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Reformulations of this problem are studied, inluding smooth refor-

mulations with simple onstraints and unonstrained reformulations

based on the penalized Fisher-Burmeister funtion. It is proved that

bounded level set results hold for these reformulations, under quite
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1 Introdution

We are interested in reformulations of variational inequality problems (VIP)

where the domain is a simplex. The main motivation is that variational in-

equalities on generalized (perhaps unbounded) boxes an be redued to the

simplex ase if one knows appropriate lower bounds for eah variable and a

bound for the sum of the variables. The reformulations of the VIP on a sim-

plex do not have, in priniple, bounded variables. However, we will be able

to show, for some reformulations, that the objetive funtion has bounded

level sets. It is worth mentioning that reformulations of omplementarity

problems do not have, in general, bounded level sets, unless suitable restri-

tions are imposed on the problem. Therefore, when one applies a general

solver to suh a reformulation, the risk of divergene exists, even when one

knows that stationary points are solutions of the VIP.

The following example will larify the ompati�ation strategy. Suppose

that we want to solve the nonlinear system of equations

F (x) = 0; (1)

where F : IR

n

! IR

n

has ontinuous �rst derivatives. Usually, globally

onvergent algorithms for solving (1) rely on the unonstrained minimization

problem

Minimize kF (x)k

2

2

: (2)

See [12, 38, 41℄. (Obviously, (1) is a variational inequality problem where the

domain is IR

n

.) Most algorithms (for example, globalizations of Newton's

method) have the property that every limit point of the iterates is stationary,

that is:

rkF (x)k

2

2

� 2F

0

(x)

T

F (x) = 0: (3)

The most obvious drawbaks of this approah are:

1. The algorithm might onverge to a stationary point whih is not a

solution (F

0

(x) being singular in this ase).

2. Limit points of the generated sequene might not exist at all.

With the aim of guaranteeing the existene of limit points (and, in fat,

avoiding possible overows in the omputer alulation), arti�ial bounds

are frequently added to (2). In this ase, the globalization proedure must
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use tehniques of bound-onstrained minimization [7, 10, 18, 19, 31, 36℄ and

the limit points will be stationary points of the bound onstrained problem.

Unfortunately, if an arti�ial onstraint is ative at the limit point, the limit

point might not be a stationary point of (2), and hene also not a solution

of (1). This usually happens when the sequene generated by the unon-

strained algorithm applied to (2) tends to in�nity.

In [5℄ it has been suggested that a better way in whih the domain of (1)

an be ompati�ed is to onsider the variational inequality problem de�ned

by F (x) on the domain de�ned by the arti�ial bounds. In that paper it

was proved that, under suitable onditions, any stationary point of a smooth

reformulation (with bounded level sets) of the variational inequality problem

must be a solution of (1). Therefore, the results in [5℄ represent suÆient

onditions under whih none of the two objetions just exposed is problem-

ati.

The disussion above an be repeated, with minor modi�ations, if the

original problem is a omplementarity problem instead of a nonlinear system.

The main drawbak of the approah of [5℄ is that the reformulation of the

original problem requires 2n additional variables. In [4, 14℄ a di�erent refor-

mulation with the same tripliating property an be found. In the present

researh, we introdue reformulations with n+ 3 additional variables having

similar properties as the ones proved in [5℄. The idea, as we mentioned above,

is to onsider �rst the variational inequality problem on a smaller simpliial

region.

This paper is organized as follows. In Setion 2 we explain how a varia-

tional inequality problem on a generalized box an be redued to a VIP in

whih the domain is a simplex. In Setion 3 we de�ne smooth reformulations

of the VIP on the simplex, for whih the level sets are bounded and, under

suitable onditions, stationary points oinide with solutions of the varia-

tional inequality problem. In Setion 4 we repeat the work of Setion 3 with

respet to an unonstrained reformulation that uses the penalized Fisher-

Burmeister [8℄ funtion. See, also, [11, 14, 16, 17, 23, 27, 29, 30℄. In Setion 5

we present numerial experiments. Conlusions are given in Setion 6.
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2 Redution to the simplex form

The fat that, under ertain onditions, the solution of a restrited variational

inequality problem is a solution of the original one, seems to be known by

many researhers, although the result is not easily found in the literature.

The argument is as follows:

Consider the variational inequality problem V IP (F;
), that onsists of

�nding x 2 
 suh that

hF (x); z � xi � 0 8 z 2 
; (4)

where F : IR

n

! IR

n

and 
 is losed and onvex. Let B � IR

n

be losed and

onvex too. Denote B

0

the set of interior points of B. De�ne 


small

= 
\B

and onsider the variational inequality problem de�ned by

hF (x); z � xi � 0 8 z 2 


small

: (5)

Clearly, any solution of (4) that belongs to 


small

will be a solution of (5).

Let us show that, under ertain onditions, every solution of (5) is a solution

of (4). Denote S

small

the set of solutions of (5). Essentially, the proof of the

following theorem is the one given (under slightly stronger hypotheses) in [45℄.

Theorem 1. Assume that the set of solutions of (4) is losed. Assume, more-

over, that for every solution x of (5) there exists a sequene fx

k

g � B

0

\S

small

suh that limx

k

= x. Then, every solution of (5) solves (4).

Proof. Let x be a solution of (5). Let fx

k

g � B

0

\ S

small

be the sequene

(onvergent to x) whih is mentioned in the hypothesis. Let z 2 
. Sine

x

k

2 B

0

and 
 is onvex, there exists t > 0 suh that x

k

+ t(z�x

k

) 2 


small

.

Therefore, sine x

k

solves (5), hF (x

k

); t(z�x

k

)i � 0. So, hF (x

k

); z�x

k

i � 0.

Sine z and k are arbitrary, this means that x

k

solves (4) for all k. But the

set of solutions of (4) is losed, so x also solves (4). 2

Now, we onsider the problem V IP (F;


1

), where




1

= fx 2 IR

n

j x

i

� 0 8 i 2 Ig (6)

and I � f1; : : : ; ng. Nonlinear omplementarity problems and nonlinear

systems are partiular ases of V IP (F;


1

), where I = f1; : : : ; ng and I = ;,

respetively.
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De�ne




2

= fx 2 IR

n

j x � ` and

n

X

i=1

x

i

�Mg

where ` 2 IR

n

, `

i

= 0 for all i 2 I and

P

n

i=1

`

i

< M . Clearly, 


2

� 


1

. We

denote S

2

the set of solutions of V IP (F;


2

). The appliation of Theorem 1

to V IP (F;


1

) is given in the following theorem.

