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Abstract

We present a general theory of covariant derivative operators (linear
connections) on a Minkowski manifold (represented as an affine space
(M, M*) using the powerful multiform calculus. When a gauge metric
extensor G (generated by a gauge distortion extensor h) is introduced in
the Minkowski manifold, we get a theory that permits the introduction of
general Riemann-Cartan-Weyl geometries. The concept of gauge covari-
ant derivatives is introduced as the key notion necessary to generate linear
connections that are compatible with G, thus permitting the construction
of Riemann-Cartan geometries. Many results of genuine mathematical
interest are obtained. Moreover, such results are fundamental for build-
ing a consistent formulation of a theory of the gravitational field in flat
spacetime. Some important examples of applications of our theory are
worked in details.
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1 Introduction

In this paper we study the theory of covariant derivative operators on the
Minkowski manifold using the multiform calculus (Hestenes and Sobczyk, 1984:
Moya, Ferndndez, and Rodrigues, 1999, Moya, 1999). Before making use of
this formalism, we recall the main ideas and problems discussed in this paper
in the language of ordinary tensor calculus'. Let (M,n,7,) be the Minkowski
manifold and (M, n, 7,, D") Minkowski spacetime (Wu and Sachs, 1993, Ro-
drigues and Rosa, 1989)%. The quadruple (M,n, T, V), where V is an arbitrary
covariant derivative operator (not necessarily compatible with 77) and such that
its torsion and curvature tensors are non zero will be called a Riemann-Cartan-
Weyl (RCW) spacetime®. We can introduce into Minkowski manifold an infinite
number of nondegenerate symmetric tensors G € sec Ty (M) (not necessarily of
Lorentzian signature). A quadruple (M, G,7g, V), where V is an arbitrary co-
variant derivative operator (not necessarily compatible with G) and such that
its torsion and curvature are non zero will be called a RCW space. Such a
quadruple will be called a spacetime only if G has Lorentzian signature, in
which case it will be denoted by g, and will be called a gauge metric field. Now,
given an invertible mapping h : secTM — secT M , called a gauge distortion
field, it induces on the Minkowski manifold a nondegenerate symmetric tensor
G, by

G(u,v) = n(h(u),h(v)),YVu,v € secT M. (1.1)

A nontrivial mathematical question is the following: given an arbitrary RCW
space (or spacetime) (M,G,7a,V), where G is generated by h, construct a

LWe hope that this will encourage physicists to read the paper.

2M is a 4-dimensional manifold oriented by 7, (the volume element 4-form) and time
oriented, which is diffeomorphic to R*, n € sec TS(M) is a Lorentzian flat metric and D" is
the Levi-Civita connection of 7.

3More details and precise definitions using the multiform calculus are given in section 5.



covariant derivative operator from V and h, denoted by @, such that it is
compatible with G, i.e., VG = 0. In this paper a solution for this problem is
found by introducing the concept of gauge covariant derivatives.

Now, from the physical point of view, our interest in this problem comes
from the so called flat spacetime formulations of gravitational theory (Logunov
and Mestvirishvili, 1989: Rodrigues and Souza, 1993; Pommaret, 1994), where
the gravitational field is supposed to be a field in the Faraday sense and not
a manifestation of a geometry, as in Einstein’s general relativity. Recently,
(Doran, Lasenby and Gull (DLG), 1998) developed a theory of this kind (using
the multivector calculus (Hestenes and Sobczyk, 1984)) which they called the
gauge theory of gravitation?. They believe to have produced a theory that is a
generalization of the flat spacetime formulation of Einstein’s general relativity.
One of the main ingredients of their theory is the introduction of a certain
covariant derivative operator that they called also a gauge covariant derivative.
However, it happens that what DLG called a gauge covariant derivative is one
like V and not one as V (this statement is proved below). It follows that in
their theory® Vg # 0, contrary to their statements (see, in particular Appendix
C of (DLG,1993)) and as a consequence their theory has the same deficiency
as regards physical interpretation as Weyl theory (Weyl, 1918, 1922, Adler,
Bazin and Schiffer, 1965). We are not going to discuss gravitational theories
in this paper. We only observe that a gauge theory of gravitational field in
flat spacetime, i.e., on Minkowski manifold, incorporating the compatibility of
the gauge covariant derivative with g (the gauge metric field) and using the
multiform calculus, is given in (Ferndndez, Moya and Rodrigues, 1999a).

Before proceeding, we would like to observe that one of the authors of the
present paper already studied the geometry of Riemann-Cartan-Weyl spaces in
(Rodrigues and Souza, 1993; Souza and Rodrigues, 1994; Rodrigues et al, 1995)
using the Clifford bundle of differential forms. However, the formalism in the
general case is somewhat artificial, the main reason being that a given covariant
derivative operator defined in the tensor bundle, in general does not define a co-
variant derivative operator in the Clifford bundle of differential forms, unless it
is compatible with the metric field used in the definition of the Clifford bundle.
Thus, in this approach only Riemann-Cartan geometries can be properly stud-
ied, the RCW cases being treated in a correct, but artificial way ¢. To overcome
this problem it is necessary to develop the multiform calculus in a special way
that enhances its power (Moya, Fernandez, and Rodrigues, 1999, Moya 1999).
This can be done once we represent the Minkowski manifold as an affine space,
with vector space M*.

Due to limitation of space, in this paper we study only the action of covari-
ant derivative operators on form fields and on (1, 1)-extensor fields (which are

4 Applications of his theory appears in several papers, as e.g., (Challinor et al, 1997;
Dabrowski et al 1999; Doran et al,1999)

5g is a (1,1)- extensor field representing a metric g € sec 79 (M). The definition of (p, q)-
extensor fields is given in definition(1.8)

6This does not means that a gauge theory of the gravitational field in the sense of
(Ferndndez, Moya and Rodrigues, 1999b) cannot be done in the Clifford bundle formalism.



the objects that represent the tensor fields h and g in our formalism). A study
of the action of covariant derivative operators on general multiform and exten-
sor fields, including a generalization of Cartan differential operator acting on
exform fields (i.e., completely antisymmetric extensor fields) and Lie derivatives
of multiform and extensor fields, is given in (Ferndndez, Moya and Rodrigues,
1999b). Despite these limitations the results to be presented are really worth
studying and we hope that our readers will enjoy them. Finally, it is necessary to
recall that the developments that follow can be only understood by readers who
are familiar with Clifford algebras as presented, e.g., in (Lounesto, 1997)7 and
the multivector calculus as presented in (Hestenes and Sobczyk, 1984: Moya,
Fernandez, and Rodrigues, 1999; Moya, 1999).

