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Abstrat

In this work we some results on the boundary ontrollability

of the steady magneto-miropolar uids. In partiular we onsider

the boundary ontrollability of the uid veloity on a subset of the

boundary. In the same way, we an obtain some ontrollability re-

sults when we onsider the ase of two or more boundary ontrols

for the mirorotational veloity or the magneti �elds. In the ase of

the homogeneous boundary onditions, we an obtain some results

for the internal ontrollability.
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1 Introdution

In this work we study the boundary ontrollability for the equations that de-

sribes the motion of a stationary visous inompressible magneto-miropolar

uid in a bounded domain 
 � IR

n

; n = 2 or 3. Let �

i

; i = 0; 1; 2; be subsets

of the boundary �: Thus the equations are given by (see [1℄, for instane):

u � ru� (�+ �)�u +r(p+

1

2

h � h) = � rot w + rh � rh + f ; in 


ju � rw � �w + 2�w � (� + �)r div w = � rot u+ g; in 


���h + u � rh� h � ru = 0; in 
 (1)

div u = div h = 0; in 


u = u

0

; on �

0

; u = 0; on � n �

0

;

h = h

0

; on �

1

; h = 0; on � n �

1

;

w = w

0

; on �

2

; w = 0; on � n �

2

;

being u(x) 2 IR

n

denotes the veloity of the uid at a point x 2 
;

w(x);h(x) 2 IR

n

and p(x) 2 IR denote, respetively, the mirorotational

veloity, the magneti �eld and the hydrostati pressure; the onstants

1
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�; �; r; �; �; ; j and � are onstants assoiated to properties of the mate-

rial. From physial reasons, these onstants satisfy minf�; �; r; j; ; �; �+

� + g > 0; f(x) and g(x) 2 IR

n

are given external �elds and u

0

;h

0

;w

0

2

IR

n

are the boundary onditions.

Equation (1.1)

i

has the familiar form of the Navier-Stokes equations but

it is oupled with equation (1.1)

ii

, whih essentially desribes the motion

inside the marovolumes as they undergo mirorotational e�ets represented

by the mirorotational veloity vetor w. For uids with no mirostruture

this parameter vanishes. For Newtonian uids, equations (1.1)

i

and (1.1)

ii

deouple sine � = 0.

In this work we give a result of existene of the weak solutions of the

problem (1.1)

i

-(1.1)

vii

for n = 2; 3:

The problems of ontrollability in whih we are interested are the fol-

lowing: Let u

0

be the ontrol funtion and K � H

1

2

(�

0

) be a non empty

set.

We want to study the onstrained minimization problem:

To �nd

e

u

0

2 K suh that

min

u

0

2K

J(u;h;w; u

0

) = J(

e

u;

e

h;

e

w;

e

u

0

) (2)

(u;h;w) and (

e

u;

e

h;

e

w) being a weak solution of (1.1)

i

-(1.1)

vii

verifying

uj

�

0

= u

0

and

e

uj

�

0

=

e

u

0

respetively.

Note that, in this ase we onsider a single ontrol on the veloity of the

uid. We an onsider also a single ontrol on the magneti �eld h or on

the mirorotational veloity w: Another related problems are the ase when

we onsider more than one ontrol, for instante we an onsider the ontrols

u

0

and h

0

: All these problems are alled boundary ontrollability, beause

we are ating with the ontrol on the boundary. The proof of the boundary

ontrollability an be adapted to obtain results of internal ontrollability.

