ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS

YANG JIANFU
IMECC-UNICAMP

ABSTRACT. We establish in this paper existence results for critical strongly indefinite semi-
linear elliptic systems defined on both bounded domains and RN .

61. INTRODUCTION

Our primary objective is to investigate the existence of solutions of the semilinear elliptic

system

(1.1) —Au+u= T w4 g(z,v), —Av+v=|uf u+ f(z,u) in RV,

(1.2) u(z) >0 and wv(x) =0 as |z|— oo,

where m + m = %, p,q > 1, which is known as the critical hyperbola. The system is

variational. Critical points of the associated functional

1 1
I(z):/ (Vu - Vv +uv)de — —— |u|p+1d$——/ 09Tt da
RN p+1Jry q+1Jry

_ /RN(F(;L«,U) + Glx,v)) da,

defined on a suitable function space are weak solutions of (1.1)-(1.2), where z = (u,v), F(z,u) =

fo (x,t)dt, G(x,v) fo x,t)dt. Special features of the functional I are that it has
a strongly indefinite quadratic part and the growths of v and v in nonlinear terms are

mutually complement. The problem can be studied by Linking type theorems based on
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a choice of fractional Sobolev spaces. In bounded domains, the compactness will be re-
2

mained in the subcritical case, i.e. p and ¢ satisty zﬁ + qul > NT_,p, g>1,and f and g
contain lower growth terms. The problem in bounded domains has been studied by many
authors, particularly, we refer [16] and [20]. On the other hand, nonexistence results can
be found via Pohozaev’s type identity for Hamiltonian system in [25], [29] for the critical
case: ﬁ + ﬁ = %,p, q > 1. Actually, in this case a lack of compact Sobolev inclu-
sions leads a failure of (PS) condition in general. The existence problem becomes delicate.
In [10], Brézis and Nirenberg have shown that a positive solution exists for critical scalar
semilinear elliptic equations. Crucial point in their arguments is that (PS). condition is
valid for ¢ in an interval related to the best Sobolev constant, then solutions can be found
by critical point theory in the interval. Inspired of work [10], Hulshof et al in [19] proved
the existence of solutions for the system
—Av = du+ |ulP~tu, —Au=pv+|v|7 v, in Q,

{ u=v=0 on 00
with proper A and p. They used a dual variational method originally due to [12]. This
approach was also used in [4] as an alternative for the methods in [10]. The main advantage
of the argument is that the associated dual functional possesses a geometry of the mountain
pass. It is easier to get control of critical values described by Mountain Pass Theorem than
that by Linking Theorem. A existence result then can be obtained by combining local
compactness and the Mountain Pass Theorem.

Our problem is setting in RY. There is a lack of compactness due to the fact that
RY is unbounded which is other than critical case. For subcritical autonomous systems,
Figueiredo and the author [17] proved the existence of positive radial solutions. We de-
compose spcaes by spectral family of operators and apply Linking Theorem. In general
case, one can only expect local compactness because as we show in section 4, there are
energy levels of associated functional which are obstacle points of the compactness. So
in our case, we encounter two types of the loss of compactness caused by both critical

exponents and unbounded domains. To study the existence, We begin with a problem in

a bounded domain €2

(1.3) —Au+tu =T v+ g(z,v), —Av+v=uPu+ f(z,u) in Q,
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(1.4) u(z) =0, wv(x)=0 on ON.

Let fi(w,t) = [HP7Y + f(x,), g1(w,t) = |H17Y + g(@,t), Flx,t) = [) fr(w,s)ds and
G(z,t) = fg g1(z, s) ds. We assume that
(H1). f,g: RN xR — R are measurable in first variable, continuous in second variable,

f(z,0) = g(z,0) = 0. Both F(x,t) and G(z,t) are increasing and strictly convex in t.
(H2) limy_yof (2, )/t =0, limyog(z,t)/t =0, VoecRY.

(H3)
(1)
1t

g(w,t)

207 — ) Vg e RV,
t|a—1t

limy o0 =0, limy o0

(H4). There are constants 2 < o < p+ 1,2 < # < g+ 1 such that
0 < aF(z,t) <tf(x,t), 0<pG(z,t)<tg(zx,t), if |t|>0.
We shall use the ground state (u,v) of
—Au=0v?, —Av=wuP, in RN

to push the critical value described by the mountain pass below %Sﬁq, where S), 4 is defined
in Section 3. u and v are radial functions. Let u.(z) = e_p_ﬂ\rrlu(%), ve(x) = e_q_ﬂ\r]lv(%).
Denote 0(€) = ||uc||3 + ||ve||3 := 01(€) + 02(€). The asymptotic behaviours of ||uc||3 and
||ve|l3 as € — 0 are given in [19].

(H5). There exist functions f(¢) and g(¢) such that f(z,t) > f(¢), g(x,t) > §(t) and
both

Noople
limg_ﬂ)m /0 F(emmu(r))rNtdr = oo,
NOpl/e N
and lim. ,0—— / G(e 1 o(r))rNtdr = o
02(€) Jo

if both f # 0 and g # 0. Otherwise, we assume one of the limits holds with # replacing ;.

Assumption (H5) is a Brézis and Nirenberg type condition, it can be verified in details

as [10].
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Theorem A. Assume (H1) - (H5), problem (1.3)-(1.4) possesses at least a nontrivial
solution; Furthermore, if ) is a ball and f = f(|z|,t),9 = g(|z|,t), then problem (1.3) -

(1.4) has a nontrivial radial solution.

Using Theorem A we prove the existence result for problem (1.1) -(1.2) by approximation
arguments. We construct a Palais-Smale sequence of the functional related to problem
(1.1) - (1.2) by Theorem A. In section 4, we prove a global compact result for Palais-Smale
sequences. The result allows us to show Palais - Smale sequences are relatively compact
for the values in certain intervals. In section 6, we verify a condition forcing critical values
described by the Mountain Pass Theorem into a given interval. Therefore, the Palais-Smale
sequence has a strongly converging subsequence. The limit function will be a solution of

(1.1) - (1.2). Before stating the result, we assume further that

(H6) flz,t) = f(t), g(x,t) — g(t) uniformly for ¢ bounded as |z|— oo,

[f(zt) = FOI < e®)t],  |g(a,t) —g(t)] < e(R)|t], whenever |z > R,[t| <0

for some constants R > 0 and § > 0, where ¢(R) — 0 as R — oo.