Theorem 2. Suppose that F is ontinuous on 


1

, S

2

is onvex and there

exists �x 2 S

2

suh that

P

n

i=1

�x

i

< M and �x

i

> `

i

for all i =2 I. Then, any

solution of V IP (F;


2

) solves V IP (F;


1

).

Proof. Sine F is ontinuous, the set of solutions of V IP (F;


1

) is losed.

Let x 2 S

2

. By the onvexity of S

2

, we have that [�x; x) � S

2

. Moreover, for

all y 2 [�x; x), we have that

P

n

i=1

y

i

< M and y

i

> `

i

, i =2 I. Therefore, the

hypothesis of Theorem 1 holds for the sequene de�ned by x

k

= x+

1

k

(�x�x).

This implies the desired result. 2

De�ning G

1

: IR

n+1

! IR

n+1

by

G

1

(y; x

n+1

) = (F (y); 0) 8 y 2 IR

n

; x

n+1

2 IR; (7)




3

= fx 2 IR

n+1

j

n+1

X

i=1

x

i

=M and x

i

� `

i

; i = 1; : : : ; n+ 1g

and `

n+1

= 0, it is easy to see that solving V IP (G

1

;


3

) is equivalent to solv-

ing V IP (F;


2

). Finally, after a suitable hange of variables, we an onsider

that M = 1 and `

i

= 0 for all i = 1; : : : ; n + 1, so that the original problem

is redued to a variational inequality problem on the anonial simplex.

3 Bounded smooth reformulations

The disussion in the Setion 2 justi�es the study of the problem V IP (G;S),

where G : IR

m

! IR

m

and

S = fx 2 IR

m

j x � 0 and

m

X

i=1

x

i

= 1g:

Aording to [1, 22℄ (see, also, [2, 3, 4, 15, 20, 21, 32℄) we de�ne the

following reformulation for V IP (G;S):
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Minimize �

1

(x; v; �) subjet to x � 0; v � 0; (8)

where

�

1

(x; v; �) = �

0

kG(x) + 1�� vk

2

2

+ �

1

(

m

X

i=1

x

i

� 1)

2

+ hx; vi

2

;

x; v 2 IR

m

, � 2 IR, 1 = (1; : : : ; 1) 2 IR

m

, �

0

; �

1

> 0.

Let us prove that �

1

(x; v; �) has bounded level sets on the set x � 0; v �

0. From now on, we denote IR

n

+

= fx 2 IR

n

j x � 0g.

Theorem 3. Assume that G is ontinuous on IR

m

+

. Then, for all � 2 (0; �

1

),

the set

L

1

= f(x; v; �) 2 IR

2m+1

j x � 0; v � 0; �

1

(x; v; �) � �g;

is bounded.

Proof. Assume that

(x

k

; v

k

; �

k

) 2 L

1

for all k = 0; 1; 2; : : :

Sine (

P

m

i=1

x

k

i

� 1)

2

� � and x

k

� 0 for all k = 0; 1; 2; : : : we have that the

sequene fx

k

g is bounded. Therefore, by the ontinuity of G, the sequene

fG(x

k

)g is also bounded.

Sine �

0

kG(x

k

) + 1�

k

� v

k

k

2

2

� � for all k = 0; 1; 2; : : : and fG(x

k

)g is

bounded we have that f�

k

�v

k

i

g is bounded for all i = 1; : : : ; m. Therefore, if

fv

k

i

g is bounded for some i 2 f1; : : : ; mg, �

k

is also bounded, implying that

v

k

i

is bounded for all i = 1; : : : ; m.

Now, if there exists j 2 f1; : : : ; mg suh that fv

k

j

g is unbounded, we an

extrat a subsequene suh that v

k

j

!1. For the same subsequene, �

k

!1

and, so, v

k

i

! 1 for all i = 1; : : : ; m. Let us all, for this subsequene,

v

k

= (v

k

1

; : : : ; v

k

m

).

But hx

k

; v

k

i

2

� � for all k = 0; 1; 2; : : :. Therefore, sine x

k

� 0 for all k,

we have that

lim

k!1

x

k

= 0:

Hene,

lim

k!1

�

1

(

m

X

i=1

x

k

i

� 1)

2

= �

1

:
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Thus, for k large enough, �

1

(x

k

; v

k

; �

k

) > � and, so, (x

k

; v

k

; �

k

) =2 L

1

. This

means that the assumption on the unboundedness of v

k

i

is not possible. This

ompletes the proof. 2

It is easy to �nd (x

0

; v

0

; �

0

) suh that �

1

(x

0

; v

0

; �

0

) < �

1

. For example,

take x

0

� 0 suh that

P

m

i=1

x

0

i

= 1, arbitrarily hoosing �

0

2 IR and v

0

� 0.

Therefore,

�

1

(x

0

; v

0

; �

0

) = �

0

kG(x

0

) + 1�

0

� v

0

k

2

2

+ hx

0

; v

0

i

2

and, so, the ondition �

1

(x

0

; v

0

; �

0

) < �

1

holds if we hoose

�

1

> �

0

kG(x

0

) + 1�

0

� v

0

k

2

2

+ hx

0

; v

0

i

2

:

Theorem 3 implies that, with the proper hoie of x

0

, �

0

and �

1

, any rea-

sonable iterative minimization algorithm for solving (8) neessarily produes

a sequene that has limit points. In fat, the sequene generated by suh an

algorithm will satisfy

�

1

(x

k

; v

k

; �

k

) � �

1

(x

0

; v

0

; �

0

) 8 k = 0; 1; 2; : : : ;

so, by Theorem 3, (x

k

; v

k

; �

k

) will be bounded. Moreover, for most iterative

minimization algorithms, limit points are stationary (KKT) points of the

minimization problem. This guarantees that stationary points of problem

(8) will be neessarily found. It remains to relate the stationary points of (8)

to the solutions of V IP (G;S). This is done in Theorem 4.

Theorem 4. If G is monotone and has ontinuous �rst derivatives, all the

stationary points of (8) are solutions of V IP (G;S).

Proof. Sine S is bounded, this result follows from Theorem 4 of [22℄. See

also [1, 20℄. 2

It is easy to see that G

1

, de�ned by (7), is monotone if, and only if,

F is monotone. Therefore, stationary points of (8) de�ne (after hanging

variables) solutions of V IP (F;


2

). Under the interiority hypothesis of The-

orem 2, these are also solutions of V IP (F;


1

).

An interesting onsequene of the results of this setion omes from an-

alyzing the nonlinear system F (x) = 0, where F is monotone (see [43℄) but
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kF (x)k

2

2

has stationary points or even loal minimizers whih are not solu-

tions of the system. Essentially, in this setion it has been proved that, if

one selets adequate arti�ial bounds ` and M , and the reformulation (8) is

applied, there is no risk of onvergene to spurious stationary points of the

squared norm of F .