In this ase the ontrol are the external fores f and g: They are ating in a

non empty open subset of ! of 
 suh that ! � 
 and the funtions satisfy

that supp f � ! and supp g � !:

Some interesting funtional are for instane

J

0

(u;h;w;u

0

) =

1

2

Z




jruj

2

+ � ku

0

k

1

2

;�

1

J

1

(u;h;w;u

0

) =

1

2

Z




�

�

�(ru) + (ru)

T

�

�

�

2

+ � ku

0

k

1

2

;�

1

;

J

2

(u;h;w;u

0

) =

1

2

Z




jrhj

2

+ � ku

0

k

1

2

;�

1

;

J

3

(u;h;w;u

0

) =

1

2

Z




jru� u

d

j

2

+ � ku

0

k

1

2

;�

1

;

(u;h;w) being a weak solution of the problem (1.1)

i

-(1.1)

vii

with boundary

ontrol u

0

; � � 0 and u

d

2 L

2

(
)

n

is a given funtion.
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This work is organized as follows. In setion 2 we give the main results

of the paper without proof. In setion 3 we give some preliminary results.

In setion 4 we proof the then existene of weak solutions of the system

with non-homogeneous boundary onditions. In setion 5 we give the proof

of the ontrol results.

2 Main Results

Firstly, we give a existene result of weak solutions of the problem (1.1).

Theorem 1

Let 
 � IR

n

be a bounded set with Lipsthitz ontinuous boundary �; and

let �

0

;�

1

;�

2

be open subsets of the boundary �. Assume that u

0

;h

0

;w

0

2

H

1

2

(�)

n

; suh that u

0

� n = h

0

� n = 0 on �:

Then the problem (1.1) has at least one weak solution.

Moreover, there exists a onstant C > 0 suh that

kuk

1

+khk

1

+kwk

1

�C

�

kfk

H

�1

(
)

+kgk

H

�1

(
)

+ku

0

k

1

2

;�

0

+kh

0

k

1

2

;�

1

+kw

0

k

1

2

;�

2

�

:

(3)

Analogously to G. V. Alekseev [2℄, we are interested in the study of some

ontrol problems of the following type:

Assume that 
 � IR

n

is a bounded domain with Lipshitz ontinuous

boundary and �

0

;�

1

;�

2

are bounded open subsets of the boundary � suh

that meas(� � �

i

) > 0:

We prove some boundary ontrol results for the problem (1.1) with a

single ontrol for the veloity of the uid u

0

:

Let K be a non empty bounded onvex subset of H

1

2

(�

0

) and de�ne the

set of admissible funtions

Z

K

= f(u;h;w;u

0

) : (u;h;w) is a weak solution of (??)-(??) suh that uj

�

0

= u

0

;u

0

2 Kg :

(4)

Our ontrol problem is:

To �nd (

e

u;

e

h;

e

w;

e

u

0

) 2 Z

K

suh that

inf

(u;h;w;u

0

)2Z

K

J(u;h;w;u

0

) = J(

e

u;

e

h;

e

w;

e

u

0

) (5)

for some suitable funtional J:
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In partiular we onsider the funtionals

J

0

(u;h;w;u

0

) =

1

2

Z




jruj

2

+ � ku

0

k

1

2

;�

1

J

1

(u;h;w;u

0

) =

1

2

Z




�

�

�(ru) + (ru)

T

�

�

�

2

+ � ku

0

k

1

2

;�

1

;

J

2

(u;h;w;u

0

) =

1

2

Z




jrhj

2

+ � ku

0

k

1

2

;�

1

;

J

3

(u;h;w;u

0

) =

1

2

Z




jru� u

d

j

2

+ � ku

0

k

1

2

;�

1

;

(u;h;w) being a weak solution of the problem (1.1) with boundary ontrol

u

0

; for some suitable funtion u

d

and � � 0:

Thus we have the following result.

Theorem 2 Let � � 0 and K be a onvex subset of H

1

2

(�

0

): Then the

problem (5), with J = J

0

; J

1

; has at least one solution.

Theorem 3 Asumme that � > 0 and K be a onvex subset of H

1

2

(�

0

) or

� � 0 and K is a bounded onvex subset of H

1

2

(�

0

): Then the problem (5),

with J = J

2

; J

3

; has at least one solution.

