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Abstra
t.

Motivated by a quaternioni
 formulation of quantum me
hani
s, we dis
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 and 
omplex linear
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h only a few aspe
ts of the mathemati
al theory, namely the resolution of

the se
ond order di�erential equations with 
onstant 
oeÆ
ients. We over
ome the problems 
oming out

from the lost of the fundamental theorem of the algebra for quaternions and propose a pra
ti
al method

to solve quaternioni
 and 
omplex linear se
ond order di�erential equations with 
onstant 
oeÆ
ients. The

resolution of the 
omplex linear S
hr�odinger equation, in presen
e of quaternioni
 potentials, represents an
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ation of the mathemati
al material dis
ussed in this paper.
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1. Introdu
tion

There is a substantial literature [1℄{[14℄ analyzing the possibility to dis
uss quantum systems by adopting

quaternioni
 wave fun
tions. In the last years, many papers [15℄{[30℄, review papers [31℄{[33℄ and books [34℄{

[36℄ provided a detailed investigation of group theory, eigenvalue problem and s
attering theory within

a quaternioni
 formulation of quantum me
hani
s and �eld theory. In this 
ontext, by observing that

the formulation of physi
al problems in mathemati
al terms often requires the study of partial di�erential

equations, we develop the ne
essary theory to solve quaternioni
 and 
omplex linear di�erential equations.

The main diÆ
ulty in 
arrying out the solution of quaternioni
 di�erential equations is obviously represented

by the non 
ommutative nature of the quaternioni
 �eld. The standard methods of resolution break

down and, 
onsequently, we need to modify the 
lassi
al approa
h. It is not our purpose to develop a


omplete quaternioni
 theory of di�erential equations. This ex
eeds the s
ope of this paper. The main

obje
tive is to in
lude what seemed to be most important for an introdu
tion to this subje
t. In parti
ular,

we restri
t ourselves to se
ond order di�erential equations and give a pra
ti
al method to solve su
h

equations when quaternioni
 
onstant 
oeÆ
ient appear. In order to render the exposition 
lear and self-


ontained and to fa
ilitate a

ess to the individual topi
s, we re
all the de�nition of left/right quaternioni


operators [28, 34, 37, 38℄ and brie
y dis
uss the relevant material on quaternioni
 eigenvalue equation

from [30℄.

The study of quaternioni
 linear se
ond order di�erential equations with 
onstant 
oeÆ
ients is based

on the expli
it resolution of the 
hara
teristi
 quadrati
 equation. We shall show that the lost of fundamental

theorem of the algebra for quaternions does not represent a problem in solving quaternioni
 linear se
ond

order di�erential equations with 
onstant 
oeÆ
ients. This approa
h has the advantage of avoiding the

translation of quaternioni
 di�erential equations in their 
omplex 
ounterpart to �nd their general solution.

From there, we introdu
e more advan
ed 
on
epts, like diagonalization and Jordan form for quaternioni


and 
omplex linear matrix operators, whi
h are developed in detail in the re
ent literature [22℄{[30℄ and

we apply them to solve quaternioni
 and 
omplex linear se
ond order di�erential equations with 
onstant


oeÆ
ients.

As appli
ation of the mathemati
al material presented in this paper, we dis
uss the 
omplex linear

S
hr�odinger equation in presen
e of quaternioni
 potentials and solve su
h an equation for stationary states

and 
onstant potentials. We also 
al
ulate the relation between the re
e
tion and transmition 
oeÆ
ients

for the step and square potential and give the quaternioni
 solution for bound states.

This work was intended as an attempt at motivating the study of quaternioni
 and 
omplex linear

di�erential equations in view of their future appli
ations within a quaternioni
 formulation of quantum

me
hani
s. In parti
ular, our obje
tive is to understand the role that su
h equations 
ould play in developing

non relativisti
 quaternioni
 quantum dynami
s and the meaning that quaternioni
 potentials 
ould play in

dis
ussing CP violation in the kaon system [4, 35℄.

2. States and operators in quaternioni
 quantum me
hani
s

In this se
tion, we give a brief survey of the basi
 mathemati
al tools used in quaternioni
 quantum me
hani
s.

The quantum state of a parti
le is de�ned, at a given instant, by a quaternioni
 wave fun
tion interpreted

as a probability amplitude given by

	(r) = [ f

0

+ h � f ℄ (r) ; (1)

where h = (i; j; k), f = (f

1

; f

2

; f

3

) and f

m

: R

3

! R, m = 0; 1; 2; 3. The probabilisti
 interpretation of this

wave fun
tion requires that it belong to the Hilbert ve
tor spa
e of square-integrable fun
tions. We shall

denote by F the set of wave fun
tions 
omposed of suÆ
iently regular fun
tions of this ve
tor spa
e. The

same fun
tion 	(r) 
an be represented by several distin
t sets of 
omponents, ea
h one 
orresponding to the


hoi
e of a parti
ular basis. With ea
h pair of elements of F , 	(r) and �(r), we asso
iate the quaternioni


s
alar produ
t

(	;�) =

Z

d

3

r 	(r) �(r) ; (2)

where

	(r) = [ f

0

� h � f ℄ (r) (3)
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represents the quaternioni
 
onjugate of 	(r).

A quaternioni
 linear operator, O

H

, asso
iates with every 	(r) 2 F another wave fun
tion O

H

	(r) 2 F ,

the 
orresponden
e being linear from the right on H

O

H

[ 	

1

(r) q

1

+	

2

(r) q

2

℄ = [O

H

	

1

(r) ℄ q

1

+ [O

H

	

2

(r) ℄ q

2

;

q

1;2

2 H . Due to the non-
ommutative nature of the quaternioni
 �eld we need to introdu
e 
omplex and

real linear quaternioni
 operators, respe
tively denoted by O

C

and O

R

, the 
orresponden
e being linear from

the right on C and R

O

C

[ 	

1

(r) z

1

+	

2

(r) z

2

℄ = [O

C

	

1

(r) ℄ z

1

+ [O

C

	

2

(r) ℄ z

2

;

O

R

[ 	

1

(r)�

1

+	

2

(r)�

2

℄ = [O

H

	

1

(r) ℄ �

1

+ [O

H

	

2

(r) ℄ �

2

;

z

1;2

2 C and �

1;2

2 R.

As a 
on
rete illustration of these operators let us 
onsider the 
ase of a �nite, say n-dimensional,

quaternioni
 Hilbert spa
e. The wave fun
tion 	(r) will then be a 
olumn ve
tor

	 =

0

B

B

B

�

	

1

	

2

.

.

.

	

n

1

C

C

C

A

; 	

1;2;:::;n

2 F :

Quaternioni
, 
omplex and real linear operators will be represented by n� n quaternioni
 matri
es

M

n

[A
O℄, where O represents the spa
e of real operators a
ting on the 
omponents of 	 and A =

(A

H

;A

C

;A

R

) denote the real algebras

A

H

: f1 ; L ; R ; L �R g

16

;

A

C

: f1 ; L ; R

i

; LR

i

g

8

;

A

R

: f1 ; Lg

4

;

generated by the left and right operators

L := (L

i

; L

j

; L

k

) ; R := (R

i

; R

j

; R

k

) (4)

and by the mixed operators

L �R := fL

p

R

q

g p; q = i; j; k : (5)

The a
tion of these operators on the quaternioni
 wave fun
tion 	 is given by

L	 � h	 ; R	 � 	h :

The operators L and R satisfy the left/right quaternioni
 algebra

L

2

i

= L

2

j

= L

2

k

= L

i

L

j

L

k

= R

2

i

= R

2

j

= R

2

k

= R

k

R

j

R

i

= �1 ;

and the following 
ommutation relations

[L

p

; R

q

℄ = 0 :

3. Spa
e translations and quaternioni
 momentum operator

Spa
e translation operators in quaternioni
 quantum me
hani
s are de�ned in the 
oordinate representation

by the real linear anti-hermitian operator

� � (�

x

; �

y

; �

z

) : (6)

To 
onstru
t an observable momentum operator we must look for an hermitian operator that has all

the properties of the momentum expe
ted by analogy with the momentum operator in 
omplex quantum

me
hani
s. The 
hoi
e of the quaternioni
 linear operator

P

L

= �L

i

~� ; (7)

as hermitian momentum operator, would appear 
ompletely satisfa
tory, until we 
onsider the translation

invarian
e for the quaternioni
 Hamiltonian H. Due to the presen
e of the left a
ting imaginary unit i
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the momentum operator (7) does not 
ommute with H. Thus, although this de�nition of the momentum

operator gives an hermitian operator, we must return to the anti-hermitian operator � to get a translation

generator, [�;H℄ = 0. A se
ond possibility to be 
onsidered is represented by the 
omplex linear momentum

operator, introdu
ed by Rotelli in [39℄,

P

R

= �R

i

~� : (8)

