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Abstra
t. We establish in this paper existen
e results for 
riti
al strongly inde�nite semi-

linear ellipti
 systems de�ned on both bounded domains and R

N

.

x1. Introdu
tion

Our primary obje
tive is to investigate the existen
e of solutions of the semilinear ellipti


system

(1.1) ��u+ u = jvj

q�1

v + g(x; v); ��v + v = juj

p�1

u+ f(x; u) in R

N

;

(1.2) u(x)! 0 and v(x)! 0 as jxj ! 1;

where

1

p+1

+

1

q+1

=

N�2

N

; p; q > 1; whi
h is known as the 
riti
al hyperbola. The system is

variational. Criti
al points of the asso
iated fun
tional

I(z) =

Z

R

N

(ru � rv + uv) dx�

1

p+ 1

Z

R

N

juj

p+1

dx�

1

q + 1

Z

R

N

jvj

q+1

dx

�

Z

R

N

(F (x; u) +G(x; v)) dx;

de�ned on a suitable fun
tion spa
e are weak solutions of (1.1)-(1.2), where z = (u; v); F (x; u) =

R

u

0

f(x; t) dt; G(x; v) =

R

v

0

g(x; t) dt. Spe
ial features of the fun
tional I are that it has

a strongly inde�nite quadrati
 part and the growths of u and v in nonlinear terms are

mutually 
omplement. The problem 
an be studied by Linking type theorems based on
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a 
hoi
e of fra
tional Sobolev spa
es. In bounded domains, the 
ompa
tness will be re-

mained in the sub
riti
al 
ase, i.e. p and q satisfy

1

p+1

+

1

q+1

>

N�2

N

; p; q > 1, and f and g


ontain lower growth terms. The problem in bounded domains has been studied by many

authors, parti
ularly, we refer [16℄ and [20℄. On the other hand, nonexisten
e results 
an

be found via Pohozaev's type identity for Hamiltonian system in [25℄, [29℄ for the 
riti
al


ase:

1

p+1

+

1

q+1

=

N�2

N

; p; q > 1. A
tually, in this 
ase a la
k of 
ompa
t Sobolev in
lu-

sions leads a failure of (PS) 
ondition in general. The existen
e problem be
omes deli
ate.

In [10℄, Br�ezis and Nirenberg have shown that a positive solution exists for 
riti
al s
alar

semilinear ellipti
 equations. Cru
ial point in their arguments is that (PS)





ondition is

valid for 
 in an interval related to the best Sobolev 
onstant, then solutions 
an be found

by 
riti
al point theory in the interval. Inspired of work [10℄, Hulshof et al in [19℄ proved

the existen
e of solutions for the system

�

��v = �u+ juj

p�1

u; ��u = �v + jvj

q�1

v; in 
;

u = v = 0 on �


with proper � and �. They used a dual variational method originally due to [12℄. This

approa
h was also used in [4℄ as an alternative for the methods in [10℄. The main advantage

of the argument is that the asso
iated dual fun
tional possesses a geometry of the mountain

pass. It is easier to get 
ontrol of 
riti
al values des
ribed by Mountain Pass Theorem than

that by Linking Theorem. A existen
e result then 
an be obtained by 
ombining lo
al


ompa
tness and the Mountain Pass Theorem.

Our problem is setting in R

N

. There is a la
k of 
ompa
tness due to the fa
t that

R

N

is unbounded whi
h is other than 
riti
al 
ase. For sub
riti
al autonomous systems,

Figueiredo and the author [17℄ proved the existen
e of positive radial solutions. We de-


ompose sp
aes by spe
tral family of operators and apply Linking Theorem. In general


ase, one 
an only expe
t lo
al 
ompa
tness be
ause as we show in se
tion 4, there are

energy levels of asso
iated fun
tional whi
h are obsta
le points of the 
ompa
tness. So

in our 
ase, we en
ounter two types of the loss of 
ompa
tness 
aused by both 
riti
al

exponents and unbounded domains. To study the existen
e, We begin with a problem in

a bounded domain 


(1.3) ��u+ u = jvj

q�1

v + g(x; v); ��v + v = juj

p�1

u+ f(x; u) in 
;
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(1.4) u(x) = 0; v(x) = 0 on �
:

Let f

1

(x; t) := jtj

p�1

t + f(x; t); g

1

(x; t) := jtj

q�1

t + g(x; t);F(x; t) =

R

t

0

f

1

(x; s) ds and

G(x; t) =

R

t

0

g

1

(x; s) ds. We assume that

(H1). f; g : R

N

�R ! R are measurable in �rst variable, 
ontinuous in se
ond variable,

f(x; 0) = g(x; 0) = 0. Both F(x; t) and G(x; t) are in
reasing and stri
tly 
onvex in t.

(H2) lim

t!0

f(x; t)=t = 0; lim

t!0

g(x; t)=t = 0; 8x 2 R

N

:

(H3)

lim

t!1

f(x; t)

jtj

p�1

t

= 0; lim

t!1

g(x; t)

jtj

q�1

t

= 0; 8x 2 R

N

:

(H4). There are 
onstants 2 < � � p+ 1; 2 < � � q + 1 su
h that

0 < �F (x; t) � tf(x; t); 0 < �G(x; t) � tg(x; t); if jtj > 0:

We shall use the ground state (u; v) of

��u = v

q

; ��v = u

p

; in R

N

to push the 
riti
al value des
ribed by the mountain pass below

1

N

S

N

2

p;q

, where S

p;q

is de�ned

in Se
tion 3. u and v are radial fun
tions. Let u

�

(x) = �

�

N

p+1

u(

x

�

); v

�

(x) = �

�

N

q+1

v(

x

�

).

Denote �(�) = ku

�

k

2

2

+ kv

�

k

2

2

:= �

1

(�) + �

2

(�). The asymptoti
 behaviours of ku

�

k

2

2

and

kv

�

k

2

2

as �! 0 are given in [19℄.

(H5). There exist fun
tions

�

f(t) and �g(t) su
h that f(x; t) �

�

f(t); g(x; t) � �g(t) and

both

lim

�!0

�

N

�

1

(�)

Z

1=�

0

�

F (�

�

N

p+1

u(r))r

N�1

dr =1;

and lim

�!0

�

N

�

2

(�)

Z

1=�

0

�

G(�

�

N

q+1

v(r))r

N�1

dr =1

if both

�

f 6� 0 and �g 6� 0. Otherwise, we assume one of the limits holds with � repla
ing �

i

.

Assumption (H5) is a Br�ezis and Nirenberg type 
ondition, it 
an be veri�ed in details

as [10℄.
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Theorem A. Assume (H1) - (H5), problem (1.3)-(1.4) possesses at least a nontrivial

solution; Furthermore, if 
 is a ball and f = f(jxj; t); g = g(jxj; t), then problem (1.3) -

(1.4) has a nontrivial radial solution.

Using Theorem A we prove the existen
e result for problem (1.1) -(1.2) by approximation

arguments. We 
onstru
t a Palais-Smale sequen
e of the fun
tional related to problem

(1.1) - (1.2) by Theorem A. In se
tion 4, we prove a global 
ompa
t result for Palais-Smale

sequen
es. The result allows us to show Palais - Smale sequen
es are relatively 
ompa
t

for the values in 
ertain intervals. In se
tion 6, we verify a 
ondition for
ing 
riti
al values

des
ribed by the Mountain Pass Theorem into a given interval. Therefore, the Palais-Smale

sequen
e has a strongly 
onverging subsequen
e. The limit fun
tion will be a solution of

(1.1) - (1.2). Before stating the result, we assume further that

(H6) f(x; t)!

�

f(t); g(x; t)! �g(t) uniformly for t bounded as jxj ! 1;

jf(x; t)�

�

f(t)j � �(R)jtj; jg(x; t)� �g(t)j � �(R)jtj; whenever jxj � R; jtj � Æ

for some 
onstants R > 0 and Æ > 0, where �(R)! 0 as R!1.

(H7) measfx 2 R

N

: f(x; t) 6�

�

f(t)g > 0 or measfx 2 R

N

: g(x; t) 6� �g(t)g > 0:

(H8)

�

f

1

(t)=t and �g

1

(t)=t are in
reasing in t:

We put the same

�

f and �g in (H5) and (H6) for simpli
ity although they may be 
hosen

in a di�erent way.

Theorem B. Assume (H1) - (H8), problem (1.1)-(1.2) possesses at least a nontrivial

solution; Furthermore, if f = f(jxj; t); g = g(jxj; t), then problem (1.1) - (1.2) has a

nontrivial radial solution.