3 Preliminaries

Let 
 � IR

n

; n = 2 or 3; be a bounded domain with Lipsthitz ontin-

uous boundary �. We denote by L

p

(
) the usual Lebesgue spaes and by

k � k

L

p

the L

p

-norm on 
; in the ase p = 2, we simply denote the L

2

-norm

by j � j and the orresponding inner produt by (�; �).The Sobolev spaes

H

s

(
); H

s

0

(
) ( with s 2 IR) are de�ned as usual; we denote by k � k

s

and

(�; �)

H

s

, respetively the norm and the inner produt in H

s

(
) (or H

s

0

(
))

when is appropriate). We also onsider the following spaes

H(div ;
) =

n

' 2 L

2

(
)

n

: div ' 2 L

2

(
)

n

o

H

0

(div ;
) = f' 2 H(div ;
) : u � n = 0 on �g

H

�

i

=

n

' 2 H

0

(div ;
) : u = 0 on � n �

i

o

H = f' 2 H

0

(div ;
) : div ' = 0g

V =

n

' 2 H

1

0

(
)

n

: div ' = 0

o

L

2

0

(
) =

�

q 2 L

2

(
) :

Z




p(x)dx = 0

�

:

Notie that H is a losed subspae of L

2

(
)

n

and we have the following

deomposition:

L

2

(
)

n

= H �H

?

; (6)
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being H

?

the orthogonal of H in L

2

(
)

n

: Moreover, if 
 is onneted we

have

H

?

=

n

rq : q 2 H

1

(
)

o

: (7)

In addition if 
 is simply-onneted we have that

H

?

=

n

v 2 L

2

(
)

n

: rot v = 0

o

: (8)

On the other hand, if 
 � IR

n

is a bounded set with Lipsthitz ontin-

uous boundary � we have that

H

1

0

(
)

n

= V � V

?

; (9)

being V

?

the orthogonal of H in H

1

0

(
)

n

; haraterized by

V

?

=

n

(�4)

�1

q : q 2 L

2

(
)

o

; (10)

being (�4)

�1

2 (H

�1

(
)

n

;H

1

0

(
)

n

) the Green's operator related to Dirih-

let's homogeneous problem for �4 in IR

n

:

Thus we have the following result.

Theorem 4 ([4, Theo. 3.1 and Cor. 3.4℄)

Let 
 � IR

n

; n = 2; 3; be a bounded onneted set with Lipshitz ontin-

uous boundary �: Then, every funtion v 2 L

2

(
)

n

veri�es that

v = rq + rot �; (11)

where q 2 H

1

(
)=IR is the only solution of

(rq;r�) = (v;rv); 8� 2 H

1

(
)

and � 2 � where � = f� 2 H

1

(
) : �j

�

0

= 0; �j

�

i

= onstantg being �

0

the

exterior boundary of 
 and �

i

the other omponents of �; is a solution of

(rot �; rot �) = (v �rq; rot �); 8� 2 �:

Now we give a useful result on the trae operator.

Theorem 5 ([4, Theo. 1.5, p. 8℄) Let 
 � IR

n

be a bounded set with

boundary � of lass C

k;1

; for some integer k � 0: Let p � 1 and s � 0 be

two real numbers suh that s � k+1; s�

1

p

= l+�; where l � 0 is an integer

and 0 < � < 1: Then the mapping

 :W

s;p

(
) ! W

s�

1

p

;p

(�)�W

s�1�

1

p

;p

(�)

u ! u = (

0

u; 

1

u) = (uj

�

;

�u

�n

j

�

);

(12)

is an onto linear ontinuous operator.
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On the other hand, let us denote

a(v;w) =

n

X

i;j=1

Z




�v

j

�x

i

�w

j

�x

i

dx;

b(u;v;w) =

n

X

i;j=1

Z




u

j

�v

i

�x

j

w

i

dx;

(w;v) = a(w;v) + (� + �)

Z




(div w)(div v) + 2�(w;v);

whih we de�ne for all vetor-valued funtions u;v;w, for whih the inte-

grals are well de�ned.

