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1. Introdution

There is a substantial literature [1℄{[14℄ analyzing the possibility to disuss quantum systems by adopting

quaternioni wave funtions. In the last years, many papers [15℄{[30℄, review papers [31℄{[33℄ and books [34℄{

[36℄ provided a detailed investigation of group theory, eigenvalue problem and sattering theory within

a quaternioni formulation of quantum mehanis and �eld theory. In this ontext, by observing that

the formulation of physial problems in mathematial terms often requires the study of partial di�erential

equations, we develop the neessary theory to solve quaternioni and omplex linear di�erential equations.

The main diÆulty in arrying out the solution of quaternioni di�erential equations is obviously represented

by the non ommutative nature of the quaternioni �eld. The standard methods of resolution break

down and, onsequently, we need to modify the lassial approah. It is not our purpose to develop a

omplete quaternioni theory of di�erential equations. This exeeds the sope of this paper. The main

objetive is to inlude what seemed to be most important for an introdution to this subjet. In partiular,

we restrit ourselves to seond order di�erential equations and give a pratial method to solve suh

equations when quaternioni onstant oeÆient appear. In order to render the exposition lear and self-

ontained and to failitate aess to the individual topis, we reall the de�nition of left/right quaternioni

operators [28, 34, 37, 38℄ and briey disuss the relevant material on quaternioni eigenvalue equation

from [30℄.

The study of quaternioni linear seond order di�erential equations with onstant oeÆients is based

on the expliit resolution of the harateristi quadrati equation. We shall show that the lost of fundamental

theorem of the algebra for quaternions does not represent a problem in solving quaternioni linear seond

order di�erential equations with onstant oeÆients. This approah has the advantage of avoiding the

translation of quaternioni di�erential equations in their omplex ounterpart to �nd their general solution.

From there, we introdue more advaned onepts, like diagonalization and Jordan form for quaternioni

and omplex linear matrix operators, whih are developed in detail in the reent literature [22℄{[30℄ and

we apply them to solve quaternioni and omplex linear seond order di�erential equations with onstant

oeÆients.

As appliation of the mathematial material presented in this paper, we disuss the omplex linear

Shr�odinger equation in presene of quaternioni potentials and solve suh an equation for stationary states

and onstant potentials. We also alulate the relation between the reetion and transmition oeÆients

for the step and square potential and give the quaternioni solution for bound states.

This work was intended as an attempt at motivating the study of quaternioni and omplex linear

di�erential equations in view of their future appliations within a quaternioni formulation of quantum

mehanis. In partiular, our objetive is to understand the role that suh equations ould play in developing

non relativisti quaternioni quantum dynamis and the meaning that quaternioni potentials ould play in

disussing CP violation in the kaon system [4, 35℄.

2. States and operators in quaternioni quantum mehanis

In this setion, we give a brief survey of the basi mathematial tools used in quaternioni quantum mehanis.

The quantum state of a partile is de�ned, at a given instant, by a quaternioni wave funtion interpreted

as a probability amplitude given by

	(r) = [ f

0

+ h � f ℄ (r) ; (1)

where h = (i; j; k), f = (f

1

; f

2

; f

3

) and f

m

: R

3

! R, m = 0; 1; 2; 3. The probabilisti interpretation of this

wave funtion requires that it belong to the Hilbert vetor spae of square-integrable funtions. We shall

denote by F the set of wave funtions omposed of suÆiently regular funtions of this vetor spae. The

same funtion 	(r) an be represented by several distint sets of omponents, eah one orresponding to the

hoie of a partiular basis. With eah pair of elements of F , 	(r) and �(r), we assoiate the quaternioni

salar produt

(	;�) =

Z

d

3

r 	(r) �(r) ; (2)

where

	(r) = [ f

0

� h � f ℄ (r) (3)



Quaternioni di�erential operators 3

represents the quaternioni onjugate of 	(r).

A quaternioni linear operator, O

H

, assoiates with every 	(r) 2 F another wave funtion O

H

	(r) 2 F ,

the orrespondene being linear from the right on H

O

H

[ 	

1

(r) q

1

+	

2

(r) q

2

℄ = [O

H

	

1

(r) ℄ q

1

+ [O

H

	

2

(r) ℄ q

2

;

q

1;2

2 H . Due to the non-ommutative nature of the quaternioni �eld we need to introdue omplex and

real linear quaternioni operators, respetively denoted by O

C

and O

R

, the orrespondene being linear from

the right on C and R

O

C

[ 	

1

(r) z

1

+	

2

(r) z

2

℄ = [O

C

	

1

(r) ℄ z

1

+ [O

C

	

2

(r) ℄ z

2

;

O

R

[ 	

1

(r)�

1

+	

2

(r)�

2

℄ = [O

H

	

1

(r) ℄ �

1

+ [O

H

	

2

(r) ℄ �

2

;

z

1;2

2 C and �

1;2

2 R.

As a onrete illustration of these operators let us onsider the ase of a �nite, say n-dimensional,

quaternioni Hilbert spae. The wave funtion 	(r) will then be a olumn vetor

	 =

0

B

B

B

�

	

1

	

2

.

.

.

	

n

1

C

C

C

A

; 	

1;2;:::;n

2 F :

Quaternioni, omplex and real linear operators will be represented by n� n quaternioni matries

M

n

[A
O℄, where O represents the spae of real operators ating on the omponents of 	 and A =

(A

H

;A

C

;A

R

) denote the real algebras

A

H

: f1 ; L ; R ; L �R g

16

;

A

C

: f1 ; L ; R

i

; LR

i

g

8

;

A

R

: f1 ; Lg

4

;

generated by the left and right operators

L := (L

i

; L

j

; L

k

) ; R := (R

i

; R

j

; R

k

) (4)

and by the mixed operators

L �R := fL

p

R

q

g p; q = i; j; k : (5)

The ation of these operators on the quaternioni wave funtion 	 is given by

L	 � h	 ; R	 � 	h :

The operators L and R satisfy the left/right quaternioni algebra

L

2

i

= L

2

j

= L

2

k

= L

i

L

j

L

k

= R

2

i

= R

2

j

= R

2

k

= R

k

R

j

R

i

= �1 ;

and the following ommutation relations

[L

p

; R

q

℄ = 0 :

3. Spae translations and quaternioni momentum operator

Spae translation operators in quaternioni quantum mehanis are de�ned in the oordinate representation

by the real linear anti-hermitian operator

� � (�

x

; �

y

; �

z

) : (6)

To onstrut an observable momentum operator we must look for an hermitian operator that has all

the properties of the momentum expeted by analogy with the momentum operator in omplex quantum

mehanis. The hoie of the quaternioni linear operator

P

L

= �L

i

~� ; (7)

as hermitian momentum operator, would appear ompletely satisfatory, until we onsider the translation

invariane for the quaternioni Hamiltonian H. Due to the presene of the left ating imaginary unit i
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the momentum operator (7) does not ommute with H. Thus, although this de�nition of the momentum

operator gives an hermitian operator, we must return to the anti-hermitian operator � to get a translation

generator, [�;H℄ = 0. A seond possibility to be onsidered is represented by the omplex linear momentum

operator, introdued by Rotelli in [39℄,

P

R

= �R

i

~� : (8)

The ommutator of P

R

with a quaternioni linear operator O

H

gives

[P

R

;O℄ 	 = ~ [O;�℄ 	i :

Taking O

H

to be a translation invariant quaternioni Hamiltonian H, we have

[P

R

;H℄ = 0 :

However, this seond de�nition of the momentum operator has the following problem: the omplex linear

momentum operator P

R

does not represent a quaternioni hermitian operator. In fat, by omputing the

di�erene

(	;P

R

�)� (�;P

R

	) ;

whih should vanish for an hermitian operator P

R

, we �nd

(	;P

R

�)� (P

R

	;�) = ~ [i; (	;��)℄ ; (9)

whih is in general non-vanishing. There is one important ase in whih the right-hand side of equation (9)

does vanish. The operator P

R

gives a satisfatory de�nition of the hermitian momentum operator when

restrited to a omplex geometry [40℄, that is a omplex projetion of the quaternioni salar produt,

(	;P

R

�)

C

. Note that the assumption of a omplex projetion of the quaternioni salar produt does

not imply omplex wave funtions. The state of quaternioni quantum mehanis with omplex geometry

will be again desribed by vetors of a quaternioni Hilbert spae. In quaternioni quantum mehanis with

omplex geometry observables an be represented by the quaternioni hermitian operator,H , obtained taking

the spetral deomposition of the orresponding anti-hermitian operator, or simply by the omplex linear

operator,�AR

i

, obtained by multiplying the anti-hermitian operatorA by the operator representing the right

ation of the imaginary unit i. These two possibilities represent equivalent hoies in desribing quaternioni

observables within a quaternioni formulation of quantum mehanis based on omplex geometry. In this

senario, the omplex linear operator P

R

has all the expeted properties of the momentum operator. It

satis�es the standard ommutation relations with the oordinates. It is a translation generator. Finally,

it represents a quaternioni observable. A review of quaternioni and omplexi�ed quaternioni quantum

mehanis by adopting a omplex geometry is found in [33℄.