1.1 Some preliminaries and notations

Given a global coordinate system over M,say M >z <> z#(z) € R (. =10,1,2,3)
associated to a inertial reference frame (Rodrigues and Rosa, 1989) at z € M.
(32].) and (dz"|,) are the natural basis for the tangent vector space T, M
and the tangent covector space 1, M.

We have,
n = nNudz* @dc”,
0 0 .
Ny = n(%, 8;6") = diag(1,-1,—-1,-1). (1.2)

Definition 1.1. T, M > v, is said to be equipolent to v, € T, M (written
v, = v, ) if and only if

0 0
n(x)(@ 7U-t) :n(z’)(% ,’Uxf), (/1’:0717273) (13)
0 0
Note that WL = W » (/B = 0,1,2,3).

Definition 1.2. The set of equivalent classes of tangent vectors over the tangent
bundle,

M ={C,, |for all z € M}, (1.4)

has a natural structure of vector space, it is called Minkowski vector space.

Note that {( C ,
R w
notations: ¥ =C,, and €, =C ,

Pr

> is a natural basis for M (dim M = 4). With the

, We can write ¥ = v*é,.

Ed

Tt is particularly important to emphasize that in our approach (contrary to the approach in
(Hestenes and Sobczyk, 1984), it is necessary to distinguish between contractions and internal
products, as done in (Lounesto, 1997; Moya, Ferndndez and Rodrigues, 1999a; Moya,1999).



Definition 1.3. The 2-tensor over M,
n:MxM—=R, (1.5)

such that for each ¥ = Cy, and @ = Cw, € M : n(0,%) = n(y)(va, wy), for all
x € M, is called Minkowski metric tensor.

Note that, for each pair of basis vectors €, =C , | and €, =C 4 |, it
oz . ozv .
holds
n(guagu) = diag(1,—1,-1,-1). (1.6)

Definition 1.4. The dual basis of (€,) will be symbolized by (vy*), i.e., v* €
M* = AY (M) and v#(€,) = ot.

To continue, we observe the existence of a fundamental isomorphism between
M and A'(M) given by,

M3+ ae A (M), (1.7)

such that if @ = a*€, then a = n,,a*v" and if a = a,y" then @ = n*"a,é€,,
where Npv = ﬂ(gu, €V)7 77‘“' = Nuv-
Remark 1. To each basis vector €,, correspond a basis form v, = nu,7".

Definition 1.5. A scalar product of forms can be defined by

AY (M) x AY(M) 3 (a,b) —» a-bE R, (1.8)

such that if @ > a and b <> b then a - b = 1(a, b).

Remark 2. 7,7, =y, v*-v0 = 0% ({,) is called the reciprocal basis of {(y"))
and y* -+¥ = n*¥. Thus, n admits the expansions n = 1, 7* 7" = "7, @7, .
Remark 3. The oriented affine space (M, M*) (oriented by v° = y° Ay* A2 A
v3) is a representation of the Minkowski manifold.

Remark 4. (M, M*) equipped with the scalar product given by eq.(1.8) is a
representation of Minkowski spacetime.

Definition 1.6. Let (z*) be a global affine coordinate system for (M, M*), rel-
ative to an arbitrary point o € M. A position form associated to x € M, is the
form over M (designed by the same letter), given by the following correspon-
dence

M >z Sz =aky, € AH(M). (1.9)

Remark 5. We denote by C4(M) ~ Cl(1,3) ~ H(2), the spacetime algebra,
i.e., the Clifford algebra (Lounesto, 1997) of M* equipped with the scalar prod-
uct defined by eq.(1.8).

4
Remark 6. As a vector space over the reals, we have C4(M) = Y AP(M).



Definition 1.7. A smooth multiform field A on Minkowski spacetime is a mul-
tiform valued function of position form,

A (M) >z = A(z) € AM) (1.10)
Definition 1.8. Let 0 < p,q < 4. A (p, q)-extensor t is a linear mapping
t: AP(M) = AI(M). (1.11)
Remark 7. The set of all (p, q)-extensors is denoted by ext(AP (M), A1(M)).

Definition 1.9. A smooth (p,q)-extensor field ¢ on Minkowski spacetime is a
differentiable (p, q)-extensor valued function of position form,

AY (M) 3z t, € ext(AP(M), AY(M)). (1.12)
Definition 1.10. The a-directional derivative (a is an arbitrary form) of a
smooth multiform field X, denoted as a - 0X, is defined by
X(z + Aa) — X (2) d

a-0X =limA—0 3 = aX(m—k)\a) . (1.13)

Remark 8. The v,-directional derivative v, -0X coincides with the coordinate

derivative 9. For short, we will use the notation 0, = 7, - 0.

Definition 1.11. The gradient, divergence and curl of a smooth multiform field
X, respectively denoted by 0X, 01X and 0 A X, are defined by

X = +(9,X). (1.14)
X = 4i(0,X). (1.15)
INX = 7A(0,X). (1.16)

Remark 9. For any X, it holds 0X = 0.X + 0N X.

2 Covariant derivative of form fields

Definition 2.1. Let a be any form. A covariant derivative operator V (or
connection) acting on the set of smooth form fields on Minkowski manifold,
modeled by M*, is the mapping

Ve : hom[A! (M), A (M)] = hom[A! (M), AL (M)], (2.1)

satisfying the axioms: (i) for all scalars a, &' and forms a, a’ it holds V gqtara/b =
aVaeb+ a'Vab (b € hom[AY(M), A (M))]), (i4) for all smooth scalar fields f, f'
and form fields b, b" it holds V,(fo+ f'b') = (a-0f)b+ fVab+ (a-0f '+ f'V,
(a € AY(M)). Vb is called the directional covariant derivative of the form field
b.