Now, we need the following important tehnial result, whih is a slight

variation of the Hopf's result, the proof is analogous to [4, Lemma 2.3,

p.287℄.

Theorem 6 Let 
 � IR

n

; with n = 2; 3; be a bounded domain with Lipshitz

ontinuous boundary. Then, given a funtion g 2 H

1

2

(�)

n

; there exists for

any " > 0 a funtion u

"

2 H

1

(
)

n

suh that

u

"

j

�

= g; (13)

and for all �;  2 V :

jb(u

"

; �;  )j � " k�k

1

k k

1

; (14)

jb(�;u

"

;  )j � " k�k

1

k k

1

: (15)

Moreover, if g veri�es

Z

�

i

g � n = 0; 8i; (16)

we an hoose u

"

verifying div u

"

= 0 in 
:

The following lemma stablishes a �rst oarse version of De Rham's The-

orem.

Lemma 1 ([4, Lemma 2.1, p. 22℄)

If f 2 H

�1

(
)

n

satis�es

hf ;vi

H

�1

(
)

n

�H

1

0

(
)

n

= 0; 8v 2 V; (17)

then there exists p 2 L

2

0

(
) suh that

f = rp: (18)

Moreover, when 
 is onneted, p is unique up to an additive onstant.
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We an now de�ne a notion of weak solution for (1.1).

De�nition 1 Let u

0

;h

0

;w

0

2 H

1=2

(�)

n

suh that

u

0

� n = h

0

� n = 0; on �; (19)

being n the unitary outward normal vetor. We say that a triple of funtions

(u;w;h) 2 H

�

0

�H

�

1

�H

�

2

is a weak solution of (1.1) if only if they satisfy

for all (�; ';  ) 2 H

�

0

�H

�

1

�H

�

2

(�+�)a(u; �)+b(u;u; ')�(�+�)(

�u

�n

; �)

�

0

= rb(h;h; �)+�(rot w; �)+(f ; ');

(20)

(w;  )+jb(u;w;  )�(�+�)(div w;  �n)

�

2

�(

�w

�n

;  )

�

2

= �(rot u; �)+(g;  );

(21)

�a(h; ')� �(

�h

�n

; ')

�

1

+ b(u;h; ')� b(h;u; ') = 0: (22)

4 Existene of weak solutions

In this setion we give a proof of the existene of weak solutions of the

problem (1.1).

Theorem 7 ([4, theo. 1.2, p. 280℄) Let X be a Hilbert spae and we

onsider the operator

b : X �X �X ! IR;

where for eah w 2 X; the mapping (u;v) ! b(w;u;v) is a bilinear form

on X �X: Let M be a normed spae and B 2 (X;M

0

) and V = Ker (B):

Assume that there exists � > 0 suh that

b(v;v;v) � � kvk

2

X

; 8v 2 V:

Let V be a separable spae and, for all v 2 V; the mapping

u! b(u;u;v)

is sequentially weakly ontinuous.

Then, the problem: Find u 2 V suh that

b(u;u;v) = (l;v)

with l 2 X

0

; has at least one solution.
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Now, we prove Theorem 1.

Let u

�

;h

�

;w

�

2 H

1

2

(�) be funtions verifying

u

�

= u

0

; on �

0

; u

�

= 0; on � n �

0

h

�

= h

0

; on �

1

; h

�

= 0; on � n �

1

;

w

�

= w

0

; on �

2

; w

�

= 0; on � n �

2

:

(23)

Therefore, from Theorem 6, there exists funtions u

"

;h

"

;w

"

2 H

1

(
)

n

suh that

u

"

= u

�

; h

"

= h

�

; w

"

= w

�

; on �; (24)

div u

"

= div h

"

= 0; in 
; (25)

and for all '; � 2 V we have that

jb(�;u

"