4. Observables in quaternioni quantum mehanis

In a reent paper [30℄, we �nd a detailed disussion of eigenvalue equations within a quaternioni formulation

of quantum mehanis with quaternioni and omplex geometry. Quaternioni eigenvalue equations for

quaternioni and omplex linear operators require eigenvalues from the right. In partiular, without loss

of generality, we an redue the eigenvalue problem for quaternioni and omplex linear anti-hermitian

operators A 2M

n

[A

H


O℄ to

A	

m

= 	

m

�

m

i m = 1; 2; :::; n ; (10)

where �

m

are real eigenvalues.

There is an important di�erene between the struture of hermitian operators in omplex and

quaternioni quantum mehanis. In omplex quantum mehanis we an always trivially relate an anti-

hermitian operator, A, to an hermitian operator, H , by removing a fator i, i.e. A = iH . In general,

due to the non-ommutative nature of the quaternioni �eld, this does not apply to quaternioni quantum

mehanis.

Let f	

m

g be a set of normalized eigenvetors of A with omplex imaginary eigenvalues fi�

m

g. The

anti-hermitian operator A is then represented by

A =

n

X

r=1

	

r

�

r

i	

y

r

; (11)
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where 	

y

:= 	

t

. It is easy to verify that

A	

m

=

n

X

r=1

	

r

�

r

i	

y

r

	

m

=

n

X

r=1

	

r

�

r

i Æ

rm

= 	

m

�

m

i :

In quaternioni quantum mehanis with quaternioni geometry, the observable orresponding to the anti-

hermitian operator A is represented by the following hermitian quaternioni linear operator

H =

n

X

r=1

	

r

�

r

	

y

r

: (12)

The ation of this operators on the eigenvetors 	

m

gives

H 	

m

= 	

m

�

m

:

The eigenvalues of the operator H are real and eigenvetors orresponding to di�erent eigenvalues are

orthogonal.

How to relate the hermitian operator H to the anti-hermitian operator A? A simple alulation shows

that the operators L

i

H and HL

i

does not satisfy the same eigenvalue equation of A. In fat,

L

i

H 	

m

=

"

L

i

 

n

X

r=1

	

r

�

r

	

y

r

!#

	

m

= i

n

X

r=1

	

r

�

r

	

y

r

	

m

= i	

m

�

m

and

H L

i

	

m

=

" 

n

X

r=1

	

r

�

r

	

y

r

!

L

i

#

	

m

=

n

X

r=1

	

r

�

r

	

y

r

i	

m

:

These problems an be avoided by using the right operator R

i

instead of the left operator L

i

. In fat, the

operator HR

i

satis�es the same eigenvalue equation of A,

H R

i

	

m

=

" 

n

X

r=1

	

r

�

r

	

y

r

!

R

i

#

	

m

=

n

X

r=1

	

r

�

r

	

y

r

	

m

i = 	

m

�

m

i :

The eigenvalues of the operator �AR

i

are real and eigenvetors orresponding to di�erent eigenvalues are

orthogonal. The right hermitiity of this operator is reovered within a quaternioni formulation of quantum

mehanis based on omplex geometry.

When the spae state is �nite-dimensional, it is always possible to form a basis with the eigenvetors

of the operators H and �AR

i

. When the spae state is in�nite-dimensional, this is no longer neessarily

the ase. So, it is useful to introdue a new onept, that of an observable. By de�nition, the hermitian

operators H or �AR

i

are observables if the orthonormal system of vetors forms a basis in the state spae.

In quaternioni quantum mehanis with quaternioni geometry, the hermitian operator orresponding

to the anti-hermitian operator A of equation (11) is thus given by the operator H of equation (12). By

adopting a omplex geometry, observables an also be represented by omplex linear hermitian operators

obtained by multiplying the orresponding anti-hermitian operator A by �R

i

. We remark that for omplex

eigenvetors, the operators L

i

H , HL

i

, HR

i

and A redue to the same omplex operator

iH = i

n

X

r=1

�

r

	

r

	

y

r

:

We onlude this setion by giving an expliit example of quaternioni hermitian operators in a �nite

two-dimensional spae state. Let

A =

�

-i 3j

3j i

�

(13)
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be an anti-hermitian operator. An easy omputation shows that the eigenvalues and the eigenvetors of this

operator are given by

f2i ; 4ig and

�

1

p

2

�

i

j

�

;

1

p

2

�

k

1

��

:

It is immediate to verify that iA and Ai are haraterized by omplex eigenvalues and so annot represent

quaternioni observables. In quaternioni quantum mehanis with quaternioni geometry, the quaternioni

observable orresponding to the anti-hermitian operator of equation (13) is given by the hermitian operator

H = 	

1

2i	

y

1

+	

2

4i	

y

2

=

�

3 k

-k 3

�

: (14)

Within a quaternioni quantum mehanis with omplex geometry, a seond equivalent de�nition of the

quaternioni observable orresponding to the anti-hermitian operator of equation (13) is given by the omplex

linear hermitian operator

~

H =

�

-i 3j

3j i

�

R

i

: (15)

5. The quaternioni Shr�odinger equation

For simpliity, we shall assume a one-dimensional desription. In the standard formulation of quantum

mehanis, the wave funtion of a partile whose potential energy is V (x; t) must satisfy the Shr�odinger

equation

i ~ �

t

�(x; t) = H�(x; t)

=

h

�

~

2

2m

�

xx

+ V (x; t)

i

�(x; t) : (16)

Let us modify the previous equation by introduing the quaternioni potential

[V + h � V ℄ (x; t) :

The i-part of this quaternioni potential violates the norm onservation. In fat,

�

t

R

+1

�1

dx�� =

R

+1

�1

dx

�

~

2m

� i �

xx

��

~

2m

�

�

xx

�

�

i��

1

~

� fi;hg � V �

�

=

2

~

R

+1

�1

dx�V

1

� :

The j=k-part of h � V is responsible for T-violation [4℄. To show that, we briey disuss the time reversal

invariane in quaternioni quantum mehanis. The quaternioni Shr�odinger equation in presene of a

quaternioni potential whih preserves norm onservation, is given by

i ~ �

t

�(x; t) = [H� j W ℄ �(x; t) ; (17)

where W 2 C . Evidently, quaternioni onjugation

� ~ �

t

�(x; t) i = H�(x; t) + �(x; t) j W

does not yield a time-reversed version of the original Shr�odinger equation

� i ~ �

t

�

T

(x;�t) = [H� j W ℄ �

T

(x;�t) : (18)

To understand why the T-violation is proportional to the j=k-part of the quaternioni potential, let us

onsider a real potential W . Then, the Shr�odinger equation has a T-invariane. By multiplying the

equation (17) by j from the left, we have

� i ~ �

t

j �(x; t) = [H� j W ℄ j�(x; t) ; W 2 R ;

whih has the same form of equation (18). Thus,

�

T

(x;�t) = j �(x; t) :

A similar disussion applies for imaginary omplex potential W 2 iR. In this ase, we �nd

�

T

(x;�t) = k�(x; t) :

However, when both V

2

and V

3

are non zero, i.eW 2 C , this onstrution does not work, and the quaternioni

physis is T-violating. The system of neutral kaons is the natural andidate to study the presene of e�etive

quaternioni potentials, V +h �V . In studying suh a system, we need of V

1

and V

2;3

in order to inlude the

deay rates of K

S

/K

L

and CP-violation e�ets.
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5.1. Quaternioni stationary states.