We may see in parti
ular that fun
tions f(u) = juj


�1

u and g(v) = jvj

�

v, where 1 <


 < p; 1 < � < q, ful�ll all assumptions (H1) - (H8). Other examples 
an be 
onstru
ted

as one in [32℄.
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In se
tion 2, we prove de
aying laws for solutions of (1.1) - (1.2) in a spe
ial 
ase.

Existen
e results are given in se
tion 3 for bounded domains and in se
tion 5 for R

N

. We

also show in se
tion 5 that there exists a ground state for problem

(1.5) ��u+ u = jvj

q�1

v + �g(v); ��v + v = juj

p�1

u+

�

f(u) in R

N

;

(1.6) u(x)! 0; v(x)! 0 as jxj ! 0:

The proofs of Theorems A and B are 
ompleted in se
tion 6.

S2. De
ay of solutions at infinity

In this se
tion we prove a de
aying law for strong solutions of problem (1.1) - (1.2) in

the 
ase p = q = 2

�

� 1; where 2

�

=

2N

N�2

; N � 3. By a strong solution of (1.1) - (1.2) we

mean a solution (u; v) of (1.1) - (1.2) satisfying u; v 2 W

2;2

�

0

. Moreover, if f and g are

independent of x, positive solutions of problem (1.1) - (1.2) are radial and exponentially

de
aying.

Lemma 2.1. Assume (H1) - (H3). Let (u; v) be a strong solution of (1.1) - (1.2). Then,

it belongs to L




for 
 2 [2;1).

Proof. The arguments are similar to that of [17℄, we outline the proof.

A bootstrap argument [13℄ shows that u and v are 
ontinuous fun
tions.

For ea
h k > 0, we de�ne the open set




k

= fx 2 R

N

: ju(x)j+ jv(x)j < kg:

Now given x

o

2 R

N

, there exist k

o

> 0 and r > 0 su
h that the open ball B

r

(x

o

) � 


k

,

for all k � k

o

. Let R(k) = supfr > 0 : B

r

(x

o

) � 


k

g. Clearly R(k) ! +1 as k ! +1.

Let � 2 C

1

o

(R

N

) be a fun
tion su
h that

�(x) = 1; for x 2 B

1=2

(0); �(x) = 0; forx 2 R

N

nB

1

(0);

0 � �(x) � 1 and jr�(x)j � 
onst, for all x 2 R

N

:
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De�ne �

R

(x) = �(

x�x

o

R

) for R := R(k). Multiplying �rst equation in (1.1) by �

2

R

juj

s�1

u,

with s > 1, and integrating by parts, we obtain as [17℄ that

Z

R

N

jr(�

R

ujuj

s�2

2

)j

2

dx

�

3(s+ 1)

2

8(s� �)

Z

R

N

�

2

R

juj

s�1

u(jvj

2

�

�2

v + g(x; v)) dx+ C(�)

Z

R

N

juj

s+1

jr�

R

j

2

dx

=:

3(s+ 1)

2

8(s� �)

I

1

+ C(�)I

2

;

(2.1)

where C(�) is a 
onstant depending on �. We next use Sobolev embedding to estimate the

left side of (2.1) from below:

(2.2) (

Z

R

N

(�

2

R

juj

s+1

)

N

N�2

dx)

N�2

N

�

3(s+ 1)

2

8(s� �)

I

1

+ C(�)I

2

:

To estimate I

1

, we denote 
(m) := fx 2 R

N

: jv(x)j � mg for some m > 0. By H�older's

inequality we obtain

j

Z

R

N

�

2

R

juj

s

jvj

2

�

�2

v dxj

� j

Z


(m)

�

2

R

juj

s

jvj

2

�

�2

v dxj+ j

Z

R

N

n
(m)

�

2

R

juj

s

jvj

2

�

�2

v dxj

�

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx+m

4

N�2

Z

R

N

n
(m)

�

2

R

juj

s

jvj dx

�

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx+m

4

N�2

Z

R

N

�

2

R

juj

s

jvj dx:(2.3)

Using H�older's inequality again, we have

(2.4)

Z

R

N

�

2

R

juj

s

jvj dx � C

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx

and

Z


(m)

�

2

R

juj

s

jvj

2

�

�1

dx

� [

Z

R

N

(�

2

R

juj

s+1

)

N

N�2

dx℄

s

s+1

N�2

N

[

Z

R

N

(�

2

R

jvj

s+1

)

N

N�2

dx℄

1

s+1

N�2

N

[

Z


(m)

jvj

2

�

dx℄

2

N

:

(2.5)
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Let A = [

R

R

N

(�

2

R

juj

s+1

)

N

N�2

dx℄

N�2

N

and B = [

R

R

N

(�

2

R

jvj

s+1

)

N

N�2

dx℄

N�2

N

. It follows from

(2.3) - (2.5) that

Z

R

N

�

2

R

juj

s

jvj

2

�

�1

dx

� A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(m)

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx:

(2.6)

By (H1) - (H3) we have

jg(x; v)j � C(jvj

2

�

�1

+ jvj);

whi
h together with (2.4) and (2.6) yield that

(2.7) I

1

� CA

s

s+1

B

1

s+1

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(m)

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx:

We 
on
lude from (2.1) and (2.7) that

(2.8) A � C(�)fA

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx+ I

2

g:

A similar expression 
an be obtained with the roles of A and B ex
hanged:

(2.9) B � C(�)fA

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+

Z

R

N

�

2

R

(juj

s+1

+ jvj

s+1

) dx+ I

2

g:

Assuming that

R

R

N

juj

s+1

dx < 1 and

R

R

N

jvj

s+1

dx < 1 we obtain from (2.8) and (2.9)

that

(2.10) A � C(�)A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+ C(�);

(2.11) B � C(�)A

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+ C(�):

Multipling (2.10) by (2.11) we obtain

AB � C(�)fAB[

Z


(m)

juj

2

�

dx℄

2

N

[

Z


(m)

jvj

2

�

dx℄

2

N

+ A

s=(s+1)

B

1=(s+1)

[

Z


(m)

jvj

2

�

dx℄

2

N

+A

1=(s+1)

B

s=(s+1)

[

Z


(m)

juj

2

�

dx℄

2

N

+ 1g:

(2.12)
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Sin
e

Z

R

N

juj

2

�

dx <1 and

Z

R

N

jvj

2

�

dx <1;

we may 
hoose m > 0 large enough su
h that

Z


(m)

juj

2

�

dx and

Z


(m)

jvj

2

�

dx

small, and we get

(2.13) AB � C(�)[A

s=(s+1)

B

1=(s+1)

+A

1=(s+1)

B

s=(s+1)

+ 1℄:

Letting k!1, we have R!1 and it yields from (2.13) that

Z

R

N

juj

(s+1)N=(N�2)

dx <1 and

Z

R

N

jvj

(s+1)N=(N�2)

dx <1:

Repeating this pro
edure we see that u; v 2 L




for 
 = (s + 1)(

N

N�2

)

2

. So we may

start with s = 2

�

� 1 and obtain u; v 2 L




for all 
 = 2

�

(

2

�

2

)

n

; n = 1; 2; � � �: Using the

Riesz-Thorin interpolation theorem [8℄, we 
on
lude that u; v 2 L




for all 
 � 2

�

. The

assertion follows. �

Using results in Lemma 2.1 we may prove following de
aying laws for strong solutions

of (1.1) - (1.2) as [17℄.

Proposition 2.2. Assume (H1) - (H3) and p = q = 2

�

� 1. The strong solutions (u; v) of

(1.1) - (1.2) satisfy

(2.14) lim

jxj!+1

jru(x)j = 0; lim

jxj!+1

jrv(x)j = 0:

Furthermore, if f and g are independent of x, (u; v) are radially symmetri
 and satisfy

u(r) = o(e

��r

); v(r) = o(e

��r

); u

r

(r) = o(e

��

1

r

);

v

r

(r) = o(e

��

1

r

); u

rr

(r) = o(e

��

2

r

); u

rr

(r) = o(e

��

2

r

);

where 0 < �; �

1

; �

2

< 1:
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S3. Existen
e results in bounded domains

Let T = �� + id. For 0 � s � 2, we de�ne the spa
e E

s

as the domain D(T

s=2

) of

A

s

:= T

s=2

. It is well known that the in
lusions E

s

! L




(
) is 
ontinuous if 2 � 
 �

2N=(N � 2s) and it is 
ompa
t if 2 < 
 < 2N=(N � 2s) provided that 
 is bounded.

