

R

N

v

1

n

[g(x; v

1

n

)� �g(v

1

n

)℄ dx! 0

as well as

Z

R

N

[F (x; u

1

n

)�

�

F (u

1

n

)℄ dx! 0;

Z

R

N

[G(x; v

1

n

)�

�

G(v

1

n

)℄ dx! 0

as n!1. Whene by (4.13) and (4.14) it yields that

(4.15) I

1

(z

1

n

) = I(z

1

n

) + o(1) = I(z

n

)� I(z) + o(1)

(4.16) I

1

0

(z

1

n

) = I

0

(z

1

n

) + o(1) = I

0

(z

n

)� I

0

(z) + o(1):

Suppose z

1

n

= z

n

� z 6! 0 strongly in E (otherwise we shall have �nished). We want to

show that there exists x

1

n

� R

N

suh that jx

1

n

j ! +1 and z

1

n

(x+ x

1

n

)! z

1

6� 0 weakly in

E. We laim that

(4.17) I

1

(z

1

n

) � � > 0:
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Indeed, were it not true, we would have

(4.18) I

1

(z

1

n

)! 0

and

(4.19) < I

1

0

(z

1

n

); � >= o(1)k�k

E

as n!1:

Taking � = (

�

�+�

v

1

n

;

�

�+�

u

1

n

) =: �

n

in (4.19), it follows from (4.18) and (4.19) that

o(1)k�

n

k

E

= I

1

(z

1

n

)� < I

1

0

(z

1

n

); �

n

>

= (

�

�+ �

�

1

p+ 1

)

Z

R

N

ju

1

n

j

p+1

dx+ (

�

�+ �

�

1

q + 1

)

Z

R

N

jv

1

n

j

q+1

dx

+

�

�+ �

Z

R

N

u

1

n

�

f(u

1

n

) dx+

�

�+ �

Z

R

N

v

1

n

�g(v

1

n

) dx

�

Z

R

N

[

�

F (u

1

n

) +

�

G(v

1

n

)℄ dx

� (

�

�+ �

�

1

p+ 1

)

Z

R

N

ju

1

n

j

p+1

dx+ (

�

�+ �

�

1

q + 1

)

Z

R

N

jv

1

n

j

q+1

dx

+ (

��

�+ �

� 1)

Z

R

N

[

�

F (u

1

n

) +

�

G(v

1

n

)℄ dx:(4.20)

As 2 < � � p+ 1; 2 < � � q + 1, it onludes that

Z

R

N

(ju

1

n

j

p+1

+ jv

1

n

j

q+1

) dx = o(1);

Z

R

N

(

�

F (u

1

n

) +

�

G(v

1

n

)) dx = o(1):

Again we may dedue as (4.9) that

kz

1

n

k

E

� C(ku

1

n

k

p

L

p+1

+ kv

1

n

k

q

L

q+1

+ o(1))

implying

kz

1

n

k

E

! 0

as n!1, it ontradits to the fat kz

1

n

k

E

6! 0.

We deompose R

N

into N-dimensional unit hyperubes Q

j

with verties having integer

oordinates and put

d

n

= max

j

(ku

1

n

k

L

p+1

(Q

j

)

+ kv

1

n

k

L

q+1

(Q

j

)

):
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We laim that there is a � > 0 suh that

(4.21) d

n

� � > 0 8n 2 N :

Suppose, by ontradition, that d

n

! 0 as n!1. Sine

(4.22) I

1

0

(z

1

n

)! 0 as n!1;

noting that kz

1

n

k

1

E

is bounded and denoting � = minfp � 1; q � 1g, we have by (H2) and

(H3) that

0 < � � I

1

(z

1

n

) � C

Z

R

N

[ju

1

n

j

p+1

+ jv

1

n

j

q+1

+ u

1

n

�

f(u

1

n

) + v

1

n

�g(v

1

n

)℄ dx+ o(1)

� C

�

(ku

1

n

k

p+1

L

p+1

(R

N

)

+ kv

1

n

k

q+1

L

q+1

(R

N

)

) + �(ku

1

n

k

2

L

2

(R

N

)

