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Abstrat

We present a general theory of ovariant derivative operators (linear

onnetions) on a Minkowski manifold (represented as an aÆne spae

(M;M

�

) using the powerful multiform alulus. When a gauge metri

extensor G (generated by a gauge distortion extensor h) is introdued in

the Minkowski manifold, we get a theory that permits the introdution of

general Riemann-Cartan-Weyl geometries. The onept of gauge ovari-

ant derivatives is introdued as the key notion neessary to generate linear

onnetions that are ompatible with G, thus permitting the onstrution

of Riemann-Cartan geometries. Many results of genuine mathematial

interest are obtained. Moreover, suh results are fundamental for build-

ing a onsistent formulation of a theory of the gravitational �eld in at

spaetime. Some important examples of appliations of our theory are

worked in details.

Contents

1 Introdution 2

1.1 Some preliminaries and notations . . . . . . . . . . . . . . . . . . 4

2 Covariant derivative of form �elds 6

2.1 Connetion extensor �elds . . . . . . . . . . . . . . . . . . . . . . 7

�

e-mail: walrod�ime.uniamp.br or walrod�pte.br

1



3 Assoiated ovariant derivatives 8

4 Covariant derivative of (1,1)-extensor �elds 9

5 Strutural extensor �elds 12

5.1 Nonmetriity extensor �eld . . . . . . . . . . . . . . . . . . . . . 12

5.2 Torsion extensor �eld . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Curvature extensor �eld . . . . . . . . . . . . . . . . . . . . . . . 14

6 Examples 16

6.1 Levi-Civita derivative . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2 Hestenes derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Referenes 22

1 Introdution

In this paper we study the theory of ovariant derivative operators on the

Minkowski manifold using the multiform alulus (Hestenes and Sobzyk, 1984:

Moya, Fern�andez, and Rodrigues, 1999, Moya, 1999). Before making use of

this formalism, we reall the main ideas and problems disussed in this paper

in the language of ordinary tensor alulus

1

. Let (M;�; �

�

) be the Minkowski

manifold and (M;�; �

�

; D

�

) Minkowski spaetime (Wu and Sahs, 1993, Ro-

drigues and Rosa, 1989)

2

. The quadruple (M;�; �

�

;r), where r is an arbitrary

ovariant derivative operator (not neessarily ompatible with �) and suh that

its torsion and urvature tensors are non zero will be alled a Riemann-Cartan-

Weyl (RCW) spaetime

3

. We an introdue into Minkowski manifold an in�nite

number of nondegenerate symmetri tensors G 2 seT

0

2

(M) (not neessarily of

Lorentzian signature). A quadruple (M;G; �

G

;r), where r is an arbitrary o-

variant derivative operator (not neessarily ompatible with G) and suh that

its torsion and urvature are non zero will be alled a RCW spae. Suh a

quadruple will be alled a spaetime only if G has Lorentzian signature, in

whih ase it will be denoted by g, and will be alled a gauge metri �eld. Now,

given an invertible mapping h : seTM ! seTM , alled a gauge distortion

�eld, it indues on the Minkowski manifold a nondegenerate symmetri tensor

G, by

G(u;v) = �(h(u);h(v));8u;v 2 seTM: (1.1)

A nontrivial mathematial question is the following: given an arbitrary RCW

spae (or spaetime) (M;G; �

G

;r), where G is generated by h, onstrut a

1

We hope that this will enourage physiists to read the paper.

2

M is a 4-dimensional manifold oriented by �

�

(the volume element 4-form) and time

oriented, whih is di�eomorphi to R

4

, � 2 seT

0

2

(M) is a Lorentzian at metri and D

�

is

the Levi-Civita onnetion of �:

3

More details and preise de�nitions using the multiform alulus are given in setion 5.
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ovariant derivative operator from r and h, denoted by

^

r, suh that it is

ompatible with G, i.e.,

^

rG = 0. In this paper a solution for this problem is

found by introduing the onept of gauge ovariant derivatives.