We write p + 1 =

2N

N�2s

and q + 1 =

2N

N�2t

with s + t = 2. Denote E = E

s

� E

t

,

X = L

p+1

(
) � L

q+1

(
) and X

�

= L

p+1

p

(
) � L

q+1

q

(
). Criti
al points of the strongly

inde�nite fun
tional

I(z) =

Z




(rurv + uv) dx�

Z




[

1

p+ 1

juj

p+1

+ F (x; u)℄ dx�

Z




[

1

q + 1

jvj

q+1

+G(x; v)℄ dx

de�ned on E with z = (u; v) are solutions of (1.3)-(1.4). However, to get 
ontrol of

energy levels of asso
iate fun
tional, we 
onsider the dual fun
tional J of I. We re
all

the following fa
ts. For ea
h x, the Legendre-Fen
hel transformations F

�

(x; s) of F(x; t),

G

�

(x; s) of G(x; t) are de�ned by

(3.1) F

�

(x; s) = sup

t2R

fst�F(x; t)g; G

�

(x; s) = sup

t2R

fst� G(x; t)g

respe
tively. Equivalently, we have

(3.2) F

�

(x; s) = st� F(x; t) with s = f

1

(x; t); t = F

�

0

s

(x; s);

(3.3) G

�

(x; s) = st� G(x; t) with s = g

1

(x; t); t = G

�

0

1

(x; s):

In the same way, we de�ne

�

F

�

and

�

G

�

for

�

F(t) :=

1

p+1

jtj

p+1

+

�

F (t) and

�

G(t) :=

1

q+1

jtj

q+1

+

�

G(t) respe
tively. By (H6) and properties of Legendre-Fen
hel transformation, we have

(3.4) F

�

(x; s) �

�

F

�

(s); G

�

(x; s) �

�

G

�

(s):

Assume (H1) - (H4). The following properties of F

�

;G

�


an be veri�ed as [3℄, [14℄ and

[26℄.

Lemma 3.1. F

�

;G

�

2 C

1

and

(3.5) F

�

(x; s) � (1�

1

�

)sF

�

0

s

(x; s); G

�

(x; s) � (1�

1

�

)sG

�

0

s

(x; s);

(3.6) F

�

(x; s) � Cjsj

p+1

p

� C; G

�

(x; s) � Cjsj

q+1

q

� C:
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Lemma 3.2. There exist Æ > 0; C

Æ

and C

0

Æ

> 0 su
h that

F

�

(x; s) �

(

C

Æ

jsj

2

; if jsj � Æ

C

0

Æ

jsj

p+1

p

; if jsj � Æ

; G

�

(x; s) �

(

C

Æ

jsj

2

; if jsj � Æ

C

0

Æ

jsj

q+1

q

; if jsj � Æ

;

where C

Æ

; C

0

Æ

!1 as Æ ! 0.

Let

A =

�

0 T

T 0

�

; K = A

�1

=

�

0 T

�1

T

�1

0

�

:

The dual fun
tional

J(w) =

Z




(F

�

(x;w

1

) + G

�

(x;w

2

)) dx�

1

2

Z




< w;Kw > dx;

of I is well de�ned and C

1

on X

�

. A 
riti
al point w of J satis�es

(��+ id)

�1

w

2

= F

�

0

s

(x;w

1

); (��+ id)

�1

w

1

= G

�

0

s

(x;w

2

):

Let

u = (��+ id)

�1

w

2

; v = (��+ id)

�1

w

1

:

Then (u; v) satis�es (1.3) - (1.4). We dedu
e by (3.2) and (3.3) that I(z) = J(w). Su
h a

result is also valid for solutions of (1.1)-(1.2). Now we use the Mountain Pass Theorem to

�nd 
riti
al points of J .

Following arguments of [6℄, we know that assumption (H2) implies F

�

(x; t)=t

2

! 1

and G

�

(x; t)=t

2

!1. Thus, 0 is a lo
al minimum of J . Pre
isely,

Lemma 3.3. Suppose (H2). There exist 
onstants �; � > 0, independent of 
, su
h that

J(w) � � > 0 if kwk

X

�

= �:

By (H1), (H2) and (H4), we have

(3.7) F(x; t) � Cjtj

�

; G(x; t) � Cjtj

�

;

it yields

(3.8) F

�

(x; s) � Cjsj

�

��1

; G

�

(x; s) � Cjsj

�

��1

:
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Lemma 3.4. There exist T > 0 and w 2 X

�

su
h that J(tw) � 0 whenever t � T .

Proof. Taking w 2 X

�

; w 6� 0 su
h that

Z




< w;Kw > dx > 0;

when
e by (3.8)

J(tw) � t

�

��1

Z




jw

1

j

�

��1

dx+ t

�

��1

Z




jw

2

j

�

��1

dx�

1

2

t

2

Z




< w;Kw > dx:

for t > 0. Sin
e

�

��1

;

�

��1

< 2, the assertion follows. �

In order to �nd 
riti
al points of J , the Palais - Smale 
ondition has to be 
onsidered.

We say that J satis�es (PS)





ondition if any sequen
e fw

n

g � X

�

su
h that J(w

n

) !


; J

0

(w

n

)! 0 as n!1 has a subsequen
e 
onverging strongly in X

�

. De�ne

S

p;q

= inffk�uk

L

q+1

q

: u 2W

2;

q+1

q

(
) \W

1;

q+1

q

o

(
); kuk

L

p+1
= 1g:

S

p;q

is independent of 
, depends only on p and q.

Lemma 3.5. Under hypotheses (H1) - (H4), the fun
tional J satis�es (PS)





ondition

for

(3.9) 0 < 
 <

2

N

S

N

2

p;q

:

Proof. Let fw

n

g be a sequen
e satisfying

J(w

n

)! 
 <

2

N

S

N

2

p;q

J

0

(w

n

)! 0 as n!1;

whi
h and Lemma 3.1 yield

Z




(F

�

(x;w

1

n

) + G

�

(x;w

2

n

)) dx �

1

2

Z




< w

n

; Kw

n

> dx+ C

�

1

2

Z




(F

�

0

s

(x;w

1

n

)w

1

n

+ G

�

0

s

(x;w

2

n

)w

2

n

) dx+ o(1)kw

n

k

X

�

+ C

�

1

2

�

�� 1

Z




F

�

(x;w

1

n

) dx+

1

2

�

� � 1

Z




G

�

(x;w

2

n

) dx+ C + o(1)kw

n

k

X

�

:
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Therefore

Z




(F

�

(x;w

1

n

) + G

�

(x;w

2

n

)) dx � C + o(1)kw

n

k

X

�

:

By Lemma 3.2, we obtain

kw

1

n

k

p+1

p

L

p+1

p

+ kw

2

n

k

q+1

q

L

q+1

q

� C + o(1)kw

n

k

X

�

:

So kw

n

k

X

�

is bounded.

Let z

n

= Kw

n

. Sin
e K : X

�

! X is bounded, it follows that

kz

n

k

X

� C;

similarly

kz

n

k

E

� Ckw

n

k

X

�

� C:

Solving the equation Az

n

= w

n

and using ellipti
 regularity theory, we obtain

z

n

2 [W

2;

q+1

q

(
) \W

1;

q+1

q

o

(
)℄� [W

2;

p+1

p

(
) \W

1;

p+1

p

o

(
)℄

and

ku

n

k

W

2;

q+1

q

(
)\W

1;

q+1

q

o

(
)

� C; kv

n

k

W

2;

p+1

p

(
)\W

1;

p+1

p

o

(
)

� C:

Hen
e, there exists a subsequen
e fz

n

k

g of fz

n

g su
h that

z

n

k

! z weakly in E and X; and z

n

k

! z in L

�

(
)� L




(
)

as n

k

!1, for 2 � � <

2N

N�2s

; 2 � 
 <

2N

N�2t

.