We �nish this setion onsidering a di�erent smooth reformulation of

V IP (G;S). See [37℄. Consider the minimization problem

Minimize �

2

(x; v; �) subjet to x � 0; v � 0; (9)

where

�

2

(x; v; �) = �

0

kG(x) + 1�� vk

2

2

+ �

1

(

m

X

i=1

x

i

� 1)

2

+

m

X

i=1

(x

i

v

i

)

2

:

As in the ase of (8) it is easy to see that solutions of V IP (G;S) or-

respond to global solutions of (9) for whih the objetive funtion vanishes.

Moreover, the following results an be proved using the same tehniques of

Theorems 3 and 4. Finally, an initial bounded level set an be obtained

hoosing �

1

similarly to above.

Theorem 5. Assume that G is ontinuous on IR

m

+

. Then, for all � 2 (0; �

1

),

the set

L

2

� f(x; v; �) 2 IR

2m+1

j x � 0; v � 0; �

2

(x; v; �) � �g

is bounded.

Theorem 6. If G is monotone and has ontinuous �rst derivatives, all the

stationary points of (9) are solutions of V IP (G;S).

Remark. The ompati�ation proedure is essential to guarantee that

stationary points of smooth reformulations are solutions of the assoiated

monotone nonlinear omplementarity problems. For example, onsider the

NCP de�ned by F : IR

1

! IR

1

, where

F (x) =

8

>

<

>

:

�1 if x � 1

�1 +

2

3

(x� 1)

2

if 1 � x � 2

1�

4

3

e

�x+2

if x � 2

(10)
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Clearly, F is monotone and the unique solution of the assoiated NCP is

2 + ln

4

3

.

The optimization problem assoiated to the smooth reformulations (with-

out ompati�ation) is to minimize �(x; z) = F (x)

2

+ (xz)

2

subjet to

x; z � 0. This problem has, besides the global solution, the stationary point

(0; 0), whih is not a solution of the NCP. Moreover, sine �(k;

1

k

2

) � 1 for

all k = 1; 2; : : :, the level set

f(x; z) j �(x; z) � 1; x � 0; z � 0g

is not bounded.

4 Penalized Fisher-Burmeister reformulation

The Fisher-Burmeister funtion, de�ned by

'(a; b) = a+ b�

p

a

2

+ b

2

8 a; b 2 IR; (11)

has been used in many reformulations of omplementarity and variational

inequality problems [11, 14, 16, 17, 23, 27, 29, 30, 42℄. Its main property is

that '(a; b) = 0 if, and only if, a � 0; b � 0 and ab = 0.

The penalized Fisher-Burmeister funtion has been introdued reently

in [8℄. It is de�ned by

 

�

(a; b) = '(a; b) + �a

+

b

+

; (12)

where � � 0, 

+

= maxf; 0g and ' is the Fisher-Burmeister funtion (11).

Related funtions have been proposed in [30, 33℄.

Based on this funtion, Chen, Chen and Kanzow [8℄ introdued a new

method for solving nonlinear omplementarity problems for whih an ex-

ellent pratial performane has been reported. These authors proved a

bounded level set result (if � > 0) under the ondition that F is a monotone

funtion with a stritly feasible point or that F is an R

0

-funtion (see [9℄).

Similarly to (8), we de�ne the following reformulation of V IP (G;S):

Minimize �

3

(x; v; �); (13)

where

�

3

(x; v; �) = �

0

kG(x) + 1�� vk

2

2

+ �

1

(

m

X

i=1

x

i

� 1)

2

+

m

X

i=1

 

�

(x

i

; v

i

)

2

9



and �

0

, �

1

and 1 are as in (8). As in the previously de�ned reformulations, the

objetive funtion of (13) vanishes if, and only if, x is a solution of V IP (G;S).

If G is di�erentiable, the objetive funtion �

3

is one (but not twie) on-

tinuously di�erentiable. Boundedness of the level sets assoiated to Fisher-

Burmeister (� = 0) reformulations of omplementarity problems have been

proved in [29℄ under restritive onditions on F . Here we are going to prove

bounded-level-set results that hold assuming only ontinuity of G.

Theorem 7. Assume that G is ontinuous on IR

m

, � = 0 and � 2 (0; 1=m)

is suh that

�

1

(

p

�m� 1)

2

> �: (14)

Then, the set

L

3

= f(x; v; �) 2 IR

2m+1

j �

3

(x; v; �) � �g (15)

is bounded.

Proof. Suppose that f(x

k

; v

k

; �

k

)g 2 L

3

for all k = 0; 1; 2; : : :. Let us suppose,

by ontradition, that this sequene is not bounded.

Sine �

3

(x

k

; v

k

; �

k

) � � we have that

'(x

k

i

; v

k

i

)

2

� � 8 k = 0; 1; 2; : : :

So,

�'(x

k

i

; v

k

i

) �

p

� 8 k = 0; 1; 2; : : :

By an elementary property of the Fisher-Burmeister funtion, this implies

that

x

k

i

� �

p

� and v

k

i

� �

p

� 8 k = 0; 1; 2; : : :

So, x

k

� (�

p

�; : : : ;�

p

�) and (

P

m

i=1

x

k

i

� 1)

2

� �=�

1

for all k = 0; 1; 2; : : :

This implies that fx

k

g is bounded.

By the ontinuity ofG, fG(x

k

)g is also bounded. Therefore, sine fkG(x

k

)+

1�

k

� v

k

k

2

2

g is obviously bounded, and v

k

i

� �

p

� 8 k = 0; 1; 2; : : :, the un-

boundedness of f(x

k

; v

k

; �

k

)g implies that there exists a subsequene suh

that (after relabeling),

lim

k!1

v

k

i

=1 8 i = 1; : : : ; m: (16)

10



But the sequene fx

k

g is bounded, so it has a onvergent subsequene. There-

fore, we an ensure that for a suitable subsequene (16) holds. So, after a

new relabeling,

lim

k!1

x

k

i

= a

i

8 i = 1; : : : ; m: (17)

By an elementary property of (11), (16) and (17) imply that

lim

k!1

'(x

k

i

; v

k

i

) = a

i

for some a

i

� �

p

�, i = 1; : : : ; m. Thus

lim

k!1

m

X

i=1

'(x

k

i

; v

k

i

)

2

=

m

X

i=1

a

2

i

:

Sine

P

m

i=1

'(x

k

i

; v

k

i

)

2

� � for all k, this implies that

m

X

i=1

a

2

i

� �:

Hene,

m

X

i=1

a

i

�

p

�m:

But, by (14),

p

�m < 1, so

�

1

(

m

X

i=1

a

i

� 1)

2

� �

1

(

p

�m� 1)

2

:

Therefore, by (14),

�

1

(

m

X

i=1

a

i

� 1)

2

> �:

This implies that, for k large enough,

�

1

(

m

X

i=1

x

k

i

� 1)

2

> �;

and, so,

�

3

(x

k

; v

k

; �

k

) > �:

11



This ontradits the fat that (x

k

; v

k

; �

k

) 2 L

3

. 2

As in the ase of �

1

and �

2

, with a suitable hoie of �

0

, we an ensure

that

�

3

(x

0

; v

0

; �

0

) < �; (18)

where � satis�es (14). In fat, we take x

0

� 0 suh that

P

m

i=1

x

0

i

= 1 and

v

0

= 0. Then, �

3

(x

0

; v

0

; �

0

) = �

0

kG(x

0

) + 1�

0

� v

0

k

2

2

and ondition (18)

holds if �

0

is hosen to be suÆiently small.

Remark. The lassial Fisher-Burmeister reformulation of the NCP de-

�ned by (10) onsists of minimizing �(x) � (

q

x

2

+ F (x)

2

� x � F (x))

2

.

Sine �(k) � 1 for all k = 3; 4; 5; : : :, this funtion fails to have bounded

level sets. Of ourse, the level sets F (x) � � are bounded if � > 0 is

small enough, but it is not possible to predit for whih point x

0

the level

set fx 2 IR j �(x) � �(x

0

)g is bounded. Of ourse, a rather trivial way

to obtain examples where the level sets of all lassial reformulations of the

monotone NCP is not bounded is to onsider problems with an unbounded

solution set. Finally, in the absene of monotoniity, examples of unbounded

level sets are easy to obtain for all the lassial reformulations.

Theorem 8. Assume that G is ontinuous on IR

m

. If � > 0, for all

� 2 (0; �

1

), the set L

3

, de�ned in (15), is bounded.

Proof. Suppose that (x

k

; v

k

; �

k

) 2 L

3

for all k = 0; 1; 2; : : :. Therefore,

 

�

(x

k

i

; v

k

i

)

2

� � 8 i = 1; : : : ; m; k = 0; 1; 2; : : :

So, by (12),

�'(x

k

i

; v

k

i

) �

p

� 8 i = 1; : : : ; m; k = 0; 1; 2; : : :

This implies, as in Theorem 7, that

x

k

i

� �

p

� 8 i = 1; : : : ; m; k = 0; 1; 2; : : :

So, sine �

1

(

P

m

i=1

x

k

i

� 1)

2

� � for all k = 0; 1; 2; : : :, we have that fx

k

g is

bounded. By the ontinuity of G, fG(x

k

)g is bounded and, so, f�

k

� v

k

i

g is

bounded for all i = 1; : : : ; m. As in previous boundedness theorems, we only

12



need to prove that the assumption v

k

i

! 1 for all i = 1; : : : ; m leads to a

ontradition. In fat, if v

k

i

! 1 for all i = 1; : : : ; m we have, as in Theo-

rem 7, that, for a suitable subsequene, fx

k

i

g is onvergent and f'(x

k

i

; v

k

i

)g is

bounded. Assume, for a moment, that there exists i 2 f1; : : : ; mg and " > 0

suh that

x

k

i

� "

for an in�nite set of indies. This implies that x

k

i

v

k

i

! 1 and, so, the

sequene is not ontained in L

3

. Therefore,

lim

k!1

x

k

� 0:

This implies that

lim

k!1

�

1

(

m

X

i=1

x

k

i

� 1)

2

� �

1

:

This is impossible, sine (x

k

; v

k

; �

k

) 2 L

3

. So, the proof is omplete. 2

Clearly, an initial estimate that belongs to a bounded level set an be

hosen as we did in the smooth reformulations studied in Setion 3.

Theorem 9 is a suÆieny result for the reformulation (13) that orre-

sponds to Theorems 4 and 6 of Setion 3.

Theorem 9. If G is monotone and has ontinuous �rst derivatives, all the

stationary points of (13) are solutions of V IP (G;S).

Proof. The ase � = 0 follows from a straightforward generalization of The-

orem 2.4 of [28℄. In the ase � > 0, use Proposition 3.3 of [8℄ for generalizing

Theorem 2.4 of [28℄. Then, generalize this result as in the ase � = 0. 2

5 Preliminary numerial experiene

We solved some variational inequality problems on the simplex S using the

reformulations studied in this paper. Our objetive here is to get a prelimi-

nary idea of the omparative behavior of di�erent reformulations. The �rst

problem onsidered was:

hG(x); z � xi � 0 8 z 2 S;

13



where G : IR

m

! IR

m

was given by G(x) = Ax�, A was the 10�10 Hilbert

matrix ([A℄

i;j

=

1

i+j�1

) and the entries of 

i

were hosen randomly in [0; 2℄.

In Table 1 we reall the di�erent reformulations studied in this paper.

Table 1: Reformulations and optimization problems

Reformulation Objetive Complementarity Feasible

funtion term region

Smooth 1 �

1

hx; vi

2

IR

m

+

� IR

m

+

� IR

Smooth 2 �2

P

m

i=1

(x

i

v

i

)

2

IR

m

+

� IR

m

+

� IR

PFB �

3

P

m

i=1

 

�

(x

i

; v

i

)

2

IR

m

� IR

m

� IR

For solving the optimization problems assoiated to di�erent reformula-

tions, we used the general purpose algorithm SPG given in [6℄. This is a

very simple algorithm that generally outperforms onjugate gradient meth-

ods in the unonstrained ase (see [40℄) and is omparable to good large-sale

bound onstrained solvers when simple onstraints are present. Of ourse,

this algorithm does not take into aount the struture of the problems at all

and, so, an be very ineÆient in many ases, but it is useful when the goal

is to ompare reformulations as in this ase. In this �rst set of experiments

we used a modest omputer environment (Pentium with 90 MHZ) and the

ode was written in (double preision) Fortran 77.

The onvergene riterion used to terminate the exeution of SPG was

kP (z �r�

i

(z))� zk � 10

�6

;

where z = (x; v; �) and P is the projetion on the feasible region. As initial

approximation we took x

i

= uniformly random between 0 and 1 and then we

divided eah oordinate by

P

m

i=1

x

i

. We also took v = 0 and � = 0. In order

to ensure bounded level sets we hose �

0

= 1 and �

1

= maxf1; 1:1kG(x

0

)k

2

2

g.