; ')j � "k�k

1

k'k

1

; jb(u

"

; �; ')j � "k�k

1

k'k

1

jb(�;h

"

; ')j � "k�k

1

k'k

1

; jb(h

"

; �; ')j � "k�k

1

k'k

1

jb(�;w

"

; ')j � "k�k

1

k'k

1

; jb(w

"

; �; ')j � "k�k

1

k'k

1

:

(26)

Thus, we an write

u = u

"

+

b

u; h = h

"

+

b

h; w = w

"

+

b

w; (27)

being

b

u;

b

h 2 V and

b

w 2 H

1

0

(
)

n

:

From (27) we an write the problem (??)-(??) as follows.

To �nd (

b

u;

b

h;

b

w) 2 V �V �H

1

0

(
) suh that for all ('; �;  ) 2 V �V �

H

1

0

(
) we have that:

(�+ �)a(

b

u; ') + b(

b

u;

b

u; ') + b(u

"

;

b

u; ') + b(

b

u;u

"

; ')

= �( rot

b

w; ') + rb(

b

h;

b

h; ') + rb(h

"

;

b

h; ') + rb(

b

h;h

"

; ') + (f

"

; ');

(28)

jb(

b

u;

b

w;  ) + (

b

w;  ) + jb(u

"

;

b

w;  ) + jb(

b

u;w

"

;  )

= (g

"

;  ) + �( rot

b

u;  )

(29)

�a(

b

h; �) + b(

b

u;

b

h; �)� b(

b

h;

b

u; �)

= b(h

"

;

b

u; �) + b(

b

u;u

"

; �)� b(

b

h;u

"

; �)� b(h

"

;

b

u; �) + (�

"

; �);

(30)

where the funtions f

"

; g

"

2 V

0

and �

"

2 H

�1

(
)

n

are de�ned by

f

"

= f + � rot w

"

+ r(h

"

� rh

"

)� u

"

� ru

"

+ (�+ �)4u

"

;

g

"

= g + � rot u

"

� u

"

� ru

"

+ 4w

"

� 2� �w

"

+ (�+ �)r div w

"

;

�

"

= �4h

"

+ h

"

� ru

"

)� u

"

� rh

"

:

(31)
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We de�ne the operators

a

1

: (V � V �H

1

0

(
)

n

)

3

�! IR

a

1

((u;h;w); (u

0

;h

0

;w

0

); ('; �;  ))= (�+�)a(u; ')+b(u;u

0

; ')+b(u

"

;u; ')+b(u;u

"

; ')

��( rot w; ')�rb(h;h

0

; ')�rb(h

"

;h; ')�rb(h;h

"

; ');

(32)

a

2

: (V � V �H

1

0

(
)

n

)

2

�! IR

a

2

((u;h;w); ('; �;  ))= jb(u; w;  ) + (w;  )+

jb(u

"

; w;  ) + jb(u; w

"

;  )� �(rotu;  );

(33)

a

3

: (V � V �H

1

0

(
)

n

)

2

�! IR

a

3

((u;h;w); ('; �;  ))= �a(h; �) + b(u;h; �)� b(h;u; �)� b(h

"

;u; �)+

b(u;h

"

; �) + b(h;u

"

; �) + b(h

"

;u; �):

(34)

Thus we de�ne the operator

e

a : (V � V �H

1

0

(
)

n

)

3

�! IR

e

a((u;h;w); (u

0

;h

0

;w

0

); ('; �;  ))= a

1

((u;h;w); (u

0

;h

0

;w

0

); ('; �;  ))

+a

2

((u;h;w); ('; �;  )) + ra

3

((u;h;w); ('; �;  )):

(35)

We must prove that the map

e

a veri�es the hypotheses of Theorem 7.

It is lear, from the ompatness of the embedding of H

1

0

(
)

n

into

L

2

(
)

n

; we have that the map

e

a is sequentially weakly ontinuous on V �

V �H

1

0

(
) (for details, we refer to [4, p. 280℄).