Remark 10. The definition above is not empty. For example, the ordinary
directional derivative a - 0b is a well-defined directional covariant derivative. If
h is a smooth (1, 1)-extensor field which has inverse h=', then h™!(a - Oh(b)), is
also a well-defined directional covariant derivative.



2.1 Connection extensor fields

We will show that, associated to V,, there exist just two fundamental extensor
fields, say b — ~,(b) and a — (a), the first one being of type (1,1) and the
second one of type (1,2). They are smooth extensor fields over the Minkowski
spacetime.

Proposition 2.2. There exists a unique smooth (1, 1)-extensor field b — ,(b),
Y,(b) =b-0,Vyn, (2.2)
such that for any smooth form field b, it holds

Vob=a-0b+v,(b). (2.3)
Proof. Let b be an arbitrary form field; by using ax. (i7) into def.(2.1), we have
Vob=Vo(b-7"7)=(a-0b-v")y +0"Vey, =a-0b+b-v"Vyoy,. (24)

This shows that there exists an (1, 1)-extensor field, defined as
n=7,(n) =n-7"Vay, (2.5)

(note the linearity with respect to n € A'(M)) such that for any form field b,
it holds

Veb=a-0b+v,(b). (2.6)

Now, by applying the directional derivative operator b- 0, (b is an arbitrary
form) on Von = a-0n+v,(n), we get

b-0,Van =b-0pa-0n+b-0,7.(n) =0+ v,(b). (2.7
Thus, the (1, 1)-extensor field -y, is given by
b= v, (b)) =0b-0,Vgan.
o

Remark 11. v, is indeed a smooth (1, 1)-extensor field over Minkowski space-
time, associated to the differential operator V,. It is convenient to use the
short notations V,b = a - 0b + ~v,(b) and v,(b) = b-0,Vn for V,b(z) =
a-9b(x) + 7,l, (0(x)) and 7,|, (b) = b On(@)Van(z).

Definition 2.3. The (1, 1)-extensor field v, will be called first connection ex-
tensor field associated to V.

Proposition 2.4. There exists a unique smooth (1,2)-extensor field a — (a),

Qa) = —%&L AVqn (2.8)



(Yo — 1) and 4} is the

such that the skew-symmetric part of v, (i.e., v,_ = %

adjoint®) of vy, can be factorized by
Ya_ (b) = Q) x b, (2.9)
for any form field b.

Proof. Recall that for any (1,1)-extensor, say v — t(v), the skew-symmetric
part of t (ie., t_(v) = 1[t(v) — t!(v)]) can be factorized as ¢t (v) = 1bif(t) x v,
where bif(t) = —0,, A t(n) is the so-called biform of t.

Thus, for the skew-symmetric part of 7,, taking into account the eq.(2.2),

we have
1. . 1 1
Yo (b) = §b1f(7a) X b= (—§an ANv,(n)) xb= (—ian AVan) xb. (2.10)

This implies the existence of a (1,2)-extensor field, defined as
1
a— Qa) = —§8n AVgn, (2.11)

(note the linearity with respect to a € A*(M)), such that for any form field b,
it holds

Ya(B) = Qa) x b.
O

Remark 12. Q is indeed a smooth (1, 2)-extensor field over the Minkowski man-
ifold, associated to V,. Convenient short notations for Qu(a) = —%0p) A
Van(z) and ~,_| (b) = Q.(a) x b are Q(a) = —30, A Van and ~,_(b) =
Qa) x b.

Definition 2.5. The (1,2)-extensor field Q@ will be called second connection
extensor field associated to V.

3 Associated covariant derivatives

Definition 3.1. Associated to a given directional covariant derivative operator
V., we introduce two other directional covariant derivative operators V, and
Va, by

V,b a-0b— vl (b). (3.1)

1
vi% = 5(Vab+ V7). (3.2)

Remark 13. V, and V? are in fact operators acting on the set of smooth form
fields satisfying the axiomatic of def.(2.1).

8Let m be and arbitrary (p, g)-extensor and let A € AY(M), B € AP(M). The adjoint of
m, denoted mt is the (¢, p)-extensor such that mf(A) - B = A-m(B)



Proposition 3.2. For any smooth form field b, it holds
Vi =a-0b+v,_(b)=a-0b+Q(a) xb. (3.3)

Proof. By using the eq.(2.3), def.(3.1) and eq.(2.9), we obtain the required re-
sult. O

Proposition 3.3. For any smooth form field b, it holds

Vb = Vob+,.(b). (3.4)
Vab = Vob—7,4.(0). (3.5)

Proof. The proof of formulas (3.4) and (3.5) follows directly from eq.(2.3),
def.(3.1) and eq.(3.3). O

Proposition 3.4. For any smooth form fields b, ¢ it holds

a-0b-c) = (Vgb)-c+b-(V;c). (3.6)
a-db-c) = (Vo) -c+b- (V). (3.7)

Proof. In order to prove the identity (3.6) we must use eq.(2.3) and def.(3.1).
The proof of the identity (3.7) is left to the reader. O

4 Covariant derivative of (1,1)-extensor fields

The differential operator V, acting on smooth form fields can be extended
in order to act on smooth multiform fields and on extensor fields. The general
theory concerning these extensions is given in (Ferndndez, Moya and Rodrigues,
1999b)?. Here we need only the action of V, on (1,1)-extensor fields.

Definition 4.1. Ift is a smooth (1, 1)-extensor field, then V 4t is another smooth
(1,1)-extensor field such that, for any smooth form field b, it holds

(Vat)(b) = VIH(b) — t(Vab). (4.1)

Proposition 4.2. The extended covariant derivative t — V,t satisfies the fol-
lowing fundamental properties:

For all scalars a;, @' and forms a, a’ and for any smooth form field b, it holds
(Vaatarart)(b) = a(Vat)(D) + ' (Vart)(D), (4.2)

For all smooth scalar fields f, f' and for any form a and form fields b,b' it
holds

(Vat)(fb + f'0') = f(Vat)(b) + f'(Vat) (), (4.3)

9In (Fernéndez, Moya and Rodrigues, 1999b) we introduce also a generalization of the
concept of Cartan’s differential operator which acts on the set of completely skew-symmetric
extensor fields (the so called exform fields).