(H7) meas{z € RY : f(z,t) # f(t)} >0 or meas{z € RN : g(x,t) Z g(t)} > 0.

(H8) fi(t)/t and gy(t)/t are increasing in t.

We put the same f and g in (H5) and (H6) for simplicity although they may be chosen

in a different way.

Theorem B. Assume (HI1) - (HS8), problem (1.1)-(1.2) possesses at least a nontrivial
solution; Furthermore, if f = f(|z|,t),g = g(|x|,t), then problem (1.1) - (1.2) has a

nontrivial radial solution.

We may see in particular that functions f(u) = |u[""!u and g(v) = |v|Yv, where 1 <
v < p,1 < v <qg, fulfill all assumptions (H1) - (H8). Other examples can be constructed

as one in [32].
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In section 2, we prove decaying laws for solutions of (1.1) - (1.2) in a special case.
Existence results are given in section 3 for bounded domains and in section 5 for RV . We

also show in section 5 that there exists a ground state for problem

(1.5) —Au+u=v|Tw+glw), —-Av+v=[uf'ut f(u) in RY,

(1.6) u(z) -0, wv(x)—0 as |z|—0.
The proofs of Theorems A and B are completed in section 6.

S2. DECAY OF SOLUTIONS AT INFINITY

In this section we prove a decaying law for strong solutions of problem (1.1) - (1.2) in
the case p = ¢ = 2* — 1, where 2* = ﬁ—g,N > 3. By a strong solution of (1.1) - (1.2) we
mean a solution (u,v) of (1.1) - (1.2) satisfying u, v € w22 Moreover, if f and g are
independent of xz, positive solutions of problem (1.1) - (1.2) are radial and exponentially

decaying.
Lemma 2.1. Assume (H1) - (H3). Let (u,v) be a strong solution of (1.1) - (1.2). Then,

it belongs to L7 for v € [2,00).

Proof. The arguments are similar to that of [17], we outline the proof.
A bootstrap argument [13] shows that u and v are continuous functions.

For each k > 0, we define the open set
Q. = {z e RY : ju(z)| + Jv(z)| < k}.

Now given x, € RY | there exist k, > 0 and r > 0 such that the open ball B, (o) C Q,
for all & > k,. Let R(k) = sup{r > 0: B,.(z,) C Q}. Clearly R(k) — +o00 as k — +o0.
Let ¢ € C°(RY) be a function such that

¢(x) =1, for x€ By/(0); ¢(z)=0,forzc RN\ By (0);

0<¢(x) <1 and |Ve(x)| < const, for all z € RY.



6 YANG JIANFU

Define ¢p(x) = ¢p(£52) for R := R(k). Multiplying first equation in (1.1) by ¢%|u|*~tu,
with s > 1, and integrating by parts, we obtain as [17] that

/ IV (ppulul T de
RN

3 1)
< S e e g ) ot €O [l b
(2.1)
~3(s+ 1)
=: ml—l ‘I‘C(E)IZ)

where C'(€) is a constant depending on e. We next use Sobolev embedding to estimate the

left side of (2.1) from below:

(22) ([ @l a7 < 25 oo,

To estimate I1, we denote Q(m) := {x € RY : |v(x)| > m} for some m > 0. By Holder’s

inequality we obtain

[ Sl uds
RN

“odal 4| [ gl dal
RN\Q(m)

<| Prlul’lv
2(m)

<[ dhlullo

(2:3) < [ Ghlallel* et m™s [ ghlullol do.
Q(m) RN

2yf_ldijmﬁ/ % u|®|v| du
RN\Q(m)

Using Holder’s inequality again, we have

(2:4) | Gnlullolds < [ (a4 o) do
RN RN

(2.5)
$lul*lv* " dw
Q(m)

N-—-2

< R FT )R [ @Rl )P el Rl el
RN RN Q(m)




ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS 7

N—2

Let A = [fRN(¢%|U|S+1)% dz]"~ and B = [fRN(¢%{|U|S+1)% dz] ~ . Tt follows from
(2.3) - (2.5) that

(2.6)
[ Sl o
RN

< As/(s+1)31/<s+1)[/

lv

dal¥ 4 Cm) [ Ghllult ol do.
RN

By (H1) - (H3) we have
lg(z,v)| < C(|o]*" ="+ Jol),

which together with (2.4) and (2.6) yield that

27) L <CAT B / [0]?" da)¥ + C(m) / O3 (Jul** + [o]*+) da.
Q(m) RN
We conclude from (2.1) and (2.7) that

(2.8) A< C’(e){As/(s-H)Bl/(s—f—l)[/

w? da]® +/ o2 ([ul™ + [v]*Y) do + I ).
Q(m) RN

A similar expression can be obtained with the roles of A and B exchanged:

(2.9) B< o(e){A1/<s+1)Bs/(s+1)[/

u|* da:]% + / R (Jul* + ju|*Th) do + I, }.
Q(m) RN

Assuming that [, [ul*T'dz < oo and [,y [v*T!d2z < oo we obtain from (2.8) and (2.9)

that

(2.10) A< C’(e)As/(s“)Bl/(s“)[/ > da]® + Ce),
2(m)

(2.11) B < C(e) AY/HD) go/ (1) / 2 da)® + C(e).
2(m)

Multipling (2.10) by (2.11) we obtain

AB < C(e u|? da) ¥ 0% da] ¥
< (){AB[/Q()H da] [/Q()|| da]
(2.12)

+ As/(s—i—l)Bl/(s—i—l)[/

0% da]¥ + A1/<s+1>Bs/<s+1>[/ [ul*" dz] ¥ +1}.

Q(m)
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o
RN

we may choose m > 0 large enough such that

/ lu[?" de  and / v|?" da
Q(m) Q(m)

Since

2 dr < oo and / 0% dx < oo,
RN

small, and we get
(2.13) AB < C(e)[A%/ (+D BY/(+1) | gV/(+1) ps/(s+1) 4 1],
Letting k — oo, we have R — oo and it yields from (2.13) that
/ |u|CFDN/(N=2) 4 < 00 and / || HFDN/(N=2) gy < 0.
RN RN

2

Repeating this procedure we see that u,v € LY for v = (s + 1)(525)?. So we may

start with s = 2* — 1 and obtain u,v € L" for all v = 2*(%)",71 =1,2,---. Using the
Riesz-Thorin interpolation theorem [8], we conclude that u,v € LY for all v > 2*. The

assertion follows. O

Using results in Lemma 2.1 we may prove following decaying laws for strong solutions

of (1.1) - (1.2) as [17].