The 
ommutator of P

R

with a quaternioni
 linear operator O

H

gives

[P

R

;O℄ 	 = ~ [O;�℄ 	i :

Taking O

H

to be a translation invariant quaternioni
 Hamiltonian H, we have

[P

R

;H℄ = 0 :

However, this se
ond de�nition of the momentum operator has the following problem: the 
omplex linear

momentum operator P

R

does not represent a quaternioni
 hermitian operator. In fa
t, by 
omputing the

di�eren
e

(	;P

R

�)� (�;P

R

	) ;

whi
h should vanish for an hermitian operator P

R

, we �nd

(	;P

R

�)� (P

R

	;�) = ~ [i; (	;��)℄ ; (9)

whi
h is in general non-vanishing. There is one important 
ase in whi
h the right-hand side of equation (9)

does vanish. The operator P

R

gives a satisfa
tory de�nition of the hermitian momentum operator when

restri
ted to a 
omplex geometry [40℄, that is a 
omplex proje
tion of the quaternioni
 s
alar produ
t,

(	;P

R

�)

C

. Note that the assumption of a 
omplex proje
tion of the quaternioni
 s
alar produ
t does

not imply 
omplex wave fun
tions. The state of quaternioni
 quantum me
hani
s with 
omplex geometry

will be again des
ribed by ve
tors of a quaternioni
 Hilbert spa
e. In quaternioni
 quantum me
hani
s with


omplex geometry observables 
an be represented by the quaternioni
 hermitian operator,H , obtained taking

the spe
tral de
omposition of the 
orresponding anti-hermitian operator, or simply by the 
omplex linear

operator,�AR

i

, obtained by multiplying the anti-hermitian operatorA by the operator representing the right

a
tion of the imaginary unit i. These two possibilities represent equivalent 
hoi
es in des
ribing quaternioni


observables within a quaternioni
 formulation of quantum me
hani
s based on 
omplex geometry. In this

s
enario, the 
omplex linear operator P

R

has all the expe
ted properties of the momentum operator. It

satis�es the standard 
ommutation relations with the 
oordinates. It is a translation generator. Finally,

it represents a quaternioni
 observable. A review of quaternioni
 and 
omplexi�ed quaternioni
 quantum

me
hani
s by adopting a 
omplex geometry is found in [33℄.

4. Observables in quaternioni
 quantum me
hani
s

In a re
ent paper [30℄, we �nd a detailed dis
ussion of eigenvalue equations within a quaternioni
 formulation

of quantum me
hani
s with quaternioni
 and 
omplex geometry. Quaternioni
 eigenvalue equations for

quaternioni
 and 
omplex linear operators require eigenvalues from the right. In parti
ular, without loss

of generality, we 
an redu
e the eigenvalue problem for quaternioni
 and 
omplex linear anti-hermitian

operators A 2M

n

[A

H


O℄ to

A	

m

= 	

m

�

m

i m = 1; 2; :::; n ; (10)

where �

m

are real eigenvalues.

There is an important di�eren
e between the stru
ture of hermitian operators in 
omplex and

quaternioni
 quantum me
hani
s. In 
omplex quantum me
hani
s we 
an always trivially relate an anti-

hermitian operator, A, to an hermitian operator, H , by removing a fa
tor i, i.e. A = iH . In general,

due to the non-
ommutative nature of the quaternioni
 �eld, this does not apply to quaternioni
 quantum

me
hani
s.

Let f	

m

g be a set of normalized eigenve
tors of A with 
omplex imaginary eigenvalues fi�

m

g. The

anti-hermitian operator A is then represented by

A =

n

X

r=1

	

r

�

r

i	

y

r

; (11)
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where 	

y

:= 	

t

. It is easy to verify that

A	

m

=

n

X

r=1

	

r

�

r

i	

y

r

	

m

=

n

X

r=1

	

r

�

r

i Æ

rm

= 	

m

�

m

i :

In quaternioni
 quantum me
hani
s with quaternioni
 geometry, the observable 
orresponding to the anti-

hermitian operator A is represented by the following hermitian quaternioni
 linear operator

H =

n

X

r=1

	

r

�

r

	

y

r

: (12)

The a
tion of this operators on the eigenve
tors 	

m

gives

H 	

m

= 	

m

�

m

:

The eigenvalues of the operator H are real and eigenve
tors 
orresponding to di�erent eigenvalues are

orthogonal.

How to relate the hermitian operator H to the anti-hermitian operator A? A simple 
al
ulation shows

that the operators L

i

H and HL

i

does not satisfy the same eigenvalue equation of A. In fa
t,

L

i

H 	

m

=

"

L

i

 

n

X

r=1

	

r

�

r

	

y

r

!#

	

m

= i

n

X

r=1

	

r

�

r

	

y

r

	

m

= i	

m

�

m

and

H L

i

	

m

=

" 

n

X

r=1

	

r

�

r

	

y

r

!

L

i

#

	

m

=

n

X

r=1

	

r

�

r

	

y

r

i	

m

:

These problems 
an be avoided by using the right operator R

i

instead of the left operator L

i

. In fa
t, the

operator HR

i

satis�es the same eigenvalue equation of A,

H R

i

	

m

=

" 

n

X

r=1

	

r

�

r

	

y

r

!

R

i

#

	

m

=

n

X

r=1

	

r

�

r

	

y

r

	

m

i = 	

m

�

m

i :

The eigenvalues of the operator �AR

i

are real and eigenve
tors 
orresponding to di�erent eigenvalues are

orthogonal. The right hermiti
ity of this operator is re
overed within a quaternioni
 formulation of quantum

me
hani
s based on 
omplex geometry.

When the spa
e state is �nite-dimensional, it is always possible to form a basis with the eigenve
tors

of the operators H and �AR

i

. When the spa
e state is in�nite-dimensional, this is no longer ne
essarily

the 
ase. So, it is useful to introdu
e a new 
on
ept, that of an observable. By de�nition, the hermitian

operators H or �AR

i

are observables if the orthonormal system of ve
tors forms a basis in the state spa
e.

In quaternioni
 quantum me
hani
s with quaternioni
 geometry, the hermitian operator 
orresponding

to the anti-hermitian operator A of equation (11) is thus given by the operator H of equation (12). By

adopting a 
omplex geometry, observables 
an also be represented by 
omplex linear hermitian operators

obtained by multiplying the 
orresponding anti-hermitian operator A by �R

i

. We remark that for 
omplex

eigenve
tors, the operators L

i

H , HL

i

, HR

i

and A redu
e to the same 
omplex operator

iH = i

n

X

r=1

�

r

	

r

	

y

r

:

We 
on
lude this se
tion by giving an expli
it example of quaternioni
 hermitian operators in a �nite

two-dimensional spa
e state. Let

A =

�

-i 3j

3j i

�

(13)
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be an anti-hermitian operator. An easy 
omputation shows that the eigenvalues and the eigenve
tors of this

operator are given by

f2i ; 4ig and

�

1

p

2

�

i

j

�

;

1

p

2

�

k

1

��

:

It is immediate to verify that iA and Ai are 
hara
terized by 
omplex eigenvalues and so 
annot represent

quaternioni
 observables. In quaternioni
 quantum me
hani
s with quaternioni
 geometry, the quaternioni


observable 
orresponding to the anti-hermitian operator of equation (13) is given by the hermitian operator

H = 	

1

2i	

y

1

+	

2

4i	

y

2

=

�

3 k

-k 3

�

: (14)

Within a quaternioni
 quantum me
hani
s with 
omplex geometry, a se
ond equivalent de�nition of the

quaternioni
 observable 
orresponding to the anti-hermitian operator of equation (13) is given by the 
omplex

linear hermitian operator

~

H =

�

-i 3j

3j i

�

R

i

: (15)

5. The quaternioni
 S
hr�odinger equation

For simpli
ity, we shall assume a one-dimensional des
ription. In the standard formulation of quantum

me
hani
s, the wave fun
tion of a parti
le whose potential energy is V (x; t) must satisfy the S
hr�odinger

equation

i ~ �

t

�(x; t) = H�(x; t)

=

h

�

~

2

2m

�

xx

+ V (x; t)

i

�(x; t) : (16)

Let us modify the previous equation by introdu
ing the quaternioni
 potential

[V + h � V ℄ (x; t) :

The i-part of this quaternioni
 potential violates the norm 
onservation. In fa
t,

�

t

R

+1

�1

dx�� =

R

+1

�1

dx

�

~

2m

� i �

xx

��

~

2m

�

�

xx

�

�

i��

1

~

� fi;hg � V �

�

=

2

~

R

+1

�1

dx�V

1

� :

