The Hopf invariant conjecture and the homology of
manifolds

Ricardo N. Cruz *

We show that a problem proposed by A. Bassi, about the Betti numbers
of a manifold has no solution. J. Adem’s work provided a partial solution.
This is accomplished by adapting Atiyah’s proof of the Hopf invariant
conjecture. We also provide conditions for a graded group to be the
homology of a closed, connected and orientable manifold, generalizing a
theorem due to A. Bassi.

AMS Classification: Primary 57P10, Secondary 57R22.
Key words and phrases: Betti, numbers, manifold, homology.

1 Introduction

We work with CAT=DIFF, PL or TOP. If CAT is omitted, we mean TOP.
Let M™ be a closed, connected and orientable CAT manifold. The Betti
numbers of M, 3;(M) = rankH;(M),i =0, ..., m, satisfy by Poincaré duality,

the identities below

Bi(M) = Br—i(M),i =0,...,m.

In addition, 3y,/2(M) is even for m = 2 mod 4.

In [Bal, A. Bassi have shown that if 3,, ..., B, is a sequence of non-negative
integers satisfying: Sy = 1,8; = Bp—i,@ = 0,...,m and [,/ is even for
m = 2 mod 4, then for m # 0 mod 4 or m = 4,8: There exists a closed,
connected and orientable PL manifold such that 8;(M) = §;,i =0,...,m. An
elementary proof can be provided for CAT=DIFF by using the connected sum

#. For that purpose, we need a lemma.
*Partially Supported by FAPESP /SP /Brazil, Grant 96/06167-7
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1.1. Lemma. Let M™ , N™ m > 1, be closed, connected and orientable

CAT manifolds. Then, M#N is a closed, connected, orientable CAT manifold

and

H;(M#N) = H;(M) ® H;(N),0 <i<m.
Proof. It is an exercise in homology. O
1.2. Theorem (A. Bassi). If fy,...,5, is a sequence of non-negative
integers satisfying: Sy = 1,8; = Bp—i,@ = 0,...,m and f,/, is even for

m = 2 mod 4, then 3;(M™) = (;,i =0,...,m where M™ is a closed, connected
and orientable DIFF manifold. We are assuming m # 0 mod 4 or m = 4, 8.

Proof. For m # 0 mod 4, set n =[] and

M = #2 o#0, 5" x S™7 % {5}

By the above lemma, §;(M) = 3;,0 < i < n. It follows that £;(M) = (;,0 <
1 < m. The cases m = 4,8 are similar. However, one must use the manifolds
CP? HP? (the complex and quaternionic projective planes) in addition to

generalized tori S* x S7,i+ j = m.

1.3. Observation. By using Hopf’s octonionic projective plane OP? ([Wh]
p. 700), one can have in theorem 1.2, m = 16.

In [Ba], Bassi observed that the problem of extending theorem 1.2 to all
m with CAT=PL, reduces to the problem of constructing for any positive
integer m, m = 0 mod 4, a closed, connected and orientable PL. manifold M™
such that 3;(M) = 1, for + = 0,%,m and 0, otherwise. These manifolds
are referred in [Ba] as “elementary manifolds of the third kind”. In [Bal,



Bassi proposed the problem of constructing such manifolds for all dimensions

m = 0 mod 4, m > 8. Of course we may take CAT=DIFF, TOP.
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3 Bassi’s Problem.

3.1. Remark. Let M* k > 1, be a closed, connected and orientable man-
ifold. Then, by ([KS] p. 104) M* possesses a handle decomposition. As
M* is connected, by ([RS] p. 85), we can, after a modification if necessary,
assume that this handle decomposition contains just one 0, 4k-handles. Asso-
ciated with this handle decomposition, there is a CW-structure ([KS] p. 107)

containing just one 0, 4k-cells.

3.2. Remark. If GG is a finitely generated abelian group, we define the
torsion part T(G) and the free part F(G) by T(G) = {g € G|3p € Z(pg =
0)}, F(G) = G/T(G). The exact sequence 0 — T(G) — G — F(G) — 0 splits
and produces an identification G = F(G)@®T(G). Moreover, this identification
is natural with respect to homomorphisms and preserves grading and ring

structure. Thus, we can write G = F(G) @ T(G).