For stationary states,

V (x; t) = V (x) and W (x; t) =W (x) ;

we look for solutions of the Shr�odinger equation of the form

�(x; t) = 	(x) �(t) : (19)

Substituting (19) in the quaternioni Shr�odinger equation, we obtain

i ~	(x)

_

�(t) = [H� j W (x) ℄ 	(x) �(t) : (20)

Multiplying by �	(x) i from the left and by �(t) from the right, we �nd

~

_

�(t) �(t) = j�(t)j

2

= 	(x) [� iH+ kW (x) ℄ 	(x) = j	(x)j

2

: (21)

In this equation we have a funtion of t in the left-hand side and a funtion of x in the right-hand side. The

previous equality is only possible if

~

_

�(t) �(t) = j�(t)j

2

= 	(x) [� iH+ kW (x) ℄ 	(x) = j	(x)j

2

= q ; (22)

where q is a quaternioni onstant. The energy operator �iH + kW (x) represents an anti-hermitian

operator. Consequently, its eigenvalues are purely imaginary quaternions, q = h � E. By applying the

unitary transformation u,

u h �E u = � i E ; E =

p

E

2

1

+E

2

2

+E

2

3

;

equation (22) beomes

~u

_

�(t) �(t)u = j�(t)j

2

= u	(x) [� iH + kW (x) ℄ 	(x)u = j	(x)j

2

= � i E : (23)

The solution �(x; t) of the Shr�odinger equation is not modi�ed by this similarity transformation. In fat,

�(x; t)! 	(x)uu �(t) = 	(x) �(t) :

By observing that j�(x; t)j

2

= j	(x)j

2

j�(t)j

2

, the norm onservation implies j�(t)j

2

onstant. Without loss

of generality, we an hoose j�(t)j

2

= 1. Consequently, by equating the �rst and the third term in equation

(23) and solving the orresponding equation, we �nd

�(t) = exp[�iEt=~℄ �(0) ; (24)

with �(0) unitary quaternion. Note that the position of �(0) in equation (24) is very important. In fat,

it an be shown that �(0) exp[�iEt=~℄ is not solution of equation (23). Finally, to omplete the solution

of the quaternioni Shr�odinger equation, we must determine 	(x) by solving the following seond order

di�erential equation

h

i

~

2

2m

�

xx

� i V (x) + kW (x)

i

	(x) = �	(x) i E : (25)

� Real potential

For W (x) = 0, equation (25) beomes

h

~

2

2m

�

xx

� V (x)

i

f[	(x)℄

C

� j [j	(x)℄

C

g = i f[	(x)℄

C

� j [j	(x)℄

C

g i E : (26)

Consequently,

h

~

2

2m

�

xx

� V (x)

i

[	(x)℄

C

= �[	(x)℄

C

E ;

and

h

~

2

2m

�

xx

� V (x)

i

[j	(x)℄

C

= [j	(x)℄

C

E :

By solving these omplex equations, we �nd

	(x) = exp

h

q

2m

~

2

(V �E)x

i

k

1

+ exp

h

�

q

2m

~

2

(V �E)x

i

k

2

+

j

n

exp

h

q

2m

~

2

(V +E)x

i

k

3

+ exp

h

�

q

2m

~

2

(V +E)x

i

k

4

o

;

where k

n

, n = 1; :::;4, are omplex oeÆients determined by the initial onditions.
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� Free partiles

For free partiles, V (x) =W (x) = 0, the previous solution redues to

	(x) = exp

�

i

p

~

x

�

k

1

+ exp

�

�i

p

~

x

�

k

2

+

j

�

exp

�

p

~

x

�

k

3

+ exp

�

�

p

~

x

�

k

4

	

;

where p =

p

2mE. For sattering problems with a wave funtion inident from the left on quaternioni

potentials, we have

	(x) = exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ; (27)

where jrj

2

is the standard oeÆient of reetion and j~r exp[

p

~

x ℄j

2

represents an additional evanesent

probability of reetion. In our study of quaternioni potentials, we shall deal with the retangular potential

barrier of width a. In this ase, the partile is free for x < 0, where the solution is given by (27), and x > a,

where the solution is

	(x) = t exp[ i

p

~

x ℄ + j

~

t exp[�

p

~

x ℄ : (28)

Note that, in equations (27) and (28), we have respetively omitted the omplex exponential solution

exp[�

p

~

x ℄ and exp[

p

~

x ℄ whih are in onit with the boundary ondition that 	(x) remain �nite as

x! �1 and x!1. In equation (28), we have also omitted the omplex exponential solution exp[�i

p

~

x ℄

beause we are onsidering a wave inident from the left.

6. Quaternioni linear di�erential equation

Consider the seond order quaternioni linear di�erential operator

D

H

= �

xx

+ (a

0

+L � a) �

x

+ b

0

+L � b 2 A

H


O :

We are interested in �nding the solution of the quaternioni linear di�erential equation

D

H

'(x) = 0 : (29)

In analogy to the omplex ase, we look for solutions of exponential form

'(x) = exp[qx℄ ;

where q 2 H . To satisfy equation (29), the onstant q has to be a solution of the quaternioni quadrati

equation [41℄{[44℄

q

2

+ (a

0

+ h � a) q + b

0

+ h � b = 0 : (30)

6.1. Quaternioni quadrati equation

To simplify our disussion, it is onvenient to modify equation (30) by removing the real onstant a

0

. To do

this, we introdue a new quaternioni onstant p de�ned by p = q +

a

0

2

. The quadrati equation (30) then

beomes

p

2

+ h � a p+ 

0

+ h �  = 0 ; (31)

where 

0

= b

0

�

a

2

0

4

and  = b �

a

0

2

a. We shall give the solution of equation (31) in terms of real onstant



0

and of the real vetors a and . Let us analyze the following ases:

� a 6= 0,  6= 0:

(i) a�  = 0,

(ii) a �  = 0,

(iii) a � a�  6= 0;

� a = 0,  6= 0;

� a 6= 0,  = 0;

� a =  = 0.

� (i) a� = 0. In this ase a and  are parallel vetors, so equation (31) an be easily redued to a omplex

equation. In fat, by introduing the imaginary unit I = h � a=jaj and observing that h �  = I �, with

� 2 R, we �nd

p

2

+ I jaj p+ 

0

+ I � = 0 ;
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whose omplex solutions are immediately found.

� (ii) a �  = 0. By observing that a,  and a �  are orthogonal vetors, we an rearrange the imaginary

part of p, h � p, in terms of the new basis (a; ;a� ), i.e.

p = p

0

+ h � (xa+ y + z a� ) : (32)

Substituting (32) in equation (31), we obtain the following system of equations for the real variables p

0

, x,

y and z,

R : p

2

0

� (x

2

+ x) jaj

2

� y

2

jj

2

� z

2

jaj

2

jj

2

+ 

0

= 0 ,

h � a : p

0

(1 + 2x) = 0 ,

h �  : 1 + 2 p

0

y � z jaj

2

= 0 ,

h � a�  : y + 2 p

0

z = 0 .