The j=k-part of h � V is responsible for T-violation [4℄. To show that, we brie
y dis
uss the time reversal

invarian
e in quaternioni
 quantum me
hani
s. The quaternioni
 S
hr�odinger equation in presen
e of a

quaternioni
 potential whi
h preserves norm 
onservation, is given by

i ~ �

t

�(x; t) = [H� j W ℄ �(x; t) ; (17)

where W 2 C . Evidently, quaternioni
 
onjugation

� ~ �

t

�(x; t) i = H�(x; t) + �(x; t) j W

does not yield a time-reversed version of the original S
hr�odinger equation

� i ~ �

t

�

T

(x;�t) = [H� j W ℄ �

T

(x;�t) : (18)

To understand why the T-violation is proportional to the j=k-part of the quaternioni
 potential, let us


onsider a real potential W . Then, the S
hr�odinger equation has a T-invarian
e. By multiplying the

equation (17) by j from the left, we have

� i ~ �

t

j �(x; t) = [H� j W ℄ j�(x; t) ; W 2 R ;

whi
h has the same form of equation (18). Thus,

�

T

(x;�t) = j �(x; t) :

A similar dis
ussion applies for imaginary 
omplex potential W 2 iR. In this 
ase, we �nd

�

T

(x;�t) = k�(x; t) :

However, when both V

2

and V

3

are non zero, i.eW 2 C , this 
onstru
tion does not work, and the quaternioni


physi
s is T-violating. The system of neutral kaons is the natural 
andidate to study the presen
e of e�e
tive

quaternioni
 potentials, V +h �V . In studying su
h a system, we need of V

1

and V

2;3

in order to in
lude the

de
ay rates of K

S

/K

L

and CP-violation e�e
ts.
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5.1. Quaternioni
 stationary states.

For stationary states,

V (x; t) = V (x) and W (x; t) =W (x) ;

we look for solutions of the S
hr�odinger equation of the form

�(x; t) = 	(x) �(t) : (19)

Substituting (19) in the quaternioni
 S
hr�odinger equation, we obtain

i ~	(x)

_

�(t) = [H� j W (x) ℄ 	(x) �(t) : (20)

Multiplying by �	(x) i from the left and by �(t) from the right, we �nd

~

_

�(t) �(t) = j�(t)j

2

= 	(x) [� iH+ kW (x) ℄ 	(x) = j	(x)j

2

: (21)

In this equation we have a fun
tion of t in the left-hand side and a fun
tion of x in the right-hand side. The

previous equality is only possible if

~

_

�(t) �(t) = j�(t)j

2

= 	(x) [� iH+ kW (x) ℄ 	(x) = j	(x)j

2

= q ; (22)

where q is a quaternioni
 
onstant. The energy operator �iH + kW (x) represents an anti-hermitian

operator. Consequently, its eigenvalues are purely imaginary quaternions, q = h � E. By applying the

unitary transformation u,

u h �E u = � i E ; E =

p

E

2

1

+E

2

2

+E

2

3

;

equation (22) be
omes

~u

_

�(t) �(t)u = j�(t)j

2

= u	(x) [� iH + kW (x) ℄ 	(x)u = j	(x)j

2

= � i E : (23)

The solution �(x; t) of the S
hr�odinger equation is not modi�ed by this similarity transformation. In fa
t,

�(x; t)! 	(x)uu �(t) = 	(x) �(t) :

By observing that j�(x; t)j

2

= j	(x)j

2

j�(t)j

2

, the norm 
onservation implies j�(t)j

2


onstant. Without loss

of generality, we 
an 
hoose j�(t)j

2

= 1. Consequently, by equating the �rst and the third term in equation

(23) and solving the 
orresponding equation, we �nd

�(t) = exp[�iEt=~℄ �(0) ; (24)

with �(0) unitary quaternion. Note that the position of �(0) in equation (24) is very important. In fa
t,

it 
an be shown that �(0) exp[�iEt=~℄ is not solution of equation (23). Finally, to 
omplete the solution

of the quaternioni
 S
hr�odinger equation, we must determine 	(x) by solving the following se
ond order

di�erential equation

h

i

~

2

2m

�

xx

� i V (x) + kW (x)

i

	(x) = �	(x) i E : (25)

� Real potential

For W (x) = 0, equation (25) be
omes

h

~

2

2m

�

xx

� V (x)

i

f[	(x)℄

C

� j [j	(x)℄

C

g = i f[	(x)℄

C

� j [j	(x)℄

C

g i E : (26)

Consequently,

h

~

2

2m

�

xx

� V (x)

i

[	(x)℄

C

= �[	(x)℄

C

E ;

and

h

~

2

2m

�

xx

� V (x)

i

[j	(x)℄

C

= [j	(x)℄

C

E :

By solving these 
omplex equations, we �nd

	(x) = exp

h

q

2m

~

2

(V �E)x

i

k

1

+ exp

h

�

q

2m

~

2

(V �E)x

i

k

2

+

j

n

exp

h

q

2m

~

2

(V +E)x

i

k

3

+ exp

h

�

q

2m

~

2

(V +E)x

i

k

4

o

;

where k

n

, n = 1; :::;4, are 
omplex 
oeÆ
ients determined by the initial 
onditions.
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� Free parti
les

For free parti
les, V (x) =W (x) = 0, the previous solution redu
es to

	(x) = exp

�

i

p

~

x

�

k

1

+ exp

�

�i

p

~

x

�

k

2

+

j

�

exp

�

p

~

x

�

k

3

+ exp

�

�

p

~

x

�

k

4

	

;

where p =

p

2mE. For s
attering problems with a wave fun
tion in
ident from the left on quaternioni


potentials, we have

	(x) = exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ; (27)

where jrj

2

is the standard 
oeÆ
ient of re
e
tion and j~r exp[

p

~

x ℄j

2

represents an additional evanes
ent

probability of re
e
tion. In our study of quaternioni
 potentials, we shall deal with the re
tangular potential

barrier of width a. In this 
ase, the parti
le is free for x < 0, where the solution is given by (27), and x > a,

where the solution is

	(x) = t exp[ i

p

~

x ℄ + j

~

t exp[�

p

~

x ℄ : (28)

Note that, in equations (27) and (28), we have respe
tively omitted the 
omplex exponential solution

exp[�

p

~

x ℄ and exp[

p

~

x ℄ whi
h are in 
on
i
t with the boundary 
ondition that 	(x) remain �nite as

x! �1 and x!1. In equation (28), we have also omitted the 
omplex exponential solution exp[�i

p

~

x ℄

be
ause we are 
onsidering a wave in
ident from the left.

6. Quaternioni
 linear di�erential equation

Consider the se
ond order quaternioni
 linear di�erential operator

D

H

= �

xx

+ (a

0

+L � a) �

x

+ b

0

+L � b 2 A

H


O :

We are interested in �nding the solution of the quaternioni
 linear di�erential equation

D

H

'(x) = 0 : (29)

In analogy to the 
omplex 
ase, we look for solutions of exponential form

'(x) = exp[qx℄ ;

where q 2 H . To satisfy equation (29), the 
onstant q has to be a solution of the quaternioni
 quadrati


equation [41℄{[44℄

q

2

+ (a

0

+ h � a) q + b

0

+ h � b = 0 : (30)

6.1. Quaternioni
 quadrati
 equation

To simplify our dis
ussion, it is 
onvenient to modify equation (30) by removing the real 
onstant a

0

. To do

this, we introdu
e a new quaternioni
 
onstant p de�ned by p = q +

a

0

2

. The quadrati
 equation (30) then

be
omes

p

2

+ h � a p+ 


0

+ h � 
 = 0 ; (31)

where 


0

= b

0

�

a

2

0

4

and 
 = b �

a

0

2

a. We shall give the solution of equation (31) in terms of real 
onstant




0

and of the real ve
tors a and 
. Let us analyze the following 
ases:

� a 6= 0, 
 6= 0:

(i) a� 
 = 0,

(ii) a � 
 = 0,

(iii) a � a� 
 6= 0;

� a = 0, 
 6= 0;

� a 6= 0, 
 = 0;

� a = 
 = 0.

� (i) a�
 = 0. In this 
ase a and 
 are parallel ve
tors, so equation (31) 
an be easily redu
ed to a 
omplex

equation. In fa
t, by introdu
ing the imaginary unit I = h � a=jaj and observing that h � 
 = I �, with

� 2 R, we �nd

p

2

+ I jaj p+ 


0

+ I � = 0 ;
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whose 
omplex solutions are immediately found.

� (ii) a � 
 = 0. By observing that a, 
 and a � 
 are orthogonal ve
tors, we 
an rearrange the imaginary

part of p, h � p, in terms of the new basis (a; 
;a� 
), i.e.

p = p

0

+ h � (xa+ y 
+ z a� 
) : (32)

Substituting (32) in equation (31), we obtain the following system of equations for the real variables p

0

, x,

y and z,

R : p

2

0

� (x

2

+ x) jaj

2

� y

2

j
j

2

� z

2

jaj

2

j
j

2

+ 


0

= 0 ,

h � a : p

0

(1 + 2x) = 0 ,

h � 
 : 1 + 2 p

0

y � z jaj

2

= 0 ,

h � a� 
 : y + 2 p

0

z = 0 .