+ kv

1

n

k

2

L

2

(R

N

)

)

� C

�

X

j

(ku

1

n

k

p+1

L

p+1

(Q

j

)

+ kv

1

n

k

q+1

L

q+1

(Q

j

)

) + �(ku

1

n

k

2

L

2

(R

N

)

+ kv

1

n

k

2

L

2

(R

N

)

)

� C

�

d

�

n

X

j

(ku

1

n

k

2

L

p+1

(Q

j

)

+ kv

1

n

k

2

L

q+1

(Q

j

)

) + �C

� Cd

�

n

X

j

(ku

1

n

k

2

E

s

(Q

j

)

+ kv

1

n

k

2

E

t

(Q

j

)

) + �C

� Cd

�

n

(ku

1

n

k

2

E

s

(R

N

)

+ kv

1

n

k

2

E

t

(R

N

)

) + �C:

Let n!1 and then �! 0, we obtain

I

1

(z

1

n

)! 0 as n!1;

a ontradition. Hene (4.21) holds true.

Let fx

1

n

g be the enter of a hyperube Q

j

in whih

d

n

= ku

1

n

k

L

p+1

(Q

j

)

+ kv

1

n

k

L

q+1

(Q

j

)

:

Now we show that

(4.23) jx

1

n

j ! 1 as n!1:

If fx

1

n

g were bounded, by passing to a subsequene if neessary we should �nd that x

1

n

would be in the same Q

j

and so they should oinide. Letting in that Q

j

�z

1

n

(x) =

�

z

1

n

(x) z 2 Q

j

0 x 2 R

N

nQ

j

;
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we should have

I

1

j

E(Q

j

)

(�z

1

n

)

=

Z

Q

j

A

s

�u

1

n

A

t

�v

1

n

dx�

Z

Q

j

(

�

F(�u

1

n

) +

�

G(�v

1

n

)) dx+ o(1)

�

Z

Q

j

[(

1

2

�

1

p+ 1

)j�u

1

n

j

p+1

+ (

1

2

�

1

q + 1

)j�v

1

n

j

q+1

℄ dx

+ (

�

2

� 1)

Z

R

N

�

F (�u

1

n

) dx+ (

�

2

� 1)

Z

R

N

�

G(�v

1

n

) dx+ o(1)

�

Z

Q

j

[(

1

2

�

1

p+ 1

)j�u

1

n

j

p+1

+ (

1

2

�

1

q + 1

)j�v

1

n

j

q+1

℄ dx+ C

Z

Q

j

(j�u

1

n

j

�

+ j�v

1

n

j

�

) dx+ o(1)

� C(k�u

1

n

k

p+1

L

p+1

(Q

j

)

+ k�v

1

n

k

q+1

L

q+1

(Q

j

)

) + k�u

1

n

k

�

L

p+1

(Q

j

)

+ k�v

1

n

k

�

L

q+1

(Q

j

)

) + o(1)

� Æ > 0

for n large and

I

1

0

(�z

1

n

)! 0 as n! 0;

Beause I(z) > 0 and

0 < Æ � I

1

j

E(Q

j

)

(�z

1

n

) � I

1

(z

n

) = I(z

n

)� I(z) + o(1) <

2

N

S

N

2

p;q

;

Lemma 3.5 implies that �z

1

n

should onverge strongly in E(Q

j

) to a nonzero funtion,

ontraditing to z

1

n

! 0 weakly in E, so we have (4.23). Let z

1

n

(�+ x

1

n

)! z

1

weakly in

E. Denote by

�

Q the unit hyperube entered at the origin, we have

kz

1

n

k

E(

�

Q)

� � > 0;

thus z

1

6� 0 and

(4.24) < I

1

0

(z

1

); � >= 0; 8� 2 E:

Iterating the proedure, we obtain sequenes x

l

n

; jx

l

n

j ! 1 and

z

l

n

(x) = z

l�1

n

(x+ x

m

)� z

l�1

(x); j � 2

z

l

n

(x+ x

l

n

)! z

l

(x) weakly in E
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as n! 0, where eah z

l

satis�es (4.24) and by indution

kz

l

n

k

2

E

= kz

l�1

n

k

2

E

� kz

l�1

k

2

E

= kz

n

k

2

E

� kzk

2

E

�

l�1

X

i=1

kz

i

k

2

E

+ o(1):