Proof. Tt follows from the def.(2.1) and the linearity properties of the smooth
(1, 1)-extensor fields. O

Proposition 4.3. For any smooth form field b, it holds
(Vat)(b) = a-0t(b) — t(Vab) — On(t(b) - Van). (4.4)
Proof. Let b be an arbitrary smooth form field. Taking into account def.(4.1),
def.(3.1) and eq.(2.3) we have
(Vat)(b) = a-0t(b) —v5t(b) — t(Vab) = a - Bt(b) — t(Vab) — Dn(v1t(b) - 1)
a - 0t(b) — t(Vab) — On(t(b) - (a On)) = On(t(D) - v4(n)),
(Vb)) = a-0t(b) — H(Vab) = Ou(t(b) - Van).

Proposition 4.4. For all smooth form fields b, ¢ it holds
(Vat)(D) -c=a-0(t(h) - ¢) —t(Vab) - ¢ — t(b) - (V40). (4.5)

Proof. Take two arbitrary smooth form fields b, ¢. Using eq.(4.4), eq.(2.2) and
eq.(2.3) we get

(Vat)(D) ¢ = (a-0t(b)) -c—t(Vyb) ¢ —0p(t(b) - Van)-c
= (a-0t()) -c+td)-(a-0c)—t(Vyd)-c
—t(b) - (a-0c) — c- Op(t(b) - Vgn)
@ OH(B) - &) — H(Vab) - c — t(B) - (a- D) — t(b) - 7a(c),
(Vat)(b) ¢ = a-0(t(b)-c) —t(Vyb) - ¢ — (D) - Vg

Proposition 4.5. For all smooth (1, 1)-extensor field t, it holds
Vath = (Vat)f. (4.6)
Proof. Let b,c be two arbitrary smooth form fields. Using eq.(4.5) and the

fundamental scalar product property in the adjoint ¢ of the extensor ¢, we have
(VatHh(®0) ¢ = a-9tT(b)-¢) —tT(Vb)-c—tT(b) - Vae
a-0(b-t(c)) —Vab-t(c) —b-t(Vye)
a-0(t(c) -b) —t(Vae) - b—t(c) - Vab
= (Vat)(c) -b=rc-(Vat)'(b).

This implies that (V,t7)(b) = (V1)1 (b), that is V,tT = (V1) O
Finally, we will present two very important properties: one for an identity
extensor field iy and another for the so-called gauge metric extensor field g. In

the general gauge theory of gravitation, ¢ = h'h, where h is a smooth (1,1)-
extensor field which has inverse h=! (h is the so-called gauge distortion extensor

field).

10



Proposition 4.6. If v, is the symmetric part of v, (7, is the first connection
extensor field associated to any covariant derivative V), then

Vaid = =274 - (4.7)
Proof. ;From def.(4.4) we can write

(vaid)(b) = V;Zd(b) - id(vab)
= V. (b)— Vb (4.8)

Now, using eq.(3.1) and eq.(2.3), we get

(Vaia)(b) = a-0b—~(b) —a-0b—,()
(Vaia)(b) ~2%4+.(b)-

O

Corollary 4.7. V, is iq-compatible (i.e., Vqiq = 0) if and only if v,, =0 (i.e.,
Yo = =}, v, is skew-symmetric).
Remark 14. It is important to have in mind that iq4 is the (1, 1)-extensor field

that represents the Minkowski metric tensor n € sec Ty (M).

Note that, given any covariant derivative b — Vb it is possible (and conve-
nient) to introduce a well-defined covariant derivative by b — Vb = h=1(V h(b)).
In the general gauge theory of gravitation, V, is the so-called h-gauge of V,.

Proposition 4.8. If v, is the symmetric part of v, (7, is the first connection
extensor field associated to V), then

Vag = —2h1v, h. (4.9)
Proof. Let b, ¢ be smooth form fields; by eq.(4.5) and eq.(2.3) we have
(Vag)(0)-c = a-d(g(b)-¢) = g(Vab) - ¢ = g(b) - (Vo)
a-0(h(b) - h(c)) — Vah(b) - h(c) — h(b) - Vah(c)
=Yalt(b) - h(c) = h(b) - v, h(c)

= —(7,h(b) +¥Ih(D)) - h(c)
okt h(b) - e, (4.10)

that is, V,g = —2hiy, h. O

Corollary 4.9. V, is g-compatible (i.e., @ag =0) if and only if v,, =0 (ie.,
Y. = =}, v, is skew-symmetric).
Remark 15. Taking into account the first corollary above, the second corollary

above set: V, is g-compatible if and only if V, is ig-compatible.

11



In (DLG, 1998) the authors introduce a covariant derivative b — Db =
a-0b+ Q(a) x b. According to our theory of covariant derivation, D, would be
the most general covariant derivative with the property of being i4z-compatible
(i.e., Dyig = 0). However, it is not g-compatible as claimed by the mentioned
authors.

Observe that eq.(4.5) implies a logical equivalence between the property
Deiq = 0 and the following property a - 9(b-¢) = (Dgb) - ¢ + b - (D,c), where
a, b, c are smooth form fields. Hence, by putting a = 9z, b = g, and ¢ = gy
into the last identity and taking into account the definitions and properties
used in (DLG,1998), it is not difficult to get the differential equation 0,g,\ =
Llvgor + szgaw where I';, = (Ds,29v) - 9*. That one is only a coordinate
expression for the iq-compatibility of D, Iy, are hybrid connection coefficients
among the natural basis and gauge basis!

A correct g-compatible gauge theory of gravitation should be formulated by
taking into account the corollary from prop.(4.9). Such a theory is presented in
(Ferndndez, Moya and Rodrigues, 1999a)

5 Structural extensor fields

5.1 Nonmetricity extensor field

Definition 5.1. Given a symmetric (1,1) extensor field g (¢ = ¢') and an
arbitrary covariant derivative operator V on the Minkowski manifold. The
smooth biextensor field, say (a,b) — A(a,b) given by

Afa,b) = Vag(b), (5.1)

for any smooth form fields a,b is called nonmetricity of g relative to V.