The se
ond equation, p

0

(1 + 2x) = 0, implies p

0

= 0 and/or x = �

1

2

. For p

0

= 0, it 
an be shown that the

solution of equation (31), in terms of p

0

, x, y and z, is given by

p

0

= 0 ; x = �

1

2

�

p

� ; y = 0 ; z =

1

jaj

2

; (33)

where

� =

1

4

+

1

jaj

2

�




0

�

j
j

2

jaj

2

�

� 0 :

For x = �

1

2

, we �nd

y = �

2 p

0

4 p

2

0

+ jaj

2

; z =

1

4 p

2

0

+ jaj

2

; (34)

and

p

2

0

=

1

4

h

� 2

p




2

0

+ j
j

2

� 2 


0

� jaj

2

i

:

It is easily veri�ed that

� � 0 )

p




2

0

+ j
j

2

� 


0

�

jaj

2

2

;

thus

p

0

= �

1

2

r

2

�

p




2

0

+ j
j

2

� 


0

�

� jaj

2

: (35)

Summarizing, for � 6= 0, we have two quaternioni
 solutions, p

1

6= p

2

,

� > 0 : p

0

= 0 ;

x = �

1

2

�

p

� ;

y = 0 ;

z =

1

jaj

2

; (36)

� < 0 : p

0

= �

1

2

r

2

�

p




2

0

+ j
j

2

� 


0

�

� jaj

2

;

x = �

1

2

;

y = �

2 p

0

4 p

2

0

+ jaj

2

;

z =

1

4 p

2

0

+ jaj

2

: (37)

For � = 0, these solutions tend to the same solution p

1

= p

2

given by

� = 0 : p

0

= 0 ; x = �

1

2

; y = 0 ; z =

1

jaj

2

: (38)
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� (iii) a � a � 
 6= 0. In dis
ussing this 
ase, we introdu
e the ve
tor d = 
 � d

0

a, d

0

= a � 
=jaj

2

and the

imaginary part of p in terms of the orthogonal ve
tors a, d and a� d,

p = p

0

+ h � (xa+ y d+ z a� d) : (39)

By using this de
omposition, from equation (31) we obtain the following system of real equations

R : p

2

0

� (x

2

+ x) jaj

2

� y

2

jdj

2

� z

2

jaj

2

jdj

2

+ 


0

= 0 ,

h � a : p

0

(1 + 2x) + d

0

= 0 ,

h � d ; 1 + 2 p

0

y � z jaj

2

= 0 ,

h � a� d : y + 2 p

0

z = 0 .

The se
ond equation of this system, p

0

(1 + 2x) + d

0

= 0, implies p

0

6= 0 sin
e d

0

6= 0. Therefore, we have

x = �

p

0

+ d

0

2p

0

; y = �

2p

0

4p

2

0

+ jaj

2

; z =

1

4p

2

0

+ jaj

2

; (40)

and

16w

3

+ 8 [jaj

2

+ 2


0

℄w

2

+ 4

�

jaj

2

(


0

� d

2

0

) +

jaj

4

4

� jdj

2

�

w � d

2

0

jaj

4

= 0 ; (41)

where w = p

2

0

. Equation (41) has only one real positive solution [41℄, w = �

2

, � 2 R. This implies p

0

= ��.

Thus, we also �nd two quaternioni
 solutions.

� a = 0 and 
 6= 0. By introdu
ing the imaginary 
omplex unit I = h � 
=j
j, we 
an redu
e equation (31)

to the following 
omplex equation

p

2

+ 


0

+ I j
j = 0 :

� a 6= 0 and 
 = 0. This 
ase is similar to the previous one. We introdu
e the imaginary 
omplex unit

I = h � a=jaj and redu
e equation (31) to the 
omplex equation

p

2

+ I jaj p+ 


0

= 0 :

� a = 
 = 0. Equation (31) be
omes

p

2

+ 


0

= 0 :

For 


0

= ��

2

, � 2 R, we �nd two real solutions. For 


0

= �

2

, we obtain an in�nite number of quaternioni


solutions, i.e. p = h � p, where jpj = j�j.

Let us resume our dis
ussion on quaternioni
 linear quadrati
 equation. For a = 0 and/or 
 = 0 and for

a� 
 = 0 we 
an redu
e quaternioni
 linear quadrati
 equations to 
omplex equations. For non null ve
tors

satisfying a � 
 = 0 or a � a � 
 6= 0, we have e�e
tive quaternioni
 equations. In these 
ases, we always

�nd two quaternioni
 solutions (36), (37) and (40-41). For a � 
 = 0 and � = 0, these solutions tend to the

same solution (38). Finally, the fundamental theorem of algebra is lost for a restri
ted 
lass of quaternioni


quadrati
 linear equations, namely

q

2

+ �

2

= 0 ; � 2 R :

6.2. Se
ond order quaternioni
 di�erential equations with 
onstant 
oeÆ
ients

The most general solution of equation (29) is

'(x) = '

1

(x) 


1

+ '

2

(x) 


2

;

where '

1

(x) and '

2

(x) represent two linear independent solutions of equation (29) and 


1

and 


2

are

quaternioni
 
onstant �xed by the initial 
onditions. In analogy to the 
omplex 
ase, we 
an distinguish

between quaternioni
 linear dependent and independent solutions by 
onstru
ting a Wronskian fun
tional. To

do this, we need to de�ne a quaternioni
 determinant. Due to the non-
ommutative nature of quaternions, the

standard de�nition of determinant must be revised. The study of quaternioni
, 
omplex and real fun
tionals,
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extending the 
omplex determinant to quaternioni
 matri
es, has been extensively developed in quaternioni


linear algebra [45℄{[48℄. In a re
ent paper [49℄, we �nd an interesting dis
ussion on the impossibility to obtain

a quaternioni
 fun
tional with the main properties of the 
omplex determinant. For quaternioni
 matri
es,

M , we 
an de�ne a real positive fun
tional, jdetM j, whi
h redu
es to the absolute value of the standard

determinant for 
omplex matri
es. This allows to 
onstru
t a real positive Wronskian

W(x) =

�

�

�

�

det

�

'

1

(x) '

2

(x)

_'

1

(x) _'

2

(x)

�

�

�

�

�

= j'

1

(x)j j _'

2

(x)� _'

1

(x)'

�1

1

(x)'

2

(x)j

= j'

2

(x)j j _'

1

(x)� _'

2

(x)'

�1

2

(x)'

1

(x)j

= j _'

1

(x)j j'

2

(x)� '

1

(x) _'

�1

1

(x) _'

2

(x)j

= j _'

2

(x)j j'

1

(x)� '

2

(x) _'

�1

2

(x) _'

1

(x)j :

Two quaternioni
 solutions

'

1;2

(x) = exp[ q

1;2

x ℄ = exp[ ( p

1;2

�

�

a

0

2

�

x ℄

are linearly independent over H if and only if the matrix

�

'

1

(x) '

2

(x)

_'

1

(x) _'

2

(x)

�

is invertible. This implies

W (x) = jp

1

� p

2

j j exp[q

1

x℄j j exp[q

2

x℄j 6= 0 :

For p

1

6= p

2

, the solution of equation (29) is then given by

'(x) = exp[�

a

0

2

x℄ fexp[p

1

x℄ 


1

+ exp[p

2

x℄ 


2

g : (42)

Let us now observe that the fundamental theorem of algebra is lost for a restri
ted 
lass of quaternioni


quadrati
 equation, i.e. p

2

+ �

2

= 0 where � 2 R. For these equations we �nd an in�nite number of

solutions, p = h � � with j�j

2

= �

2

. Nevertheless, the general solution of the se
ond order di�erential

equation

�'(x) + �

2

'(x) = 0 ; (43)

is also expressed in terms of two linearly independent exponential solutions

'(x) = exp[i �x℄ 


1

+ exp[�i � x℄ 


2

: (44)

Note that any other exponential solution, exp[h �� x℄, 
an be written as linear 
ombination of exp[i � x℄ and

exp[�i �x℄,

exp[h ��x℄ =

1

2�

fexp[i �x℄ (�� ih � �) + exp[�i � x℄ (�+ ih � �)g :

As 
onsequen
e, the lost of the fundamental theorem of algebra for quaternions does not represent an obsta
le

in solving se
ond order quaternioni
 linear di�erential equations with 
onstant 
oeÆ
ients. To 
omplete our

dis
ussion, we have to examine the 
ase p

1

= p

2

. A �rst solution of the di�erential equation (29) is obviously

given by

�(x) = exp

nh

h �

�

a�b

jaj

2

�

a

2

�

�

a

0

2

i

x

o

:

For a� b = 0, we 
an immediately obtain a se
ond linearly independent solution by multiplying exp[�

a

2

x℄

by x, �(x) = x �(x). For a� b 6= 0, the se
ond linearly independent solution takes a more 
ompli
ate form,

i.e.