Sin
e fw

n

g is bounded in X

�

, it is straightward that

(3.10) ��u

n

+ u

n

� jv

n

j

q�1

v

n

� g(x; v

n

) = �

1;n

in L

q+1

q

;

(3.11) ��v

n

+ v

n

� ju

n

j

p�1

u

n

� f(x; u

n

) = �

2;n

in L

p+1

p

with k�

n

k

X

�

! 0, where �

n

= (�

1;n

; �

2;n

). We 
laim that z 6� 0. In fa
t, if z � 0, we would

have

z

n

k

! 0 strongly in L

�

(
)� L




(
);
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as n

k

!1, (3.10) and (3.11) be
ome

(3.12) ��u

n

= jv

n

j

q�1

v

n

+ o(1); ��v

n

= ju

n

j

p�1

u

n

+ o(1):

So one has

Z




ru

n

� rv

n

dx =

Z




ju

n

j

p+1

dx+ o(1) =

Z




jv

n

j

q+1

dx+ o(1):

Therefore

Z




j�u

n

j

q+1

q

dx

=

Z




jv

n

j

q

sign(v

n

)(�j�u

n

j

1

q

sign(��u

n

)) dx+ o(1)

� (

Z




jv

n

j

q+1

dx)

q+1

q

(

Z




j�u

n

j

q+1

q

dx)

1

q+1

+ o(1)

whi
h gives

Z




j�u

n

j

q+1

q

dx �

Z




jv

n

j

q+1

dx+ o(1) =

Z




ju

n

j

p+1

dx+ o(1):

Assuming that

Z




ju

n

j

p+1

dx! k;

Z




jv

n

j

q+1

dx! k;

we obtain

k � S

N

2

p;q

:

On the other hand, the 
onvergen
e of fz

n

k

g in L

�

(
)� L




(
) implies that


+ o(1) = I(z

n

)

=

Z




[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx+ o(1)

=

2

N

k + o(1):

As a result,


 �

2

N

S

N

2

p;q


ontradi
ting to (3.9) and therefore z 6� 0.
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Let �

n

= u

n

� u; �

n

= v

n

� v. Then (�

n

; �

n

)! (0; 0) weakly in (W

2;

q+1

q

\W

1;

q+1

q

o

)�

(W

2;

p+1

p

\W

1;

p+1

p

o

) and L

p+1

� L

q+1

, and strongly in L

�

� L




for 2 � � <

2N

N�2s

; 2 � 
 <

2N

N�2t

. Using Br�ezis - Lieb lemma [BL℄, one has

I(z) +

Z




(��

n

��

n

�

1

p+ 1

j�

n

j

p+1

�

1

q + 1

j�

n

j

q+1

) dx = 
+ o(1);

< I

0

(z); z > +

Z




(�2�

n

��

n

� j�

n

j

p+1

� j�

n

j

q+1

) dx = o(1):

Again by (3.12), we may assume that

Z




j�

n

j

p+1

dx! k;

Z




j�

n

j

q+1

dx! k;�

Z




�

n

��

n

dx! k:

Thus

I(z)�

2

N

Z




�

n

��

n

dx = 
+ o(1):

We have either k = 0 or k � S

N

2

p;q

. In the latter 
ase


 = I(z) +

2

N

k � I(z) +

2

N

S

N

2

p;q

>

2

N

S

N

2

p;q

sin
e I(z) > 0. This 
ontradi
ts to (3.9). So k = 0.

Finally, we show that w

n

! w = Az in X

�

. We know from (3.10) and (3.11) that

kw

n

� wk

X

�

� Cfkju

n

j

p

u

n

� juj

p

uk

L

p+1

p

+ kjv

n

j

q

v

n

� jvj

q

vk

L

q+1

q

+ kf(x; v

n

)� f(x; v)k

L

p+1

p

+ kg(x; u

n

)� g(x; u)k

L

q+1

q

+ k�

n

k

X

�

g:

The right side tends to zero as n ! 1 be
ause (u

n

; v

n

) ! (u; v) strongly in (W

2;

p+1

p

\

W

1;

p+1

p

o

)� (W

2;

q+1

q

\W

1;

q+1

q

o

) and L

p+1

� L

q+1

. The proof is 
ompleted. �

Let

� = fg 2 C([0; 1℄; X

�

) : g(0) = 0; g(1) = eg;

where e = Tw is sele
ted in Lemma 3.4. We de�ne

(3.13) 
 = 





= inf

g2�

sup

t2[0;1℄

J(g(t)):
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Proposition 3.6. Suppose (H1) - (H4). If there exists a path e(t) inX

�

su
h that e(0) = 0

and J(e(t)) � 0 for t > 0 large satisfying

(3.14) sup

t�0

J(e(t)) <

2

N

S

N

2

p;q

;

the problem (1.3) - (1.4) possesses a nontrivial solution.

Proof. By (3.14), we may verify that the value 
 de�ned by (3.13) satis�es


 <

2

N

S

N

2

p;q

:

The assertion follows by Lemmas 3.3 - 3.5 and the Mountain Pass Theorem. �

S4. Global 
ompa
tness results

The fun
tionals

I(z) =

Z

R

N

A

s

u � A

t

v dx�

Z

R

N

[F(x; u)℄ dx+ G(x; v)℄ dx

and

I

1

(z) =

Z

R

N

A

s

u � A

t

v dx�

Z

R

N

[

�

F(u) +

�

G(v)℄ dx

are well de�ned on E = E

s

� E

t

. We show in this se
tion that the obsta
le energy levels

for the 
ompa
tness of I are the energy levels of I

1


orresponding to the solutions of (1.5)

- (1.6). Regularity theory shows that 
riti
al points of I

1

are a
tually strong solutions of

(1.5) -(1.6). Furthermore, we have

Lemma 4.1. Suppose (H2), (H3) and (H6). There exists a positive 
onstant C > 0 su
h

that

kzk

E

� C

for all nontrivial solutions z 2 E of (1.5) - (1.6).

Proof. Suppose z = (u; v) is a solution of (1.5)-(1.6). By assumptions (H2), (H3) and

(H6), we obtain

(4.1)

�

f(u) � C

�

juj

p

+ �u; �g(v) � C

�

jvj

q

+ �v:
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Using H�older's inequality, (4.1) and equations, one has

j

Z

R

N

A

s

�A

t

v dxj � (C

�

kuk

p

L

p+1

+ �kuk

L

2

)k�k

E

s

; 8� 2 E

s

;

it implies

kvk

E

t

� C

�

kuk

p

E

s

+ �kuk

E

s

:

Similarly,

kuk

E

s

� C

�

kvk

q

E

t

+ �kvk

E

t

:

So for � small, it yields

kuk

E

s

+ kvk

E

t

� C(kuk

p

E

s

+ kvk

q

E

t

):

Consequently, either kuk

E

s

� C or kvk

E

t

� C > 0, where C > 0 is independent of

z = (u; v). �

Proposition 4.2. Assume (H1) - (H4) and (H6). Let fz

n

g � E be a sequen
e su
h that

(4.2) I(z

n

)! 
 <

2

N

S

N

2

p;q

and I

0

(z

n

)! 0 in E

�

as n! 0:

Then there exists a subsequen
e (still denoted by fz

n

g) for whi
h the following holds:

there exist an integer k � 0, sequen
es fx

i

n

g � R

N

; jx

i

n

j ! 1 as n ! 1 for 1 � i � k, a

solution z of (1.1)-(1.2) and solutions z

i

(1 � i � k) of (1.5)-(1.6) su
h that

(4.3) z

n

! z weakly in E;

(4.4) I(z

n

)! I(z) +

k

X

i=1

I

1

(z

i

);

(4.5) z

n

� (z +

k

X

i=1

z

i

(x� x

i

n

))! 0 in E

as n!1, where we agree that in the 
ase k = 0 the above holds without z

i

; x

i

n

.
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Proof. The result will be derived from the arguments of [5℄ for one equation. First we

show the boundedness of fz

n

g in E. By (4.2), (H2) and (H4) we have


+ �

n

kz

n

k

E

=

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx

+

1

2

Z

R

N

[u

n

f(x; u

n

) + v

n

g(x; v

n

)℄ dx�

Z

R

N

[F (x; u

n

) +G(x; v

n

)℄ dx

�

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

) dx

+ (

�

2

� 1)

Z

R

N

F (x; u

n

) dx+ (

�

2

� 1)

Z

R

N

G(x; v

n

) dx

�

Z

R

N

[(

1

2

�

1

p+ 1

)ju

n

j

p+1

+ (

1

2

�

1

q + 1

)jv

n

j

q+1

℄ dx+ C

Z

R

N

(ju

n

j

�

+ jv

n

j

�

) dx:

(4.6)

On the other hand, we may dedu
e as Lemma 4.1 that

(4.7) kv

n

k

E

t

� �ku

n

k

E

s

+ C

�

ku

n

k

p

L

�

+ ku

n

k

p

L

p+1

+ �

n

kz

n

k

E

:

and

(4.8) ku

n

k

E

s

� �kv

n

k

E

t

+ C

�

kv

n

k

q

L

�

+ kv

n

k

q

L

q+1

+ �

n

kz

n

k

E

:

Adding two inequalities we obtain by (4.6) that

kz

n

k

E

= ku

n

k

E

s

+ kv

n

k

E

t

� C[ku

n

k

p

L

�

+ kv

n

k

q

L

�

+ ku

n

k

p

L

p+1

+ kv

n

k

q

L

q+1

+ (�+ �

n

)kz

n

k

E

℄

� C[(�+ �

n

)kz

n

k

E

+ 1℄:(4.9)