Definition 5.2. V is said to be g-compatible if and only if A(a,b) = 0, for any
form fields a, b.

5.2 Torsion extensor field

We show now, that there exists a well-defined smooth bi-ezform field (i.e., a
skew-symmetric bi-extensor field), associated to ,, that measures the so-called
torsion of V,. After that, we introduce the torsion extensor field.

Proposition 5.3. There exists a unique smooth bi-exform field (a,b) — 7(a,b),

7(a,0) = 7,(b) — 14(a), (5.2)
such that for all smooth form fields a, b it holds
Vb — Via = [a,b] + 7(a, b). (5.3)

Proof. Let a,b be two smooth form fields. Using eq.(2.3), we have
Vob=Via = a-0b+v,(b) —b-0a— v,(a)
= [a,0] +7,(b) =73 (a), (5.4)

12



where [a,b] = a-0b—b- Ja is the so-called Lie bracket of the form fields a, b.
Eq.(5.4) implies the existence of a bi-exform field, defined as

(a,b) = 7(a,b) = v,(b) — v,(a), (5.5)

(note the linearity with respect to a,b € A'(M) and the skew-symmetry under
interchange of their variables), such that for all smooth form fields a, b

Vb — Via = [a,b] + 7(a, b).
(]

Remark 16. 7 is indeed a smooth bi-exform field, associated to V. ;From
eq.(2.2), it follows that 7(a,b) =b-0,V.n —a-0,Vyn.

Definition 5.4. The bi-exform field T will be called torsion bi-exform field.
Proposition 5.5. For any form fields a,b it holds

7(a,b) = v44 (b) — ¥4y (@) + Q(a) x b — Q(b) x a. (5.6)

Proof. It is enough to use the decomposition of 7, into symmetric and skew-
symmetric parts and the factorization (2.9) into the def.(5.2). O

Remark 17. In eq.(5.6), the bi-exform field ~y,, (b) — v, (a) comes from the
symmetric part of 7, and the bi-exform field 2(a) x b — Q(b) X a comes from
the skew-symmetric part of v,,.

Definition 5.6. The smooth (1,2)-extensor field, say n — T'(n), such that for
each x € A*(M) its adjoint is the smooth (2,1)-extensor field given by, :

A2 (M) 5 B TH(B) = %B (B N O Te (D) € ANM),  (5.7)

will be called torsion extensor field.

Remark 18. We usually employ the short notation TT(B) = 1 B-(0,A0)7(a, b).

Proposition 5.7. For any forms a,b it holds
TT(a Ab) = 7(a,b). (5.8)
Proof. Taking into account the skew-symmetry of 7, we have
1 1
TT(anbd) = §(a AD) - (0p ANDy)T(p,q) = i(a -O0pb -0y —a-04b-0p)T(p, q)

1
= 5[& Opb - 0y7(p,q) —a- 0gb-0p7(p,q)] =
TT(aAnb) = 7(a,b).

[7(a,b) = 7(b,a)],

DN | =

13



5.3 Curvature extensor field

We show now the existence of two well-defined operators, associated to +v,,
involved in the concept of curvature of the covariant derivative operator V.
After that, we introduce the curvature extensor field.

Proposition 5.8. There exists a unique operator acting on the set of smooth
vector fields, say (a,b,c) — @i (a,b,c),

w1(a,b,¢) = ¢ Onla- 07, (n) —b-07,(n) + [7V4, 15l(n)), (5.9)
such that for all smooth form fields a, b, ¢ it holds
[Va, Vilc=[a-0,b-0lc+ wi(a,b,c). (5.10)
Proof. Let a,b, c be three smooth form fields; by using eq.(2.3) we have

Vo(Vie) = a-0b-0c+a-0v,(c) +v,(b-0c) + 7,7 (c).
Vi(Vee) = b-0a-0c+b-0v,(c) +vp(a-0c) +v7,(c).  (5.11)
Subtracting we get
[Va, Vele = [a-9,b-0]c+a-0v,(c) —vy(a-c)
—b- 870,(6) + 7a(b ’ 80) + [70,) 7{)](0) (512)

Now, using the formula b - d,a - 0t(n) = a - 0t(b) — t(a - 9b), valid for any
smooth (1, 1)-extensor field, where a is a form and b, n are smooth form fields,
we obtain

[Va, Vile =[a-0,b-0lc + ¢ 0n(a- v,y (n) = b-07,(n) + [74,7](n)). (5.13)
Eq.(5.13) implies the existence of an operator,

hom[A' (M), At (M)l 5> (a,b,c) = @i (a,b,c) € hom[A* (M), A (M)],

"

3-copies
defined by
w1(a,b,¢) = ¢ Onla- 07, (n) —b-0v,(n) + [v4, 15l(n)), (5.14)
such that for all smooth form fields a, b, c,
[Va,Vple=[a-0,b-0lc+ @1(a,b,c).
O

Remark 19. &; is an operator, associated to the directional covariant deriva-
tive operator V,, which is linear with respect to its third variable and skew-
symmetric under interchange of first and second variables. In terms of V, it is
obviously that @ (a,b,c) = ¢ - 0,[Va, Vpn.
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Definition 5.9. The operator &, will be called first curvature operator.

Besides @y, we introduce another operator related to curvature.
Definition 5.10. The second curvature operator Wy acting on the set of smooth
form fields is given by

hom[A' (M), A (M)] 5 (a,b) = Ba(a,b) € hom[A! (M), A*(M)],

'

2 copies

such that

Ba(0,8) = =30 AB1(a,5,) = ~ 390 A (@ D7y(n) = b- 07, () + [y W](0).
(5.15)

Remark 20. The operator @, is skew-symmetric under interchange of their
variables. In terms of Vo, we have @2(a,b) = —30, A [V, V]n.

Proposition 5.11. For any smooth vector form fields a,b it holds

~ 1.