�(x) =

�

x+

h�a

jaj

2

�

�(x) : (45)

It 
an easily be shown that �(x) is solution of the di�erential equation (29),

��(x) + a _�(x) + b �(x) =

h

x (q

2

+ a q + b) + 2 q + a+

h�a

jaj

2

(q

2

+ a q) + b

h�a

jaj

2

i

�(x)

=

�

2 q + a+

h

b ;

h�a

jaj

2

i�

�(x)

=

�

2h �

a�b

jaj

2

+

h

h � b ;

h�a

jaj

2

i�

�(x)

= 0 :
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Finally, for p

1

= p

2

= p = h �

�

a�b

jaj

2

�

a

2

�

, as general solution of the di�erential equation (29), we �nd

'(x) = exp[�

a

0

2

x℄

n

exp[p x℄ 


1

+

�

x+

h�a

jaj

2

�

exp[p x℄ 


2

o

: (46)

6.3. Diagonalization and Jordan form

To �nd the general solution of linear di�erential equations, we 
an also use quaternioni
 formulations of

eigenvalue equations, matrix diagonalization and Jordan form. The quaternioni
 linear di�erential equation

(29) 
an be written in matrix form as follows

_

�(x) =M �(x) ; (47)

where

M =

�

0 1

-b -a

�

and �(x) =

�

'(x)

_'(x)

�

:

The solution of the matrix equation (47) is given by

�(x) = exp[M x℄ �(0) ; (48)

where �(0) represents a 
onstant quaternioni
 
olumn ve
tor determined by the initial 
onditions '(0) and

_'(0). Quaternioni
 linear 2� 2 matrix operators satisfy right eigenvalue equations

M � = � q : (49)

Without loss of generality, we 
an work with 
omplex eigenvalue equations. By setting 	 = �u, from the

previous equation, we have

M 	 =M �u = � q u = �uuqu = 	 z ; (50)

where z 2 C and u is a unitary quaternion. In a re
ent paper [30℄, we �nd a 
omplete dis
ussion of

the eigenvalue equation for quaternioni
 matrix operators. In su
h a paper was shown that the 
omplex


ounterpart of the matrix M has an eigenvalue spe
trum 
hara
terized by eigenvalues whi
h appear in


onjugate pairs fz

1

; z

1

; z

2

; z

2

g. Let 	

1

and 	

2

be the quaternioni
 eigenve
tors 
orresponding to the 
omplex

eigenvalues z

1

and z

2

M 	

1

= 	

1

z

1

and M 	

2

= 	

2

z

2

:

It 
an be shown that for jz

1

j 6= jz

2

j, the eigenve
tors 	

1

and 	

2

are linearly independent on H and


onsequently there exists a 2� 2 quaternioni
 matrix S = [	

1

	

2

℄ whi
h diagonalizes M ,

exp[M x℄ = S exp

��

z

1

0

0 z

2

�

x

�

S

�1

= S

�

exp[z

1

x℄ 0

0 exp[z

2

x℄

�

S

�1

:

In this 
ase, the general solution of the quaternioni
 di�erential equation 
an be written in terms of the

elements of the matri
es S and S

�1

and of the 
omplex eigenvalues z

1

and z

2

,

�

'(x)

_'(x)

�

=

�

S

11

exp[z

1

x℄ S

12

exp[z

2

x℄

S

21

exp[z

1

x℄ S

22

exp[z

2

x℄

� �

S

�1

11

'(0) + S

�1

12

_'(0)

S

�1

21

'(0) + S

�1

22

_'(0)

�

:

Hen
e,

'(x) = S

11

exp[z

1

x℄ [S

�1

11

'(0) + S

�1

12

_'(0)℄ +

S

12

exp[z

2

x℄ [S

�1

21

'(0) + S

�1

22

_'(0)℄

= exp

�

S

11

z

1

(S

11

)

�1

x

�

S

11

[S

�1

11

'(0) + S

�1

12

_'(0)℄ +

exp

�

S

12

z

2

(S

12

)

�1

x

�

S

12

[S

�1

21

'(0) + S

�1

22

_'(0)℄

= exp

�

S

21

(S

11

)

�1

x

�

S

11

[S

�1

11

'(0) + S

�1

12

_'(0)℄ +

exp

�

S

22

(S

12

)

�1

x

�

S

12

[S

�1

21

'(0) + S

�1

22

_'(0)℄ : (51)
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We remark that a di�erent 
hoi
e of the eigenvalue spe
trum does not modify the solution (51). In fa
t, by

taking the following quaternioni
 eigenvalue spe
trum

f q

1

; q

2

g = fu

1

z

1

u

1

; u

2

z

2

u

2

g ; jq

1

j 6= jq

2

j ; (52)

and observing that the 
orresponding linearly independent eigenve
tors are given by

f�

1

= 	

1

u

1

; �

2

= 	

2

u

2

g ; (53)

we obtain

M = [�

1

�

2

℄ diag fq

1

; q

2

g [ �

1

�

2

℄

�1

= [	

1

u

1

	

2

u

2

℄ diag fu

1

z

1

u

1

; u

2

z

2

u

2

g [ 	

1

u

1

	

2

u

2

℄

�1

= [	

1

	

2

℄ diag fz

1

; z

2

g [ 	

1

	

2

℄

�1

:

Let us now dis
uss the 
ase jz

1

j = jz

2

j. If the eigenve
tors f	

a

; 	

b

g, 
orresponding to the eigenvalue

spe
trum f z ; z g, are linearly independent on H , we 
an obviously repeat the previous dis
ussion and

diagonalize the matrix operator M by the 2� 2 quaternioni
 matrix U = [	

1

	

2

℄. Then, we �nd the

'(x) = exp

�

U

11

z (U

11

)

�1

x

�

U

11

[U

�1

11

'(0) + U

�1

12

_'(0)℄ +

exp

�

U

12

z (U

12

)

�1

x

�

U

12

[U

�1

21

'(0) + U

�1

22

_'(0)℄

= exp

�

U

21

(U

11

)

�1

x

�

U

11

[U

�1

11

'(0) + U

�1

12

_'(0)℄ +

exp

�

U

22

(U

12

)

�1

x

�

U

12

[U

�1

21

'(0) + U

�1

22

_'(0)℄ : (54)

For linear dependent eigenve
tors, we 
annot 
onstru
t a matrix whi
h diagonalizes the matrix operator M .

Nevertheless, we 
an transform the matrix operator M in Jordan form

M = J

�

z 1

0 z

�

J

�1

: (55)

It follows that the solution of our quaternioni
 di�erential equation 
an be written as

�(x) = J exp

��

z 1

0 z

�

x

�

J

�1

�(0)

=

�

J

11

x J

11

+ J

12

J

21

x J

21

+ J

22

�

exp[zx℄

�

J

�1

11

'(0) + J

�1

12

_'(0)

J

�1

21

'(0) + J

�1

22

_'(0)

�

:

Thus,

'(x) = J

11

exp[z x℄ [J

�1

11

'(0) + J

�1

12

_'(0)℄ +

(x J

11

+ J

12

) exp[z x℄ [J

�1

21

'(0) + J

�1

22

_'(0)℄

= exp

�

J

11

z (J

11

)

�1

x

�

J

11

[J

�1

11

'(0) + J

�1

12

_'(0)℄ +

�

x+ J

12

(J

11

)

�1

�

exp

�

J

11

z (J

11

)

�1

x

�

�

J

11

[J

�1

21

'(0) + J

�1

22

_'(0)℄

= exp

�

J

21

(J

11

)

�1

x

�

J

11

[J

�1

11

'(0) + J

�1

12

_'(0)℄ +

�

x+ J

12

(J

11

)

�1

�

exp

�

J

21

(J

11

)

�1

x

�

�

J

11

[J

�1

21

'(0) + J

�1

22

_'(0)℄ : (56)

Finally, the general solution of the quaternioni
 di�erential equation (29) 
an be given by solving the


orresponding eigenvalue problem. We 
on
lude this se
tion, by observing that the quaternioni
 exponential

solution exp[q x℄ 
an also be written as u exp[z x℄, where q = u z u

�1

. The elements of the similarity

transformations S, U or J and the 
omplex eigenvalue spe
trum of M determine the quaternion u and

the 
omplex number z. This form for exponential solutions will be very useful in solving 
omplex linear

di�erential equations with 
onstant 
oeÆ
ients. In fa
t, due to the presen
e of the right a
ting operator R

i

,

we 
annot use quaternioni
 exponential solutions for 
omplex linear di�erential equations.
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7. Complex linear quaternioni
 di�erential equations