We solved 10 problems with di�erent random generations of  and the

initial x. We onsidered that the exeution was suessful if the solution was

obtained in less than 25 seonds. In general, suessful exeutions used less

than 5 seonds for all the formulations. In the following table, we show the

number of suessful exeutions and the number of times eah reformulation

was the best, in terms of exeution time. In all the suessful ases, the

solutions were obtained with the same preision. In two problems, all the re-

formulations failed. We onsidered that there was not a \best reformulation"

in these two ases.

14



Table 2: Comparison of reformulations

Reformulation Suessful exeutions Best in

Smooth 1 (8) 4 1 problem

Smooth 2 (9) 3 0 problems

PFB (13), � = 0 7 3 problems

PFB (13), � = 0:1 6 3 problems

PFB (13), � = 1:0 8 1 problem

PFB (13), � = 10: 4 0 problems

Both in the ondensed Table 2, and looking in detail at the experiments,

the behavior of \Smooth 2" appears to be similar to PFB with � = 10.

This is not surprising, sine a large � in  

�

(a; b) gives more weight to the

multipliative term ab in the positive orthant, and \Smooth 2" only uses this

term.

The penalty parameter � in the funtion  

�

(a; b) a�ets the measure of

\lak of omplementarity" in the positive orthant (a � 0; b � 0) in the

following way: If � � 0, then  

�

(a; b) � '(a; b) and, so,  

�

(";M) is \ap-

proximately independent" of M if " > 0 is small and M is large. This omes

from lim

M!1

'(";M) = ". In other words, '(";M) � minf";Mg. On the

other hand, if � is large or if we are using \Smooth 2", the measure of lak

of omplementarity tends quikly to1 if one of the variables tend to in�nity

and the other is kept �xed. Whether it is better to onsider that (";M) is

almost omplementary or not is a quite problem-dependent question. How-

ever, at the beginning of iterative proesses, it is dubious that the variable

that orresponds to the smaller omplementary variable will be zero at the

solution and, so, it seems onvenient to try to redue both. This deision

orresponds to \� large" in the PFB reformulation.

The \Smooth 1" reformulation is \more global" in the sense that the

inuene of the lak of omplementarity of the pair (x

j

; v

j

) depends on the

lak of omplementarity of the other pairs. In fat, sine

�

�v

j

(

m

X

i=1

x

i

v

i

)

2

= 2(

m

X

i=1

x

i

v

i

)x

j

and

�

�x

j

(

m

X

i=1

x

i

v

i

)

2

= 2(

m

X

i=1

x

i

v

i

)v

j

;

the ontribution of the j�th lak of omplementarity to the gradient of the

objetive funtion grows with the deviation from omplementarity of the

remaining pairs. In other words, \Smooth 1" will try a large step towards

15



zero on the variable v

j

not only when x

j

and x

j

v

j

are large, but also when

some of the produts x

i

v

i

(for i 6= j) are large.

The small number of experiments desribed above enouraged us to de�ne

a Newton-type algorithm that uses �

3

as objetive funtion, with the aim of

omparing more systematially di�erent hoies of �. Observe that �nding

a zero value of �

3

is equivalent to solving the (2m+ 1)� (2m+ 1) nonlinear

system

H(z) = 0;

where z = (x; v; �) and

H(z) =

�

G(x)� v + �1;

p

�

1

(

m

X

i=1

x

i

� 1);  

�

(x

1

; v

1

); : : : ;  

�

(x

m

; v

m

)

�

:

If G is smooth, H is smooth exept when x

i

v

i

= 0 for some i. (However �

3

is smooth for all z.) Therefore, the Newtonian diretion

d(z) = �B(z)

�1

H(z); (19)

where B(z) 2 �

B

G(z), is well de�ned whenever a nonsingular element of

�

B

G(z) an be found. See [39℄. This allows us to de�ne a nonmonotone

safeguarded Newton-gradient algorithm along the lines of [11℄ and [25℄. From

now on, we write �(z) = �

3

(x; v; �) for the sake of simpliity.

Assume that  2 (0; 1); �

1

; �

2

> 0; � 2 (0; 1=2); � 2 f0; 1; 2; : : :g are

given independently of k. Suppose that the iterate z

k

has been omputed

for some k � 0. Then, if r�(z

k

) 6= 0, the iterate z

k+1

is omputed as follows.

Algorithm 4.1. (Nonmonotone safeguarded Newton-gradient).

Step 1. If d(z

k

) (given by (19)) exists and, in addition,

hd(z

k

);r�(z

k

)i � �kd(z

k

)k

2

kr�(z

k

)k

2

; (20)

and

�

1

kr�(z

k

)k

2

� kd(z

k

)k

2

� �

2

kr�(z

k

)k

2

; (21)

de�ne d

k

= d(z

k

). Otherwise, de�ne d

k

= �r�(z

k

).

Step 2. Starting with t = 1 and using lassial safeguarded baktraking

(see [11, 12℄), ompute t

k

> 0 suh that

�(z

k

+ t

k

d

k

) �

~

�

k

+ �t

k

hd

k

;r�(z

k

)i; (22)
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where

~

�

k

= maxf�(z

k

); : : : ;�(z

�

)g

and � = maxf0; k � �g (see [25℄).

De�ne z

k+1

= z

k

+ t

k

d

k

.

Using slight modi�ations of the results of [11℄ and [25℄ we an prove that

every limit point of a sequene generated by this algorithm is stationary.

Sine we have proved that, hoosing the appropriate initial point and �

1

,

the generated sequenes are bounded, it turns out that stationary points are

neessarily found, in the limit, by Algorithm 4.1.

We wrote a double preision Fortran ode implementing this algorithm for

the unonstrained minimization of �

3

. We hose  = �

1

= 1=�

2

= � = 10

�4

and � = 9. As initial point we took x

0

= (1; 1=2; : : : ; 1=m)=

P

m

i=1

(1=i),

v

0

= 0, �

0

= 0. We ran the algorithm for di�erent hoies of � using prob-

lems de�ned by operators G(x) taken from the nonlinear-system literature.

Namely, we de�ne:

Problem 1 (Hilbert) m = 100

G(x) = Ax � , where A is de�ned as the Hilbert matrix, and  =

(1; 1=2; : : : ; 1=m).