Wa(a,b) = Eblf(["/aJr,'yH]) +a-00(b) —b-0Q(a) + Qa) x Q(b).  (5.16)
Proof. By straightforward calculation we have

Ba(a,h) = —50u A 07,(n) — b-07,(n) + [10 7))

@ (=300 A7 () = b+ (=300 A7, (1) = 300 A s 7] (0)
= a-90Q(b) —b-00(a)

—%&L AN Vot Vo] + [ Yot VoI + Voo Yol + Vo D (R);
Wala,b) = a-0Q0b) —b-00(a)

_lan A [7a+7 7b+](n) - 1an A [7a+7 7b—](n)

2 2
500 APlams 5 1(1) = 500 A Bras - )(0). (5.17)

Now, using eq.(2.8), eq.(2.9) and Jacobi’s identity A x (B x C') = (A x B) x
C+ B x (AxC(C), we get

Ba(a,h) = a-000) ~b-09a) + b (e i) + D (asr s )
b)) — 300 A (000) X Q) xm). (5.18)

Since [v44,Ype] and [y, ,¥,_] are symmetric extensors, their biforms van-
ish. Using the formula 9, A (B x n) = —2B, where B is a biform and n is a
form we get

B2(a,0) = bt (7,0 74) + 0 09(b) — b 9a) + fa) x QB).
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Remark 21. In eq.(5.16), the bi-exform field 1bif([v,,,7,,]) comes from the
symmetric part of v, and the operator (a,b) — a-90Q(b) —b-0Q(a)+ Q(a) x Q(b)
comes from the skew-symmetric part of v,,.

Definition 5.12. The smooth (2,2)-extensor field, say B — R(B), for each
z € AY(M):

A2(M) 5 B s Ru(B) = %B - (Dua) A Do) B2 (a, b)) € A2(M),  (5.19)

will be called curvature extensor field.
Remark 22. We usually employ the short notation R(B) = 1 B-(0,A0,)@2(a,b).
Proposition 5.13. For all smooth form fields a,b it holds

R(a ADb) = wWa(a,b) — Q([a, b]). (5.20)
Proof. Due the skew-symmetry of &s(a,b), we have
1
R(and) = 5((1 Ab) - (Op A Oy)wa(a,b)

1 "N ~
= §[a - Opb - 0402(p, q) — a - Ozb - OpWa(p, q)]
1

= i[a - Opb - 0,02(p, q) — a - Opb - 0,W2(q, p)]
1 N ~
= i[a - Opb - 0,02(p, q) +a - Opb - 9,02(p, q)],
R(aAD) = a-0pb-0402(p,q). (5.21)

Taking into account eq.(5.16) and using the general formula for a smooth
(1, k)-extensor fields b - 0,,a - 0t(n) = a - 0t(b) — t(a - Ob),where a is a form and
b,n are smooth form fields, we obtain

Rlanb) = a-dyb-0,(3bif (1,7, ]) + 0 920) — - 92) +9p) x Oq)

= i es]) + - 0(8) — Qa - 20)
—b-9Q(a) + Qb - da) + Qa) x Qb),
RaAb) = @(a,b) — Q(a,b)).

6 Examples

6.1 Levi-Civita derivative

We suppose the existence of a smooth (1,1)-extensor field on the Minkowski
manifold (modeled by (M, M*)), say n — g(n), which is symmetric (i.e., g = g')
and has inverse. It will be called gauge metric extensor field.
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We introduce two fundamental operators acting on the set of smooth form
fields on (M, M*):
(a) The Christoffel operator of the first kind,

Pom[Al(M),Al(M)l 3 (a,b,¢) = [a, b, c] € hom[A' (M), R], (6.1)

3 copies

where
2[a,b,c] =a-9(g(b) - ¢)
=b-09(g(c)-a) —c-(g(a) - b)
+9(c) - [a,b] + g(b) - [c,a] — g(a) - [b,c|. (6.2)

and where [a, b] is the Lie bracket of the form fields a, b.
(b) The Christoffel operator of the second kind,

'

hom[A' (M), A*(M)] 3 (a,b,¢) = { afb } € hom[A' (M), R], (6.3)

3 copies

such that
{ a,cb }: [a, b, (e)]- (6.4)

The Christoffel operator of the first kind has several useful properties, namely
for any form fields a,a’, b, c and any scalar field f,we have:

[a+a',b,c] = [a,b,c]+][a,b,c]

[fa,b,c] = fla,b,]. (6.5)
[a,b+b,c] = Ja,b,c]+[a,b, (]

[a, fb,c] = fla,b,c]+ (a-0f)g(b)-c. (6.6)
[a,b,c+] = [a,b,c]+[a,b,(]

[a,b, fc] = fla,b,]. (6.7)

Now, we can define the Levi-Civita covariant derivative D as follows:
hom[A' (M), A*(M)] 3 b+ D,b € hom[A' (M), AL (M)], (6.8)

n

such that if a € hom[A! (M), A} (M)], then Db = 9, ab } = Opla,b,g71(n)].

Observe that for any smooth form fields a, b, ¢ we have

(Dgb) - c = { a‘fb } (6.9)
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D, is a well-defined directional covariant derivative. In fact, the linearity
with respect to the direction a is consequence of eq.(6.5). Also, if f is a scalar
field and b, b’ are form fields. Using eq.(6.7), we have

Do(b+0) = ua,b+b,97"(n)]
Onla,b, g (n)] + Opfa,b', g (n)],
= Dgb+ D,b'. (6.10)
Do(fb) = Oula, fb,97"(n)]
= fOula,b,g7 ()] + On(a-0f)(9(b) - g~ (n)),
= (a-0f)b+ fDgb. (6.11)
Thus, the ax.(i7) into def.(2.1) is satisfied.
Theorem 6.1. . Let a, b, c be arbitrary smooth form fields, then

g(Dgb) - ¢+ g(b) - Dyc=a-9(g(b) - ¢). (6.12)
Proof.
9(Dab) -c+g(b) - Duc = Onfa,b, g (n)] - g(c) + g(b) - Inla,c, g (n)]
= la,0,97 ()] +[a,c, 97 ()],
g(Dgb) -c+g(b) - Doc = a-09(g(b) - c).
We have used def.(6.8) and in the last line an important identity for the Christof-
fel operator of the first kind, namely, [a, b, c] + [a,¢,b] = a - 9(g(b) - ¢). O

Remark 23. The above theorem is known as Ricci theorem for the Levi-Civita
derivative.