Consider now the se
ond order 
omplex linear quaternioni
 di�erential operator

D

C

= [a

02

+L � a

2

+ (b

02

+L � b

2

) R

i

℄ �

xx

+

[a

01

+L � a

1

+ (b

01

+L � b

1

) R

i

℄ �

x

+

a

00

+L � a

0

+ (b

00

+L � b

0

) R

i

2 A

C


O

and look for solutions of the 
omplex linear quaternioni
 di�erential equation

D

C

'(x) = 0 : (57)

As remarked in the previous se
tion, the general solution of the 
omplex linear quaternioni
 di�erential

equation (57) 
annot be given in terms of quaternioni
 exponentials. In matrix form, equation (57) reads

_

�(x) =M

C

�(x) ; (58)

where

M

C

=

�

0 1

-b

C

-a

C

�

and �(x) =

�

'(x)

_'(x)

�

:

The 
omplex 
ounterpart of 
omplex linear quaternioni
 matrix operator M

C

has an eigenvalue spe
trum


hara
terized by four 
omplex eigenvalues fz

1

; z

2

; z

3

; z

4

g. It 
an be shown that M

C

is diagonalizable if and

only if its 
omplex 
ounterpart is diagonalizable. For diagonalizable matrix operator M

C

, we 
an �nd a


omplex linear quaternioni
 linear similarity transformation S

C

whi
h redu
es the matrix operator M

C

to

diagonal form [30℄

M

C

= S

C

�

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

0

0

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

�

S

�1

C

:

It is immediate to verify that

� �

1

0

�

;

�

j

0

�

;

�

0

1

�

;

�

0

j

� �

are eigenve
tors of the diagonal matrix operator

�

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

0

0

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

�

with right 
omplex eigenvalues z

1

, z

2

, z

3

and z

4

. The general solution of the di�erential equation (57) 
an

be given in terms of these 
omplex eigenvalues,

'(x) = S

C11

exp

��

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

�

x

�

[S

�1

C11

'(0) + S

�1

C 12

_'(0)℄ +

S

C12

exp

��

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

��

[S

�1

C21

'(0) + S

�1

C22

_'(0)℄

= u

1

exp[z

1

x℄ k

1

+ u

2

exp[z

2

x℄ k

2

+

u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

; (59)

where k

n

are 
omplex 
oeÆ
ients determined by the initial 
onditions. This solution holds for diagonalizable

matrix operator M

C

. For not diagonalizable matrix operators we need to �nd the similarity transformation

J

C

whi
h redu
es M

C

to the Jordan form. It 
an be shown that for equal eigenvalues, z

1

= z

2

, the general

solution of the di�erential equation (57) is

'(x) = u exp[z x℄ k

1

+ (ux+ ~u) exp[z x℄ k

2

+ u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

: (60)
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7.1. S
hr�odinger equation

Let us now examine the 
omplex linear S
hr�odinger equation in presen
e of a 
onstant quaternioni
 potential,

h

~

2

2m

�

xx

� V + j W

i

	(x) = i	(x) i E : (61)

In this 
ase, the 
omplex linear matrix operator

M

C

=

�

0 1

-b

C

0

�

; b

C

= V � j W + i E R

i

;

represents a diagonalizable operator. Consequently, the general solution of the S
hr�odinger equation is given

by

'(x) = u

1

exp[z

1

x℄ k

1

+ u

2

exp[z

2

x℄ k

2

+ u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

: (62)

The quaternions u

n

and the 
omplex eigenvalues z

n

are obtained by solving the eigenvalue equation for

the 
omplex linear operator M

C

. We 
an also obtain the general solution of equation (61) by substituting

u exp[

q

2m

~

2

z x℄ in the S
hr�odinger equation. We �nd the following quaternioni
 equation

u z

2

� (V � j W )u� i E u i = 0 ;

where u = z

u

+ j ~z

u

. This equation 
an be written as two 
omplex equations

[z

2

� (V �E)℄ z

u

�W ~z

u

= [z

2

� (V +E)℄ ~z

u

+W z

u

= 0 :

An easy 
al
ulation shows that z must satis�es the 
omplex equation

z

4

� 2V z

2

+ V

2

+ jW j

2

�E

2

= 0 ; (63)

whose roots are

z

1;2

= �

q

V �

p

E

2

� jW j

2

= � z

�

and z

3;4

= �

q

V +

p

E

2

� jW j

2

= � z

+

: (64)

By setting (u

1;2

)

C

= (�ju

3;4

)

C

= 1, we �nd

u

�

=

�

1 + j

W

E+

p

E

2

�jW j

2

�

and u

+

=

�

W

E+

p

E

2

�jW j

2

+ j

�

: (65)

The solution of the 
omplex linear quaternioni
 S
hr�odinger equation is then given by

	(x) = u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

: (66)

Equation (63) 
an also be obtained by multiplying the 
omplex linear S
hr�odinger equation (61) from the

left by the operator

~

2

2m

�

xx

� V � j W :

This gives

h�

~

2

2m

�

2

�

xxxx

�2

~

2

2m

V �

xx

+V

2

+ jW j

2

i

	(x) = i

h

~

2

2m

�

xx

� V + j W

i

	(x) i E

= E

2

	(x) .

By substituting the exponential solution u exp[

q

2m

~

2

z x℄ in the previous equation, we immediately re-obtain

equation (63).

8. Quaternioni
 
onstant potentials

Of all S
hr�odinger equations the one for a 
onstant potential is mathemati
ally the simplest. The reason for

resuming the study of the S
hr�odinger equation with su
h a potential is that the qualitative features of a

physi
al potential 
an often be approximated reasonably well by a potential whi
h is pie
ed together from a

number of 
onstant portions.
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8.1. The potential step

Let us 
onsider the quaternioni
 potential step,

V (x)� j W (x) =

�

0 x < 0

V � j W x > 0

;

where V and W represents 
onstant potentials. For s
attering problems with a wave fun
tion in
ident from

the left on the quaternioni
 potential step, the 
omplex linear quaternioni
 S
hr�odinger equation has solution

	(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x < 0 :

exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ;

x > 0 :

u

�

t exp[

q

2m

~

2

z

�

x℄ + u

+

~

t exp[�

q

2m

~

2

z

+

x℄ [E >

p

V

2

+ jW j

2

℄ ;

u

�

t exp[�

q

2m

~

2

z

�

x℄ + u

+

~

t exp[�

q

2m

~

2

z

+

x℄ [E <

p

V

2

+ jW j

2

℄ :

(67)

where r, ~r, t and

~

t are 
omplex 
oeÆ
ients to be determined by mat
hing the wave fun
tion 	(x) and its

slope at the dis
ontinuity of the potential x = 0.

For E >

p

V

2

+ jW j

2

, the 
omplex exponential solutions of the quaternioni
 S
hr�odinger equation are


hara
terized by

z

�

= i

q

p

E

2

� jW j

2

� V 2 iR and z

+

=

q

p

E

2

� jW j

2

+ V 2 R :

The 
omplex linearly independent solutions

u

�

exp[�

q

2m

~

2

z

�

x℄ and u

+

exp[

q

2m

~

2

z

+

x℄

have been omitted, k

2

= k

3

= 0 in (66), be
ause we are 
onsidering a wave in
ident from the left and be
ause

the se
ond 
omplex exponential solution, exp[

q

2m

~

2

z

+

x℄, is in 
on
i
t with the boundary 
ondition that 	(x)

remain �nite as x!1. The standard result of 
omplex quantum me
hani
s are immediately re
overed by


onsidering W = 0 and taking the 
omplex part of the quaternioni
 solution.

For E <

p

V

2

+ jW j

2

, the 
omplex exponential solutions of the quaternioni
 S
hr�odinger equation are


hara
terized by

z

�

=

q

V �

p

E

2

� jW j

2

; z

+

=

q

V +

p

E

2

� jW j

2

2 R [E > jW j ℄ ;

z

�

= (V

2

+ jW j

2

�E

2

)

1

4

exp[� i

�

2

℄ ; tan � =

p

jW j

2

�E

2

V

2 C [E < jW j ℄ :

The 
omplex linearly independent solutions

u

�

exp[

q

2m

~

2

z

�

x℄ and u

+

exp[

q

2m

~

2

z

+

x℄

have been omitted, k

1

= k

3

= 0 in (66), be
ause they are in 
on
i
t with the boundary 
ondition that 	(x)

remain �nite as x!1.