Problem 2 (Broyden) m = 100

[G(x)℄

1

= (3� 2x

1

)x

1

� 2x

2

+ 1;

[G(x)℄

i

= (3� 2x

i

)x

i

� x

i�1

� 2x

i+1

+ 1; i = 2; : : : ; m� 1;

[G(x)℄

m

= (3� 2x

m

)x

m

� x

m�1

:

Problem 3 (Rosenbrok) m = 20

[G(x)℄

i

= 10(x

i+1

� x

2

i

) if i is odd;

[G(x)℄

i

= 1� x

i�1

if i is even:

Problem 4 (Helial valley) m = 99

17



For i = 1; : : : ; m=3,

[G(x)℄

3i

= 10x

3i+2

�

50

�

atan (x

3i+1

=3i)� 50 if x

3i

< 0;

[G(x)℄

3i

= 10x

3i+2

�

50

�

atan (x

3i+1

=3i) if x

3i

> 0;

[G(x)℄

3i+1

=

q

x

2

3i

+ x

2

3i+1

:

and

[G(x)℄

3i+2

= x

3i+2

:

Problem 5 (Watson) m = 31

For i = 1; : : : ; 29,

[G(x)℄

i

=

m

X

j=1

(j � 1)x

j

(i=29)

j�2

�

2

4

m

X

j=1

x

j

(i=29)(i=29

j�2

3

5

2

� 1;

[G(x)℄

30

= x

1

;

[G(x)℄

31

= x

2

� x

2

1

� 1:

Problem 6 (Murty) m = 100

G(x) = Ax� , where A is upper-triangular, [A℄

ij

= 2 if i < j, [A℄

ii

= 1

for all i = 1; : : : ; m and  = (1; : : : ; 1).

The experiments that we report below were run in a SPARCstation Sun

Ultra 1, with an UltraSPARC 64 bits proessor, 167-MHz lok and 128-

MBytes of RAM memory. The stopping riterion was kH(z)k

1

� 10

�8

.

Besides number of iterations (It), number of funtion evaluations (FE) and

CPU time (in seonds), we report the number of times the Newton diretion

needed to be replaed by the gradient diretion. In this preliminary imple-

mentation, the linear systems were solved by Gaussian elimination, without

taking advantage of their sparsity. Obviously, the omputer time must de-

rease dramatially if a sparse implementation is developed, but the other

indiators would not hange.
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Table 3: Comparison of di�erent penalty parameters in PFB

Problem m � kH(z)k

1

It FE Changes Time

Hilbert 100 10

�6

0:95E � 10 10 64 0 2:16

0:10 0:22E � 10 13 74 0 2:81

1:00 0:14E � 09 12 84 0 2:56

10:00 0:17E � 11 11 69 0 2:32

100:0 0:34E � 10 13 92 0 2:78

Broyden 100 10

�6

0:42E � 09 4 5 0 0:82

0:10 0:42E � 09 4 5 0 0:82

1:00 0:42E � 09 4 5 0 0:82

10:00 0:42E � 09 4 5 0 0:82

100:0 0:42E � 09 4 5 0 0:82

Rosenbrok 20 10

�6

0:48E � 09 3 4 0 < 0:1

0:10 0:48E � 09 3 4 0 < 0:1

1:00 0:48E � 09 3 4 0 < 0:1

10:00 0:48E � 09 3 4 0 < 0:1

100:0 0:48E � 09 3 4 0 < 0:1

Helial 99 10

�6

0:36E � 14 122 2021 104 25:7

0:10 0:36E � 14 122 2025 105 26:3

1:00 0:13E � 11 122 1995 104 26:2

10:00 0:28E � 11 62 830 45 13:0

100:0 0:40E � 09 153 2594 134 32:6

Watson 31 10

�6

0:10E � 09 35 197 1 0:1

0:10 0:10E � 09 35 197 1 0:1

1:00 0:10E � 09 35 197 1 0:1

10:00 0:10E � 09 35 197 1 0:1

100:0 0:10E � 09 35 197 1 0:1

Murty 100 10

�6

0:44E � 15 176 561 1 25:6

0:10 0:77E � 10 150 397 1 31:3

1:00 0:26E � 09 173 491 1 35:9

10:00 0:80E � 12 166 511 1 34:4

100:0 0:16E � 11 165 493 1 34:2

We observe that in three problems (Broyden, Rosenbrok andWatson) the

behavior of the �ve penalty parameters is the same. In Hilbert and Murty

the smallest � was, marginally, the best. However, in Helial, \� = 10"

learly outperformed the other alternatives. Probably, very large values of �

should be disarded from pratial implementations (at least in well saled
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problems) but the best hoie among \small" values of � seems to depend

strongly on the problem harateristis.

The number of funtional evaluations per iteration appears to be large

in the problems Hilbert, Watson and Murty. With the aim of understanding

this phenomenon, we ran some problems hoosing the gradient diretion in

the �rst (5 or 10) iterations. Running Hilbert with � = 0:1 and 5 (�rst)

gradient iterations, the omputer time dereased to 1:6 seonds and, with 10

(�rst) gradient iterations, it dereased to 1:1 seonds. We found it instrutive

to show the detailed behavior of the algorithm in the ordinary ase, and in

the two modi�ed ases. See Tables 4, 5 and 6. We observe that, in fat,

the �rst Newton iterations are not worthwhile in terms of the progress they

provide, whereas, of ourse, they are muh more expensive than gradient

iterations. The quadrati onvergene of Newton is quite evident in the last

two iterations. We also ran the algorithm using only gradient iterations, and

we observed, as expeted, an extremely slow onvergene behavior. In fat,

onvergene did not our after 1000 iterations in this ase.

The qualitative behavior desribed for Hilbert is essentially the same in

the Watson problem. In this ase, with 10 initial gradient iterations, the

omputer time redued to 0:18 seonds and even the number of iterations

dereased. On the other hand, the modi�ation of the algorithm in the

Murty problem did not ause meaningful improvements. In this problem,

the number of iterations inreased moderately and the omputer time re-

mained more or less the same.

Problem Helial is instrutive in a di�erent sense. In this ase, the

Newton diretion was rejeted at most iterations, and the algorithm be-

haves, essentially, as a steepest desent method. We deided to modify the

algorithmi parameters in order to weaken the riterion of aeptane of

the Newton diretion at Step 1 of Algorithm 4.1. Consequently, we hose

 = �

1

= 1=�

2

= 10

�25

and we ran the problem with these new parameters.