Now, from the physial point of view, our interest in this problem omes

from the so alled at spaetime formulations of gravitational theory (Logunov

and Mestvirishvili, 1989: Rodrigues and Souza, 1993; Pommaret, 1994), where

the gravitational �eld is supposed to be a �eld in the Faraday sense and not

a manifestation of a geometry, as in Einstein's general relativity. Reently,

(Doran, Lasenby and Gull (DLG), 1998) developed a theory of this kind (using

the multivetor alulus (Hestenes and Sobzyk, 1984)) whih they alled the

gauge theory of gravitation

4

. They believe to have produed a theory that is a

generalization of the at spaetime formulation of Einstein's general relativity.

One of the main ingredients of their theory is the introdution of a ertain

ovariant derivative operator that they alled also a gauge ovariant derivative.

However, it happens that what DLG alled a gauge ovariant derivative is one

like r and not one as

^

r (this statement is proved below). It follows that in

their theory

5

rg 6= 0, ontrary to their statements (see, in partiular Appendix

C of (DLG,1993)) and as a onsequene their theory has the same de�ieny

as regards physial interpretation as Weyl theory (Weyl, 1918, 1922, Adler,

Bazin and Shi�er, 1965). We are not going to disuss gravitational theories

in this paper. We only observe that a gauge theory of gravitational �eld in

at spaetime, i.e., on Minkowski manifold, inorporating the ompatibility of

the gauge ovariant derivative with g (the gauge metri �eld) and using the

multiform alulus, is given in (Fern�andez, Moya and Rodrigues, 1999a).

Before proeeding, we would like to observe that one of the authors of the

present paper already studied the geometry of Riemann-Cartan-Weyl spaes in

(Rodrigues and Souza, 1993; Souza and Rodrigues, 1994; Rodrigues et al, 1995)

using the Cli�ord bundle of di�erential forms. However, the formalism in the

general ase is somewhat arti�ial, the main reason being that a given ovariant

derivative operator de�ned in the tensor bundle, in general does not de�ne a o-

variant derivative operator in the Cli�ord bundle of di�erential forms, unless it

is ompatible with the metri �eld used in the de�nition of the Cli�ord bundle.

Thus, in this approah only Riemann-Cartan geometries an be properly stud-

ied, the RCW ases being treated in a orret, but arti�ial way

6

. To overome

this problem it is neessary to develop the multiform alulus in a speial way

that enhanes its power (Moya, Fern�andez, and Rodrigues,1999, Moya 1999).

This an be done one we represent the Minkowski manifold as an aÆne spae,

with vetor spae M

�

.

Due to limitation of spae, in this paper we study only the ation of ovari-

ant derivative operators on form �elds and on (1; 1)-extensor �elds (whih are

4

Appliations of his theory appears in several papers, as e.g., (Challinor et al, 1997;

Dabrowski et al 1999; Doran et al,1999)

5

g is a (1; 1)- extensor �eld representing a metri g 2 seT

0

2

(M). The de�nition of (p; q)-

extensor �elds is given in de�nition(1.8)

6

This does not means that a gauge theory of the gravitational �eld in the sense of

(Fern�andez, Moya and Rodrigues, 1999b) annot be done in the Cli�ord bundle formalism.
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the objets that represent the tensor �elds h and g in our formalism). A study

of the ation of ovariant derivative operators on general multiform and exten-

sor �elds, inluding a generalization of Cartan di�erential operator ating on

exform �elds (i.e., ompletely antisymmetri extensor �elds) and Lie derivatives

of multiform and extensor �elds, is given in (Fern�andez, Moya and Rodrigues,

1999b). Despite these limitations the results to be presented are really worth

studying and we hope that our readers will enjoy them. Finally, it is neessary to

reall that the developments that follow an be only understood by readers who

are familiar with Cli�ord algebras as presented, e.g., in (Lounesto, 1997)

7

and

the multivetor alulus as presented in (Hestenes and Sobzyk, 1984: Moya,

Fern�andez, and Rodrigues, 1999; Moya, 1999).

1.1 Some preliminaries and notations

Given a global oordinate system overM; sayM 3 x$ x

�

(x) 2 R (� = 0; 1; 2; 3)

assoiated to a inertial referene frame (Rodrigues and Rosa, 1989) at x 2 M .