Sele
ting � > 0 small and for n large, it follows that fz

n

g is uniformly bounded in E. So

we may assume

z

n

! z weakly in E;

z

n

! z strongly in L

�

lo


(R

N

)� L




lo


(R

N

);

z

n

! z a:e: in R

N
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as n!1, where 2 � � <

2N

N�2s

; 2 � 
 <

2N

N�2t

. Denote Q(z) =

R

R

N

A

s

uA

t

v dx, we have

(4.10) Q(z

n

) = Q(z

n

� z) +Q(z) + o(1):

It follows from Br�ezis & Lieb's lemma [9℄ that

(4.11)

Z

R

N

F (x; u

n

) dx =

Z

R

N

F (x; u

n

� u) dx+

Z

R

N

F (x; u) dx+ o(1)

and

(4.12)

Z

R

N

G(x; v

n

) dx =

Z

R

N

G(x; v

n

� v) dx+

Z

R

N

G(x; v) dx+ o(1):

Hen
e we obtain

(4.13) I(z

n

) = I(z

n

� z) + I(z) + o(1);

(4.14) I

0

(z

n

) = I

0

(z

n

� z) + I

0

(z) + o(1)

as n!1. Let z

1

n

= z

n

� z. We may derive from (H6) as [22℄ and [32℄ that

Z

R

N

u

1

n

[f(x; u

1

n

)�

�

f(u

1

n

)℄ dx! 0 and

Z

R

N

v

1

n

[g(x; v

1

n

)� �g(v

1

n

)℄ dx! 0

as well as

Z

R

N

[F (x; u

1

n

)�

�

F (u

1

n

)℄ dx! 0;

Z

R

N

[G(x; v

1

n

)�

�

G(v

1

n

)℄ dx! 0

as n!1. When
e by (4.13) and (4.14) it yields that

(4.15) I

1

(z

1

n

) = I(z

1

n

) + o(1) = I(z

n

)� I(z) + o(1)

(4.16) I

1

0

(z

1

n

) = I

0

(z

1

n

) + o(1) = I

0

(z

n

)� I

0

(z) + o(1):

Suppose z

1

n

= z

n

� z 6! 0 strongly in E (otherwise we shall have �nished). We want to

show that there exists x

1

n

� R

N

su
h that jx

1

n

j ! +1 and z

1

n

(x+ x

1

n

)! z

1

6� 0 weakly in

E. We 
laim that

(4.17) I

1

(z

1

n

) � � > 0:
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Indeed, were it not true, we would have

(4.18) I

1

(z

1

n

)! 0

and

(4.19) < I

1

0

(z

1

n

); � >= o(1)k�k

E

as n!1:

Taking � = (

�

�+�

v

1

n

;

�

�+�

u

1

n

) =: �

n

in (4.19), it follows from (4.18) and (4.19) that

o(1)k�

n

k

E

= I

1

(z

1

n

)� < I

1

0

(z

1

n

); �

n

>

= (

�

�+ �

�

1

p+ 1

)

Z

R

N

ju

1

n

j

p+1

dx+ (

�

�+ �

�

1

q + 1

)

Z

R

N

jv

1

n

j

q+1

dx

+

�

�+ �

Z

R

N

u

1

n

�

f(u

1

n

) dx+

�

�+ �

Z

R

N

v

1

n

�g(v

1

n

) dx

�

Z

R

N

[

�

F (u

1

n

) +

�

G(v

1

n

)℄ dx

� (

�

�+ �

�

1

p+ 1

)

Z

R

N

ju

1

n

j

p+1

dx+ (

�

�+ �

�

1

q + 1

)

Z

R

N

jv

1

n

j

q+1

dx

+ (

��

�+ �

� 1)

Z

R

N

[

�

F (u

1

n

) +

�

G(v

1

n

)℄ dx:(4.20)

As 2 < � � p+ 1; 2 < � � q + 1, it 
on
ludes that

Z

R

N

(ju

1

n

j

p+1

+ jv

1

n

j

q+1

) dx = o(1);

Z

R

N

(

�

F (u

1

n

) +

�

G(v

1

n

)) dx = o(1):

Again we may dedu
e as (4.9) that

kz

1

n

k

E

� C(ku

1

n

k

p

L

p+1

+ kv

1

n

k

q

L

q+1

+ o(1))

implying

kz

1

n

k

E

! 0

as n!1, it 
ontradi
ts to the fa
t kz

1

n

k

E

6! 0.

We de
ompose R

N

into N-dimensional unit hyper
ubes Q

j

with verti
es having integer


oordinates and put

d

n

= max

j

(ku

1

n

k

L

p+1

(Q

j

)

+ kv

1

n

k

L

q+1

(Q

j

)

):
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We 
laim that there is a � > 0 su
h that

(4.21) d

n

� � > 0 8n 2 N :

Suppose, by 
ontradi
tion, that d

n

! 0 as n!1. Sin
e

(4.22) I

1

0

(z

1

n

)! 0 as n!1;

noting that kz

1

n

k

1

E

is bounded and denoting � = minfp � 1; q � 1g, we have by (H2) and

(H3) that

0 < � � I

1

(z

1

n

) � C

Z

R

N

[ju

1

n

j

p+1

+ jv

1

n

j

q+1

+ u

1

n

�

f(u

1

n

) + v

1

n

�g(v

1

n

)℄ dx+ o(1)

� C

�

(ku

1

n

k

p+1

L

p+1

(R

N

)

+ kv

1

n

k

q+1

L

q+1

(R

N

)

) + �(ku

1

n

k

2

L

2

(R

N

)

+ kv

1

n

k

2

L

2

(R

N

)

)

� C

�

X

j

(ku

1

n

k

p+1

L

p+1

(Q

j

)

+ kv

1

n

k

q+1

L

q+1

(Q

j

)

) + �(ku

1

n

k

2

L

2

(R

N

)

+ kv

1

n

k

2

L

2

(R

N

)

)

� C

�

d

�

n

X

j

(ku

1

n

k

2

L

p+1

(Q

j

)

+ kv

1

n

k

2

L

q+1

(Q

j

)

) + �C

� Cd

�

n

X

j

(ku

1

n

k

2

E

s

(Q

j

)

+ kv

1

n

k

2

E

t

(Q

j

)

) + �C

� Cd

�

n

(ku

1

n

k

2

E

s

(R

N

)

+ kv

1

n

k

2

E

t

(R

N

)

) + �C:

Let n!1 and then �! 0, we obtain

I

1

(z

1

n

)! 0 as n!1;

a 
ontradi
tion. Hen
e (4.21) holds true.

Let fx

1

n

g be the 
enter of a hyper
ube Q

j

in whi
h

d

n

= ku

1

n

k

L

p+1

(Q

j

)

+ kv

1

n

k

L

q+1

(Q

j

)

:

Now we show that

(4.23) jx

1

n

j ! 1 as n!1:

If fx

1

n

g were bounded, by passing to a subsequen
e if ne
essary we should �nd that x

1

n

would be in the same Q

j

and so they should 
oin
ide. Letting in that Q

j

�z

1

n

(x) =

�

z

1

n

(x) z 2 Q

j

0 x 2 R

N

nQ

j

;
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we should have

I

1

j

E(Q

j

)

(�z

1

n

)

=

Z

Q

j

A

s

�u

1

n

A

t

�v

1

n

dx�

Z

Q

j

(

�

F(�u

1

n

) +

�

G(�v

1

n

)) dx+ o(1)

�

Z

Q

j

[(

1

2

�

1

p+ 1

)j�u

1

n

j

p+1

+ (

1

2

�

1

q + 1

)j�v

1

n

j

q+1

℄ dx

+ (

�

2

� 1)

Z

R

N

�

F (�u

1

n

) dx+ (

�

2

� 1)

Z

R

N

�

G(�v

1

n

) dx+ o(1)

�

Z

Q

j

[(

1

2

�

1

p+ 1

)j�u

1

n

j

p+1

+ (

1

2

�

1

q + 1

)j�v

1

n

j

q+1

℄ dx+ C

Z

Q

j

(j�u

1

n

j

�

+ j�v

1

n

j

�

) dx+ o(1)

� C(k�u

1

n

k

p+1

L

p+1

(Q

j

)

+ k�v

1

n

k

q+1

L

q+1

(Q

j

)

) + k�u

1

n

k

�

L

p+1

(Q

j

)

+ k�v

1

n

k

�

L

q+1

(Q

j

)

) + o(1)