The seond equation, p

0

(1 + 2x) = 0, implies p

0

= 0 and/or x = �

1

2

. For p

0

= 0, it an be shown that the

solution of equation (31), in terms of p

0

, x, y and z, is given by

p

0

= 0 ; x = �

1

2

�

p

� ; y = 0 ; z =

1

jaj

2

; (33)

where

� =

1

4

+

1

jaj

2

�



0

�

jj

2

jaj

2

�

� 0 :

For x = �

1

2

, we �nd

y = �

2 p

0

4 p

2

0

+ jaj

2

; z =

1

4 p

2

0

+ jaj

2

; (34)

and

p

2

0

=

1

4

h

� 2

p



2

0

+ jj

2

� 2 

0

� jaj

2

i

:

It is easily veri�ed that

� � 0 )

p



2

0

+ jj

2

� 

0

�

jaj

2

2

;

thus

p

0

= �

1

2

r

2

�

p



2

0

+ jj

2

� 

0

�

� jaj

2

: (35)

Summarizing, for � 6= 0, we have two quaternioni solutions, p

1

6= p

2

,

� > 0 : p

0

= 0 ;

x = �

1

2

�

p

� ;

y = 0 ;

z =

1

jaj

2

; (36)

� < 0 : p

0

= �

1

2

r

2

�

p



2

0

+ jj

2

� 

0

�

� jaj

2

;

x = �

1

2

;

y = �

2 p

0

4 p

2

0

+ jaj

2

;

z =

1

4 p

2

0

+ jaj

2

: (37)

For � = 0, these solutions tend to the same solution p

1

= p

2

given by

� = 0 : p

0

= 0 ; x = �

1

2

; y = 0 ; z =

1

jaj

2

: (38)
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� (iii) a � a �  6= 0. In disussing this ase, we introdue the vetor d =  � d

0

a, d

0

= a � =jaj

2

and the

imaginary part of p in terms of the orthogonal vetors a, d and a� d,

p = p

0

+ h � (xa+ y d+ z a� d) : (39)

By using this deomposition, from equation (31) we obtain the following system of real equations

R : p

2

0

� (x

2

+ x) jaj

2

� y

2

jdj

2

� z

2

jaj

2

jdj

2

+ 

0

= 0 ,

h � a : p

0

(1 + 2x) + d

0

= 0 ,

h � d ; 1 + 2 p

0

y � z jaj

2

= 0 ,

h � a� d : y + 2 p

0

z = 0 .

The seond equation of this system, p

0

(1 + 2x) + d

0

= 0, implies p

0

6= 0 sine d

0

6= 0. Therefore, we have

x = �

p

0

+ d

0

2p

0

; y = �

2p

0

4p

2

0

+ jaj

2

; z =

1

4p

2

0

+ jaj

2

; (40)

and

16w

3

+ 8 [jaj

2

+ 2

0

℄w

2

+ 4

�

jaj

2

(

0

� d

2

0

) +

jaj

4

4

� jdj

2

�

w � d

2

0

jaj

4

= 0 ; (41)

where w = p

2

0

. Equation (41) has only one real positive solution [41℄, w = �

2

, � 2 R. This implies p

0

= ��.

Thus, we also �nd two quaternioni solutions.

� a = 0 and  6= 0. By introduing the imaginary omplex unit I = h � =jj, we an redue equation (31)

to the following omplex equation

p

2

+ 

0

+ I jj = 0 :

� a 6= 0 and  = 0. This ase is similar to the previous one. We introdue the imaginary omplex unit

I = h � a=jaj and redue equation (31) to the omplex equation

p

2

+ I jaj p+ 

0

= 0 :

� a =  = 0. Equation (31) beomes

p

2

+ 

0

= 0 :

For 

0

= ��

2

, � 2 R, we �nd two real solutions. For 

0

= �

2

, we obtain an in�nite number of quaternioni

solutions, i.e. p = h � p, where jpj = j�j.

Let us resume our disussion on quaternioni linear quadrati equation. For a = 0 and/or  = 0 and for

a�  = 0 we an redue quaternioni linear quadrati equations to omplex equations. For non null vetors

satisfying a �  = 0 or a � a �  6= 0, we have e�etive quaternioni equations. In these ases, we always

�nd two quaternioni solutions (36), (37) and (40-41). For a �  = 0 and � = 0, these solutions tend to the

same solution (38). Finally, the fundamental theorem of algebra is lost for a restrited lass of quaternioni

quadrati linear equations, namely

q

2

+ �

2

= 0 ; � 2 R :

6.2. Seond order quaternioni di�erential equations with onstant oeÆients

The most general solution of equation (29) is

'(x) = '

1

(x) 

1

+ '

2

(x) 

2

;

where '

1

(x) and '

2

(x) represent two linear independent solutions of equation (29) and 

1

and 

2

are

quaternioni onstant �xed by the initial onditions. In analogy to the omplex ase, we an distinguish

between quaternioni linear dependent and independent solutions by onstruting a Wronskian funtional. To

do this, we need to de�ne a quaternioni determinant. Due to the non-ommutative nature of quaternions, the

standard de�nition of determinant must be revised. The study of quaternioni, omplex and real funtionals,
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extending the omplex determinant to quaternioni matries, has been extensively developed in quaternioni

linear algebra [45℄{[48℄. In a reent paper [49℄, we �nd an interesting disussion on the impossibility to obtain

a quaternioni funtional with the main properties of the omplex determinant. For quaternioni matries,

M , we an de�ne a real positive funtional, jdetM j, whih redues to the absolute value of the standard

determinant for omplex matries. This allows to onstrut a real positive Wronskian

W(x) =

�

�

�

�

det

�

'

1

(x) '

2

(x)

_'

1

(x) _'

2

(x)

�

�

�

�

�

= j'

1

(x)j j _'

2

(x)� _'

1

(x)'

�1

1

(x)'

2

(x)j

= j'

2

(x)j j _'

1

(x)� _'

2

(x)'

�1

2

(x)'

1

(x)j

= j _'

1

(x)j j'

2

(x)� '

1

(x) _'

�1

1

(x) _'

2

(x)j

= j _'

2

(x)j j'

1

(x)� '

2

(x) _'

�1

2

(x) _'

1

(x)j :

Two quaternioni solutions

'

1;2

(x) = exp[ q

1;2

x ℄ = exp[ ( p

1;2

�

�

a

0

2

�

x ℄

are linearly independent over H if and only if the matrix

�

'

1

(x) '

2

(x)

_'

1

(x) _'

2

(x)

�

is invertible. This implies

W (x) = jp

1

� p

2

j j exp[q

1

x℄j j exp[q

2

x℄j 6= 0 :

For p

1

6= p

2

, the solution of equation (29) is then given by

'(x) = exp[�

a

0

2

x℄ fexp[p

1

x℄ 

1

+ exp[p

2

x℄ 

2

g : (42)

Let us now observe that the fundamental theorem of algebra is lost for a restrited lass of quaternioni

quadrati equation, i.e. p

2

+ �

2

= 0 where � 2 R. For these equations we �nd an in�nite number of

solutions, p = h � � with j�j

2

= �

2

. Nevertheless, the general solution of the seond order di�erential

equation

�'(x) + �

2

'(x) = 0 ; (43)

is also expressed in terms of two linearly independent exponential solutions

'(x) = exp[i �x℄ 

1

+ exp[�i � x℄ 

2

: (44)

Note that any other exponential solution, exp[h �� x℄, an be written as linear ombination of exp[i � x℄ and

exp[�i �x℄,

exp[h ��x℄ =

1

2�

fexp[i �x℄ (�� ih � �) + exp[�i � x℄ (�+ ih � �)g :

As onsequene, the lost of the fundamental theorem of algebra for quaternions does not represent an obstale

in solving seond order quaternioni linear di�erential equations with onstant oeÆients. To omplete our

disussion, we have to examine the ase p

1

= p

2

. A �rst solution of the di�erential equation (29) is obviously

given by

�(x) = exp

nh

h �

�

a�b

jaj

2

�

a

2

�

�

a

0

2

i

x

o

:

For a� b = 0, we an immediately obtain a seond linearly independent solution by multiplying exp[�

a

2

x℄

by x, �(x) = x �(x). For a� b 6= 0, the seond linearly independent solution takes a more ompliate form,

i.e.