Proposition 2.2. Assume (H1) - (H3) and p = q¢ = 2* — 1. The strong solutions (u,v) of
(1.1) - (1.2) satisty

(2.14) limg)— 400 | Vu(z)| = 0,  lim |y 400|Vo(z)] = 0.
Furthermore, if f and g are independent of z, (u,v) are radially symmetric and satisfy

ulr) = oe™™), w(r) = o(e™""), wnlr) = ofe™"),

where 0 < 6,601,605 < 1.
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S3. EXISTENCE RESULTS IN BOUNDED DOMAINS

Let T = —A +id. For 0 < s < 2, we define the space E® as the domain D(T%/2) of
A% := T%/2. Tt is well known that the inclusions E* — L7(Q) is continuous if 2 < v <
2N/(N — 2s) and it is compaet if2<y< 2N/(N — 2s) provided that € is bounded.

We write p+ 1 =

and ¢ +1 =

2t with s +¢ = 2. Denote £ = E* x EY,
X = LPt(Q) x Lq+1(9) and X* = LL(Q) x LT (Q). Critical points of the strongly

2s

indefinite functional

I(z)Z/Q(Vquij;)dx_/[

Qb

1
- Plau)de = [ [l 4 Gl o) da

defined on E with z = (u,v) are solutions of (1.3)-(1.4). However, to get control of
energy levels of associate functional, we consider the dual functional J of I. We recall
the following facts. For each xz, the Legendre-Fenchel transformations F*(z, s) of F(z,t),
G*(z,s) of G(z,t) are defined by

(3.1) F*(x,s) =suprer{st — F(z,t)}, G*(z,s) =super{st —G(z,t)}

respectively. Equivalently, we have

(3.2) F*(x,s) = st — F(z,t) with s= fi(x,t), t=FF(z,s),
(3.3) G*(x,8) = st — G(x,t) with s=gi(2,t), t=GF (x,s).
In the same way, we define F* and G* for F(t) := ﬁ|t|p+1 +F(t) and G(t) := q+1 |t|att +

G(t) respectively. By (H6) and properties of Legendre-Fenchel transformation, we have
(3.4) F*(x,5) < F*(s), G*(x,8) < G*(s).

Assume (H1) - (H4). The following properties of F*,G* can be verified as [3], [14] and
[26].

Lemma 3.1. F*,G* € C! and

(3.5) Fa,5) > (1— é)s}_s""(az, §), G'(ws) > (1— %)sg:’(az, 9,

(3.6) F(x,s) > Cls|» —C, G"(xz,s)>C|s| '« —C.
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Lemma 3.2. There exist 6 > 0,Cj5 and C§ > 0 such that

Csls|?, if |s|<§
.,F*(l',s) Z pt1l

Chls|v7, if |s| >4’

Csls|?, if |s| <46
cyls|“e, if |s| =0’

G*(x,s) > {

where Cs,C§ — 00 as § — 0.

Let

The dual functional

J(w):/(]:*(a:,wl)-l-g*(a:,wz))da:—%/ <w,Kw > dz,
Q Q

of I is well defined and C! on X*. A critical point w of J satisfies

(A +id)  wy = FF (w,w1),  (—A +id) " twy = G (x, wa).

Let
uw=(—A+id)rwy, ©v=(-A+id) tw;.

Then (u,v) satisfies (1.3) - (1.4). We deduce by (3.2) and (3.3) that I(z) = J(w). Such a

result is also valid for solutions of (1.1)-(1.2). Now we use the Mountain Pass Theorem to

find critical points of J.

Following arguments of [6], we know that assumption (H2) implies F*(z,t)/t* — oo

and G*(z,t)/t> — co. Thus, 0 is a local minimum of J. Precisely,

Lemma 3.3. Suppose (H2). There exist constants «, p > 0, independent of €}, such that

J(w)>a>0 if ||wl|x=p.
By (H1), (H2) and (H4), we have
(3.7) Flx,t) > O, G(x,t) > Ot
it yields

(3.8) F*(x,5) < C|s|a>T, G*(z,5) < C|s|7T.
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Lemma 3.4. There exist T > 0 and w € X* such that J(tw) < 0 whenever t > T.

Proof. Taking w € X*, w # 0 such that
/ <w,Kw > dx >0,
Q
whence by (3.8)
_o _a _B_ _B_ 1 2
J(tw) <to=T | |w|*Tdx+t71 [ |we|7Tdr — <t <w,Kw > dz.
Q Q 2 Ja

for ¢ > 0. Since _%5, % < 2, the assertion follows. [

In order to find critical points of J, the Palais - Smale condition has to be considered.
We say that J satisfies (PS). condition if any sequence {w,} C X* such that J(w,) —

¢, J'(wy,) — 0 as n — oo has a subsequence converging strongly in X*. Define

g+1

Spg = inf{||Au||Lq_+1 RS W2’qT+1(Q) N WoL *(Q), lullpp+r = 1},

Sp.q 1s independent of €2, depends only on p and g.

Lemma 3.5. Under hypotheses (H1) - (H4), the functional J satisfies (PS). condition

for

2 N
(3.9) O0<c< Nsz,q.

Proof. Let {w,} be a sequence satisfying
2 N p
J(wy,) = c< NSp%q J'(w,) =0 as n— oo,
which and Lemma 3.1 yield

1
/(]:*(a:,w,ll)-l-g*(:):,wi))dxg 5/ < Wy, Kw, > dz+C
Q Q

1 : ,
<3 / (F2 (@, wp)wy, + G (2, wy)wy) do + o(1)|lwn | x- + C
Q

1 1
<> f*(x,w;)dﬁ—i G* (z,w2) dz + C + o(1)||wn x-.
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Therefore

/Q(f*(“f wh) + G* (@, w2)) de < C + o(1)||wp| x--

By Lemma 3.2, we obtain

1 ptl atl
|h%JuZi_+HUmH wn SO 4 o(l)llwn]lx-.
p

So ||wy,||x+ is bounded.