The results were quite impressive, showing how sensitive this type of algo-

rithm an be with respet to safeguarding onstants. For � = 0:1 the Newton

diretion was never rejeted, onvergene ourred in 10 iterations with 18

funtion evaluations and 1.9 seonds of CPU time. Similar improvements

were obtained for the other values of �.
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Table 4: Algorithm 4.1 with Problem Hilbert, � = 0:1

Iteration k Evaluations kH(z

k

)k

2

0 1 1:1659909612460

1 7 1:1506050628261

2 19 1:1559111113737

3 31 1:1586923058790

4 39 1:1556372319450

5 46 1:1414773334813

6 51 1:1299367786945

7 56 1:1386723439549

8 62 1:1617009941393

9 66 1:0730683927287

10 70 0:98505951078780

11 72 0:67329707514733

12 73 4:2472036158979E � 03

13 74 2:6507263515338E � 11

Table 5: Algorithm 4.1 with Problem Hilbert, � = 0:1

First 5 are gradient iterations

Iteration k Evaluations kH(z

k

)k

2

0 1 1:1659909612460

1 9 1:0818877741731

2 17 1:0192301426184

3 24 1:0804586556667

4 32 0:98801773901278

5 40 0:91336945465545

6 41 0:46240603597402

7 45 0:78454888864694

8 46 0:86704125514515

9 47 0:93591242869472

10 54 1:0832676503144

11 55 1:2486098348917E � 06

12 56 9:6170809859694E � 14
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Table 6: Algorithm 4.1 with Problem Hilbert, � = 0:1

First 10 are gradient iterations

Iteration k Evaluations kH(z

k

)k

2

0 1 1:1659909612460

1 9 1:0818877741731

2 17 1:0192301426184

3 24 1:0804586556667

4 32 0:98801773901278

5 40 0:91336945465545

6 48 0:85190911080106

7 55 1:1099440799153

8 63 0:97638264851556

9 71 0:87222456838420

10 79 0:78914420687610

11 80 0:29364275115164

12 81 0:95227479134610

13 82 1:0932851184041E � 02

14 83 1:9355846720355E � 09

6 Final remarks

We believe that the results presented in this paper have a reasonably wide

sope of appliations. Consider the general variational inequality problem

de�ned by F

1

on 
, where F

1

is smooth,


 = fx 2 IR

q

j g(x) � 0g;

g = (g

1

; : : : ; g

p

), g

i

smooth and onvex for all i = 1; : : : ; p. Under a suitable

onstraint quali�ation [26℄, this problem is equivalent to

F

1

(x) +

p

X

i=1

w

i

rg

i

(x) = 0;

w � 0; g(x) � 0;

p

X

i=1

g

i

(x)w

i

= 0:
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De�ning n = p + q, z = (x; w), F (z) =

�

F

1

(x) +

P

p

i=1

w

i

rg

i

(x);�g(x)

�

,

I = fp + 1; : : : ; p + qg we obtain a problem of type V IP (F;


1

) (6). So,

after ompati�ation, we obtain the variational inequality problem on the

simplex.

In this researh we proved that, using several potentially useful reformu-

lations, the boundedness of the sequenes generated by standard algorithms

an be guaranteed, so that limit points exist and suÆieny results an be

applied.

SuÆieny results of the type \stationarity implies solution" usually de-

pend on \monotoniity-like" assumptions. However, one should not interpret

that the reformulations must be tried only when the monotoniity assump-

tion is guaranteed to hold. Optimization algorithms usually guarantee sta-

tionary points, but its pratial eÆieny is linked to their ability to �nd

global minimizers in a substantial number of ases. This means that we an

try to solve the reformulation in any situation, with the hope that using good

global strategies we will probably �nd solutions of the original problem.

In [43, 44℄, Solodov and Svaiter presented Newton-like methods for solv-

ing monotone nonlinear systems and monotone nonlinear omplementarity

problems, respetively. Their onvergene results are very strong but, on

the other hand, the monotoniity assumption seems to be more essential for

their algorithms, than it is for the di�erent reformulations presented here.

The onditions under whih spei� algorithms for reformulations enjoy the

\true" onvergene properties of [43, 44℄ should be investigated.

Referenes

[1℄ R. Andreani, A. Friedlander and J. M. Mart��nez [1997℄, On the so-

lution of �nite-dimensional variational inequalities using smooth op-

timization with simple bounds, Journal on Optimization Theory and

Appliations 94, pp. 635-657.

[2℄ R. Andreani and J. M. Mart��nez [1999℄, Solving omplementarity prob-

lems by means of a new smooth onstrained nonlinear solver, in Refor-

mulation: Nonsmooth, Pieewise Smooth, Semismooth and Smoothing

Methods, edited by M. Fukushima and L. Qi, Kluwer Aademi Pub-

lishers, pp. 1{24.

23



[3℄ R. Andreani and J. M. Mart��nez [1998℄, On the solution of the ex-

tended linear omplementarity problem, Linear Algebra and its Appli-

ations 281, pp. 247-257.

[4℄ R. Andreani and J. M. Mart��nez [1999℄, On the reformulation of nonlin-

ear omplementarity problems using the Fisher-Burmeister funtion,

to appear in Applied Mathematis Letters 12, pp. 7-12.

[5℄ R. Andreani and J. M. Mart��nez [1999℄, On the solution of bounded and

unbounded mixed omplementarity problems, Relat�orio de Pesquisa

RP 01/99, Institute of Mathematis, University of Campinas, Camp-

inas SP, Brazil.

[6℄ E. G. Birgin, J. M. Mart��nez and M. Raydan [1999℄, Nonmonotone

spetral projeted gradient methods on onvex sets, to appear in SIAM

Journal on Optimization.

[7℄ R. H. Byrd, P. Lu, J. Noedal and C. Zhu [1995℄, A limited mem-

ory algorithm for bound onstrained minimization, SIAM Journal on

Sienti� Computing 16, pp. 1190{1208.

[8℄ B. Chen, X. Chen and C. Kanzow [1997℄, A penalized Fisher-

Burmeister NCP-funtion: theoretial investigation and numerial re-

sults, presented at the International Symposium on Mathematial Pro-

gramming in Lausanne, Switzerland, August 24-29, 1997.

[9℄ B. Chen and P. T. Harker [1997℄, Smooth approximations to nonlinear

omplementarity problems, SIAM Journal on Optimization 7, pp. 403-

420.

[10℄ A. R. Conn, N. I. M. Gould and Ph. L. Toint [1988℄, Global onver-

gene of a lass of trust region algorithms for optimization with simple

bounds, SIAM Journal on Numerial Analysis 25, pp. 433 - 460. See

also SIAM Journal on Numerial Analysis 26 (1989) pp. 764 - 767.

[11℄ T. De Lua, F. Fahinei and C. Kanzow [1996℄, A semismooth equa-

tion approah to the solution of nonlinear omplementarity problem,

Mathematial Programming, vol 75, pp 407-439.

24



[12℄ J. E. Dennis, Jr. and R. B. Shnabel, Numerial methods for unon-

strained optimization and nonlinear equations, Prentie-Hall Series in

Comput. Math., Prentie-Hall, N.J., 1983.

[13℄ S. P. Dirkse and M. C. Ferris [1995℄, A olletion of nonlinear mixed

omplementarity problems, Optimization Methods and Software 5, pp.