Corollary 6.1. Let a,b be arbitrary smooth form fields,
Dy = g(Dag™" (b)), (6.13)

Proof. Once again, let a,b,c be arbitrary smooth form fields. Using the Ricci
theorem (eq.(6.12)) we have

a-9(b-c) = a-9gb) g7 ()
= g(Dab) - g7 (c) + g(b) - Dag™(c)
= (Dub)-c+b-g(Dug t(c)). (6.14)
Comparing eq.(6.14) with the identity eq.(3.6), it follows
Db = g(Dag™ (b)) (6.15)
O

Proposition 6.2. g is compatible with D, i.e., for any form field a, the exten-
sion of the Levi-Civita derivative acting on the smooth (1,1)-extensor field g
(the gauge metric extensor field) vanishes,

D,g = 0. (6.16)
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Proof.

(Dag)(b) = D, g(b) — g(Dab)
= g(Dag™'g(b)) — g(Dab),
(Dag)(b) = 0.
O
Finally, we will see that Levi-Civita derivative is torsionless.
In fact, according to eq.(5.3), we can write
7(a,b) = D,b— Dpa—[a,b]
= On(Dyb-n — Dya-n) — [a,b]
n n
- 8n({ a,b } B { b,a }) —la,b]
= a’ﬂ([aa b;gil(n)] - [baaagil(n)]) - [aa b]a (617)
and using the remarkable identity [a,b,c] — [b,a, c] = g(c) - [a, b] yields
7(a,b) = pgg~"(n) - [a,8] — [a,8] =0, (6.18)

that is, 7T (a A b) = 0.

6.2 Hestenes derivative

Take a smooth even multiform field over the Minkowski manifold modeled by
(M, M*), say AY(M) > z = R(z) € AT(M) (where AT(M) C C€M) is
the set of even multiforms), such that R(z)R(z) = 1. It is called a Lorentz
rotator, since for any ¢ € YA'(M), R(z) € Spin, (1,3) ~ SL(2,C), which is
the universal covering group of SL, the restrict orthochronous Lorentz group
(Lounesto, 1997).

Definition 6.3. A Lorentz extensor field I, is a smooth (1,1)-extensor field
over M* such that for each x € A*(M) :

AY M) 3 n=l(n) e AY M),
l.(n) = R(z)nR(z). (6.19)

Some important properties for Lorentz extensor field n — I(n) = RnR,
are: For any multiform field X the extension'® of I, denoted [ is such that
I(X) = RXR . Also det(l) = 1, [T(n) = RnR (where I is the adjoint of 1), and
-t =1t
Definition 6.4. Let ((¢,), (¢*)) be any pair of reciprocal frames (i.e., €, - =
d1), then the pair of reciprocal frames ({I(,)) , (I*(¢"))), where I* = (I=Hf =
(I")~! (in this case, it holds I* = 1) are called the [-gauge frames of ((g,,), (€")).

10The extension of a (1, 1)-extensor ¢ is the general extensor t defined by the properties:
t(a) = a, @ € R and t(ag A ... Aag) = t(a1) A ... At(ag), a1, ...,ap € AL(M).
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The existence of a multiform field R, with the properties R(z) € A*(M)

(ie., R(z) = R(z)) and R(z)R(z) = 1, implies the existence of a smooth (1, 2)-
extensor field. For each x € A*(M) :

AY(M) 3 a s we(a) € A2(M), (6.20)

such that wy(a) = (—2a - OR(z))R(z).

Observe that the canonical biforms w(y,) = (—26NR)§ are the so called
Darboux biform fields. This suggests calling w the Darboux extensor field (Ro-
drigues et al, 1996)

We prove now two important properties involving the Darboux extensor
field.

Proposition 6.5. For the l-gauge frames of the fundamental frames ({y,) , (v*)),
we have

a- 61(7u) = l(’)/u) x w(a),
a-o0l(v*) = 1I(v") xw(a) (6.21)

Proof. Using the known property RR = RR = 1 and the def.(6.20),
a-0l(y,) = (a- 6R)7N§ + Ryu(a - OR)
= (a- BR)RR%LR + R%LR'R(a - OR)
1 1
= —qw@)l(n) +1ln)5w(a),
@ Oly) = 1) x w(a).
In analogous way, a - 9l(v*) = l(v*) X w(a). O

For the Darboux extensor field we have a remarkable identity.

Proposition 6.6. For any smooth form fields a,b it holds
a-0w(b) —b-0w(a) +w(a) x w(b) = w([a,b]). (6.22)

Proof. We have,

a-0w®d) = —2((a-0b-OR)R+ (b-0R)(a-OR)) (6.23)
b-Ow(a) = —2((b-0a-OR)R+ (a-0R)(b-OR)). (6.24)
Thus,
a-0wd) —b-0w(a) = —2((Ja-0,b-0]R)R+ (b-OR)(a-OR) — (a-OR)(b-OR))

—2(([a,b] - OR)R + (b- OR)(a - OR) — (a - OR)(b- OR))
w([a,b]) = 2((b- OR)(a - OR) — (a - OR)(b- OR)), (6.25)

where we used the identity [a-0,b-0]X = [a,b]- 0X where a,b are smooth form
fields and X is a smooth multiform field.
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Also,

w(@)w(d) = 4(a-OR)R(b-OR)R
—4(a-OR)(b- OR), (6.26)
w(b)w(a@) = —4(b-0R)(a-IR), 6.27)
which implies that
w(a) x w(b) = =2((a- OR)(b-OR) — (b- OR)(a - OR)). (6.28)

Comparing eq.(6.25) with eq.(6.28), we finally obtain
a-0w(b) —b-0w(a) +w(a) x w(b) = w([a,b]).
O

Definition 6.7. The Hestenes directional covariant derivative (Hestenes deriva-
tive, for short) d,, is defined by

hom[A' (M), A1(M)] 3 b dyb € hom[A' (M), AL (M)], (6.29)

such that d,b = [(a - 017 (b)) = l(a - OIT(D)).
As the reader can easily prove it is indeed a well-defined directional covariant
derivative, since it satisfies the axiomatic in def.(2.1).