Let z, = Kw,. Since K : X* — X is bounded, it follows that
lznllx < C,

similarly

|znl|E < Cllwy,||x- < C.

Solving the equation Az, = w, and using elliptic regularity theory, we obtain

il atl P ,ptl
%ewgﬂmmwﬁqmﬂﬂwk#mmwjpmﬂ
and
||Un|| o, atl 1,94+t < C) ||Un|| o PtL 1, pEL < C.
wh T (Q)nw, 1 () wWhTE (N, P (Q)

Hence, there exists a subsequence {z,, } of {z,} such that

Zn, — % weaklyin E and X, and 2z, —z in L7(Q)x L7(Q)

as ng — 00, f0r2<7'<N2,2<'y< 2t

Since {wy,} is bounded in X*, it is straightward that

(3.10) — Aty + tuy — |0, |7y, — gz, 0,) = €1, In Lq;rl,
(3.11) —Avy + vy — |un P, — f(z,uy,) = €2, IN L5

with [|e,||x= — 0, where €, = (€1, €2,,). We claim that z # 0. In fact, if z = 0, we would
have

Zn, — 0 strongly in L7(Q) x L7(),
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as ng — 00, (3.10) and (3.11) become
(3.12) —Auy, = |vp|T o, +0(1),  —Avy = |un [P, +o(1).
So one has

/Vun-and:r:/ |un|p+1daz+0(1):/ [0, |7 da + o(1).
Q Q Q

Therefore

/ Auy|
Q

:/ [0 9sign (0,) (— | A | ¥ sign(— Ay )) das + o(1)
Q

s(/ o [+ der) 5 / | Ay |7 da) T+ o(1)
Q

which gives

/|Aun|"7“ dxg/ |vn|q+1da;+0(1):/ [P+ das + o(1).
Q Q Q

Assuming that
/ lun|P de — K, / v, |7 do — K,
Q Q

we obtain
N

k> Spq.
On the other hand, the convergence of {z,, } in L7 (€2) x L7(€2) implies that

c+o(l) =1I(z,)

1 1 1 1
— - - p+1 - g+1 d 1
/52[(2 er1)Iunl +(3 qu1)Ivnl Jdz + o(1)

2

As a result,

2 N
¢z Nsp%q

contradicting to (3.9) and therefore z Z 0.
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. at1
Let oy, = uy, — u, By, = v, —v. Then («,, 5,) — (0,0) weakly in (Wz% N Wo1 1) X

pt1

(Wz’pTTl N WOIT) and LPF1 x L9711 and strongly in L7 x LY for 2 <7 < 22 <y <
- Using Brézis - Lieb lemma [BL], one has

1 1
I B, Aqy, — ——|ay [P — ——|8,]9FY) dg = 1
@)+ [ (~Puda = —lan = 1B do = e +of1),

<I'(z),z > +/ (=28, Aay, — |an [Pt — |9 do = o(1).
Q

Again by (3.12), we may assume that

(7% r — K, n T —K,— nQAQy, AT — K.
ptlg k Bnl?ttd k Bnla, d k
Q Q Q

Thus
2
I(z) — — / BrnAay, de = ¢+ o(1).
N Jo

N
We have either £ = 0 or £ > S;2,. In the latter case

2 2 X 2 X
c=1I(z) + Nk > I(z) + Nsp,q > Nsp,q

since I(z) > 0. This contradicts to (3.9). So k = 0.
Finally, we show that w,, — w = Az in X*. We know from (3.10) and (3.11) that
lwn = wlix- < C{llfunlun = JulPull eer +llval*vn = [v]®0] 222

I (@, vn) = fl@, o)l enn +llg(z, un) = g(@, u)ll ez +[lenllx-}-

41
The right side tends to zero as n — oo because (un,v,) — (u,v) strongly in (W% N
p+1

ptl g1 atl
W' ? ) X (Wz% AW, ) and LPT! x L9t The proof is completed. [

Let
I'={g€C([0,1],X7) : g(0) =0, g(1) = e},

where e = T'w is selected in Lemma 3.4. We define

(3.13) c=co = inngFsuptE[O,l]J(g(t))'
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Proposition 3.6. Suppose (H1) - (H4). If there exists a path e(t) in X* such that e(0) =0
and J(e(t)) <0 fort > 0 large satisfying

2 N
(3.14) supt>oJ (e(t)) < Nspz,qv

the problem (1.3) - (1.4) possesses a nontrivial solution.

Proof. By (3.14), we may verify that the value ¢ defined by (3.13) satisfies
2 N
c < NSp%q.
The assertion follows by Lemmas 3.3 - 3.5 and the Mountain Pass Theorem. [

S4. GLOBAL COMPACTNESS RESULTS

The functionals

T2 = [ Au- Atvde — / (F(e, w)] dz + G(x, v)] do
RN RN
and
%)= [ Au- Alvds — / (F () + G(v)] da
RN RN

are well defined on E = E* x E*. We show in this section that the obstacle energy levels
for the compactness of Z are the energy levels of Z°° corresponding to the solutions of (1.5)

- (1.6). Regularity theory shows that critical points of Z° are actually strong solutions of

(1.5) -(1.6). Furthermore, we have

Lemma 4.1. Suppose (H2), (H3) and (H6). There exists a positive constant C' > 0 such
that

2llz > C
for all nontrivial solutions z € E of (1.5) - (1.6).

Proof. Suppose z = (u,v) is a solution of (1.5)-(1.6). By assumptions (H2), (H3) and
(H6), we obtain

(41) f(u) S Ce|u|p + €u, g(’U) S C€|v|q + €.
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Using Holder’s inequality, (4.1) and equations, one has

[ Aol < (Clulles + el 9]15-, Vo € B,

it implies
[0]lge < Cellullg: + €llullp-

Similarly,

lullzs < Cellvllg: + ellvll s

So for € small, it yields

lullze + [lvllee < C(llullgs + [|vllE:)-

Consequently, either ||ul|gs > C or ||v||gt > C > 0, where C' > 0 is independent of
z = (u,v). O

Proposition 4.2. Assume (H1) - (H4) and (H6). Let {z,} C E be a sequence such that
2 N
(4.2) I(z,) 2 ¢ < Nsz,q and TI'(z,) -0 in E* as n—0.