�

�x

�

�

�

x

�

and hdx

�

j

x

i are the natural basis for the tangent vetor spae T

x

M

and the tangent ovetor spae T

�

x

M:

We have,

� = �

��

dx

�


 dx

�

;

�

��

= �(

�

�x

�

;

�

�x

�

) = diag(1;�1;�1;�1): (1.2)

De�nition 1.1. T

x

M 3 v

x

is said to be equipolent to v

x

0

2 T

x

0

M (written

v

x

= v

x

0

) if and only if

�

(x)

(

�

�x

�

�

�

�

�

x

;v

x

) = �

(x

0

)

(

�

�x

�

�

�

�

�

x

0

;v

x

0

); (� = 0; 1; 2; 3): (1.3)

Note that

�

�x

�

�

�

�

�

x

=

�

�x

�

�

�

�

�

x

0

(� = 0; 1; 2; 3).

De�nition 1.2. The set of equivalent lasses of tangent vetors over the tangent

bundle,

M = fC

v

x

j for all x 2Mg; (1.4)

has a natural struture of vetor spae, it is alled Minkowski vetor spae.

Note that

*

C

�

�x

�

�

�

�

�

x

+

is a natural basis for M (dimM = 4). With the

notations: ~v � C

v

x

and ~e

�

� C

�

�x

�

�

�

�

�

x

; we an write ~v = v

�

~e

�

:

7

It is partiularly important to emphasize that in our approah (ontrary to the approah in

(Hestenes and Sobzyk, 1984), it is neessary to distinguish between ontrations and internal

produts, as done in (Lounesto, 1997; Moya, Fern�andez and Rodrigues, 1999a; Moya,1999).
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De�nition 1.3. The 2-tensor over M;

� :M�M! R; (1.5)

suh that for eah ~v = C

v

x

and ~w = C

w

x

2M : �(~v; ~w) = �

(x)

(v

x

; w

x

); for all

x 2M; is alled Minkowski metri tensor.

Note that, for eah pair of basis vetors ~e

�

� C

�

�x

�

�

�

�

�

x

and ~e

�

� C

�

�x

�

�

�

�

�

x

; it

holds

�(~e

�

; ~e

�

) = diag(1;�1;�1;�1): (1.6)

De�nition 1.4. The dual basis of h~e

�

i will be symbolized by h

�

i ; i.e., 

�

2

M

�

� �

1

(M) and 

�

(~e

�

) = Æ

�

�

:

To ontinue, we observe the existene of a fundamental isomorphism between

M and �

1

(M) given by,

M3 ~a$ a 2 �

1

(M); (1.7)

suh that if ~a = a

�

~e

�

then a = �

��

a

�



�

and if a = a

�



�

then ~a = �

��

a

�

~e

�

,

where �

��

= �(~e

�

; ~e

�

), �

��

= �

��

.

Remark 1. To eah basis vetor ~e

�

orrespond a basis form 

�

= �

��



�

:

De�nition 1.5. A salar produt of forms an be de�ned by

�

1

(M)� �

1

(M) 3 (a; b) 7! a � b 2 R; (1.8)

suh that if ~a$ a and

~

b$ b then a � b = �(~a;

~

b):

Remark 2. 

�

�

�

= �

��

; 

�

�

�

= Æ

�

�

(h

�

i is alled the reiproal basis of h

�

i)

and 

�

�

�

= �

��

. Thus, � admits the expansions � = �

��



�




�

= �

��



�




�

.

Remark 3. The oriented aÆne spae (M;M

�

) (oriented by 

5

= 

0

^

1

^

2

^



3

) is a representation of the Minkowski manifold.

Remark 4. (M;M

�

) equipped with the salar produt given by eq.(1.8) is a

representation of Minkowski spaetime.

De�nition 1.6. Let hx

�

i be a global aÆne oordinate system for (M;M

�

), rel-

ative to an arbitrary point o 2M . A position form assoiated to x 2M , is the

form over M (designed by the same letter), given by the following orrespon-

dene

M 3 x� x = x

�



�

2 �

1

(M): (1.9)

Remark 5. We denote by C`(M) � C`(1; 3) � H(2), the spaetime algebra,

i.e., the Cli�ord algebra (Lounesto, 1997) ofM

�

equipped with the salar prod-

ut de�ned by eq.(1.8).