A relation between the 
omplex 
oeÆ
ients of re
e
tion and transmission 
an immediately be obtained

by the 
ontinuity equation

�

t

�(x; t) + �

x

J(x; t) = 0 ; (68)

where

�(x; t) = �(x; t) �(x; t) ;

and

J(x; t) =

~

2m

� �

�

x

�(x; t)

�

i�(x; t)��(x; t) i �

x

�(x; t)

	

:

Note that, due to the non 
ommutative nature of the quaternioni
 wave fun
tions, the position of the

imaginary unit i in the probability 
urrent density J(x; t) is important to re
over a 
ontinuity equation in

quaternioni
 quantum me
hani
s. For stationary states, �(x; t) = 	(x) exp[�i

E

~

t ℄�(0), it 
an easily be

shown that the probability 
urrent density

J(x; t) =

~

2m

�(0) exp[ i

E

~

t ℄

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

exp[�i

E

~

t ℄ �(0) :
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must be independent of x, J(x; t) = f(t). Hen
e,

~

2m

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

= exp[�i

E

~

t ℄ �(0) f(t) �(0) exp[ i

E

~

t ℄ = � ;

where � is a real 
onstant. This implies that the quantity

J =

p

2m

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

has the same value at all points x. In the free potential region, x < 0, we �nd

J

�

=

p

m

( 1� jrj

2

) :

In the potential region, x > 0, we obtain

J

+

=

8

<

:

r

2

m

�

p

E

2

� jW j

2

� V

�

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

[E >

p

V

2

+ jW j

2

℄ ;

0 [E <

p

V

2

+ jW j

2

℄ :

Finally, for stationary states, the 
ontinuity equation leads to

jrj

2

+

p

E

2

�jW j

2

�V

E

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

= 1 [E >

p

V

2

+ jW j

2

℄ ;

jrj

2

= 1 [E <

p

V

2

+ jW j

2

℄ :

(69)

Thus, by using the 
on
ept of a probability 
urrent, we 
an de�ne the following 
oeÆ
ients of transmission

and re
e
tion

R = jrj

2

; T =

p

E

2

�jW j

2

�V

E

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

[E >

p

V

2

+ jW j

2

℄ ;

R = jrj

2

; T = 0 [E <

p

V

2

+ jW j

2

℄ :

These 
oeÆ
ients give the probability for the parti
le, arriving from x = �1, to pass the potential step at

x = 0 or to turn ba
k. The 
oeÆ
ients R and T depend only on the ratios E=V and jW j=V . The predi
tions

of 
omplex quantum me
hani
s are re
overed by setting W = 0.

8.2. The re
tangular potential barrier

In our study of quaternioni
 potentials, we now rea
h the re
tangular potential barrier,

V (x)� j W (x) =

8

<

:

0 x < 0

V � j W 0 < x < a

0 x > a

:

For s
attering problems with a wave fun
tion in
ident from the left on the quaternioni
 potential barrier,

the 
omplex linear quaternioni
 S
hr�odinger equation has solution

	(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x < 0 :

exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ;

0 < x < a :

u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

;

x > a :

t exp[ i

p

~

x ℄ + j

~

t exp[�

p

~

x ℄ :

(70)

The 
omplex 
oeÆ
ients r, ~r, t and

~

t are determined by mat
hing the wave fun
tion 	(x) and its slope at

the dis
ontinuity of the potential x = 0 and will depend on jW j.

By using the 
ontinuity equation, we immediately �nd the following relation between the transmission,

T = jtj

2

, and re
e
tion, R = jrj

2

, 
oeÆ
ients

R+ T = 1 : (71)
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8.3. The re
tangular potential well

Finally, we brie
y dis
uss the quaternioni
 re
tangular potential well,

V (x)� j W (x) =

8

<

:

0 x < 0

�V + j W 0 < x < a

0 x > a

:

In the potential region, the solution of the 
omplex linear quaternioni
 S
hr�odinger equation is then given

by

	(x) = u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

; (72)

where

u

�

=

�

1� j

W

E+

p

E

2

�jW j

2

�

; u

+

=

�

j �

W

E+

p

E

2

�jW j

2

�

:

and

z

�

= i

q

p

E

2

� jW j

2

+ V ; z

+

=

q

p

E

2

� jW j

2

� V :

Depending on whether the energy is positive or negative, we distinguish two separate 
ases. If E > 0, the

parti
le is un
on�ned and is s
attered by the potential; if E < 0, it is 
on�ned and in a bound state. We

limit ourselves to dis
ussing the 
ase E < 0. For jW j < jEj <

p

V

2

+ jW j

2

, solution (72) be
omes

u

�

n

exp[i

q

2m

~

2

q

p

E

2

� jW j

2

+ V x℄ k

1

+ exp[� i

q

2m

~

2

q

p

E

2

� jW j

2

+ V x℄ k

2

o

+

u

+

n

exp[i

q

2m

~

2

q

V �

p

E

2

� jW j

2

x℄ k

3

+ exp[� i

q

2m

~

2

q

V �

p

E

2

� jW j

2

x℄ k

4

o

:

(73)

For jEj < jW j, the solution is given by

u

�

n

exp[

q

2m

~

2

� exp[i

�+�

2

x℄ k

1

+ exp[�

q

2m

~

2

� exp[i

���

2

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

� exp[i

���

2

℄x℄ k

3

+ exp[�

q

2m

~

2

� exp[� i

�+�

2

x℄ k

4

o

;

(74)

where � =

p

V

2

+ jW j

2

� E

2

and tan � =

p

jW j

2

�E

2

V

. In the region of zero potential, by using the boundary


onditions at large distan
es, we �nd

	(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x < 0 :

exp[

q

2m

~

2

jEjx ℄ 


1

+ j exp[� i

q

2m

~

2

jEjx ℄ 


4

;

x > a :

exp[�

q

2m

~

2

jEjx ℄ d

2

+ j exp[ i

q

2m

~

2

jEjx ℄ d

3

:

(75)

The mat
hing 
onditions at the dis
ontinuities of the potential yield the energy eigenvalues.

9. Con
lusions

In this paper, we have dis
ussed the resolution of quaternioni
 and 
omplex linear di�erential equations

with 
onstant 
oeÆ
ients within a quaternioni
 formulation of quantum me
hani
s. The use of quaternioni


mathemati
al stru
tures in solving the 
omplex linear S
hr�odinger equation 
ould represent an important

dire
tion for the sear
h of new physi
s. The open question whether quaternions 
ould play a signi�
ant role

in quantum me
hani
s is stri
tly related to the whole understanding of resolutions of quaternioni
 di�erential

equations and eigenvalue problems. The investigation presented in this work is only a �rst step towards a

whole theory of quaternioni
 di�erential, integral and fun
tional equations. Obviously, due to the great

variety of problems in using a non-
ommutative �eld, it is very diÆ
ult to de�ne the pre
ise limit of the

subje
t.
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Appendix A. Quaternioni
 linear quadrati
 equations

In this appendix, we give some examples of quaternioni
 linear quadrati
 equations, see 
ases (i)-(iii) of

subse
tion 6.1, and �nd their solutions.

� (i): p

2

+

p

2 (i+ j) p� 1� 2

p

2 (i+ j) = 0.

In solving su
h an equation we observe that a = (

p

2;

p

2; 0) and 
 = �(2

p

2; 2

p

2; 0) are parallel ve
tors,


 = �2a. Consequently, by introdu
ing the 
omplex imaginary unit I = (i + j)=

p

2, we 
an redu
e the

quadrati
 quaternioni
 equation to the following 
omplex equation,

p

2

+ 2 I p� 1� 4 I = 0 ;

whose solutions are p

1;2

= �I � 2

p

I. It follows that the quaternioni
 solutions are

p

1;2

= �

p

2�

�

1�

p

2

�

i+ j

p

2

:

� (ii): p

2

+ i p+

1

2

k = 0, � = 0.

We note that a = (1; 0; 0) and 
 = (0; 0;

1

2

) are orthogonal ve
tors and � = 0. So, we �nd two 
oin
ident

quaternioni
 solutions given by

p = �

1

2

h � a+ h � a� 
 = �

i+ j

2

:

� (ii): p

2

+ j p+ 1� k = 0, � > 0.

In this 
ase, a = (0; 1; 0) and 
 = (0; 0;�1) are orthogonal ve
tors, 


0

= 1 and � = 1=4. So,

p

0

= 0 ; x = �

1

2

�

1

2

; y = 0 ; z = 1 :

By observing that

h � a = j ; h � 
 = �k ; h � a� 
 = �i ;

we �nd the following quaternioni
 solutions

p

1

= �i and p

2

= �(i+ j) :

� (ii): p

2

+ k p+ j = 0, � < 0.