Then there exists a subsequence (still denoted by {z,}) for which the following holds:
there exist an integer k > 0, sequences {z%} C RN |zt | — oo asn — oo for 1 <i <k, a

solution z of (1.1)-(1.2) and solutions 2*(1 < i < k) of (1.5)-(1.6) such that

(4.3) Zn, — 2z weakly in E,
(4.4) I(zn) — I(2) + ZIOO(zi),
(4.5) Zp — (z+Zz’(x—x:L)) —0 in E

as n — 0o, where we agree that in the case k = 0 the above holds without 2%, z¢ .
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Proof. The result will be derived from the arguments of [5] for one equation. First we

show the boundedness of {z,} in E. By (4.2), (H2) and (H4) we have

¢+ enllznllm

— [ G = Dl G - Il e
b5 [ unf ) vaglason))de = [ PG ) + Gl o) do
RN RN
1 1 1 1
> [ G- Dl (G - el de
+ (% - 1)/ F(x,uy) dv + (g — 1)/ G(x,v,) dx
RN RN

( '5)

On the other hand, we may deduce as Lemma 4.1 that

(4.7) lvnllze < €llunllms + Ccllunlfa + lunllf s + €nllznl e
and
(4.8) lunllEs < ellvnllze + Cellonllls + lonllf s + €nllznll e

Adding two inequalities we obtain by (4.6) that

1znllz = llunllzs + [lon |l
< ClllunllZe + lonllzs + lunllZoes + lonllZer + (€ + €n)l[znl 2]

(4.9) < Clle+ en)llznlle +1]-

Selecting € > 0 small and for n large, it follows that {z,} is uniformly bounded in E. So

we I1nay assulne

zn — 2z weakly in FE,

Zn — z strongly in LT _(RN) x L7

loc

(RY),

Zn — Z a.e. In RN
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as n — 00, where 2 < 7 < N%st, 2<y< % Denote Q(2) = [y~ A°uAtv dz, we have

(4.10) Q(zn) = Q20 — 2) + Q(2) + o(1).

It follows from Brézis & Lieb’s lemma [9] that

(4.11) / F(z,uy,)de = / F(z,u, —u)dx + F(xz,u)dz+ o(1)
RN RN RN

and

(4.12) G(z,vy,)dx = G(z,v, —v)dz + G(z,v)dz + o(1).
RN RN RN

Hence we obtain

(4.13) I(zn) =I(2n — 2) + Z(2) + 0(1),

(4.14) I'(2p) =T (2, — 2) + T'(2) + 0(1)
as n — 0o. Let 2z} = 2, — 2. We may derive from (H6) as [22] and [32] that
[ wblrd) = e+ 0 and [ oblgta o)~ glo})]da =0

RN RN

as well as
[ P - Fadds 0, [ G0 - Geblds -0
RN RN

as n — 0o. Whence by (4.13) and (4.14) it yields that

(4.15) T°(z) = T(2L) 4+ o(1) = Z(2,) — Z(2) + o(1)

(4.16) I%' (L) = T'(2L) + o(1) = T'(2n) — T'(2) + o(1).

Suppose z! = z, —z /4 0 strongly in E (otherwise we shall have finished). We want to

show that there exists 1 C RY such that |zl| — 400 and 2} (z +xL) — 2! # 0 weakly in

E. We claim that

(4.17) T%°(z5) > a > 0.
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Indeed, were it not true, we would have

(4.18) I°(z) — 0
and
(4.19) <I®(zL),n>=o()|nllz as n — co.

Taking n = (ai-wvrlw ﬁu}z) =: 1, in (4.19), it follows from (4.18) and (4.19) that

oVl = T (e8)~ < T (1) >
1
— ) [ e (S ) [ it
RN RN

at+hB p+l a+f  g+1

p 15,1 o 10,1
e des S [ gl da

[F(up,) + G (vy)] da

+

|
\ Q

RN
g1 1p+1 o 1 1)g+1
oy p+1)/RN|“”|p SRRy q+1)/RN|U”|q da
(4.20) + (aofg —1) /RN[F(u}L) + G(v;.)] de.

As2<a<p+1, 2<p<q+1,it concludes that

[t e de =o1), [ (B(ad) + G0} de = o(0).
RN

RN
Again we may deduce as (4.9) that

lzalle < Clllunlif o + lonll e +o(1))

implying

l2alle = 0

as n — 00, it contradicts to the fact ||z}||g /4 0.

19

We decompose RY into N-dimensional unit hypercubes (); with vertices having integer

coordinates and put

dp = max;([|u} || Lo+ (@) + lvallzes1(@,))-
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We claim that there is a # > 0 such that

(4.21) d,>p>0 VneN
Suppose, by contradiction, that d,, — 0 as n — oo. Since
(4.22) I%'(z}) 50 as n— oo,

noting that ||z}[|} is bounded and denoting v = min{p — 1,q — 1}, we have by (H2) and
(H3) that

0 <a<I®()< C/ (g [PFY 4 o |75 + g, £ (uy,) + v (vp)] da + o(1)
RN
1 1
< CE(HU’I]'-L“i—L;"l(RN) + ||Urlz||qL—:+1(RN)) + 6(||U’I]'-L||%2(RN) + ||Urlz||%2(RN))

1 1
< Ce Z(||u711||][j,1;+1(Q]-) + ||v711||(11,:|1_+1(Qj)) + 6(||U}L||%2(RN) + ||v¢11||%2(RN))
J

< Cedy, Z(“U}LH%T»H(Qj) + ||v1'lb||%q+1(Qj)) +eC

i
< dd, Z(||u717,||2ES(Qj) +onllEeq,) +€C

J
< Cdy(J|uy|

%Es(RN) + ||v711||]25t(RN)) + eC.
Let n — oo and then € — 0, we obtain
I°(z) =0 as n— oo,

a contradiction. Hence (4.21) holds true.

Let {z.} be the center of a hypercube @; in which
d = |[ugl|Lo+1(Q;) + lonllLeriq,)-
Now we show that
(4.23) lzt| — o0 as n — oo.