Remark 6. As a vetor spae over the reals, we have C`(M) =

4

P

p=0

�

p

(M):

5



De�nition 1.7. A smooth multiform �eld A on Minkowski spaetime is a mul-

tiform valued funtion of position form,

�

1

(M) 3 x 7! A(x) 2 �(M) (1.10)

De�nition 1.8. Let 0 � p; q � 4. A (p; q)-extensor t is a linear mapping

t : �

p

(M)! �

q

(M): (1.11)

Remark 7. The set of all (p; q)-extensors is denoted by ext(�

p

(M);�

q

(M)):

De�nition 1.9. A smooth (p; q)-extensor �eld t on Minkowski spaetime is a

di�erentiable (p; q)-extensor valued funtion of position form,

�

1

(M) 3 x 7! t

x

2 ext(�

p

(M);�

q

(M)): (1.12)

De�nition 1.10. The a-diretional derivative (a is an arbitrary form) of a

smooth multiform �eld X , denoted as a � �X; is de�ned by

a � �X = lim�! 0

X(x+ �a)�X(x)

�

=

d

d�

X(x+ �a)

�

�

�

�

�=0

: (1.13)

Remark 8. The 

�

-diretional derivative 

�

��X oinides with the oordinate

derivative

�X

�x

�

: For short, we will use the notation �

�

� 

�

� �:

De�nition 1.11. The gradient, divergene and url of a smooth multiform �eld

X; respetively denoted by �X; �yX and � ^X; are de�ned by

�X = 

�

(�

�

X): (1.14)

�yX = 

�

y(�

�

X): (1.15)

� ^X = 

�

^ (�

�

X): (1.16)

Remark 9. For any X , it holds �X = �yX + � ^X:

2 Covariant derivative of form �elds

De�nition 2.1. Let a be any form. A ovariant derivative operator r (or

onnetion) ating on the set of smooth form �elds on Minkowski manifold,

modeled by M

�

, is the mapping

r

a

: hom[�

1

(M);�

1

(M)℄! hom[�

1

(M);�

1

(M)℄; (2.1)

satisfying the axioms: (i) for all salars �; �

0

and forms a; a

0

it holdsr

�a+�

0

a

0

b =

�r

a

b+ �

0

r

a

0

b (b 2 hom[�

1

(M);�

1

(M)℄), (ii) for all smooth salar �elds f; f

0

and form �elds b; b

0

it holds r

a

(fb+f

0

b

0

) = (a ��f)b+fr

a

b+(a ��f

0

)b

0

+f

0

r

a

b

0

(a 2 �

1

(M)). r

a

b is alled the diretional ovariant derivative of the form �eld

b.

Remark 10. The de�nition above is not empty. For example, the ordinary

diretional derivative a � �b is a well-de�ned diretional ovariant derivative. If

h is a smooth (1; 1)-extensor �eld whih has inverse h

�1

; then h

�1

(a � �h(b)); is

also a well-de�ned diretional ovariant derivative.

6



2.1 Connetion extensor �elds

We will show that, assoiated to r

a

; there exist just two fundamental extensor

�elds, say b 7! 

a

(b) and a 7! 
(a); the �rst one being of type (1; 1) and the

seond one of type (1; 2): They are smooth extensor �elds over the Minkowski

spaetime.

Proposition 2.2. There exists a unique smooth (1; 1)-extensor �eld b 7! 

a

(b);



a

(b) = b � �

n

r

a

n; (2.2)

suh that for any smooth form �eld b; it holds

r

a

b = a � �b+ 

a

(b): (2.3)

Proof. Let b be an arbitrary form �eld; by using ax. (ii) into def.(2.1), we have

r

a

b = r

a

(b � 

�



�

) = (a � �b � 

�

)

�

+ b

�

r

a



�

= a � �b+ b � 

�

r

a



�

: (2.4)

This shows that there exists an (1; 1)-extensor �eld, de�ned as

n 7! 

a

(n) = n � 

�

r

a



�

; (2.5)

(note the linearity with respet to n 2 �

1

(M)) suh that for any form �eld b,

it holds

r

a

b = a � �b+ 

a

(b): (2.6)

Now, by applying the diretional derivative operator b � �

n

(b is an arbitrary

form) on r

a

n = a � �n+ 

a

(n), we get

b � �

n

r

a

n = b � �

n

a � �n+ b � �

n



a

(n) = 0 + 

a

(b): (2.7)

Thus, the (1; 1)-extensor �eld 

a

is given by

b 7! 

a

(b) = b � �

n

r

a

n:

Remark 11. 

a

is indeed a smooth (1; 1)-extensor �eld over Minkowski spae-

time, assoiated to the di�erential operator r

a

: It is onvenient to use the

short notations r

a

b = a � �b + 

a

(b) and 

a

(b) = b � �

n

r

a

n for r

a

b(x) =

a � �b(x) + 

a

j

x

(b(x)) and 

a

j

x

(b) = b � �

n(x)

r

a

n(x):

De�nition 2.3. The (1; 1)-extensor �eld 

a

will be alled �rst onnetion ex-

tensor �eld assoiated to r

a

.