On the other hand, notie that

b( ; ';  ) + b( ; �; ') = 0; b(w;v;v) = 0;

for all u;v 2 H

1

(
)

n

and w 2 H

1

(
)

n

suh that div w = 0 and w�nj

�

= 0:

Taking (

b

u;

b

h;

b

w) = (u

0

;h

0

;w

0

) = (�; ';  ); we have that

e

a((

b

u;

b

h;

b

w); (

b

u;

b

h;

b

w); (

b

u;

b

h;

b

w))= (�+�)a(

b

u;

b

u)+b(

b

u;

b

u;

b

u)+b(u

"

; (

b

u;

b

u)+b(

b

u;u

"

;

b

u)

��( rot

b

w;

b

u)�rb(

b

h;

b

h;

b

u)�rb(h

"

;

b

h;

b

u)�rb(

b

h;h

"

;

b

u)+

jb(

b

u;

b

w;

b

w) + (

b

w;

b

w) + jb(u

"

;

b

w;

b

w)+

jb(

b

u;w

"

;

b

w)� �( rot

b

u;

b

w) + r�a(

b

h;

b

h) + rb(

b

u;

b

h;

b

h)

+rb(

b

u;h

"

;

b

h) + rb(u

"

;

b

h;

b

h)� rb(

b

h;

b

u;

b

h)� rb(h

"

;

b

u;

b

h)

�rb(

b

h;u

"

;

b

h)

= (�+�)a(

b

u;

b

u)+(

b

w;

b

w) + r�a(

b

h;

b

h)+b(

b

u;u

"

;

b

u)

�rb(h

"

;

b

h;

b

u)�rb(

b

h;h

"

;

b

u) + jb(u

"

;

b

w;

b

w) + jb(

b

u;w

"

;

b

w)

+rb(

b

u;h

"

;

b

h)� rb(h

"

;

b

u;

b

h)� rb(

b

h;u

"

;

b

h)

Sine for all ' 2 H

1

0

(
)

n

we have that there exists a onstant � > 0 suh

that

a('; ') � � k'k

1
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and from (26) we onlude that there exists a onstant � > 0 suh that

e

a((

b

u;

b

h;

b

w); (

b

u;

b

h;

b

w); (

b

u;

b

h;

b

w)) � �





(

b

u;

b

h;

b

w)







V�V�H

1

0

(
)

n

:

Choosing l = f

"

+ g

"

+ r�

"

; we have from Theorem 7 that the problem

(28)-(31) has at least one weak solution (

b

u;

b

h;

b

w) 2 V �V �H

1

0

(
)

n

: Thus,

the problem (??)-(??) has at least one weak solution.

Let (u;h;w) be a weak solution of the system (??)-(??). Multipliying

(??) by u; (??) by w and (??) by h and integrating on 
 we have that

b(u;u;u)+(�+�)a(u;u)�(�+�)(

�u

�n

;u)

�

= �( rot w;u)+rb(h;h;u)+(f ;u);

(36)

jb(u;w;w) + (w;w)� (

�w

�n

;w)

�

�(� + �)( div w;w � n)

= �( rot u;w) + (g;w);

(37)

�a(h;h)� �(

�h

�n

;h)

�

+ b(u;h;h)� b(h;u;h) = 0: (38)

Sine div u = 0; div h = 0 in 
 and u �n = 0; h � n = 0 on �; we have

that

b(u;h;h) = b(u;w;w) = 0; b(h;u;h) + b(h;h;u) = 0;

thus multipliying (38) by r and adding to (36) and (37) we have that

(�+ �)a(u;u)+(w;w) + r�a(h;h) = (f ;u) + (g;w)

+(

�u

�n

;u

0

)

�

0

+ (

�w

�n

;w

0

)

�

2

+ r�(

�h

�n

;h

0

)