If {1} were bounded, by passing to a subsequence if necessary we should find that z}
would be in the same (); and so they should coincide. Letting in that Q;

1($) . { ZrlL(x) (AS Qj
0 z € RV\Qy,
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we should have

%5, (%)
_ [ atal At de — / (F(@l) +G(aL)) do + o(1)

Qj Qj
1 1 1 1
> - —1p+1_|___ —1q+1d
2 [ 1G = g D G = I
(&) / Fadyas+ 2 1) [ @by ds+ o)

1 1 1 1
> ———alp+1+———61q+1dm+0/ al|* + |o:1P) dz + o(1
_/Qj[(z S+ (G ) ) (T8I + 3317 do + (1)

_ +1 _11g+1 _ _
2 C(||u717,||I[),p+1(Qj) + ||Urlz||qu+1(Qj)) + ||Urlz||%p+1(Qj) + ||Ui||§q+1(Qj)) + o(1)

>0>0

for n large and
I%'(z) 50 as n—0,
Because Z(z) > 0 and

2 N
0 <0 <I®g,) (%) < T®(zn) = L(zn) — I(2) + o(1) < Nsp%q,

Lemma 3.5 implies that z. should converge strongly in E(Q;) to a nonzero function,
contradicting to 2z} — 0 weakly in E, so we have (4.23). Let z1(- + xl) — 2! weakly in

E. Denote by @) the unit hypercube centered at the origin, we have
Izl gy = B> 0,
thus 2! # 0 and
(4.24) <I®(2Y),n>=0, VyeE.
Iterating the procedure, we obtain sequences !, |zl | — co and
!

Z(x) =27 @+ ag) — 2N a), §>2

2dx+a') = 2(x) weakly in E



22 YANG JIANFU

as n — 0, where each 2! satisfies (4.24) and by induction

lenllE = llzn % — 1"

-1
= [lznll% = ll2l1% = D I*11% + o(1).
=1

T (2) = Tz, 1) = I(2'71) + o(1)
-1
=T(zm) — I(2) = Y_T®(z") +o(1).
i=1
Since 2! is a solution of (1.5)-(1.6) and 2! # 0, by Lemma 4.1
||zl||E >C > 0.
Thus the iteration will terminate at some index k£ > 0. The assertion follows. [

S5 EXISTENCE RESULTS IN RY

Let R, — o0, B, = Bpg, (0). Taking Q@ = B,, in problem (1.3)- (1.4), we infer from
Proposition 3.6 that there exists a solution z, of problem (1.3)-(1.4) defined on B,, for
each n if (3.14) holds. Moreover,

(5.1) I(z) = J(wp) =¢, > >0
and
(5.2) I'(z,) =0, J(w,) =0,

where w,, = Az,. In fact, z, is a strong solution of (1.3) - (1.4). Denote by J the dual

functional of Z. Extending z, to RN by setting z, = 0 outside B,,, we have
(5.3) I(zn) = T (wy,) = cp.

If f and g are independent of z, solutions z, are radial.
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Lemma 5.1. z, is a (PS) sequence of T in E and

2 N

Proof. 1t is readily to verify that ¢, = Z(z,) < ¢—1 = Z(zp,—1), thus

2 N
(5.5) a<c, < < Nsp%qa
so we obtain
(5.6) cn=2(zp) > ¢, a<c< %Sﬁq.
Now we show that
(5.7) I'(z,) = 0, as n — oo.

Indeed, V(¢4,1) € C(RN) x C°(RY), there is n, > 0 such that suppe, suppyp C B,
whenever n > n, and

T (z20)(d,0) =0, if n > n,.

This implies that
T'(2,)z—0 as n—o0 VzeCOXRY)x CP(RY).

Hence (5.7) follows because C°(RY) x C°(RY) is dense in E. [

We begin with problem (1.5) - (1.6). We remark that previous results for Z and J also
hold for Z°° and J°°, where J° is the dual functional of Z°°.

Proposition 5.2. Suppose (H1)-(H4) and (3.14). Then (1.5) - (1.6) has a nontrivial radial

solution.

Proof. We construct a sequence of radial solutions z,, of

{ ~Au+u= v w+gw), —Av+v=uPlu+ f(u), in B,
u=v=0 on 0B,

in balls B,, by Proposition 3.6. Lemma 5.1 implies that z, is a (PS). sequence of Z°° with

N
¢ < £S5, and z, € E, = Ef x E!, where E, is the radial Sobolev space. It is known from
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[7] that the inclusion ES(RY) < L™(RV),2 < p < 28, is compact. We may deduce as
Lemma 3.5 that there exist a subsequence of z,, converging strongly, the limit function is

a nontrivial radial solution of (1.5) - (1.6). O
Next, we consider the variational problem
(5.8) I = inf{Z°°(u,v) : (u,v) 1is a solution of (1.5) — (1.6), (u,v) # (0,0)}.

Minimizers of (5.8) are called ground states of (1.5) - (1.6). By Proposition 5.2, the
variational problem (5.8) is well defined if (3.14) holds. In this case

2 N
(5.9) 7= < Nspz,q-

Lemma 5.3. The variational problem (5.8) is assumed by a nontrivial solution of (1.5)-
(1.6).

Proof. Let z, = (uy,v,) be a minimizing sequence of Z°°. By Proposition 4.2 we have
I®° =TI%(z,) +0(1 ZIOO (27) + o(1),

where z; is a nontrivial solution of (1.5) - (1.6). Therefore, j = 1 and the proof is com-

pleted. [

Proposition 5.4. Suppose (H1)-(H4), (H6) and (3.14). If there exists w € X* such that
(5.10) supg>oJ (tw) < I°°,

then (1.1) - (1.2) possesses a nontrivial radial solution.

Proof. By assumptions (3.14) and (5.10), we always may construct a (PS). sequence {z,}
of Z by Proposition 3.6 and Lemma 5.1 such that

(5.11) 0<a<c<I™.
By Proposition 4.2 we obtain

(5.12) T(zn) = I(20) + ZIOO(Zj) +o(1),

where z, is a solution of (1.1) - (1.2) and 27 is a solution of (1.5) - (1.6). We deduce from

(5.11) and (5.12) that z, is a nontrivial solution of (1.1) - (1.2). O
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S6. VERIFICATIONS OF CONDITIONS (3.14) AND (5.10)

We verify condition (5.10) first. Let B,, = Bg, , R,, — 00 as n — oo. For each element
win X} = LpTﬂ(Bn) x LT (By), where B, = B, , R, — 00 as n — 00, we may extend

it to RY by setting w = 0 outside B,,, and we have J,,(w) = J(w).
Proposition 6.1. Assume (H1) - (H4), (H6) - (H8) and (3.14). There exist elememts

wy, € X, such that

(6.1) supg>oJ (twy,) < I

for n large.