�(x) =

�

x+

h�a

jaj

2

�

�(x) : (45)

It an easily be shown that �(x) is solution of the di�erential equation (29),

��(x) + a _�(x) + b �(x) =

h

x (q

2

+ a q + b) + 2 q + a+

h�a

jaj

2

(q

2

+ a q) + b

h�a

jaj

2

i

�(x)

=

�

2 q + a+

h

b ;

h�a

jaj

2

i�

�(x)

=

�

2h �

a�b

jaj

2

+

h

h � b ;

h�a

jaj

2

i�

�(x)

= 0 :
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Finally, for p

1

= p

2

= p = h �

�

a�b

jaj

2

�

a

2

�

, as general solution of the di�erential equation (29), we �nd

'(x) = exp[�

a

0

2

x℄

n

exp[p x℄ 

1

+

�

x+

h�a

jaj

2

�

exp[p x℄ 

2

o

: (46)

6.3. Diagonalization and Jordan form

To �nd the general solution of linear di�erential equations, we an also use quaternioni formulations of

eigenvalue equations, matrix diagonalization and Jordan form. The quaternioni linear di�erential equation

(29) an be written in matrix form as follows

_

�(x) =M �(x) ; (47)

where

M =

�

0 1

-b -a

�

and �(x) =

�

'(x)

_'(x)

�

:

The solution of the matrix equation (47) is given by

�(x) = exp[M x℄ �(0) ; (48)

where �(0) represents a onstant quaternioni olumn vetor determined by the initial onditions '(0) and

_'(0). Quaternioni linear 2� 2 matrix operators satisfy right eigenvalue equations

M � = � q : (49)

Without loss of generality, we an work with omplex eigenvalue equations. By setting 	 = �u, from the

previous equation, we have

M 	 =M �u = � q u = �uuqu = 	 z ; (50)

where z 2 C and u is a unitary quaternion. In a reent paper [30℄, we �nd a omplete disussion of

the eigenvalue equation for quaternioni matrix operators. In suh a paper was shown that the omplex

ounterpart of the matrix M has an eigenvalue spetrum haraterized by eigenvalues whih appear in

onjugate pairs fz

1

; z

1

; z

2

; z

2

g. Let 	

1

and 	

2

be the quaternioni eigenvetors orresponding to the omplex

eigenvalues z

1

and z

2

M 	

1

= 	

1

z

1

and M 	

2

= 	

2

z

2

:

It an be shown that for jz

1

j 6= jz

2

j, the eigenvetors 	

1

and 	

2

are linearly independent on H and

onsequently there exists a 2� 2 quaternioni matrix S = [	

1

	

2

℄ whih diagonalizes M ,

exp[M x℄ = S exp

��

z

1

0

0 z

2

�

x

�

S

�1

= S

�

exp[z

1

x℄ 0

0 exp[z

2

x℄

�

S

�1

:

In this ase, the general solution of the quaternioni di�erential equation an be written in terms of the

elements of the matries S and S

�1

and of the omplex eigenvalues z

1

and z

2

,

�

'(x)

_'(x)

�

=

�

S

11

exp[z

1

x℄ S

12

exp[z

2

x℄

S

21

exp[z

1

x℄ S

22

exp[z

2

x℄

� �

S

�1

11

'(0) + S

�1

12

_'(0)

S

�1

21

'(0) + S

�1

22

_'(0)

�

:

Hene,

'(x) = S

11

exp[z

1

x℄ [S

�1

11

'(0) + S

�1

12

_'(0)℄ +

S

12

exp[z

2

x℄ [S

�1

21

'(0) + S

�1

22

_'(0)℄

= exp

�

S

11

z

1

(S

11

)

�1

x

�

S

11

[S

�1

11

'(0) + S

�1

12

_'(0)℄ +

exp

�

S

12

z

2

(S

12

)

�1

x

�

S

12

[S

�1

21

'(0) + S

�1

22

_'(0)℄

= exp

�

S

21

(S

11

)

�1

x

�

S

11

[S

�1

11

'(0) + S

�1

12

_'(0)℄ +

exp

�

S

22

(S

12

)

�1

x

�

S

12

[S

�1

21

'(0) + S

�1

22

_'(0)℄ : (51)
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We remark that a di�erent hoie of the eigenvalue spetrum does not modify the solution (51). In fat, by

taking the following quaternioni eigenvalue spetrum

f q

1

; q

2

g = fu

1

z

1

u

1

; u

2

z

2

u

2

g ; jq

1

j 6= jq

2

j ; (52)

and observing that the orresponding linearly independent eigenvetors are given by

f�

1

= 	

1

u

1

; �

2

= 	

2

u

2

g ; (53)

we obtain

M = [�

1

�

2

℄ diag fq

1

; q

2

g [ �

1

�

2

℄

�1

= [	

1

u

1

	

2

u

2

℄ diag fu

1

z

1

u

1

; u

2

z

2

u

2

g [ 	

1

u

1

	

2

u

2

℄

�1

= [	

1

	

2

℄ diag fz

1

; z

2

g [ 	

1

	

2

℄

�1

:

Let us now disuss the ase jz

1

j = jz

2

j. If the eigenvetors f	

a

; 	

b

g, orresponding to the eigenvalue

spetrum f z ; z g, are linearly independent on H , we an obviously repeat the previous disussion and

diagonalize the matrix operator M by the 2� 2 quaternioni matrix U = [	

1

	

2

℄. Then, we �nd the

'(x) = exp

�

U

11

z (U

11

)

�1

x

�

U

11

[U

�1

11

'(0) + U

�1

12

_'(0)℄ +

exp

�

U

12

z (U

12

)

�1

x

�

U

12

[U

�1

21

'(0) + U

�1

22

_'(0)℄

= exp

�

U

21

(U

11

)

�1

x

�

U

11

[U

�1

11

'(0) + U

�1

12

_'(0)℄ +

exp

�

U

22

(U

12

)

�1

x

�

U

12

[U

�1

21

'(0) + U

�1

22

_'(0)℄ : (54)

For linear dependent eigenvetors, we annot onstrut a matrix whih diagonalizes the matrix operator M .

Nevertheless, we an transform the matrix operator M in Jordan form

M = J

�

z 1

0 z

�

J

�1

: (55)

It follows that the solution of our quaternioni di�erential equation an be written as

�(x) = J exp

��

z 1

0 z

�

x

�

J

�1

�(0)

=

�

J

11

x J

11

+ J

12

J

21

x J

21

+ J

22

�

exp[zx℄

�

J

�1

11

'(0) + J

�1

12

_'(0)

J

�1

21

'(0) + J

�1

22

_'(0)

�

:

Thus,

'(x) = J

11

exp[z x℄ [J

�1

11

'(0) + J

�1

12

_'(0)℄ +

(x J

11

+ J

12

) exp[z x℄ [J

�1

21

'(0) + J

�1

22

_'(0)℄

= exp

�

J

11

z (J

11

)

�1

x

�

J

11

[J

�1

11

'(0) + J

�1

12

_'(0)℄ +

�

x+ J

12

(J

11

)

�1

�

exp

�

J

11

z (J

11

)

�1

x

�

�

J

11

[J

�1

21

'(0) + J

�1

22

_'(0)℄

= exp

�

J

21

(J

11

)

�1

x

�

J

11

[J

�1

11

'(0) + J

�1

12

_'(0)℄ +

�

x+ J

12

(J

11

)

�1

�

exp

�

J

21

(J

11

)

�1

x

�

�

J

11

[J

�1

21

'(0) + J

�1

22

_'(0)℄ : (56)

Finally, the general solution of the quaternioni di�erential equation (29) an be given by solving the

orresponding eigenvalue problem. We onlude this setion, by observing that the quaternioni exponential

solution exp[q x℄ an also be written as u exp[z x℄, where q = u z u

�1

. The elements of the similarity

transformations S, U or J and the omplex eigenvalue spetrum of M determine the quaternion u and

the omplex number z. This form for exponential solutions will be very useful in solving omplex linear

di�erential equations with onstant oeÆients. In fat, due to the presene of the right ating operator R

i

,

we annot use quaternioni exponential solutions for omplex linear di�erential equations.
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7. Complex linear quaternioni di�erential equations

Consider now the seond order omplex linear quaternioni di�erential operator

D

C

= [a

02

+L � a

2

+ (b

02

+L � b

2

) R

i

℄ �

xx

+

[a

01

+L � a

1

+ (b

01

+L � b

1

) R

i

℄ �

x

+

a

00

+L � a

0

+ (b

00

+L � b

0

) R

i

2 A

C


O

and look for solutions of the omplex linear quaternioni di�erential equation

D

C

'(x) = 0 : (57)

As remarked in the previous setion, the general solution of the omplex linear quaternioni di�erential

equation (57) annot be given in terms of quaternioni exponentials. In matrix form, equation (57) reads

_

�(x) =M

C

�(x) ; (58)

where

M

C

=

�

0 1

-b

C

-a

C

�

and �(x) =

�

'(x)

_'(x)

�

:

The omplex ounterpart of omplex linear quaternioni matrix operator M

C

has an eigenvalue spetrum

haraterized by four omplex eigenvalues fz

1

; z

2

; z

3

; z

4

g. It an be shown that M

C

is diagonalizable if and

only if its omplex ounterpart is diagonalizable. For diagonalizable matrix operator M

C

, we an �nd a

omplex linear quaternioni linear similarity transformation S

C

whih redues the matrix operator M

C

to

diagonal form [30℄

M

C

= S

C

�

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

0

0

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

�

S

�1

C

:

It is immediate to verify that

� �

1

0

�

;

�

j

0

�

;

�

0

1

�

;

�

0

j

� �

are eigenvetors of the diagonal matrix operator

�

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

0

0

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

�

with right omplex eigenvalues z

1

, z

2

, z

3

and z

4

. The general solution of the di�erential equation (57) an

be given in terms of these omplex eigenvalues,

'(x) = S

C11

exp

��

z

1

+z

2

2

+

z

1

�z

2

2i

R

i

�

x

�

[S

�1

C11

'(0) + S

�1

C 12

_'(0)℄ +

S

C12

exp

��

z

3

+z

4

2

+

z

3

�z

4

2i

R

i

��

[S

�1

C21

'(0) + S

�1

C22

_'(0)℄

= u

1

exp[z

1

x℄ k

1

+ u

2

exp[z

2

x℄ k

2

+

u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

; (59)

where k

n

are omplex oeÆients determined by the initial onditions. This solution holds for diagonalizable

matrix operator M

C

. For not diagonalizable matrix operators we need to �nd the similarity transformation

J

C

whih redues M

C

to the Jordan form. It an be shown that for equal eigenvalues, z

1

= z

2

, the general

solution of the di�erential equation (57) is

'(x) = u exp[z x℄ k

1

+ (ux+ ~u) exp[z x℄ k

2

+ u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

: (60)
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7.1. Shr�odinger equation

Let us now examine the omplex linear Shr�odinger equation in presene of a onstant quaternioni potential,

h

~

2

2m

�

xx

� V + j W

i

	(x) = i	(x) i E : (61)

In this ase, the omplex linear matrix operator

M

C

=

�

0 1

-b

C

0

�

; b

C

= V � j W + i E R

i

;

represents a diagonalizable operator. Consequently, the general solution of the Shr�odinger equation is given

by

'(x) = u

1

exp[z

1

x℄ k

1

+ u

2

exp[z

2

x℄ k

2

+ u

3

exp[z

3

x℄ k

3

+ u

4

exp[z

4

x℄ k

4

: (62)

The quaternions u

n

and the omplex eigenvalues z

n

are obtained by solving the eigenvalue equation for

the omplex linear operator M

C

. We an also obtain the general solution of equation (61) by substituting

u exp[

q

2m

~

2

z x℄ in the Shr�odinger equation. We �nd the following quaternioni equation

u z

2

� (V � j W )u� i E u i = 0 ;

where u = z

u

+ j ~z

u

. This equation an be written as two omplex equations

[z

2

� (V �E)℄ z

u

�W ~z

u

= [z

2

� (V +E)℄ ~z

u

+W z

u

= 0 :

An easy alulation shows that z must satis�es the omplex equation

z

4

� 2V z

2

+ V

2

+ jW j

2

�E

2

= 0 ; (63)

whose roots are

z

1;2

= �

q

V �

p

E

2

� jW j

2

= � z

�

and z

3;4

= �

q

V +

p

E

2

� jW j

2

= � z

+

: (64)

By setting (u

1;2

)

C

= (�ju

3;4

)

C

= 1, we �nd

u

�

=

�

1 + j

W

E+

p

E

2

�jW j

2

�

and u

+

=

�

W

E+

p

E

2

�jW j

2

+ j

�

: (65)

The solution of the omplex linear quaternioni Shr�odinger equation is then given by

	(x) = u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

: (66)

Equation (63) an also be obtained by multiplying the omplex linear Shr�odinger equation (61) from the

left by the operator

~

2

2m

�

xx

� V � j W :

This gives

h�

~

2

2m

�

2

�

xxxx

�2

~

2

2m

V �

xx

+V

2

+ jW j

2

i

	(x) = i

h

~

2

2m

�

xx

� V + j W

i

	(x) i E

= E

2

	(x) .

By substituting the exponential solution u exp[

q

2m

~

2

z x℄ in the previous equation, we immediately re-obtain

equation (63).

8. Quaternioni onstant potentials

Of all Shr�odinger equations the one for a onstant potential is mathematially the simplest. The reason for

resuming the study of the Shr�odinger equation with suh a potential is that the qualitative features of a

physial potential an often be approximated reasonably well by a potential whih is pieed together from a

number of onstant portions.
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8.1. The potential step

Let us onsider the quaternioni potential step,

V (x)� j W (x) =

�

0 x < 0

V � j W x > 0

;

where V and W represents onstant potentials. For sattering problems with a wave funtion inident from

the left on the quaternioni potential step, the omplex linear quaternioni Shr�odinger equation has solution

	(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x < 0 :

exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ;

x > 0 :

u

�

t exp[

q

2m

~

2

z

�

x℄ + u

+

~

t exp[�

q

2m

~

2

z

+

x℄ [E >

p

V

2

+ jW j

2

℄ ;

u

�

t exp[�

q

2m

~

2

z

�

x℄ + u

+

~

t exp[�

q

2m

~

2

z

+

x℄ [E <

p

V

2

+ jW j

2

℄ :

(67)

where r, ~r, t and

~

t are omplex oeÆients to be determined by mathing the wave funtion 	(x) and its

slope at the disontinuity of the potential x = 0.

For E >

p

V

2

+ jW j

2

, the omplex exponential solutions of the quaternioni Shr�odinger equation are

haraterized by

z

�

= i

q

p

E

2

� jW j

2

� V 2 iR and z

+

=

q

p

E

2

� jW j

2

+ V 2 R :

The omplex linearly independent solutions

u

�

exp[�

q

2m

~

2

z

�

x℄ and u

+

exp[

q

2m

~

2

z

+

x℄

have been omitted, k

2

= k

3

= 0 in (66), beause we are onsidering a wave inident from the left and beause

the seond omplex exponential solution, exp[

q

2m

~

2

z

+

x℄, is in onit with the boundary ondition that 	(x)

remain �nite as x!1. The standard result of omplex quantum mehanis are immediately reovered by

onsidering W = 0 and taking the omplex part of the quaternioni solution.

For E <

p

V

2

+ jW j

2

, the omplex exponential solutions of the quaternioni Shr�odinger equation are

haraterized by

z

�

=

q

V �

p

E

2

� jW j

2

; z

+

=

q

V +

p

E

2

� jW j

2

2 R [E > jW j ℄ ;

z

�

= (V

2

+ jW j

2

�E

2

)

1

4

exp[� i

�

2

℄ ; tan � =

p

jW j

2

�E

2

V

2 C [E < jW j ℄ :

The omplex linearly independent solutions

u

�

exp[

q

2m

~

2

z

�

x℄ and u

+

exp[

q

2m

~

2

z

+

x℄

have been omitted, k

1

= k

3

= 0 in (66), beause they are in onit with the boundary ondition that 	(x)

remain �nite as x!1.