I

1

(z

l

n

) = I

1

(z

l�1

n

)� I

1

(z

l�1

) + o(1)

= I(z

n

)� I(z)�

l�1

X

i=1

I

1

(z

i

) + o(1):

Sine z

l

is a solution of (1.5)-(1.6) and z

l

6� 0, by Lemma 4.1

kz

l

k

E

� C > 0:

Thus the iteration will terminate at some index k � 0. The assertion follows. �

S5 Existene results in R

N

Let R

n

! 1; B

n

= B

R

n

(0). Taking 
 = B

n

in problem (1.3)- (1.4), we infer from

Proposition 3.6 that there exists a solution z

n

of problem (1.3)-(1.4) de�ned on B

n

for

eah n if (3.14) holds. Moreover,

(5.1) I(z

n

) = J(w

n

) = 

n

� � > 0

and

(5.2) I

0

(z

n

) = 0; J

0

(w

n

) = 0;

where w

n

= Az

n

. In fat, z

n

is a strong solution of (1.3) - (1.4). Denote by J the dual

funtional of I. Extending z

n

to R

N

by setting z

n

= 0 outside B

n

, we have

(5.3) I(z

n

) = J (w

n

) = 

n

:

If f and g are independent of x, solutions z

n

are radial.
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Lemma 5.1. z

n

is a (PS) sequene of I in E and

(5.4) I(z

n

) <

2

N

S

N

2

p;q

:

Proof. It is readily to verify that 

n

= I(z

n

) � 

n�1

= I(z

n�1

), thus

(5.5) � � 

n

� 

1

<

2

N

S

N

2

p;q

;

so we obtain

(5.6) 

n

= I(z

n

)! ; � �  <

2

N

S

N

2

p;q

:

Now we show that

(5.7) I

0

(z

n

)! 0; as n!1:

Indeed, 8(�;  ) 2 C

1

o

(R

N

) � C

1

o

(R

N

), there is n

o

> 0 suh that supp�; supp � B

n

whenever n � n

o

and

I

0

(z

n

)(�;  ) = 0; if n � n

o

:

This implies that

I

0

(z

n

)z ! 0 as n!1 8z 2 C

1

o

(R

N

)� C

1

o

(R

N

):

Hene (5.7) follows beause C

1

o

(R

N

)� C

1

o

(R

N

) is dense in E. �

We begin with problem (1.5) - (1.6). We remark that previous results for I and J also

hold for I

1

and J

1

, where J

1

is the dual funtional of I

1

.

Proposition 5.2. Suppose (H1)-(H4) and (3.14). Then (1.5) - (1.6) has a nontrivial radial

solution.

Proof. We onstrut a sequene of radial solutions z

n

of

�

��u+ u = jvj

q�1

v + �g(v); ��v + v = juj

p�1

u+

�

f(u); in B

n

;

u = v = 0 on �B

n

in balls B

n

by Proposition 3.6. Lemma 5.1 implies that z

n

is a (PS)



sequene of I

1

with

 <

2

N

S

N

2

p;q

and z

n

2 E

r

= E

s

r

�E

t

r

, where E

r

is the radial Sobolev spae. It is known from
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[7℄ that the inlusion E

s

r

(R

N

) ,! L

�

(R

N

); 2 < p <

2N

N�2s

; is ompat. We may dedue as

Lemma 3.5 that there exist a subsequene of z

n

onverging strongly, the limit funtion is

a nontrivial radial solution of (1.5) - (1.6). �

Next, we onsider the variational problem

(5.8) I

1

= inffI

1

(u; v) : (u; v) is a solution of (1:5)� (1:6); (u; v) 6� (0; 0)g:

Minimizers of (5.8) are alled ground states of (1.5) - (1.6). By Proposition 5.2, the

variational problem (5.8) is well de�ned if (3.14) holds. In this ase

(5.9) I

1

<

2

N

S

N

2

p;q

:

Lemma 5.3. The variational problem (5.8) is assumed by a nontrivial solution of (1.5)-

(1.6).