Proof. By Proposition 5.2, Z°° is assumed. Let z, = (u,,v,) be a minimizer of problem

Z°°. Choosing

ja+1

wy = fl(UO) = |U0|p_luo + f(“@)v wy = g1(uo) = |0 Vo + g(vo),

and using (H4), (H6) and equations (1.5) - (1.6), one has [,y < wo, Kw, > dx > 0, where

w, = (w?,wg). Moreover, there exist to > t; > 0 such that

max;>oJ (tw,) = maxy, <¢<s, J (tw,).

Suppose t, € [t1,t2] and

T (towo) = maxy, <<, J (two).

Because F(x,t) > F(t) and G(z,t) > G(t), one has F*(z,s) < F*(s) and G*(z, s) < G*(s).
By the assumption (H7),
j(towo) < joo (towo)v

it follows
(6.2) sups>0J (two) < supe>oJ ™ (tw,).
The density of real number field implies that there exists ¢ > 0 such that

(6.3) sups>0J (two) + 2€ < supe>0J * (tw,).
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Let ¢ € CX(RY),0 < ¢ <1and ¢ = 1if |2] < 330 = 0if [z > 15 dn(z) = o(5F).
Then z, := (¢nUo, Prnv,) converges to (u,,v,) in E. Let

w? - f1(¢nuo)a wg = g1(¢nvo)-

We also have w,, — w, in X*. Suppose

j(tnwn) - suptZOJ(twn)v

then {¢, } is bounded. Indeed, if ¢,, — oo, arguments in Lemma 3.4 would yield sup;>oJ (twy,) —
—oo. It is impossible because the value is not negative. Suppose t,, — t,, the continuity
of the functional J gives

j(tnwn) — j(t_owo)-

We claim that J(f,w,) = supi>0J (tw,). In fact, for every e > 0 there exists § > 0 such
that

T (tow,) — e < T (tw,)
whenever |t — t,| < . By the continuity of 7, we may find n, > 0 such that if n > n,
J(tw,) < T (twy,) + €, T(tpawy) < T (tow,) + €.
Therefore if n > n, we have
J (tow,) — € < T (tnwn) + € < T (tow,) + 26 < T (tow,) + 2e.

Because € is arbitrary, the conclusion holds. By the same arguments, we find that there

exist s, such that s,, — 5, and

(6.4) T (snwy) = supe>0d * (twy,) = T (5,w,) = supg>0J = (tw,)
as n — co. By (6.3), we obtain

(6.5) T (tnwy) + € < T (spwy,)

for n large enough. We may assume s,, > 0, and then

dJ > (twy,)

(6.6) _

|t:sn: 07



ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS 27
that is

(6.7) / (FZ (spw?)w? + GF (spwi)w}) da — sn/ < Wy, Kw, > dr = 0.
RN RN

By the definition of Legendre - Fenchel transformation, we obtain
[ F ) + G (s do
RN

= [ st + G (s do = [ FUT (st + 657 (s3] d

RN
(6.8)
= si/ < Wy, Kw, > dx — / [ﬁ(fl_l(snw’f)) + C;(gl_l(snwg))] dx.
RN RN
Consider
(—A4id)wh = uy+ 0y, (A +id)'w? =v, + p, in RY,
we obtain

(_A + id)_lo-n = g1(¢nvo) - gl(vo)v (_A + id)_llun = f1(¢nuo) - fl(uo) in RN'
By LP-estimates we have o, — 0 and p, — 0 in H?2 as n — oo because the right hand
sides of above equations go to 0 in L2. Therefore we infer from this and (6.7) that

/RN Sn(w?)z[ff (snw?') _ fi (w?)] dx_l_/RN Sn(wg)z[gl_ (snwf) 01 (w?)] de

n n n n
SpW] wy SpWwy wy

= /RN[U??Un + wh iy, + (1 — ¢p) (W] + wh)] dx = o(1)

as n — oo. The equality and assuption (H8) imply s, — 1 as n — oo. Hence we deduce
by (6.7) and (6.8) that

Suptz()joo(t’wn) < 1 /RN (Uofl (uo) + Uogl(UO)) dx — /1; (f(uo) + g(vo)) dr + €,

2 N
(6.9) =7 + €,

where
=555 1) / (ofa (1) + 00 (0,) d
— [ ) = Flwa)) + @(60) = Glo,)] da

+ [ F o) = FUT 500) + (0600) = 957 (s )] o
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The above estimates imply €, = o(1) as n — oo. From (6.5) -(6.9) we obtain
sups>0J (twy) < supe>0d * (twy) — € < I — e+ o(1),

the assertion follows for n large. [

Next, we verify (3.14).

It is known from [23] that the system

(6.10) ~Au= T in RY —Av=uftu in RY,

(6.11) u(x) -0 and wv(z) =0 as |z|— oo.

has a ground state. The ground state is unique up to scalings and translations and is
positive, radially symmetric and decreasing in . Let (u,v) be the ground state of (6.10) -

(6.11). Then all the ground states of (6.10) - (6.11) are given by

Moreover,

N
Julolrttas = [ il as =
R R

The asymptotic behavior of the ground state of (6.10) - (6.11) was found in [21]. It may

be stated as follows.

Lemma 6.2. Let p > N—f; Then there exist constants a > 0 and b > Odepending on p

and n, such that

limy, oo™ 201 (r) = b;

. _ . N
limy oo™ 2uy(r) =a if ¢ > N3
N-2 N
Iimr_)oo TIO?’U/]_ (T‘) =a If q = m,
N

limy_ oo r?V =272y, (ry=a if g<

N -2
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Suppose 1 < vy <p,l<v<<qgand1l < q< % < q . Parameterizing the critical

N+24+2« _ NH4+2—2«
N—2—2a' 4= N—2F2a

hyperbola by p = and using Lemma 6.2, we obtain that if ¢ > NL_

2

N(p—v) .
O(eve1), if 4> e,
N(p—v) _ .
||u6||’2//(p;—1) fd O(e Pﬂ'l’y |].Og6|pil)7 lf "y = ]\2]?]\?1—5)&7

O(eﬁ[(N_Q)p_Q])7 if v< ]\zr(‘*’]\?i'gf‘,

if1<q<%

N(p—v)