3.3. Remark. Let M* k>0, be a closed, connected and orientable mani-
fold. Choose an orientation [M] for M. By Poincaré duality, the bilinear form
B : F(H*(M)) x F(H*(M)) — Z, given by B(u,v) = (u — v,[M]),u,v €
F(H?*(M)) is a symmetric inner product ([MH] p. 1). By definition, the sig-



nature of M, (M) is the signature of B, o(B). Notice that o(—M) = —a(M).
Therefore, the parity of the signature is independent from the choice of ori-
entation. In addition, notice that o(M) = f(M) mod 2. Symmetric inner
products over Z are classified by their rank, type and signature ([MH]| chapter
2). If o(M) is odd, then B must be of type [([MH] p. 24). I follows that there
is a u € F(H*(M)) such that B(u,u) is odd.

The theorem below completely solves Bassi’s problem.

3.4. Theorem. Let M* be a closed, connected and orientable manifold

such that [or (M) is odd and f;(M) = 0,0 < i < 2k. Then, k =1,2,4.

Proof. We can work with £ > 2. Assume k # 4. We will generate a
contradiction.

By remark 3.1, M* is endowed with a CW-structure. By remark 3.3,
there is an element u € H?*(M) such that u — u = h[M]*, where h is an odd
integer and [M]* € H* (M) is a fundamental cohomology class, algebraically
dual to an (orientation) fundamental class of M. Next, represent u by a cellular
chain and choose a 2k-cell e?* in it. Let X be the CW-complex obtained by
collapsing all the cells e of M such that dime < 2k, e # €?*. It turns out that
the cohomology ring of X, H(X) possesses just two torsion free generators ¢, d
such that ¢ = hd, dim ¢ = 2k. The generator c is represented by the only one
2k-dimensional cell of X, e?*. Similarly for d. Notice that ¢” U e?* is a sphere
S?F where €° is the only one 0-dimensional cell of X.

Consider the exact sequence of maps S%¥ ax L X /5% where i is the

inclusion and j is the colapse. We have a commutative diagram



0« K(S%) &R (X) < K(X/S%*) 0
ch | ch | ch |

04 H®($2,Q) < H(X;Q)) ¢ H®(X/S%:Q) ¢ 0
K(), H”( ;Q) mean reduced K-theory and reduced even dimensional rational
cohomology ring respectively [Hu|. The horizontal maps are induced and the
vertical ones are Chern characters [Hu]. It is straightforward to verify that
the rows are exact sequences except for the surjectivity of the top ¢* and the
injectivity of the top j*. Let us prove that.

As K'(S%*) = K(£52F) = K(S%+1) 2 0 (¥ means suspension) the top
j* is injective. The top jx* is surjective. To see that, attach cells to X of
dimension at least 2k + 2 ad infinitum to kill the homology of X in dimensions
bigger than 2k. The process yields a CW-complex Y containing X such that if
i: X — Y is the inclusion, then i o is a homology equivalence. As both X, Y
are simply connected, by the Hurewicz’s and Whitehead’s theorems [Wh] it
follows that 70i is a homotopy equivalence. Therefore (704)* : K (V) — K (S%)
is an isomorphism. Conclusion: i* : K (X) — K (S%) is surjective.

Now, by Atiyah and Hirzebruch’s version of Bott periodicity based on
integrality ([Hu] p. 280) it follows that ch : K(S?*) — H®(S%*;Q) is a
monomorphism onto F(H®(S%)). In addition, i* : H?*(S52F) « H2(X) is an
isomorphism. It follows that there is an element a € K(X) such that cha = c.

Next, as M has just one top cell, the same holds for X. So, let e** be the
top cell of X. Let D be a disk in e**. Let 7 : X — S% be the colapse map
X — X/(X — D) = D/dD followed by a homomorphism D/dD — S*.

The exact sequence of maps D — X/S* 5 S% induces a commutative

diagram (K (D) = 0) where the rows are isomorphisms
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K(X/8%) & K(S%)
ch | ch |
H@(X/575Q) ¢ HY(S™Q)

In addition H*(X/S%) b H*(S*%) is an isomorphism. Therefore by
Atiyah and Hirzebruch’s integrality result again, we obtain an element b €
K (X) such that chb = c.