Proof. Let z

n

= (u

n

; v

n

) be a minimizing sequene of I

1

. By Proposition 4.2 we have

I

1

= I

1

(z

n

) + o(1) =

X

j

I

1

(z

j

) + o(1);

where z

j

is a nontrivial solution of (1.5) - (1.6). Therefore, j = 1 and the proof is om-

pleted. �

Proposition 5.4. Suppose (H1)-(H4), (H6) and (3.14). If there exists w 2 X

�

suh that

(5.10) sup

t�0

J(tw) < I

1

;

then (1.1) - (1.2) possesses a nontrivial radial solution.

Proof. By assumptions (3.14) and (5.10), we always may onstrut a (PS)



sequene fz

n

g

of I by Proposition 3.6 and Lemma 5.1 suh that

(5.11) 0 < � �  < I

1

:

By Proposition 4.2 we obtain

(5.12) I(z

n

) = I(z

o

) +

X

j

I

1

(z

j

) + o(1);

where z

o

is a solution of (1.1) - (1.2) and z

j

is a solution of (1.5) - (1.6). We dedue from

(5.11) and (5.12) that z

o

is a nontrivial solution of (1.1) - (1.2). �
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S6. Verifiations of onditions (3.14) and (5.10)

We verify ondition (5.10) �rst. Let B

n

= B

R

n

; R

n

!1 as n!1. For eah element

w in X

�

n

:= L

p+1

p

(B

n

)� L

q+1

q

(B

n

), where B

n

= B

R

n

; R

n

!1 as n!1, we may extend

it to R

N

by setting w = 0 outside B

n

, and we have J

n

(w) = J (w).

Proposition 6.1. Assume (H1) - (H4), (H6) - (H8) and (3.14). There exist elememts

w

n

2 X

�

n

suh that

(6.1) sup

t�0

J (tw

n

) < I

1

for n large.

Proof. By Proposition 5.2, I

1

is assumed. Let z

o

= (u

o

; v

o

) be a minimizer of problem

I

1

. Choosing

w

o

1

=

�

f

1

(u

o

) = ju

o

j

p�1

u

o

+

�

f(u

o

); w

o

2

= �g

1

(u

o

) = jv

o

j

q+1

v

o

+ �g(v

o

);

and using (H4), (H6) and equations (1.5) - (1.6), one has

R

R

N

< w

o

; Kw

o

> dx > 0, where

w

o

= (w

o

1

; w

o

2

). Moreover, there exist t

2

> t

1

� 0 suh that

max

t�0

J (tw

o

) = max

t

1

�t�t

2

J (tw

o

):

Suppose t

o

2 [t

1

; t

2

℄ and

J (t

o

w

o

) = max

t

1

�t�t

2

J (tw

o

):

Beause F(x; t) �

�

F(t) and G(x; t) �

�

G(t), one has F

�

(x; s) �

�

F

�

(s) and G

�

(x; s) �

�

G

�

(s).

By the assumption (H7),

J (t

o

w

o

) < J

1

(t

o

w

o

);

it follows

(6.2) sup

t�0

J (tw

o

) < sup

t�0

J

1

(tw

o

):

The density of real number �eld implies that there exists � > 0 suh that

(6.3) sup

t�0

J (tw

o

) + 2� < sup

t�0

J

1

(tw

o

):



26 YANG JIANFU

Let � 2 C

1

o

(R

N

); 0 � � � 1 and � � 1 if jxj �

1

2

;� � 0 if jxj � 1; �

n

(x) = �(

x

R

n

).

Then z

n

:= (�

n

u

o

; �

n

v

o

) onverges to (u

o

; v

o

) in E. Let

w

n

1

=

�

f

1

(�

n

u

o

); w

n

2

= �g

1

(�

n

v

o

):

We also have w

n

! w

o

in X

�

. Suppose

J (t

n

w

n

) = sup

t�0

J (tw

n

);

then ft

n

g is bounded. Indeed, if t

n

!1, arguments in Lemma 3.4 would yield sup

t�0

J (tw

n

)!