A relation between the omplex oeÆients of reetion and transmission an immediately be obtained

by the ontinuity equation

�

t

�(x; t) + �

x

J(x; t) = 0 ; (68)

where

�(x; t) = �(x; t) �(x; t) ;

and

J(x; t) =

~

2m

� �

�

x

�(x; t)

�

i�(x; t)��(x; t) i �

x

�(x; t)

	

:

Note that, due to the non ommutative nature of the quaternioni wave funtions, the position of the

imaginary unit i in the probability urrent density J(x; t) is important to reover a ontinuity equation in

quaternioni quantum mehanis. For stationary states, �(x; t) = 	(x) exp[�i

E

~

t ℄�(0), it an easily be

shown that the probability urrent density

J(x; t) =

~

2m

�(0) exp[ i

E

~

t ℄

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

exp[�i

E

~

t ℄ �(0) :
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must be independent of x, J(x; t) = f(t). Hene,

~

2m

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

= exp[�i

E

~

t ℄ �(0) f(t) �(0) exp[ i

E

~

t ℄ = � ;

where � is a real onstant. This implies that the quantity

J =

p

2m

� �

�

x

	(x)

�

i	(x)�	(x) i �

x

	(x)

	

has the same value at all points x. In the free potential region, x < 0, we �nd

J

�

=

p

m

( 1� jrj

2

) :

In the potential region, x > 0, we obtain

J

+

=

8

<

:

r

2

m

�

p

E

2

� jW j

2

� V

�

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

[E >

p

V

2

+ jW j

2

℄ ;

0 [E <

p

V

2

+ jW j

2

℄ :

Finally, for stationary states, the ontinuity equation leads to

jrj

2

+

p

E

2

�jW j

2

�V

E

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

= 1 [E >

p

V

2

+ jW j

2

℄ ;

jrj

2

= 1 [E <

p

V

2

+ jW j

2

℄ :

(69)

Thus, by using the onept of a probability urrent, we an de�ne the following oeÆients of transmission

and reetion

R = jrj

2

; T =

p

E

2

�jW j

2

�V

E

�

1�

�

jW j

E+

p

E

2

�jW j

2

�

2

�

jtj

2

[E >

p

V

2

+ jW j

2

℄ ;

R = jrj

2

; T = 0 [E <

p

V

2

+ jW j

2

℄ :

These oeÆients give the probability for the partile, arriving from x = �1, to pass the potential step at

x = 0 or to turn bak. The oeÆients R and T depend only on the ratios E=V and jW j=V . The preditions

of omplex quantum mehanis are reovered by setting W = 0.

8.2. The retangular potential barrier

In our study of quaternioni potentials, we now reah the retangular potential barrier,

V (x)� j W (x) =

8

<

:

0 x < 0

V � j W 0 < x < a

0 x > a

:

For sattering problems with a wave funtion inident from the left on the quaternioni potential barrier,

the omplex linear quaternioni Shr�odinger equation has solution

	(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x < 0 :

exp[ i

p

~

x ℄ + r exp[�i

p

~

x ℄ + j ~r exp[

p

~

x ℄ ;

0 < x < a :

u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

;

x > a :

t exp[ i

p

~

x ℄ + j

~

t exp[�

p

~

x ℄ :

(70)

The omplex oeÆients r, ~r, t and

~

t are determined by mathing the wave funtion 	(x) and its slope at

the disontinuity of the potential x = 0 and will depend on jW j.

By using the ontinuity equation, we immediately �nd the following relation between the transmission,

T = jtj

2

, and reetion, R = jrj

2

, oeÆients

R+ T = 1 : (71)
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8.3. The retangular potential well

Finally, we briey disuss the quaternioni retangular potential well,

V (x)� j W (x) =

8

<

:

0 x < 0

�V + j W 0 < x < a

0 x > a

:

In the potential region, the solution of the omplex linear quaternioni Shr�odinger equation is then given

by

	(x) = u

�

n

exp[

q

2m

~

2

z

�

x℄ k

1

+ exp[�

q

2m

~

2

z

�

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

z

+

x℄ k

3

+ exp[�

q

2m

~

2

z

+

x℄ k

4

o

; (72)

where

u

�

=

�

1� j

W

E+

p

E

2

�jW j

2

�

; u

+

=

�

j �

W

E+

p

E

2

�jW j

2

�

:

and

z

�

= i

q

p

E

2

� jW j

2

+ V ; z

+

=

q

p

E

2

� jW j

2

� V :

Depending on whether the energy is positive or negative, we distinguish two separate ases. If E > 0, the

partile is unon�ned and is sattered by the potential; if E < 0, it is on�ned and in a bound state. We

limit ourselves to disussing the ase E < 0. For jW j < jEj <

p

V

2

+ jW j

2

, solution (72) beomes

u

�

n

exp[i

q

2m

~

2

q

p

E

2

� jW j

2

+ V x℄ k

1

+ exp[� i

q

2m

~

2

q

p

E

2

� jW j

2

+ V x℄ k

2

o

+

u

+

n

exp[i

q

2m

~

2

q

V �

p

E

2

� jW j

2

x℄ k

3

+ exp[� i

q

2m

~

2

q

V �

p

E

2

� jW j

2

x℄ k

4

o

:

(73)

For jEj < jW j, the solution is given by

u

�

n

exp[

q

2m

~

2

� exp[i

�+�

2

x℄ k

1

+ exp[�

q

2m

~

2

� exp[i

���

2

x℄ k

2

o

+

u

+

n

exp[

q

2m

~

2

� exp[i

���

2

℄x℄ k

3

+ exp[�

q

2m

~

2

� exp[� i

�+�

2

x℄ k

4

o

;

(74)

where � =

p

V

2

+ jW j

2

� E

2

and tan � =

p

jW j

2

�E

2

V

. In the region of zero potential, by using the boundary

onditions at large distanes, we �nd

	(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x < 0 :

exp[

q

2m

~

2

jEjx ℄ 

1

+ j exp[� i

q

2m

~

2

jEjx ℄ 

4

;

x > a :

exp[�

q

2m

~

2

jEjx ℄ d

2

+ j exp[ i

q

2m

~

2

jEjx ℄ d

3

:

(75)

The mathing onditions at the disontinuities of the potential yield the energy eigenvalues.

9. Conlusions

In this paper, we have disussed the resolution of quaternioni and omplex linear di�erential equations

with onstant oeÆients within a quaternioni formulation of quantum mehanis. The use of quaternioni

mathematial strutures in solving the omplex linear Shr�odinger equation ould represent an important

diretion for the searh of new physis. The open question whether quaternions ould play a signi�ant role

in quantum mehanis is stritly related to the whole understanding of resolutions of quaternioni di�erential

equations and eigenvalue problems. The investigation presented in this work is only a �rst step towards a

whole theory of quaternioni di�erential, integral and funtional equations. Obviously, due to the great

variety of problems in using a non-ommutative �eld, it is very diÆult to de�ne the preise limit of the

subjet.
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Appendix A. Quaternioni linear quadrati equations

In this appendix, we give some examples of quaternioni linear quadrati equations, see ases (i)-(iii) of

subsetion 6.1, and �nd their solutions.

� (i): p

2

+

p

2 (i+ j) p� 1� 2

p

2 (i+ j) = 0.

In solving suh an equation we observe that a = (

p

2;

p

2; 0) and  = �(2

p

2; 2

p

2; 0) are parallel vetors,

 = �2a. Consequently, by introduing the omplex imaginary unit I = (i + j)=

p

2, we an redue the

quadrati quaternioni equation to the following omplex equation,

p

2

+ 2 I p� 1� 4 I = 0 ;

whose solutions are p

1;2

= �I � 2

p

I. It follows that the quaternioni solutions are

p

1;2

= �

p

2�

�

1�

p

2

�

i+ j

p

2

:

� (ii): p

2

+ i p+

1

2

k = 0, � = 0.

We note that a = (1; 0; 0) and  = (0; 0;

1

2

) are orthogonal vetors and � = 0. So, we �nd two oinident

quaternioni solutions given by

p = �

1

2

h � a+ h � a�  = �

i+ j

2

:

� (ii): p

2

+ j p+ 1� k = 0, � > 0.

In this ase, a = (0; 1; 0) and  = (0; 0;�1) are orthogonal vetors, 

0

= 1 and � = 1=4. So,

p

0

= 0 ; x = �

1

2

�

1

2

; y = 0 ; z = 1 :

By observing that

h � a = j ; h �  = �k ; h � a�  = �i ;

we �nd the following quaternioni solutions

p

1

= �i and p

2

= �(i+ j) :

� (ii): p

2

+ k p+ j = 0, � < 0.