Proposition 6.8. The associated derivatives d; and d° coincide with d,, i.e.,
for any smooth form field b, we have

d;b=d,b=db. (6.30)
Proof. Let a,b,c be arbitrary smooth form fields, then

a-9(b-c) a- 0171 (b) - 1T (c))

= a-0l7 ) -17(c) +17(D) - a- OI'(c)

= I(a-0l"Y(b))-c+b-1"(a-0l'(c))
l(a-Ol (b)) - c+b-l(a-0l *(c))

= (dab) - c+b- (dac). (6.31)

Comparing the eq.(6.31) with the identity (3.6) and employing the def.(3.2),
it follows

d;b=d,b=d"b. (6.32)
O

The result above, eq.(6.32), means that Hestenes derivative is i4-compatible.
Finally, we will find the second connection extensor field associated to Hestenes
derivative.
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Proposition 6.9. The second connection extensor field associated to Hestenes
derivative coincides with the Darboux extensor field,

Qa) = w(a). (6.33)
Proof.
1 1 -1 1 —1
Qa) = —§8n ANdgn = —§6n Al(a 017 (n)) = —57“ Alla- 0l (yy))- (6.34)

hence, using the remarkable identity v* Al(a-0l7* (v,)) +1* (") Aa-0l(v,) = O
and the eq.(6.21), we have

Qa) = %l*(v“)/\a-al(%)
_ %z*w)/\(l(w)xww))
_ %&L/\(nxw(a))

Q(a,) = w(a).

we have employed the invariant representation property for curl operator 0, A
and the formula 0, A (n x B) = 2B. O

Remark 24. Eq.(6.30) together with the eq.(6.21) imply that the curvature
extensor field of the Hestenes derivative is null.

Acknowledgments: The authors are grateful to Professor Rafal Ablamowicz for the
kind invitation to write this paper and to Dr. J. Emilio Maiorino for a careful reading
of the manuscript

7 References

Adler, R., Bazin, M. and Schiffer, M. (1965). Introduction to General Relativity,
chapter 13, McGraw-Hill Book Co., New York.

Challinor, A., Lasenby, A., Doran, C., et al. (1997). Massive, non-ghost solutions
for the Dirac field coupled self-consistently to gravity, Gen. Rel. Gravit. 29, 1527-
1544.

Dabrowski,Y., Hobson, M. P., Lasenby, A. et al. (1999). Microwave background
anisotropies and non-linear structures-II. Numerical computations, Mon. Not. R.
Astron. Soc. 302, 757-770.

Doran, C., Lasenby, A., Challinor, A. et al. (1998). Effects of spin-torsion in a
gauge theory of gravity, J. Math. Phys. 39, 3303-3321.

Moya, A. M. (1999). Lagrangian formalism for multivector fields on Minkowsksi
spacetime, Ph.D. Thesis, IMECC-UNICAMP.

Moya, A. M., Ferndndez, V. V., and Rodrigues, W. A., Jr. (1999). Multiform and
Extensor Fields. Mathematical Theory and Physical Applications, book in preparation.

22



Fernéndez, V. V, Moya, A. M., and Rodrigues, W. A., Jr. (1999a). Gravitational
fields as distortion fields on Minkowski spacetime, subm. for publ.

Hestenes, D. (1966). Space-time Algebra, Gordon & Breach, New York.

Hestenes, D. and Sobczyk, G. (1984). Clifford Algebra to Geometrical Calculuss,
Reidel, Dordrecht.

Fernéndez, V. V., Moya, A. M., and Rodrigues, W. A, Jr. (1999b). The algebraic
theory of connections for multiform and extensor fields, subm. for publ.

Lasenby, A., Doran, C., and Gull, S. (1998). Gravity, gauge theories and geometric
algebra, Phil. Trans. R. Soc. 356, 487-582.

Logunov, A. A. and Mestvirishvili, M. A. (1986). Relativistic theory of gravitation,
Found. Phys. 16, 1-26.

Lounesto, P. (1997). Clifford Algebras and Spinors, Cambridge University Press,
Cambridge.

Pommaret, J. F. (1994). Partial Differential Equations and Group Theory. New
Perspectives and Applications, Kluwer Acad. Publ. , Dordrecht.

Rodrigues, W. A., Jr., and Rosa, M. A. F. (1989). The meaning of time in relativity
and Einstein later view of the twin paradox, Found. Phys.19, 705-724.

Rodrigues, W. A., Jr., de Souza, Q. A. G. (1993). The Clifford bundle and the
nature of the gravitational field, Found. Phys. 23, 1456-1490.

Rodrigues, W. A., Jr., de Souza, Q. A. G., and Vaz, J., Jr. (1994). The Dirac
operator and the structure of on a Riemann-Cartan-Weyl spaces, in Gravitation: The
Spacetime Structure. Proc. SILARG VIII, Aguas de Lindoéia, SP, Brazil, 25-30, July,
1993, P. Letelier and W. A. Rodrigues, Jr., eds., World Scientific, Singapore, pp.
522-531.

Rodrigues, W. A, Jr., de Souza, Q. A. G, Vaz, J., Jr.and Lounesto, P. (1995).
Dirac-Hestenes spinor fields on Riemann-Cartan manifolds, Int. J. Theor. Phys. 35,
1849-1900.

Sachs, R. K. and Wu, H. (1977), General Relativity for Mathematicians, Springer-
Verlag, New York.

Weyl, H. (1918). Gravitation und elektrizitit, Sitzber. Preuss. Akad. Wiss.
Berlin, 465-480.

Rodrigues, W. A., Jr., Vaz, J., Jr. and Pavsic, M. (1996), The Clifford bundle
and the dynamics of the superparticle, Banach Center Publ. Polish Acad. Sci. 37,
295-314.

Weyl, H. (1922). Space, Time, Matter, pp. 282-294, Methuen & Company, London,
reprinted by Dover Publ., Inc, New York, 1952.

23