By tensoring with () the exact sequence
0« K(5%*) & K(X) & K(X/5%) « 0,

it follows that a,b € K(X) are the only torsion-free elements of K(X). As
cha? = hchb, we conclude that ch(a® — hb) = 0. Therefore a? — hb is a torsion
element of K (X).

Now, assume that f : G — H is a homomorphism of finitely generated
abelian groups. Then, f maps torsion elements to torsion elements and there-

fore, there is an induced homomorphism
F(f): F(G)— F(H).

We can apply this procedure to Adam’s K-theoretic operations [Hu|. Its
properties will remain because although F() does not preserve exact sequences,
it does preserve the tensor sum and the direct product. Therefore, Atiyah’s
proof of the Hopf invariant conjecture as modified by Husemoller (in lemma 4.2
p. 137 [Hu], the Hopf invariant may be odd) will work on F(K (X)) and will
generate an absurd because k # 1,2, 4. Conclusion: X can not exist. Therefore

Bi(M) > 0,i # 0,2k, 4k even. By Poincaré duality 5;(M) > 0,0 < i < 2k.
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4 Generalization of Bassi’s Theorem

Denote by T.(M), F.(M) = H.(M)/T.(M), the torsion part and the free part
of the homology H.(M) of a closed, connected and orientable m-dimensional
CAT manifold M™, respectively. By Poincaré duality F;(M) = F,,_;(M), T;(M)
= it (M)(T-1(M) = 0),i = 0,...,m. Poincaré duality implies that the
intersection form is non-singular and so F},,/»(M) = F @ F, I abelian for m =
2 mod 4. Furthermore, Poincaré duality implies that for m = 1 mod 4 T{,,—1)/2
(M)=2T&®T orT®T @ Zy, T abelian [Bro].

Of course Fy(M) = Z,Ty(M) = 0. Section 2 implies that these restrictions
on H,(M) are not the only ones.

5.1. Lemma. Given m,k,s € ZN(0,00) with s > 2,m < 2, there is a DIFF
closed manifold M™ = M™ (s, k) such that

Zi,i1=0,m
H;(M™) = Z?(Z),iz k,m—k —1, where
0,1 #£0,k,m—k—1,m

nk)y=nm—-k—-1)=1 if k#m—-k—-1,2 if k=m-—Fk—1.

Proof. Let M™ = x(S* x S™* f)(x(, ) means the result of performing
surgery [Mi] where f is such that the composite map
SEx 0 C Sk x DMk Ly gk gmek Proection gk

has degree s.

To construct f, first choose a link L on S™, such that L is composed
of k,m — k — 1 dimensional unknotted subspheres K* K™%~ with linking
number s (apply the suggestion in [RS| p. 72 for CAT=DIFF). We have,

S™ = SF x DRy DFFE i gkl



After an ambient isotopy, if necessary, we can assume that K™ %=1 = 0 x
Sm=k=1 Kk C int(SF x D™F). Thus, K¥ C Sk x D™* c SF x D™=k Uy,
Sk x D™k = Gk x Sm~k  Choose a closed tubular neighborhood T' of K*
such that 7" C int(S* x D™ *). Choose a diffeomorphism of pairs ¢ : (S* x
D™=k Sk x 0) — (T, K*). By definition, f is ¢ with its codomain enlarged to
Sk x Sm=k_ The definition of linking numbers in terms of degree gives that f
has the required homological property. Now, it is an exercise in homology to

verify that H,(M™) is given up to isomorphism by the above formulas. O

5.2. Lemma. Let s,k € ZN(0,00),s > 2,k odd. There is a DIFF closed
manifold of dimension 2k + 1, L = L?**1(s) such that

Z,i=0,2k+1
0,¢#0,k,2k+ 1
Proof. Set L = L?*!(s) = S¥ x D¥ U, S* x D¥*1 where h : SF x SF —
Sk x Sk is a diffeomorphism to be chosen later. It is an exercise in homology
to verify that H;(L),i # k, up isomorphism is given by the above formulas.
Choose a fundamental class for S* [S¥] € Hy(S*). Let iy,ip : S¥ —
Sk x Sk 4.8k — Sk x DF be the maps specified by the equations below

iy (2) = (z,1),42(z) = (1,2),i(z) = (x,1),z € S*.
Set
p =i1.([S*]) € Hi(S* x 5*),q = i2.([S*]) € Hy(S* x S*).