Proposition 2.4. There exists a unique smooth (1; 2)-extensor �eld a 7! 
(a);


(a) = �

1

2

�

n

^ r

a

n (2.8)

7



suh that the skew-symmetri part of 

a

(i.e., 

a�

=

1

2

(

a

� 

y

a

) and 

y

a

is the

adjoint

8

) of 

a

an be fatorized by



a�

(b) = 
(a)� b; (2.9)

for any form �eld b:

Proof. Reall that for any (1; 1)-extensor, say v 7! t(v); the skew-symmetri

part of t (i.e., t

�

(v) =

1

2

[t(v)� t

y

(v)℄) an be fatorized as t

�

(v) =

1

2

bif(t)� v;

where bif(t) = ��

n

^ t(n) is the so-alled biform of t:

Thus, for the skew-symmetri part of 

a

; taking into aount the eq.(2.2),

we have



a�

(b) =

1

2

bif(

a

)� b = (�

1

2

�

n

^ 

a

(n))� b = (�

1

2

�

n

^ r

a

n)� b: (2.10)

This implies the existene of a (1; 2)-extensor �eld, de�ned as

a 7! 
(a) = �

1

2

�

n

^ r

a

n; (2.11)

(note the linearity with respet to a 2 �

1

(M)), suh that for any form �eld b;

it holds



a�

(b) = 
(a)� b:

Remark 12. 
 is indeed a smooth (1; 2)-extensor �eld over the Minkowski man-

ifold, assoiated to r

a

: Convenient short notations for 


x

(a) = �

1

2

�

n(x)

^

r

a

n(x) and 

a�

�

�

x

(b) = 


x

(a) � b are 
(a) = �

1

2

�

n

^ r

a

n and 

a�

(b) =


(a)� b:

De�nition 2.5. The (1; 2)-extensor �eld 
 will be alled seond onnetion

extensor �eld assoiated to r

a

.

3 Assoiated ovariant derivatives

De�nition 3.1. Assoiated to a given diretional ovariant derivative operator

r

a

; we introdue two other diretional ovariant derivative operators r

�

a

and

r

0

a

; by

r

�

a

b = a � �b� 

y

a

(b): (3.1)

r

0

a

b =

1

2

(r

a

b+r

�

a

b): (3.2)

Remark 13. r

�

a

and r

0

a

are in fat operators ating on the set of smooth form

�elds satisfying the axiomati of def.(2.1).

8

Let m be and arbitrary (p; q)-extensor and let A 2 �

q

(M), B 2 �

p

(M). The adjoint of

m, denoted m

y

is the (q; p)-extensor suh that m

y

(A) �B = A �m(B)

8



Proposition 3.2. For any smooth form �eld b; it holds

r

0

a

b = a � �b+ 

a�

(b) = a � �b+
(a)� b: (3.3)

Proof. By using the eq.(2.3), def.(3.1) and eq.(2.9), we obtain the required re-

sult.

Proposition 3.3. For any smooth form �eld b; it holds

r

a

b = r

0

a

b+ 

a+

(b): (3.4)

r

�

a

b = r

0

a

b� 

a+

(b): (3.5)

Proof. The proof of formulas (3.4) and (3.5) follows diretly from eq.(2.3),

def.(3.1) and eq.(3.3).

Proposition 3.4. For any smooth form �elds b;  it holds

a � �(b � ) = (r

a

b) � + b � (r

�

a

): (3.6)

a � �(b � ) = (r

0

a

b) � + b � (r

0

a

): (3.7)

Proof. In order to prove the identity (3.6) we must use eq.(2.3) and def.(3.1).

The proof of the identity (3.7) is left to the reader.