We have a = (0; 0; 1),  = (0; 1; 0) and 

0

= 0. Then a �  = 0 and � = �3=4. So,

p

0

= �

1

2

; x = �

1

2

; y = �

1

2

; z =

1

2

:

In this ase,

h � a = k ; h �  = j ; h � a�  = �i ;

thus, the solutions are given by

p

1;2

=

1

2

(�1� i� j � k) :

� (iii): p

2

+ i p+ 1 + i+ k = 0.
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We have a = (1; 0; 0),  = (1; 0; 1) and 

0

= 1. In this ase a �  6= 0, so we introdue the quaternion

d

0

+h �d = 1+ k, whose vetorial part d = � d

0

a = (0; 0; 1) is orthogonal to a. The imaginary part of our

solution will be given in terms of the imaginary quaternions

h � a = i ; h � d = k ; h � a� d = �j :

The real part of p is determined by solving the equation

16 p

6

0

+ 24 p

4

0

� 3 p

2

0

� 1 = 0 :

The real positive solution is given by p

2

0

=

1

4

. Consequently,

p

0

= �

1

2

; x = �

1

2

� 1 ; y = �

1

2

; z =

1

2

:

The quaternioni solutions are

p

1

=

1

2

(1� 3i� j � k) and p

2

= �

1

2

(1� i+ j � k) :

Appendix B. Quaternioni linear di�erential equations

We solve quaternioni linear di�erential equations whose harateristi equations are given by the examples

(i)-(iii) in the previous appendix.

� (i): �'(x) +

p

2 ( i+ j ) _'(x) �

�

1 + 2

p

2 ( i+ j )

�

'(x) = 0 ; '(0) = i ; _'(0) =

1+k

p

2

.

The exponential exp[ p x ℄ is solution of the previous di�erential equation if and only if the quaternion p

satis�es the following quadrati equation

p

2

+

p

2 (i+ j) p� 1� 2

p

2 (i+ j) = 0 ;

whose solutions are given by

p

1;2

= �

p

2�

�

1�

p

2

�

i+ j

p

2

:

Consequently,

'(x) = exp

��

p

2�

�

1�

p

2

�

i+ j

p

2

�

x

�



1

+

exp

��

�

p

2�

�

1 +

p

2

�

i+ j

p

2

�

x

�



2

:

By using the initial onditions, we �nd

'(x) = exp

�

�

i+ j

p

2

x

�

osh

��

p

2 +

i+ j

p

2

�

x

�

i :

� (ii): �'(x) + ( 1 + i ) _'(x) +

2+i+k

4

'(x) = 0 ; '(0) = 0 ; _'(0) = �

1+i+j

2

.

We look for exponential solutions of the form '(x) = exp[ q x ℄ = exp[ ( p �

1

2

)x ℄. The quaternion p must

satisfy the quadrati equation

p

2

+ i p+

1

2

k = 0 :

This equation implies

p

1

= p

2

= �

i+ j

2

:

Thus,

'

1

(x) = exp

�

�

1 + i+ j

2

x

�

:

The seond linearly independent solution is given by

'

2

(x) = (x+ i ) exp

�

�

1 + i+ j

2

x

�

:
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By using the initial onditions, we �nd

'(x) = f exp[ q x ℄ + (x+ i ) exp[ q x ℄ i g [ 1 + q

�1

( 1 + i q ) i ℄

�1

;

where q = � ( 1 + i+ j ) = 2.

� (ii): �'(x) + ( 2 + j ) _'(x) + ( 2 + j � k ) '(x) = 0 ; '(0) =

1�i

2

; _'(0) = j .

The exponential solution '(x) = exp[ q x ℄ = exp[ ( p� 1 )x ℄ leads to

p

2

+ j p+ 1� k = 0 ;

whose solutions are

p

1

= �i and p

2

= �(i+ j) :

Consequently,

'(x) = exp[�x ℄ f exp[� i x ℄ 

1

+ exp[� ( i+ j )x ℄ 

2

g :

The initial onditions yield

'(x) = exp[�x ℄

�

exp[� i x ℄

3�i�2j

2

+ exp[� ( i+ j )x ℄ ( j � 1 )

	

:

� (ii): �'(x) + k _'(x) + j '(x) = 0 ; '(0) = i+ k ; _'(0) = 1 .

The harateristi equation is

p

2

+ k p+ j = 0 ;

whose solutions are

p

1;2

=

1

2

(�1� i� j � k) :

Thus, the general solution of our di�erential equation reads

'(x) = exp[

1�i�j�k

2

x ℄ 

1

+ exp[�

1+i�j+k

2

x ℄ 

2

:

By using the initial onditions, we obtain

'(x) =

n

exp[

1�i�j�k

2

x ℄ + exp[�

1+i�j+k

2

x ℄

o

i+k

2

:

� (iii): �'(x) + ( i� 2 ) _'(x) + ( 2 + k ) '(x) = 0 ; '(0) = 0 ; _'(0) = j .

By substituting '(x) = exp[ q x ℄ = exp[ ( p+ 1 )x ℄ in the previous di�erential equation, we �nd

p

2

+ i p+ 1 + i+ k = 0 :

The solutions of this quadrati quaternioni equation are

p

1

=

1

2

(1� 3i� j � k) and p

2

= �

1

2

(1� i+ j � k) :

So, the general solution of the di�erential equation is

'(x) = exp[

1�3i�j�k

2

x ℄ 

1

+ exp[�

1�i+j�k

2

x ℄ 

2

:

By using the initial onditions, we obtain

'(x) =

n

exp[

1�3i�j�k

2

x ℄� exp[�

1�i+j�k

2

x ℄

o

j�i+2k

6

:

Appendix C. Diagonalization and Jordan form

In this appendix, we �nd the solution of quaternioni and omplex linear di�erential equations by using

diagonalization and Jordan form.
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Quaternioni linear di�erential equation

By using the disussion about quaternioni quadrati equation, it an immediately be shown that the solution

of the following seond order equation

�'(x) + ( k � i ) _'(x)� j '(x) = 0 ;

with initial onditions

'(0) =

k

2

; _'(0) = 1 +

j

2

;

is given by

'(x) =

�

x+

k

2

�

exp[ i x℄ :

Let us solve this di�erential equation by using its matrix form (47), with

M =

�

0 1

j i� k

�

:

This quaternioni matrix an be redued to its Jordan form

M = J

�

i 1

0 i

�

J

�1

:

by the matrix transformation

J =

�

1

k

2

i 1 +

j

2

�

; J

�1

=

�

3+j

4

�

i+k

4

�

i+k

2

1�j

2

�

The solution of the quaternioni linear quaternioni di�erential equation is then given by

'(x) = J

11

exp [ i x ℄ [J

�1

11

'(0) + J

�1

12

_'(0)℄ +

(x J

11

+ J

12

) exp [ i x ℄ [J

�1

21

'(0) + J

�1

22

_'(0)℄

= (x J

11

+ J

12

) exp [ i x ℄

=

�

x+

k

2

�

exp[ i x℄ :

Complex linear di�erential equations

Let us now onsider the omplex linear quaternioni di�erential equation

�'(x) � j '(x) i = 0 ;

with initial onditions

'(0) = j ; _'(0) = k :

To �nd partiular solutions, we set '(x) = q exp[ z x℄. Consequently,

q z

2

� j q i = 0 :

The solution of the omplex linear seond order di�erential equation is

'(x) =

1

2

[(i+ j) exp[�ix℄ + (j � i) oshx+ (k � 1) sinhx℄ :

This solution an also be obtained by using the matrix

M

C

=

�

0 1

j R

i

0

�

;

and its diagonal form

M

C

= S

C

�

�i R

i

0

0 i

�

S

�1

C

;

where

S

C

=

�

1�i�j�k

2

+

1�i+j+k

2

R

i

1+i�j+k

2

�

1+i+j�k

2

R

i

1+i+j�k

2

�

1+i�j+k

2

R

i

�

1�i�j�k

2

+

1�i+j+k

2

R

i

�
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and

S

�1

C

=

1

4

�

1+i+j+k

2

�

1+i�j�k

2

R

i

1�i�j+k

2

+

1�i+j�k

2

R

i

1�i+j�k

2

+

1�i�j+k

2

R

i

�

1+i+j+k

2

�

1+i�j�k

2

R

i

�

:

The solution of the omplex linear quaternioni di�erential equation is then given by

'(x) = S

C11

exp [� i R

i

x ℄ [S

�1

C11

'(0) + S

�1

C 12

_'(0)℄ +

S

C12

exp [ i x ℄ [S

�1

C 21

'(0) + S

�1

C22

_'(0)℄

=

1

4

f(1� i+ j � k) exp[�x℄� (1 + i� j � k) exp[x℄g+

i+j

2

exp[�ix℄ :
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