319-345.

[14℄ F. Fahinei, A. Fisher and C. Kanzow [1997℄, A semismooth New-

ton method for variational inequalities: the ase of box onstraints, in

Complementarity and variational problems: state of the art, edited by

M. C. Ferris and J.-S. Pang, SIAM, Philadelphia, pp. 76-90.

[15℄ L. Fernandes, A. Friedlander, M. Guedes e J. J�udie, Solution of gener-

alized linear omplementarity problems using smooth optimization and

its appliation to bilinear programming and LCP, to appear in Applied

Mathematis and Optimization.

[16℄ M. C. Ferris and C. Kanzow [1998℄, Complementarity and related prob-

lems: a survey, Tehnial Report, Computer Sienes Department, Uni-

versity of Wisonsin, Madison, Wisonsin.

[17℄ M. C. Ferris, C. Kanzow and T. S. Munson [1998℄, Feasible desent

algorithms for mixed omplementarity problems, to appear in Mathe-

matial Programming.

[18℄ A. Friedlander and J. M. Mart��nez [1989℄, On the numerial solution

of bound onstrained optimization problems, RAIRO Operations Re-

searh, 23, pp. 319{341.

[19℄ A. Friedlander, J. M. Mart��nez and S. A. Santos [1994℄, A new trust

region algorithm for bound onstrained minimization, Applied Mathe-

matis and Optimization 30, pp. 235-266.

[20℄ A. Friedlander, J. M. Mart��nez and S. A. Santos [1994℄, On the resolu-

tion of large sale linearly onstrained onvex minimization problems,

SIAM Journal on Optimization 4, pp. 331-339.

[21℄ A. Friedlander, J. M. Mart��nez and S. A. Santos [1995℄, Solution of lin-

ear omplementarity problems using minimization with simple bounds,

Journal of Global Optimization 6, pp. 253 - 267.

25



[22℄ A. Friedlander, J. M. Mart��nez and S. A. Santos [1995℄, A new strategy

for solving variational inequalities on bounded polytopes, Numerial

Funtional Analysis and Optimization 16, pp. 653-668.

[23℄ C. Geiger and C. Kanzow [1996℄, On the resolution of monotone

omplementarity problems, Computational Optimization and Applia-

tions 5, pp. 155-173.

[24℄ M. S. Gowda [1996℄, On the extended linear omplementarity problem,

Mathematial Programming 72, pp. 33-50.

[25℄ L. Grippo, F. Lampariello and S. Luidi [1986℄, A nonmonotone line

searh tehnique for Newton's method, SIAM Journal on Numerial

Analysis 23, pp. 707-716.

[26℄ P. T. Harker and J. S. Pang [1990℄, Finite-dimensional variational in-

equality and nonlinear omplementarity problem: a survey of theory,

algorithms and appliations, Mathematial Programming 48, pp. 161-

220.

[27℄ H. Jiang and L. Qi [1997℄, A new nonsmooth equations approah to

nonlinear omplementarities, SIAM Journal on Control and Optimiza-

tion 35, pp. 178-193.

[28℄ C. Kanzow [1994℄, An unonstrained optimization tehnique for large-

sale linearly onstrained onvex minimization problems, Comput-

ing 53, pp. 101-117.

[29℄ C. Kanzow [1997℄, A new approah to ontinuation methods for om-

plementarity problems with uniform P-funtions, Operations Researh

Letters 20, pp. 85{92.

[30℄ C. Kanzow, N. Yamashita and M. Fukushima [1997℄, New NCP-

funtions and properties, Journal of Optimization Theory and Appli-

ations, 94, pp. 115-135

[31℄ D. N. Kozakevih, J. M. Mart��nez and S. A. Santos [1997℄, Solving

nonlinear systems of equations with simple onstraints, Computational

and Applied Mathematis 16, pp. 215-235.

26



[32℄ J. J. J�udie [1994℄, Algorithms for linear omplementarity problems, Al-

gorithms for Continuous Optimization, edited by E. Spediato, Kluwer,

pp. 435-474,.

[33℄ Z.-Q. Luo and P. Tseng [1997℄, A new lass of merit funtions for the

nonlinear omplementarity problem, in Complementarity and varia-

tional problems: state of the art, edited by M. C. Ferris and J.-S. Pang,

SIAM, Philadelphia, pp. 204-225.

[34℄ O. L. Mangasarian and J. S. Pang [1995℄, The extended linear om-

plementarity problem, SIAM Journal on Matrix Analysis and Applia-

tions, 16, pp. 359-368.

[35℄ O. L. Mangasarian and M. V. Solodov[1993℄, Nonlinear omplemen-

tarity problem as unonstrained and onstrained minimization, Math-

ematial Programming 62, pp. 277- 297.

[36℄ J. M. Mart��nez [1997℄, Quasi-inexat-Newton methods with global on-

vergene for solving onstrained nonlinear systems, Nonlinear Analysis,

Theory, Methods and Appliations 30, pp. 1-8.

[37℄ J. J. Mor�e [1996℄, Global methods for nonlinear omplementarity prob-

lems, Mathematis of Operations Researh 21, pp. 589{614.

[38℄ J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear

equations in several variables, Aademi Press, New York, 1970.

[39℄ L. Qi and J. Sun [1993℄, A nonsmooth version of Newton's method,

Mathematial Programming 58, pp. 353-368.

[40℄ M. Raydan [1997℄, The Barzilai and Borwein gradient method for the

large sale unonstrained minimization problem, SIAM Journal on Op-

timization 7, pp. 26-33.

[41℄ H. Shwetlik, Numerishe L�osung nihtlinearer Gleinhungen,

Deutsher Verlag der Wissenshaften, Berlin, 1978.

[42℄ M. V. Solodov [1999℄, Some optimization reformulations of the ex-

tended linear omplementarity problem, Computational Optimization

and Appliations 13, pp. 187-200.

27



[43℄ M. V. Solodov and B. F. Svaiter [1999℄, A globally onvergent inexat

Newton method for systems of monotone equations, in Reformulation:

Nonsmooth, Pieewise Smooth, Semismooth and Smoothing Methods,

edited by M. Fukushima and L. Qi, Kluwer, pp.355-369.

[44℄ M. V. Solodov and B. F. Svaiter [1998℄, A truly globally onver-

gent Newton-type method for the monotone nonlinear omplementarity

problem, to appear in SIAM Journal on Optimization.

[45℄ M. V. Solodov and P. Tseng [1999℄, Two methods based on the D-

gap funtion for solving monotone variational inequalities, Tehnial

Report (April 18, 1999), IMPA, Rio de Janeiro, Brazil.

28