� Æ > 0

for n large and

I

1

0

(�z

1

n

)! 0 as n! 0;

Be
ause I(z) > 0 and

0 < Æ � I

1

j

E(Q

j

)

(�z

1

n

) � I

1

(z

n

) = I(z

n

)� I(z) + o(1) <

2

N

S

N

2

p;q

;

Lemma 3.5 implies that �z

1

n

should 
onverge strongly in E(Q

j

) to a nonzero fun
tion,


ontradi
ting to z

1

n

! 0 weakly in E, so we have (4.23). Let z

1

n

(�+ x

1

n

)! z

1

weakly in

E. Denote by

�

Q the unit hyper
ube 
entered at the origin, we have

kz

1

n

k

E(

�

Q)

� � > 0;

thus z

1

6� 0 and

(4.24) < I

1

0

(z

1

); � >= 0; 8� 2 E:

Iterating the pro
edure, we obtain sequen
es x

l

n

; jx

l

n

j ! 1 and

z

l

n

(x) = z

l�1

n

(x+ x

m

)� z

l�1

(x); j � 2

z

l

n

(x+ x

l

n

)! z

l

(x) weakly in E
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as n! 0, where ea
h z

l

satis�es (4.24) and by indu
tion

kz

l

n

k

2

E

= kz

l�1

n

k

2

E

� kz

l�1

k

2

E

= kz

n

k

2

E

� kzk

2

E

�

l�1

X

i=1

kz

i

k

2

E

+ o(1):

I

1

(z

l

n

) = I

1

(z

l�1

n

)� I

1

(z

l�1

) + o(1)

= I(z

n

)� I(z)�

l�1

X

i=1

I

1

(z

i

) + o(1):

Sin
e z

l

is a solution of (1.5)-(1.6) and z

l

6� 0, by Lemma 4.1

kz

l

k

E

� C > 0:

Thus the iteration will terminate at some index k � 0. The assertion follows. �

S5 Existen
e results in R

N

Let R

n

! 1; B

n

= B

R

n

(0). Taking 
 = B

n

in problem (1.3)- (1.4), we infer from

Proposition 3.6 that there exists a solution z

n

of problem (1.3)-(1.4) de�ned on B

n

for

ea
h n if (3.14) holds. Moreover,

(5.1) I(z

n

) = J(w

n

) = 


n

� � > 0

and

(5.2) I

0

(z

n

) = 0; J

0

(w

n

) = 0;

where w

n

= Az

n

. In fa
t, z

n

is a strong solution of (1.3) - (1.4). Denote by J the dual

fun
tional of I. Extending z

n

to R

N

by setting z

n

= 0 outside B

n

, we have

(5.3) I(z

n

) = J (w

n

) = 


n

:

If f and g are independent of x, solutions z

n

are radial.
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Lemma 5.1. z

n

is a (PS) sequen
e of I in E and

(5.4) I(z

n

) <

2

N

S

N

2

p;q

:

Proof. It is readily to verify that 


n

= I(z

n

) � 


n�1

= I(z

n�1

), thus

(5.5) � � 


n

� 


1

<

2

N

S

N

2

p;q

;

so we obtain

(5.6) 


n

= I(z

n

)! 
; � � 
 <

2

N

S

N

2

p;q

:

Now we show that

(5.7) I

0

(z

n

)! 0; as n!1:

Indeed, 8(�;  ) 2 C

1

o

(R

N

) � C

1

o

(R

N

), there is n

o

> 0 su
h that supp�; supp � B

n

whenever n � n

o

and

I

0

(z

n

)(�;  ) = 0; if n � n

o

:

This implies that

I

0

(z

n

)z ! 0 as n!1 8z 2 C

1

o

(R

N

)� C

1

o

(R

N

):

Hen
e (5.7) follows be
ause C

1

o

(R

N

)� C

1

o

(R

N

) is dense in E. �

We begin with problem (1.5) - (1.6). We remark that previous results for I and J also

hold for I

1

and J

1

, where J

1

is the dual fun
tional of I

1

.

Proposition 5.2. Suppose (H1)-(H4) and (3.14). Then (1.5) - (1.6) has a nontrivial radial

solution.

Proof. We 
onstru
t a sequen
e of radial solutions z

n

of

�

��u+ u = jvj

q�1

v + �g(v); ��v + v = juj

p�1

u+

�

f(u); in B

n

;

u = v = 0 on �B

n

in balls B

n

by Proposition 3.6. Lemma 5.1 implies that z

n

is a (PS)




sequen
e of I

1

with


 <

2

N

S

N

2

p;q

and z

n

2 E

r

= E

s

r

�E

t

r

, where E

r

is the radial Sobolev spa
e. It is known from
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[7℄ that the in
lusion E

s

r

(R

N

) ,! L

�

(R

N

); 2 < p <

2N

N�2s

; is 
ompa
t. We may dedu
e as

Lemma 3.5 that there exist a subsequen
e of z

n


onverging strongly, the limit fun
tion is

a nontrivial radial solution of (1.5) - (1.6). �

Next, we 
onsider the variational problem

(5.8) I

1

= inffI

1

(u; v) : (u; v) is a solution of (1:5)� (1:6); (u; v) 6� (0; 0)g:

Minimizers of (5.8) are 
alled ground states of (1.5) - (1.6). By Proposition 5.2, the

variational problem (5.8) is well de�ned if (3.14) holds. In this 
ase

(5.9) I

1

<

2

N

S

N

2

p;q

:

Lemma 5.3. The variational problem (5.8) is assumed by a nontrivial solution of (1.5)-

(1.6).

Proof. Let z

n

= (u

n

; v

n

) be a minimizing sequen
e of I

1

. By Proposition 4.2 we have

I

1

= I

1

(z

n

) + o(1) =

X

j

I

1

(z

j

) + o(1);

where z

j

is a nontrivial solution of (1.5) - (1.6). Therefore, j = 1 and the proof is 
om-

pleted. �

Proposition 5.4. Suppose (H1)-(H4), (H6) and (3.14). If there exists w 2 X

�

su
h that

(5.10) sup

t�0

J(tw) < I

1

;

then (1.1) - (1.2) possesses a nontrivial radial solution.

Proof. By assumptions (3.14) and (5.10), we always may 
onstru
t a (PS)




sequen
e fz

n

g

of I by Proposition 3.6 and Lemma 5.1 su
h that

(5.11) 0 < � � 
 < I

1

:

By Proposition 4.2 we obtain

(5.12) I(z

n

) = I(z

o

) +

X

j

I

1

(z

j

) + o(1);

where z

o

is a solution of (1.1) - (1.2) and z

j

is a solution of (1.5) - (1.6). We dedu
e from

(5.11) and (5.12) that z

o

is a nontrivial solution of (1.1) - (1.2). �
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S6. Verifi
ations of 
onditions (3.14) and (5.10)

We verify 
ondition (5.10) �rst. Let B

n

= B

R

n

; R

n

!1 as n!1. For ea
h element

w in X

�

n

:= L

p+1

p

(B

n

)� L

q+1

q

(B

n

), where B

n

= B

R

n

; R

n

!1 as n!1, we may extend

it to R

N

by setting w = 0 outside B

n

, and we have J

n

(w) = J (w).

Proposition 6.1. Assume (H1) - (H4), (H6) - (H8) and (3.14). There exist elememts

w

n

2 X

�

n

su
h that

(6.1) sup

t�0

J (tw

n

) < I

1

for n large.

Proof. By Proposition 5.2, I

1

is assumed. Let z

o

= (u

o

; v

o

) be a minimizer of problem

I

1

. Choosing

w

o

1

=

�

f

1

(u

o

) = ju

o

j

p�1

u

o

+

�

f(u

o

); w

o

2

= �g

1

(u

o

) = jv

o

j

q+1

v

o

+ �g(v

o

);

and using (H4), (H6) and equations (1.5) - (1.6), one has

R

R

N

< w

o

; Kw

o

> dx > 0, where

w

o

= (w

o

1

; w

o

2

). Moreover, there exist t

2

> t

1

� 0 su
h that

max

t�0

J (tw

o

) = max

t

1

�t�t

2

J (tw

o

):

Suppose t

o

2 [t

1

; t

2

℄ and

J (t

o

w

o

) = max

t

1

�t�t

2

J (tw

o

):

Be
ause F(x; t) �

�

F(t) and G(x; t) �

�

G(t), one has F

�

(x; s) �

�

F

�

(s) and G

�

(x; s) �

�

G

�

(s).