O(e»rt ), if 2(y+1)+ % < yq(N —2),
el s = O(c 7 Jlogel 7F7), if 2(y +1) + 2 = 1q(N - 2),
O(ertt V=272 i 2(y + 1) + 25 > yg(N - 2);
if g = %
O(er [loge"), if 7 < g2y,
el gen, =4 O 7 loge4757), i = 250,
' O F ), it 4> 5 52T
and Nge)
O(™E), it v > Mizte,
loclizn = O loge[7H), it v = K=t
O(enttlV=2a=2l) = ip ) < Jg=ga

Proposition 6.3. Assume (H1), (H3) and (H7). There exists a path w(t) € X* such that
w(0) =0, J(w(t)) <0 fort > 0 large and

2 N
(612) Suptzoj(w(t)) < NSpfq.

Proof. By the definition of duality

J(w) = /Q[ffl(w,wl)wl +g1 (@, wa)wy — Fa, fi (@, w1)) = Gz, g7 (2, w1))] do

1
——/<Kw,w> dx.
2 Jo
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ChOOSing wl(s) = w1(87 €, .'L') = fl(xv Sue)7 wQ(t) = wZ(tv 67‘T) = gl(x7tve)7 where (U’67 1}6) Is
a ground state of (6.10) -(6.11), we remark that

w1(0) = w2(0) = 0, w1 (s), wa(t) > 00 as s,t — +oo.

Then

sue[sPul + f(x, suc)] + tve[tTvd + g(z, tve)] — / [F(z, sue) + G(z, tve)] dx
Q

Hu(s,0) = [

Q

- UL+ pa sl =A i) e (ot da

+ / 1198 + g(x, t)](—A + id)~L[sPu? + f(z, su)] da}.
Q

Let
(—A) Ml = v+ &€ Hy(Q), (=A)" 'l = uc+n. € Hy(Q),
(A +id) "l = v+ Ec+ 1) i= v + & € HHQ),
(A +id) Yo = u + e+ 2= u, + 7 € HE(Q).
Then

Aée=0 in Q¢ =-v. on 0°; Anp.=0 in Q,n.=—-u. on 0.

(—A+id)rl = —v.— &, (A +id)r? = —u, — 1.

By the maximum principle

1€l @) < vell oo a92), 1Mell Lo (@) < Muell>a0);

Ue +& >0, ve+n.>0, rl<o, rl<o.
We rewrite

1
—/<Kw,w> dx
2 Jo

1
— isptq/(u€+1+v3+1)dx+sp/Ueg(az,tve) da:+tq/ uef(, sue) dr + ¢e(s,t),
Q Q Q



ON CRITICAL SEMILINEAR ELLIPTIC SYSTEMS 31

where

be(s,t) = /Q[f(.r, su)(—A +id) " tg(z, tve) + sPEg(x, tv) + t4q f(x, suc)] do

1 ~
— —sptq/ (uPne +vIE,) dx
2 Q

Then

1
J(w(s,t)) = P Sp+1/ ub Tt dx+Ltq+1/ vItY dy — —Sptq/(u€+1+v3+1)dx
p+1 Q q+1 o 2 o

+(t—sp)/9veg(a:,tv€) dx+(s—tq)/ uef (2, su.) da

Q

- /Q(F(a:, sue) + Gz, tv.) de — pe(s, 1),

Let sPT1 = t9t1 The highest order of ¢ in

J(w(t)) = b tq+1/ ubtt da:-l-LtqH/ vt dy
p+1 Q q+1 Q

1 patD) +q p(a+1)

— —t I / (’U,p+1 + Uq+1) dz + (t —t pt1 )/ Ueg(xv t’Ue) dx
2 Q Q
H @ ) [t do - [ (Fse) + Glato)) ds - 6.(s.0)
Q Q

p(g+1)

is t »#T T9, So J(w(t)) < 0 for t > 0 large. There exists ¢, > 0 such that

J(w(ty)) = maxo<i<t, J (w(t)).

Since {71 — 19 < 0, t—t st v < 0 for t > 1, and by the assumptions (H1) - (H3) there

exist 1 <7 <p; <p,1<v<q <qsuch that
|z, ) < O™+ [t7*), gz, t)] < Ot + [¢]7),
we obtain for t <1

g+1
/Quef(x7tp+lu6) dz = O(||u||% (p+1) + ||u6||p1(p+1)) = k1(e)
P

and

/Qveg(x,tve) dr = O(HUe” (q+1> + ||U5||q1(q+1)) = k2( )
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N
Noting that [t dz and [, vIT!dx tend to Sp?q from below as € — 0, we define

N 2 q q p(g+1
he) = (—a—tr = R S @ k(o) + (- £ o).

The maximum point t. > 0 of h(e) satisfies h'(e) = 0. Let t. = 1 4+ J.. We obtain from

h'(e) = 0 that 6. = O(ky1(€) + ko(€)). Because the operator K~!: X* — X is bounded, we
infer that

CoN— 2 2
/Qf(xv 3“6)(_A+Zd) 19(377“’6) dr < C(HUEH T(p+1) +||Ug||p1;1(p+1> ‘I'HUEH u(q+1) -I'HUEH q(fl(q+1) )7
P

p p

/Q a® (e + 12) do = / e — (g + 1) (ve + E0) — (ue + me)rY] de

Q
= O([luellz + llvell2)-

By estimates for ||uc||” 2ps1) and ||v€||,,(q+1), we find the dominating term in ¢(s,t) is

O(||uell3 + ||lvell3)- Therefore

2 N
J(w(t)) < NSp%q—/Q(F(wv sue) + G(x,tve)) dz + 62 + O([lucll3 + [Jvell3)

—1

2 N Re _ Re B
< NSp?q - €N/ F(emTu(r))rN =t dr + eN/ G(e~atu(r))rN=Ldr
0 0

+ O([|luell3 + llvell3)-

We conclude by assumption (H5). O

The proof of Theorems A and B completed. The proof of Theorem A follows by Proposi-
tions 3.6 and 6.3.
The existence results of Theorem B follow by Propositions of 5.4, 6.1 and 6.3. Weak

solutions of (1.1) - ( 1.2) obtained by variational method actually are strong solutions [16],

therefore the decaying law are obtained by Proposition 2.2 for the case p = q = N—’L; U
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