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Abstract

We give a generating function for partitions with di�erence conditions and

a combinatorial proof for a bijection between these partitions and another class

of partitions. New combinatorial interpretations for the Rogers-Ramanujan

identities are included as special cases.

In [1], page 59, Andrews present a bijective proof, given by Bressoud, for the

following theorem:

Theorem A: The number of partitions of n with minimal di�erence at least 2

between parts equals the number of partitions of n into distinct parts wherein each

even part is larger than twice the number of odd parts.

It is clear that this is related to the �rst Rogers-Ramanujan identity since the

left side of (1) is the generating function for partitions as described in the �rst part

of Theorem A.
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where we are using the standard notation
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The general result that we are going to prove has as special case, not only this

Theorem A, but also one related to the second Rogers-Ramanujan identity which is

the following:
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Theorem 1. The number of partitions of n with minimal di�erence at least 2

between parts, with parts greater than 1 equals the number of partitions of n into

distinct parts wherein each odd part is larger than 2 plus twice the number of even

parts.

The proof for this theorem is similar to the one given by Bressoud for Theorem

A.

Proof. We consider a partition � as described in the �rst part of the theorem.

We represent � with a modi�ed Ferrers graph in which we indent each now by two

nodes. Thus if � : 18 + 15 + 12 + 7 + 5, our representations is:

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �

� � � � �

We now put a vertical bar in our graph so that to the left are rows of 2, 4, 6, 8,

etc. nodes going from botton to top.

� � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � �

� � � � � � �

� � � � �

We reorder the rows to the right of the bar putting �rst the rows with an odd

number of nodes (in descending order) and then the rows with an even number of

nodes (in descending order). Thus our new graph is:

� � � � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � �

� � � � � � � �

and reading the new rows as parts of a transformed partition we have in this instance

17 + 12 + 11 + 9 + 8.

It is immediate from our construction that all parts are distinct and that the

smallest odd part is larger than 2 plus twice the number of even parts. The process
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is clearly reversible thus giving us a bijection between the two classes of partitions

presented in Theorem 1.

We state, next, our main theorem.

Theorem 2. Let A(n; `) be the number of partitions of n of the form n = b
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be a partition enumerated by A(n; `). If we
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Hence the generating function for the partitions enumerated by A(n; `) is
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Now in order to prove that A(n; `) = B(n; `) we are going to construct a bijection

between the elements enumerated by these two numbers.

We take a partition enumerated by A(n; `). Considering that the di�erence

between parts is at least 2 we may represent � with a modi�ed Ferrers graph in

which we indent each row by two nodes and, in doing so, our representation is:
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We now put a vertical bar in our graph so that to the left are rows of `+ 1; `+

3; : : : ; `+ (2s� 1) nodes going from botton to top.
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Now we reorder the rows to the right of the bar putting �rst the rows with

an odd number of nodes and after the rows with an even number of nodes, both

in descending order. If we consider now the new rows as parts of a transformed

partition it is easy to see that from our construction all parts are distinct, each one

is greater than ` and the smallest part� `(mod 2) is greater than 2t+ `+1 where t

is the number of parts � ` + 1(mod 2). In fact if there are r parts� `(mod 2) then

the r-th is � 2(s� r) + `+ 2 > 2(s� r) + `+ 1.

What we have described is clearly reversible thus giving us a bijection between

the two classes of partitions enumerated by A(n; `) and B(n; `).

2

We illustrate, below, the partitions enumerated by A(n; `) and B(n; `) and the

correspondence between them given by the bijection described in the theorem for

n = 19 and ` = 2.

A(19; 2) B(19; 2)

19  ! 19

16 + 3  ! 16 + 3

15 + 4  ! 13 + 6

14 + 5  ! 14 + 5

13 + 6  ! 11 + 8

12 + 7  ! 12 + 7

11 + 8  ! 10 + 9

11 + 5 + 3  ! 11 + 5 + 3

10 + 6 + 3  ! 10 + 6 + 3

9 + 7 + 3  ! 9 + 7 + 3

9 + 6 + 4  ! 8 + 6 + 5
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We observe that if in the proof of this theorem we reorder putting �rst the even

ones we get the following result:

Theorem 3. Let C(n; `) be the number of partitions of n in distinct parts greater

than ` such that each part � ` + 1(mod 2) is greater than 2r + ` where r is the

number of parts � `(mod 2). Then C(n; `) = A(n; `) for ` � 0.

Finally we observe that the cases ` = 0 and ` = 1 are the special cases de-

scribed in Theorem A and Theorem 1, respectively, that are related to the Rogers-

Ramanujan identities.
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