Notice that we can identify p with j,([S*]) € Hy(S* x D*™!). In the clas-

sical £ =1 case, p, q are referred to as a longitude and a meridian respectively



of S¥ x DFL ([Ro] p.29). By ([Brel] p. 51) there is a diffeomorphism A such
that

hi(p) = (L + s)p+ sq, hi(q) = —sp + (1 — s)q.

The Mayer-Vietoris exact sequence gives
Hy(S* x S*) — Hy(S* x D) @ Hy(S* x D*™) — Hy(L) — 0.

We have: The map on the left maps p to (p, (1 + s)p) and ¢ to (p, (1 + s)p)
and ¢ to (0, —sp). Now, set z = (p,0),y = (0,p).Hy(L) is generated by both
x,y. We have: x — (1 + s)y = 0,sy = 0. This means that x = (1 + s)y, that
is, y generates Hg(L). In addition, y has order s. Thus, Hy(L) = Zs,. O

5.3. Remark. A diffeomorphism h as above and such that h,(p) = ap +
cq, h«(q) = bp + dq must satisfy the condition:

a b
c d

unimodular. In addition ([Bre2] p. 404) for k¥ # 1,3,7 the Hopf invariant
imposes the condition ab, cd even. There are no further conditions to look for

([Wa] p. 426). For the case k even, the matrix

a b

c d
can take only the forms ([Bre2 p. 333)

+1 0 0 +1

0 +1 +1 0



5.4. Remark. By performing surgery on a closed, connected and orientable
DIFF 5-dimensional manifold discovered by Wu ([Sm], [Wu]) one obtains a
closed, connected and orientable DIFF manifold W such that

Z,i=0,5
H(W°) 2 Zy,i=2
0,i#1,3,4

We call W5 the Wu manifold. Let k € Z N (0,00). Let M**! be a closed,

connected and orientable CAT manifold such that
Z,i=0,4k + 1
0,i # 0,2k, 2k + 1
By the theorem of [LMP], M must satisfy: we(M) # 0,wa_1(M) # 0. In
particular, Hy(M;Zs) # 0, Hyy_1(M; Zs) # 0. Conclusion: k = 2.
By forming appropriate connected sums of the manifolds of lemmas 3.1,
3.2, generalized tori, CP? HP?, OP? and W? it is straightforward to prove the

theorem below by using lemma 1.1.

5.5. Theorem (Generalized Bassi’s Theorem). Let G, = {G;}o<i<m be
a graded group where G; is finitely generated and abelian, 0 < ¢ < m. Let
F;,T; be the free and torsion parts of G;, respectively, 0 < ¢ < m. Assume
Gy =2 Z,F,=F, T, 2T, ;1T 1 =0),0<i<m Foreven mm <
4,8,16, assume F,, = F' @ F, F abelian. For m = 1 mod 4, m # 5, assume
Tim-1)2 ET ®T,T abelian. For m =5, assume 1o =T T or T ® T @ Zy, T
abelian. Then, there is a closed DIFF manifold M™ such that H,(M) = G,.
Here, m > 3.

For m < 3 a theorem such as this one is unnecessary because it is well
known that 0, 1, 2-dimensional closed CAT manifolds have been classified. The
above theorem is best possible only for m = 2,3 mod 4 or m = 4,5,8,16. The
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problem of improving this theorem to a best possible one is more difficult than

Bassi’s problem. Here’s an easier problem.

Problem. Let M* be a closed, connected and orientable manifold. Prove or
disprove. For k odd, S,(M*) > B,(CP%). For k even, [3,(M*) > B, (HP*).

IMECC/UNICAMP
Campinas SP, Brazil
CEP 13083-970
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