�1. It is impossible beause the value is not negative. Suppose t

n

!

�

t

o

, the ontinuity

of the funtional J gives

J (t

n

w

n

)! J (

�

t

o

w

o

):

We laim that J (

�

t

o

w

o

) = sup

t�0

J (tw

o

). In fat, for every � > 0 there exists Æ > 0 suh

that

J (t

o

w

o

)� � � J (tw

o

)

whenever jt� t

o

j < Æ. By the ontinuity of J , we may �nd n

o

> 0 suh that if n � n

o

J (tw

o

) � J (tw

n

) + �; J (t

n

w

n

) � J (

�

t

o

w

o

) + �:

Therefore if n � n

o

we have

J (t

o

w

o

)� � � J (t

n

w

n

) + � � J (

�

t

o

w

o

) + 2� � J (t

o

w

o

) + 2�:

Beause � is arbitrary, the onlusion holds. By the same arguments, we �nd that there

exist s

n

suh that s

n

! �s

o

and

(6.4) J

1

(s

n

w

n

) = sup

t�0

J

1

(tw

n

)! J

1

(�s

o

w

o

) = sup

t�0

J

1

(tw

o

)

as n!1. By (6.3), we obtain

(6.5) J (t

n

w

n

) + � < J

1

(s

n

w

n

)

for n large enough. We may assume s

n

> 0, and then

(6.6)

dJ

1

(tw

n

)

dt

j

t=s

n

= 0;
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that is

(6.7)

Z

R

N

(

�

F

�

0

s

(s

n

w

n

1

)w

n

1

+

�

G

�

0

s

(s

n

w

n

2

)w

n

2

) dx� s

n

Z

R

N

< w

n

; Kw

n

> dx = 0:

By the de�nition of Legendre - Fenhel transformation, we obtain

Z

R

N

(

�

F

�

(s

n

w

n

1

) +

�

G

�

(s

n

w

n

2

)) dx

=

Z

R

N

(

�

F

�

0

s

(s

n

w

n

1

)s

n

w

n

1

+

�

G

�

0

s

(s

n

w

n

2

)s

n

w

n

2

) dx�

Z

R

N

[

�

F(

�

f

�1

1

(s

n

w

n

1

)) +

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx

= s

2

n

Z

R

N

< w

n

; Kw

n

> dx�

Z

R

N

[

�

F(

�

f

�1

1

(s

n

w

n

1

)) +

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx:

(6.8)

Consider

(��+ id)

�1

w

n

2

= u

o

+ �

n

; (��+ id)

�1

w

n

1

= v

o

+ �

n

in R

N

;

we obtain

(��+ id)

�1

�

n

= �g

1

(�

n

v

o

)� �g

1

(v

o

); (��+ id)

�1

�

n

=

�

f

1

(�

n

u

o

)�

�

f

1

(u

o

) in R

N

:

By L

p

-estimates we have �

n

! 0 and �

n

! 0 in H

2;2

as n ! 1 beause the right hand

sides of above equations go to 0 in L

2

. Therefore we infer from this and (6.7) that

Z

R

N

s

n

(w

n

1

)

2

�

�

f

�1

1

(s

n

w

n

1

)

s

n

w

n

1

�

�

f

�1

1

(w

n

1

)

w

n

1

�

dx+

Z

R

N

s

n

(w

n

2

)

2

�

�g

�1

1

(s

n

w

n

2

)

s

n

w

n

2

�

�g

�1

1

(w

n

2

)

w

n

2

�

dx

=

Z

R

N

[w

n

1

�

n

+ w

n

2

�

n

+ (1� �

n

)(w

n

1

+ w

n

2

)℄ dx = o(1)

as n ! 1. The equality and assuption (H8) imply s

n

! 1 as n ! 1. Hene we dedue

by (6.7) and (6.8) that

sup

t�0

J

1

(tw

n

) �

1

2

Z

R

N

(u

o

�

f

1

(u

o

) + v

o

�g

1

(v

o

)) dx�

Z

R

N

(

�

F(u

o

) +

�

G(v

o

)) dx+ �

n

= I

1

+ �

n

;(6.9)

where

�

n

=

1

2

(s

2

n

� 1)