By the assumption (H7),

J (t

o

w

o

) < J

1

(t

o

w

o

);

it follows

(6.2) sup

t�0

J (tw

o

) < sup

t�0

J

1

(tw

o

):

The density of real number �eld implies that there exists � > 0 su
h that

(6.3) sup

t�0

J (tw

o

) + 2� < sup

t�0

J

1

(tw

o

):
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Let � 2 C

1

o

(R

N

); 0 � � � 1 and � � 1 if jxj �

1

2

;� � 0 if jxj � 1; �

n

(x) = �(

x

R

n

).

Then z

n

:= (�

n

u

o

; �

n

v

o

) 
onverges to (u

o

; v

o

) in E. Let

w

n

1

=

�

f

1

(�

n

u

o

); w

n

2

= �g

1

(�

n

v

o

):

We also have w

n

! w

o

in X

�

. Suppose

J (t

n

w

n

) = sup

t�0

J (tw

n

);

then ft

n

g is bounded. Indeed, if t

n

!1, arguments in Lemma 3.4 would yield sup

t�0

J (tw

n

)!

�1. It is impossible be
ause the value is not negative. Suppose t

n

!

�

t

o

, the 
ontinuity

of the fun
tional J gives

J (t

n

w

n

)! J (

�

t

o

w

o

):

We 
laim that J (

�

t

o

w

o

) = sup

t�0

J (tw

o

). In fa
t, for every � > 0 there exists Æ > 0 su
h

that

J (t

o

w

o

)� � � J (tw

o

)

whenever jt� t

o

j < Æ. By the 
ontinuity of J , we may �nd n

o

> 0 su
h that if n � n

o

J (tw

o

) � J (tw

n

) + �; J (t

n

w

n

) � J (

�

t

o

w

o

) + �:

Therefore if n � n

o

we have

J (t

o

w

o

)� � � J (t

n

w

n

) + � � J (

�

t

o

w

o

) + 2� � J (t

o

w

o

) + 2�:

Be
ause � is arbitrary, the 
on
lusion holds. By the same arguments, we �nd that there

exist s

n

su
h that s

n

! �s

o

and

(6.4) J

1

(s

n

w

n

) = sup

t�0

J

1

(tw

n

)! J

1

(�s

o

w

o

) = sup

t�0

J

1

(tw

o

)

as n!1. By (6.3), we obtain

(6.5) J (t

n

w

n

) + � < J

1

(s

n

w

n

)

for n large enough. We may assume s

n

> 0, and then

(6.6)

dJ

1

(tw

n

)

dt

j

t=s

n

= 0;
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that is

(6.7)

Z

R

N

(

�

F

�

0

s

(s

n

w

n

1

)w

n

1

+

�

G

�

0

s

(s

n

w

n

2

)w

n

2

) dx� s

n

Z

R

N

< w

n

; Kw

n

> dx = 0:

By the de�nition of Legendre - Fen
hel transformation, we obtain

Z

R

N

(

�

F

�

(s

n

w

n

1

) +

�

G

�

(s

n

w

n

2

)) dx

=

Z

R

N

(

�

F

�

0

s

(s

n

w

n

1

)s

n

w

n

1

+

�

G

�

0

s

(s

n

w

n

2

)s

n

w

n

2

) dx�

Z

R

N

[

�

F(

�

f

�1

1

(s

n

w

n

1

)) +

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx

= s

2

n

Z

R

N

< w

n

; Kw

n

> dx�

Z

R

N

[

�

F(

�

f

�1

1

(s

n

w

n

1

)) +

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx:

(6.8)

Consider

(��+ id)

�1

w

n

2

= u

o

+ �

n

; (��+ id)

�1

w

n

1

= v

o

+ �

n

in R

N

;

we obtain

(��+ id)

�1

�

n

= �g

1

(�

n

v

o

)� �g

1

(v

o

); (��+ id)

�1

�

n

=

�

f

1

(�

n

u

o

)�

�

f

1

(u

o

) in R

N

:

By L

p

-estimates we have �

n

! 0 and �

n

! 0 in H

2;2

as n ! 1 be
ause the right hand

sides of above equations go to 0 in L

2

. Therefore we infer from this and (6.7) that

Z

R

N

s

n

(w

n

1

)

2

�

�

f

�1

1

(s

n

w

n

1

)

s

n

w

n

1

�

�

f

�1

1

(w

n

1

)

w

n

1

�

dx+

Z

R

N

s

n

(w

n

2

)

2

�

�g

�1

1

(s

n

w

n

2

)

s

n

w

n

2

�

�g

�1

1

(w

n

2

)

w

n

2

�

dx

=

Z

R

N

[w

n

1

�

n

+ w

n

2

�

n

+ (1� �

n

)(w

n

1

+ w

n

2

)℄ dx = o(1)

as n ! 1. The equality and assuption (H8) imply s

n

! 1 as n ! 1. Hen
e we dedu
e

by (6.7) and (6.8) that

sup

t�0

J

1

(tw

n

) �

1

2

Z

R

N

(u

o

�

f

1

(u

o

) + v

o

�g

1

(v

o

)) dx�

Z

R

N

(

�

F(u

o

) +

�

G(v

o

)) dx+ �

n

= I

1

+ �

n

;(6.9)

where

�

n

=

1

2

(s

2

n

� 1)

Z

R

N

(u

o

�

f

1

(u

o

) + v

o

�g(v

o

)) dx

�

Z

R

N

[(

�

F(�

n

u

o

)�

�

F(u

o

)) + (

�

G(�

n

v

o

)�

�

G(v

o

)℄ dx

+

Z

R

N

[(

�

F(�

n

u

o

)�

�

F(

�

f

�1

1

(s

n

w

n

1

)) + (

�

G(�

n

v

o

)�

�

G(�g

�1

1

(s

n

w

n

2

))℄ dx:
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The above estimates imply �

n

= o(1) as n!1. From (6.5) -(6.9) we obtain

sup

t�0

J (tw

n

) < sup

t�0

J

1

(tw

n

)� � � I

1

� �+ o(1);

the assertion follows for n large. �

Next, we verify (3.14).

It is known from [23℄ that the system

(6.10) ��u = jvj

q�1

v in R

N

; ��v = juj

p�1

u in R

N

;

(6.11) u(x)! 0 and v(x)! 0 as jxj ! 1:

has a ground state. The ground state is unique up to s
alings and translations and is

positive, radially symmetri
 and de
reasing in r. Let (u; v) be the ground state of (6.10) -

(6.11). Then all the ground states of (6.10) - (6.11) are given by

u

�

(x) = �

�

n

p+1

u(

x

�

); v

�

(x) = �

�

n

q+1

v(

x

�

):

Moreover,

Z

R

N

ju

�

j

p+1

dx =

Z

R

N

jv

�

j

q+1

dx = S

N

2

p;q

:

The asymptoti
 behavior of the ground state of (6.10) - (6.11) was found in [21℄. It may

be stated as follows.

Lemma 6.2. Let p �

N+2

N�2

. Then there exist 
onstants a > 0 and b > 0depending on p

and n, su
h that

lim

r!1

r

N�2

v

1

(r) = b;

lim

r!1

r

N�2

u

1

(r) = a if q >

N

N � 2

;

lim

r!1

r

N�2

logr

u

1

(r) = a if q =

N

N � 2

;

lim

r!1

r

q(N�2)�2

u

1

(r) = a if q <

N

N � 2

:
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Suppose 1 < 
 < p; 1 < � < q and 1 < q �

N+2

N�2

� q . Parameterizing the 
riti
al

hyperbola by p =

N+2+2�

N�2�2�

; q =

N+2�2�

N�2+2�

and using Lemma 6.2, we obtain that if q >

N

N�2

ku

�

k





(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N(p�
)

p+1

); if 
 >

N+2+2�

2(N�2)

;

O(�

N(p�
)

p+1

jlog�j

p

p+1

); if 
 =

N+2+2�

2(N�2)

;

O(�




p+1

[(N�2)p�2℄

); if 
 <

N+2+2�

2(N�2)

;

if 1 < q <

N

N�2

ku

�

k





(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N(p�
)

p+1

); if 2(
 + 1) +

N

q+1

< 
q(N � 2);

O(�

N(p�
)

p+1

jlog�j

p

p+1

); if 2(
 + 1) +

N

q+1

= 
q(N � 2);

O(�




p+1

[(N�2)p�2℄

); if 2(
 + 1) +

N

q+1

> 
q(N � 2);

if q =

N

N�2

ku

�

k





(p+1)

p

=

8

>

>

>

<

>

>

>

:

O(�

N


q+1

jlog�j




); if 
 <

N

N�2

p

p+1

;

O(�

N(p�
)

p+1

jlog�j


+

p

p+1

); if 
 =

N

N�2

p

p+1

;