We have a = (0; 0; 1), 
 = (0; 1; 0) and 


0

= 0. Then a � 
 = 0 and � = �3=4. So,

p

0

= �

1

2

; x = �

1

2

; y = �

1

2

; z =

1

2

:

In this 
ase,

h � a = k ; h � 
 = j ; h � a� 
 = �i ;

thus, the solutions are given by

p

1;2

=

1

2

(�1� i� j � k) :

� (iii): p

2

+ i p+ 1 + i+ k = 0.
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We have a = (1; 0; 0), 
 = (1; 0; 1) and 


0

= 1. In this 
ase a � 
 6= 0, so we introdu
e the quaternion

d

0

+h �d = 1+ k, whose ve
torial part d = 
� d

0

a = (0; 0; 1) is orthogonal to a. The imaginary part of our

solution will be given in terms of the imaginary quaternions

h � a = i ; h � d = k ; h � a� d = �j :

The real part of p is determined by solving the equation

16 p

6

0

+ 24 p

4

0

� 3 p

2

0

� 1 = 0 :

The real positive solution is given by p

2

0

=

1

4

. Consequently,

p

0

= �

1

2

; x = �

1

2

� 1 ; y = �

1

2

; z =

1

2

:

The quaternioni
 solutions are

p

1

=

1

2

(1� 3i� j � k) and p

2

= �

1

2

(1� i+ j � k) :

Appendix B. Quaternioni
 linear di�erential equations

We solve quaternioni
 linear di�erential equations whose 
hara
teristi
 equations are given by the examples

(i)-(iii) in the previous appendix.

� (i): �'(x) +

p

2 ( i+ j ) _'(x) �

�

1 + 2

p

2 ( i+ j )

�

'(x) = 0 ; '(0) = i ; _'(0) =

1+k

p

2

.

The exponential exp[ p x ℄ is solution of the previous di�erential equation if and only if the quaternion p

satis�es the following quadrati
 equation

p

2

+

p

2 (i+ j) p� 1� 2

p

2 (i+ j) = 0 ;

whose solutions are given by

p

1;2

= �

p

2�

�

1�

p

2

�

i+ j

p

2

:

Consequently,

'(x) = exp

��

p

2�

�

1�

p

2

�

i+ j

p

2

�

x

�




1

+

exp

��

�

p

2�

�

1 +

p

2

�

i+ j

p

2

�

x

�




2

:

By using the initial 
onditions, we �nd

'(x) = exp

�

�

i+ j

p

2

x

�


osh

��

p

2 +

i+ j

p

2

�

x

�

i :

� (ii): �'(x) + ( 1 + i ) _'(x) +

2+i+k

4

'(x) = 0 ; '(0) = 0 ; _'(0) = �

1+i+j

2

.

We look for exponential solutions of the form '(x) = exp[ q x ℄ = exp[ ( p �

1

2

)x ℄. The quaternion p must

satisfy the quadrati
 equation

p

2

+ i p+

1

2

k = 0 :

This equation implies

p

1

= p

2

= �

i+ j

2

:

Thus,

'

1

(x) = exp

�

�

1 + i+ j

2

x

�

:

The se
ond linearly independent solution is given by

'

2

(x) = (x+ i ) exp

�

�

1 + i+ j

2

x

�

:
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By using the initial 
onditions, we �nd

'(x) = f exp[ q x ℄ + (x+ i ) exp[ q x ℄ i g [ 1 + q

�1

( 1 + i q ) i ℄

�1

;

where q = � ( 1 + i+ j ) = 2.

� (ii): �'(x) + ( 2 + j ) _'(x) + ( 2 + j � k ) '(x) = 0 ; '(0) =

1�i

2

; _'(0) = j .

The exponential solution '(x) = exp[ q x ℄ = exp[ ( p� 1 )x ℄ leads to

p

2

+ j p+ 1� k = 0 ;

whose solutions are

p

1

= �i and p

2

= �(i+ j) :

Consequently,

'(x) = exp[�x ℄ f exp[� i x ℄ 


1

+ exp[� ( i+ j )x ℄ 


2

g :

The initial 
onditions yield

'(x) = exp[�x ℄

�

exp[� i x ℄

3�i�2j

2

+ exp[� ( i+ j )x ℄ ( j � 1 )

	

:

� (ii): �'(x) + k _'(x) + j '(x) = 0 ; '(0) = i+ k ; _'(0) = 1 .

The 
hara
teristi
 equation is

p

2

+ k p+ j = 0 ;

whose solutions are

p

1;2

=

1

2

(�1� i� j � k) :

Thus, the general solution of our di�erential equation reads

'(x) = exp[

1�i�j�k

2

x ℄ 


1

+ exp[�

1+i�j+k

2

x ℄ 


2

:

By using the initial 
onditions, we obtain

'(x) =

n

exp[

1�i�j�k

2

x ℄ + exp[�

1+i�j+k

2

x ℄

o

i+k

2

:

� (iii): �'(x) + ( i� 2 ) _'(x) + ( 2 + k ) '(x) = 0 ; '(0) = 0 ; _'(0) = j .

By substituting '(x) = exp[ q x ℄ = exp[ ( p+ 1 )x ℄ in the previous di�erential equation, we �nd

p

2

+ i p+ 1 + i+ k = 0 :

The solutions of this quadrati
 quaternioni
 equation are

p

1

=

1

2

(1� 3i� j � k) and p

2

= �

1

2

(1� i+ j � k) :

So, the general solution of the di�erential equation is

'(x) = exp[

1�3i�j�k

2

x ℄ 


1

+ exp[�

1�i+j�k

2

x ℄ 


2

:

By using the initial 
onditions, we obtain

'(x) =

n

exp[

1�3i�j�k

2

x ℄� exp[�

1�i+j�k

2

x ℄

o

j�i+2k

6

:

Appendix C. Diagonalization and Jordan form

In this appendix, we �nd the solution of quaternioni
 and 
omplex linear di�erential equations by using

diagonalization and Jordan form.
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Quaternioni
 linear di�erential equation

By using the dis
ussion about quaternioni
 quadrati
 equation, it 
an immediately be shown that the solution

of the following se
ond order equation

�'(x) + ( k � i ) _'(x)� j '(x) = 0 ;

with initial 
onditions

'(0) =

k

2

; _'(0) = 1 +

j

2

;

is given by

'(x) =

�

x+

k

2

�

exp[ i x℄ :

Let us solve this di�erential equation by using its matrix form (47), with

M =

�

0 1

j i� k

�

:

This quaternioni
 matrix 
an be redu
ed to its Jordan form

M = J

�

i 1

0 i

�

J

�1

:

by the matrix transformation

J =

�

1

k

2

i 1 +

j

2

�

; J

�1

=

�

3+j

4

�

i+k

4

�

i+k

2

1�j

2

�

The solution of the quaternioni
 linear quaternioni
 di�erential equation is then given by

'(x) = J

11

exp [ i x ℄ [J

�1

11

'(0) + J

�1

12

_'(0)℄ +

(x J

11

+ J

12

) exp [ i x ℄ [J

�1

21

'(0) + J

�1

22

_'(0)℄

= (x J

11

+ J

12

) exp [ i x ℄

=

�

x+

k

2

�

exp[ i x℄ :

Complex linear di�erential equations

Let us now 
onsider the 
omplex linear quaternioni
 di�erential equation

�'(x) � j '(x) i = 0 ;

with initial 
onditions

'(0) = j ; _'(0) = k :

To �nd parti
ular solutions, we set '(x) = q exp[ z x℄. Consequently,

q z

2

� j q i = 0 :

The solution of the 
omplex linear se
ond order di�erential equation is

'(x) =

1

2

[(i+ j) exp[�ix℄ + (j � i) 
oshx+ (k � 1) sinhx℄ :

This solution 
an also be obtained by using the matrix

M

C

=

�

0 1

j R

i

0

�

;

and its diagonal form

M

C

= S

C

�

�i R

i

0

0 i

�

S

�1

C

;

where

S

C

=

�

1�i�j�k

2

+

1�i+j+k

2

R

i

1+i�j+k

2

�

1+i+j�k

2

R

i

1+i+j�k

2

�

1+i�j+k

2

R

i

�

1�i�j�k

2

+

1�i+j+k

2

R

i

�
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and

S

�1

C

=

1

4

�

1+i+j+k

2

�

1+i�j�k

2

R

i

1�i�j+k

2

+

1�i+j�k

2

R

i

1�i+j�k

2

+

1�i�j+k

2

R

i

�

1+i+j+k

2

�

1+i�j�k

2

R

i

�

:

The solution of the 
omplex linear quaternioni
 di�erential equation is then given by

'(x) = S

C11

exp [� i R

i

x ℄ [S

�1

C11

'(0) + S

�1

C 12

_'(0)℄ +

S

C12

exp [ i x ℄ [S

�1

C 21

'(0) + S

�1

C22

_'(0)℄

=

1

4

f(1� i+ j � k) exp[�x℄� (1 + i� j � k) exp[x℄g+

i+j

2

exp[�ix℄ :
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