Z

R

N

(u

o

�

f

1

(u

o

) + v

o

�g(v

o

)) dx

�

Z

R

N

[(

�

F(�

n

u

o

)�

�

F(u

o

)) + (

�

G(�

n

v

o

)�

�

G(v

o

)℄ dx

+

Z

R

N

[(

�

F(�

n

u

o

)�

�

F(

�

f

�1

1

(s

n

w

n

1

)) + (

�

G(�

n

v

o

)�

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx:
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The above estimates imply �

n

= o(1) as n!1. From (6.5) -(6.9) we obtain

sup

t�0

J (tw

n

) < sup

t�0

J

1

(tw

n

)� � � I

1

� �+ o(1);

the assertion follows for n large. �

Next, we verify (3.14).

It is known from [23℄ that the system

(6.10) ��u = jvj

q�1

v in R

N

; ��v = juj

p�1

u in R

N

;

(6.11) u(x)! 0 and v(x)! 0 as jxj ! 1:

has a ground state. The ground state is unique up to salings and translations and is

positive, radially symmetri and dereasing in r. Let (u; v) be the ground state of (6.10) -

(6.11). Then all the ground states of (6.10) - (6.11) are given by

u

�

(x) = �

�

n

p+1

u(

x

�

); v

�

(x) = �

�

n

q+1

v(

x

�

):

Moreover,

Z

R

N

ju

�

j

p+1

dx =

Z

R

N

jv

�

j

q+1

dx = S

N

2

p;q

:

The asymptoti behavior of the ground state of (6.10) - (6.11) was found in [21℄. It may

be stated as follows.

Lemma 6.2. Let p �

N+2

N�2

. Then there exist onstants a > 0 and b > 0depending on p

and n, suh that

lim

r!1

r

N�2

v

1

(r) = b;

lim

r!1

r

N�2

u

1

(r) = a if q >

N

N � 2

;

lim

r!1

r

N�2

logr

u

1

(r) = a if q =

N

N � 2

;

lim

r!1

r

q(N�2)�2

u

1

(r) = a if q <

N

N � 2

:
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Suppose 1 <  < p; 1 < � < q and 1 < q �

N+2

N�2

� q . Parameterizing the ritial

hyperbola by p =

N+2+2�

N�2�2�

; q =

N+2�2�

N�2+2�

and using Lemma 6.2, we obtain that if q >

N

N�2

ku

�

k



(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N(p�)

p+1

); if  >

N+2+2�

2(N�2)

;

O(�

N(p�)

p+1

jlog�j

p

p+1

); if  =

N+2+2�

2(N�2)

;

O(�



p+1

[(N�2)p�2℄

); if  <

N+2+2�

2(N�2)

;

if 1 < q <

N

N�2

ku

�

k



(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N(p�)

p+1

); if 2( + 1) +

N

q+1

< q(N � 2);

O(�

N(p�)

p+1

jlog�j

p

p+1

); if 2( + 1) +

N

q+1

= q(N � 2);

O(�



p+1

[(N�2)p�2℄

); if 2( + 1) +

N

q+1

> q(N � 2);

if q =

N

N�2

ku

�

k



(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N

q+1

jlog�j



); if  <

N

N�2

p

p+1

;

O(�

N(p�)

p+1

jlog�j

+

p

p+1

); if  =

N

N�2

p

p+1

;

O(�

N(p�)

p+1

); if  >

N

N�2

p

p+1

;

and

kv

�

k

�

�(q+1)

q

=

8

>

>

>

<

>

>

>

:

O(�

N(q��)

q+1

); if � >

N+2�2�

2(N�2)

;

O(�

N(q��)

q+1

jlog�j

q

q+1

); if � =

N+2�2�

2(N�2)

;

O(�

�

q+1

[(N�2)q�2℄

); if � <

N+2�2�

2(N�2)