O(�

N(p�
)

p+1

); if 
 >

N

N�2

p

p+1

;

and

kv

�

k

�

�(q+1)

q

=

8

>

>

>

<

>

>

>

:

O(�

N(q��)

q+1

); if � >

N+2�2�

2(N�2)

;

O(�

N(q��)

q+1

jlog�j

q

q+1

); if � =

N+2�2�

2(N�2)

;

O(�

�

q+1

[(N�2)q�2℄

); if � <

N+2�2�

2(N�2)

:

Proposition 6.3. Assume (H1), (H3) and (H7). There exists a path w(t) 2 X

�

su
h that

w(0) = 0; J(w(t)) � 0 for t > 0 large and

(6.12) sup

t�0

J(w(t)) <

2

N

S

N

2

p;q

:

Proof. By the de�nition of duality

J(w) =

Z




[f

�1

1

(x;w

1

)w

1

+ g

�1

1

(x;w

2

)w

2

�F(x; f

�1

1

(x;w

1

))� G(x; g

�1

1

(x;w

1

))℄ dx

�

1

2

Z




< Kw;w > dx:
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Choosing w

1

(s) = w

1

(s; �; x) = f

1

(x; su

�

); w

2

(t) = w

2

(t; �; x) = g

1

(x; tv

�

), where (u

�

; v

�

) is

a ground state of (6.10) -(6.11), we remark that

w

1

(0) = w

2

(0) = 0; w

1

(s); w

2

(t)!1 as s; t! +1:

Then

J(w(s; t)) =

Z




su

�

[s

p

u

p

�

+ f(x; su

�

)℄ + tv

�

[t

q

v

q

�

+ g(x; tv

�

)℄�

Z




[F(x; su

�

) + G(x; tv

�

)℄ dx

�

1

2

f

Z




[s

p

u

p

�

+ f(x; su

�

)℄(��+ id)

�1

[t

q

v

q

�

+ g(x; tv

�

)℄ dx

+

Z




[t

q

v

q

�

+ g(x; tv

�

)℄(��+ id)

�1

[s

p

u

p

�

+ f(x; su

�

)℄ dxg:

Let

(��)

�1

u

p

�

= v

�

+ �

�

2 H

1

o

(
); (��)

�1

v

q

�

= u

�

+ �

�

2 H

1

o

(
);

(��+ id)

�1

u

p

�

= v

�

+ �

�

+ r

1

�

:= v

�

+

�

�

�

2 H

1

o

(
);

(��+ id)

�1

v

q

�

= u

�

+ �

�

+ r

2

�

:= u

�

+ ��

�

2 H

1

o

(
):

Then

��

�

= 0 in 
; �

�

= �v

�

on �
; ��

�

= 0 in 
; �

�

= �u

�

on �
:

(��+ id)r

1

�

= �v

�

� �

�

; (��+ id)r

2

�

= �u

�

� �

�

By the maximum prin
iple

k�

�

k

L

1

(
)

� kv

�

k

L

1

(�
)

; k�

�

k

L

1

(
)

� ku

�

k

L

1

(�
)

;

u

�

+ �

�

� 0; v

�

+ �

�

� 0; r

1

�

� 0; r

1

�

� 0:

We rewrite

1

2

Z




< Kw;w > dx

=

1

2

s

p

t

q

Z




(u

p+1

�

+ v

q+1

�

) dx+ s

p

Z




v

�

g(x; tv

�

) dx+ t

q

Z




u

�

f(x; su

�

) dx+ �

�

(s; t);



ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS 31

where

�

�

(s; t) =

Z




[f(x; su

�

)(��+ id)

�1

g(x; tv

�

) + s

p

�

�

�

g(x; tv

�

) + t

q

��

�

f(x; su

�

)℄ dx

�

1

2

s

p

t

q

Z




(u

p

�

��

�

+ v

q

�

�

�

�

) dx:

Then

J(w(s; t)) =

p

p+ 1

s

p+1

Z




u

p+1

�

dx+

q

q + 1

t

q+1

Z




v

q+1

�

dx�

1

2

s

p

t

q

Z




(u

p+1

�

+ v

q+1

�

) dx

+ (t� s

p

)

Z




v

�

g(x; tv

�

) dx+ (s� t

q

)

Z




u

�

f(x; su

�

) dx

�

Z




(F (x; su

�

) +G(x; tv

�

)) dx� �

�

(s; t):

Let s

p+1

= t

q+1

. The highest order of t in

J(w(t)) =

p

p+ 1

t

q+1

Z




u

p+1

�

dx+

q

q + 1

t

q+1

Z




v

q+1

�

dx

�

1

2

t

p(q+1)

p+1

+q

Z




(u

p+1

�

+ v

q+1

�

) dx+ (t� t

p(q+1)

p+1

)

Z




v

�

g(x; tv

�

) dx

+ (t

q+1

p+1

� t

q

)

Z




u

�

f(x; t

q+1

p+1

u

�

) dx�

Z




(F (x; su

�

) +G(x; tv

�

)) dx� �

�

(s; t):

is t

p(q+1)

p+1

+q

. So J(w(t)) � 0 for t > 0 large. There exists t

o

� 0 su
h that

J(w(t

o

)) = max

0�t�t

o

J(w(t)):

Sin
e t

q+1

p+1

� t

q

� 0; t� t

p(q+1)

p+1

� 0 for t � 1, and by the assumptions (H1) - (H3) there

exist 1 � � � p

1

< p; 1 � � � q

1

< q su
h that

jf(x; t)j � C(jtj

�

+ jtj

p

1

); jg(x; t)j � C(jtj

�

+ jtj

q

1

);

we obtain for t � 1

Z




u

�

f(x; t

q+1

p+1

u

�

) dx = O(ku

�

k

�

�(p+1)

p

+ ku

�

k

p

1

p

1

(p+1)

p

) := k

1

(�)

and

Z




v

�

g(x; tv

�

) dx = O(kv

�

k

�

�(q+1)

q

+ kv

�

k

q

1

q

1

(q+1)

q

) := k

2

(�):
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Noting that

R




u

p+1

�

dx and

R




v

q+1

�

dx tend to S

N

2

p;q

from below as �! 0, we de�ne

h(�) = (

N + 2

N

t

q+1

� t

(N+2)(q+1)

N

)S

N

2

p;q

+ (t

q+1

p+1

� t

q

)k

1

(�) + (t� t

p(q+1)

p+1

)k

2

(�):

The maximum point t

�

> 0 of h(�) satis�es h

0

(�) = 0. Let t

�

= 1 + Æ

�

. We obtain from

h

0

(�) = 0 that Æ

�

= O(k

1

(�)+ k

2

(�)). Be
ause the operator K

�1

: X

�

! X is bounded, we

infer that

Z




f(x; su

�

)(��+id)

�1

g(x; tv

�

) dx � C(ku

�

k

2�

�(p+1)

p

+ku

�

k

2p

1

p

1

(p+1)

p

+kv

�

k

2�

�(q+1)

q

+kv

�

k

2q

1

q

1

(q+1)

p

);

Z




u

p

�

(�

�

+ r

2

�

) dx =

Z




[u

p

�

�

�

� (u

�

+ �

�

)(v

�

+ �

�

)� (u

�

+ �

�

)r

1

�

℄ dx

= O(ku

�

k

2

2

+ kv

�

k

2

2

):

By estimates for ku

�

k





(p+1)

p

and kv

�

k

�

�(q+1)

q

, we �nd the dominating term in �(s; t) is

O(ku

�

k

2

2

+ kv

�

k

2

2

). Therefore,

J(w(t)) �

2

N

S

N

2

p;q

�

Z




(F (x; su

�

) +G(x; tv

�

)) dx+ Æ

2

�

+O(ku

�

k

2

2

+ kv

�

k

2

2

)

�

2

N

S

N

2

p;q

� �

N

Z

R�

�1

0

�

F (�

�

N

p+1

u(r))r

N�1

dr + �

N

Z

R�

�1

0

�

G(�

�

N

q+1

v(r))r

N�1

dr

+ O(ku

�

k

2

2

+ kv

�

k

2

2

):

We 
on
lude by assumption (H5). �

The proof of Theorems A and B 
ompleted. The proof of Theorem A follows by Proposi-

tions 3.6 and 6.3.

The existen
e results of Theorem B follow by Propositions of 5.4, 6.1 and 6.3. Weak

solutions of (1.1) - ( 1.2) obtained by variational method a
tually are strong solutions [16℄,

therefore the de
aying law are obtained by Proposition 2.2 for the 
ase p = q =

N+2

N�2

. �
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