�

1

+ (� + �)( div w;w

0

� n):

Notie that sine �

0

; �

1

are non empty bounded subset of the boundary

� we have that there exists onstants 

1

; 

2

> 0 suh that

a(u;u) � 

1

kuk

2

1

; a(h;h) � 

2

khk

2

1

and there exists 

3

> 0 suh that

(w;w) � 

3

kwk

2

1

:

On the other hand, from the ontinuity of the trae operator (see The-

orem 5) we have that there exists a onstant 

4

> 0 suh that

kuk

0;�

+











�u

�n











0;�

� 

4

kuk

1

;

therefore we onlude that there exists a onstant C > 0 suh that

kuk

1

+khk

1

+kwk

1

� C

�

kfk

H

�1

(
)

+ kgk

H

�1

(
)

+ ku

0

k

1

2

;�

0

+ kh

0

k

1

2

;�

1

+ kw

0

k

1

2

;�

2

�

;

and the proof is omplete.
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5 Proof of ontrol results

Now, we will prove Theorem 2. Notie that it is enough to prove the theorem

for the funtional J

0

; the proof is analogous for the other funtionals.

Firstly, we an see that J

0

(u;h;w;u

0

) � 0; thus there exists J

�

2 IR

suh that

inf

(u;h;w;u

0

)2Z

K

J

0

(u;h;w;u

0

) = J

�

: (39)

Let f(u

m

;h

m

;w

m

;u

0;m

)g

m

� Z

K

be a minimizing sequene. Thus we

have that there exists a onstant  > 0 suh that for all m 2 IN

kru

m

k

L

2

(
)

n

� :

Sine u

m

= 0 on � n �

0

; we have that there exists M > 0 suh that

ku

m

k

1

�M;

therefore we have that the sequene fu

0;m

g

m2IN

is bounded in H

1

2

(�

0

)

n

:

Hene, from (3) we have that the sequene f(u

m

;h

m

;w

m

;u

0;m

)g

m2IN

�

Z

K

is bounded in H

1

(
)

n

�H

1

(
)

n

�H

1

(
)

n

�H

1

2

(�

0

)

n

: Then there exist

e

u;

e

h;

e

w;

e

u

0

suh that

u

m

!

e

u weakly in H

1

(
)

n

and strngly in L

4

(
)

n

h

m

!

e

h weakly in H

1

(
)

n

and strongly in L

4

(
)

n

w

m

!

e

w weakly in H

1

(
)

n

and strongly in L

4

(
)

n

u

0;m

!

e

u

0

weakly in H

1

2

1(�

0

)

n

and strongly in L

2

(�

0

)

n

:

(40)

Sine the operator b is weakly sequentally ontinuous, that is:

lim

m!1

b(�

m

; '

m

;  ) = b(

e

�;

e

';

e

 );

if �

m

!

e

� weakly in H

1

(
)

n

and '

m

!

e

' weakly in H

1

(
)

n

; therefore we

have that

lim

m!1

b(u

m

;h

m

; ') = b(

e

u;

e

h;

e

'):

Therefore, from the ontinuity of the mappings a and  on H

1

(
)

n

and

from the de�nition of weak solution, we have that (

e

u;

e

h;

e

w) is a weak solution

of (??)-(??) satisfying that

e

uj

�

0

=

e

u

0

and

e

uj

�n�

0

= 0:

This omplete the proof of Theorem 2.

The proof of Theorem 3 is analogous to the above proof. In this ase,

if � > 0 or � � 0 and K is bounded, we have that the sequene fu

0

m

g

is bounded in H

1

2

(�

0

) and therefore from (3) we obtain that the sequene

f(u

m

;h

m

;w

m

;u

0;m

)g

m2IN

is bounded inH

1

(
)

n

�H

1

(
)

n

�H

1

(
)

n

�H

1

2

(�

0

)

n

:

Thus we an onluded analogously to the proof of Theorem 2.
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