:

Proposition 6.3. Assume (H1), (H3) and (H7). There exists a path w(t) 2 X

�

suh that

w(0) = 0; J(w(t)) � 0 for t > 0 large and

(6.12) sup

t�0

J(w(t)) <

2

N

S

N

2

p;q

:

Proof. By the de�nition of duality

J(w) =

Z




[f

�1

1

(x;w

1

)w

1

+ g

�1

1

(x;w

2

)w

2

�F(x; f

�1

1

(x;w

1

))� G(x; g

�1

1

(x;w

1

))℄ dx

�

1

2

Z




< Kw;w > dx:
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Choosing w

1

(s) = w

1

(s; �; x) = f

1

(x; su

�

); w

2

(t) = w

2

(t; �; x) = g

1

(x; tv

�

), where (u

�

; v

�

) is

a ground state of (6.10) -(6.11), we remark that

w

1

(0) = w

2

(0) = 0; w

1

(s); w

2

(t)!1 as s; t! +1:

Then

J(w(s; t)) =

Z




su

�

[s

p

u

p

�

+ f(x; su

�

)℄ + tv

�

[t

q

v

q

�

+ g(x; tv

�

)℄�

Z




[F(x; su

�

) + G(x; tv

�

)℄ dx

�

1

2

f

Z




[s

p

u

p

�

+ f(x; su

�

)℄(��+ id)

�1

[t

q

v

q

�

+ g(x; tv

�

)℄ dx

+

Z




[t

q

v

q

�

+ g(x; tv

�

)℄(��+ id)

�1

[s

p

u

p

�

+ f(x; su

�

)℄ dxg:

Let

(��)

�1

u

p

�

= v

�

+ �

�

2 H

1

o

(
); (��)

�1

v

q

�

= u

�

+ �

�

2 H

1

o

(
);

(��+ id)

�1

u

p

�

= v

�

+ �

�

+ r

1

�

:= v

�

+

�

�

�

2 H

1

o

(
);

(��+ id)

�1

v

q

�

= u

�

+ �

�

+ r

2

�

:= u

�

+ ��

�

2 H

1

o

(
):

Then

��

�

= 0 in 
; �

�

= �v

�

on �
; ��

�

= 0 in 
; �

�

= �u

�

on �
:

(��+ id)r

1

�

= �v

�

� �

�

; (��+ id)r

2

�

= �u

�

� �

�

By the maximum priniple

k�

�

k

L

1

(
)

� kv

�

k

L

1

(�
)

; k�

�

k

L

1

(
)

� ku

�

k

L

1

(�
)

;

u

�

+ �

�

� 0; v

�

+ �

�

� 0; r

1

�

� 0; r

1

�

� 0:

We rewrite

1

2

Z




< Kw;w > dx

=

1

2

s

p

t

q

Z




(u

p+1

�

+ v

q+1

�

) dx+ s

p

Z




v

�

g(x; tv

�

) dx+ t

q

Z




u

�

f(x; su

�

) dx+ �

�

(s; t);
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where

�

�

(s; t) =

Z




[f(x; su

�

)(��+ id)

�1

g(x; tv

�

) + s

p

�

�

�

g(x; tv

�

) + t

q

��

�

f(x; su

�

)℄ dx

�

1

2

s

p

t

q

Z




(u

p

�

��

�

+ v

q

�

�

�

�

) dx:

Then

J(w(s; t)) =

p

p+ 1

s

p+1

Z




u

p+1

�

dx+

q

q + 1

t

q+1

Z




v

q+1

�

dx�

1

2

s

p

t

q

Z




(u

p+1

�

+ v

q+1

�

) dx

+ (t� s

p

)

Z




v

�

g(x; tv

�

) dx+ (s� t

q

)

Z




u

�

f(x; su

�

) dx

�

Z




(F (x; su

�

) +G(x; tv

�

)) dx� �

�

(s; t):

Let s

p+1

= t

q+1

. The highest order of t in

J(w(t)) =

p

p+ 1

t

q+1

Z




u

p+1

�

dx+

q

q + 1

t

q+1

Z




v

q+1

�

dx

�

1

2

t

p(q+1)

p+1

+q

Z




(u

p+1

�

+ v

q+1

�

) dx+ (t� t

p(q+1)

p+1

)

Z




v

�

g(x; tv

�

) dx

+ (t

q+1

p+1

� t

q

)

Z




u

�

f(x; t

q+1

p+1

u

�

) dx�

Z




(F (x; su

�

) +G(x; tv

�

)) dx� �

�

(s; t):

is t

p(q+1)

p+1

+q

. So J(w(t)) � 0 for t > 0 large. There exists t

o

� 0 suh that

J(w(t

o

)) = max

0�t�t

o

J(w(t)):

Sine t

q+1

p+1

� t

q

� 0; t� t

p(q+1)

p+1

� 0 for t � 1, and by the assumptions (H1) - (H3) there

exist 1 � � � p

1

< p; 1 � � � q

1

< q suh that

jf(x; t)j � C(jtj

�

+ jtj

p

1

); jg(x; t)j � C(jtj

�

+ jtj

q

1

);

we obtain for t � 1

Z




u

�

f(x; t

q+1

p+1

u

�

) dx = O(ku

�

k

�

�(p+1)

p

+ ku

�

k

p

1

p

1

(p+1)

p

) := k

1

(�)

and

Z




v

�

g(x; tv

�

) dx = O(kv

�

k

�

�(q+1)

q

+ kv

�

k

q

1

q

1

(q+1)

q

) := k

2

(�):
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Noting that

R




u

p+1

�

dx and

R




v

q+1

�

dx tend to S

N

2

p;q

from below as �! 0, we de�ne

h(�) = (

N + 2

N

t

q+1

� t

(N+2)(q+1)

N

)S

N

2

p;q

+ (t

q+1

p+1

� t

q

)k

1

(�) + (t� t

p(q+1)

p+1

)k

2

(�):

The maximum point t

�

> 0 of h(�) satis�es h

0

(�) = 0. Let t

�

= 1 + Æ

�

. We obtain from

h

0

(�) = 0 that Æ

�

= O(k

1

(�)+ k

2

(�)). Beause the operator K

�1

: X

�

! X is bounded, we

infer that

Z




f(x; su

�

)(��+id)

�1

g(x; tv

�

) dx � C(ku

�

k

2�

�(p+1)

p

+ku

�

k

2p

1

p

1

(p+1)

p

+kv

�

k

2�

�(q+1)

q

+kv

�

k

2q

1

q

1

(q+1)

p

);

Z




u

p

�

(�

�

+ r

2

�

) dx =

Z




[u

p

�

�

�

� (u

�

+ �

�

)(v

�

+ �

�

)� (u

�

+ �

�

)r

1

�

℄ dx

= O(ku

�

k

2

2

+ kv

�

k

2

2

):

By estimates for ku

�

k



(p+1)

p

and kv

�

k

�

�(q+1)

q

, we �nd the dominating term in �(s; t) is

O(ku

�

k

2

2

+ kv

�

k

2

2

). Therefore,

J(w(t)) �

2

N

S

N

2

p;q

�

Z




(F (x; su

�

) +G(x; tv

�

)) dx+ Æ

2

�

+O(ku

�

k

2

2

+ kv

�

k

2

2

)

�

2

N

S

N

2

p;q

� �

N

Z

R�

�1

0

�

F (�

�

N

p+1

u(r))r

N�1

dr + �

N

Z

R�

�1

0

�

G(�

�

N

q+1

v(r))r

N�1

dr

+ O(ku

�

k

2

2

+ kv

�

k

2

2

):

We onlude by assumption (H5). �

The proof of Theorems A and B ompleted. The proof of Theorem A follows by Proposi-

tions 3.6 and 6.3.

The existene results of Theorem B follow by Propositions of 5.4, 6.1 and 6.3. Weak

solutions of (1.1) - ( 1.2) obtained by variational method atually are strong solutions [16℄,

therefore the deaying law are obtained by Proposition 2.2 for the ase p = q =

N+2

N�2

. �
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