4 Covariant derivative of (1,1)-extensor �elds

The di�erential operator r

a

ating on smooth form �elds an be extended

in order to at on smooth multiform �elds and on extensor �elds. The general

theory onerning these extensions is given in (Fern�andez, Moya and Rodrigues,

1999b)

9

. Here we need only the ation of r

a

on (1; 1)-extensor �elds.

De�nition 4.1. If t is a smooth (1; 1)-extensor �eld, thenr

a

t is another smooth

(1; 1)-extensor �eld suh that, for any smooth form �eld b; it holds

(r

a

t)(b) = r

�

a

t(b)� t(r

a

b): (4.1)

Proposition 4.2. The extended ovariant derivative t 7! r

a

t satis�es the fol-

lowing fundamental properties:

For all salars �; �

0

and forms a; a

0

and for any smooth form �eld b, it holds

(r

�a+�

0

a

0

t)(b) = �(r

a

t)(b) + �

0

(r

a

0

t)(b); (4.2)

For all smooth salar �elds f; f

0

and for any form a and form �elds b; b

0

it

holds

(r

a

t)(fb+ f

0

b

0

) = f(r

a

t)(b) + f

0

(r

a

t)(b

0

); (4.3)

9

In (Fern�andez, Moya and Rodrigues, 1999b) we introdue also a generalization of the

onept of Cartan's di�erential operator whih ats on the set of ompletely skew-symmetri

extensor �elds (the so alled exform �elds).

9



Proof. It follows from the def.(2.1) and the linearity properties of the smooth

(1; 1)-extensor �elds.

Proposition 4.3. For any smooth form �eld b; it holds

(r

a

t)(b) = a � �t(b)� t(r

a

b)� �

n

(t(b) � r

a

n): (4.4)

Proof. Let b be an arbitrary smooth form �eld. Taking into aount def.(4.1),

def.(3.1) and eq.(2.3) we have

(r

a

t)(b) = a � �t(b)� 

y

a

t(b)� t(r

a

b) = a � �t(b)� t(r

a

b)� �

n

(

y

a

t(b) � n)

= a � �t(b)� t(r

a

b)� �

n

(t(b) � (a � �n))� �

n

(t(b) � 

a

(n));

(r

a

t)(b) = a � �t(b)� t(r

a

b)� �

n

(t(b) � r

a

n):

Proposition 4.4. For all smooth form �elds b;  it holds

(r

a

t)(b) �  = a � �(t(b) � )� t(r

a

b) � � t(b) � (r

a

): (4.5)

Proof. Take two arbitrary smooth form �elds b; : Using eq.(4.4), eq.(2.2) and

eq.(2.3) we get

(r

a

t)(b) �  = (a � �t(b)) � � t(r

a

b) � � �

n

(t(b) � r

a

n) � 

= (a � �t(b)) � + t(b) � (a � �)� t(r

a

b) � 

�t(b) � (a � �)�  � �

n

(t(b) � r

a

n)

= a � �(t(b) � )� t(r

a

b) � � t(b) � (a � �)� t(b) � 

a

();

(r

a

t)(b) �  = a � �(t(b) � )� t(r

a

b) � � t(b) � r

a

:

Proposition 4.5. For all smooth (1; 1)-extensor �eld t, it holds

r

a

t

y

= (r

a

t)

y

: (4.6)

Proof. Let b;  be two arbitrary smooth form �elds. Using eq.(4.5) and the

fundamental salar produt property in the adjoint t

y

of the extensor t, we have

(r

a

t

y

)(b) �  = a � �(t

y

(b) � )� t

y

(r

a

b) � � t

y

(b) � r

a



= a � �(b � t())�r

a

b � t()� b � t(r

a

)

= a � �(t() � b)� t(r

a

) � b� t() � r

a

b

= (r

a

t)() � b =  � (r

a

t)

y

(b):

This implies that (r

a

t

y

)(b) = (r

a

t)

y

(b); that is r

a

t

y

= (r

a

t)

y

:

Finally, we will present two very important properties: one for an identity

extensor �eld i

d

and another for the so-alled gauge metri extensor �eld g. In

the general gauge theory of gravitation, g � h

y

h; where h is a smooth (1; 1)-

extensor �eld whih has inverse h

�1

(h is the so-alled gauge distortion extensor

�eld).

10



Proposition 4.6. If 

a+

is the symmetri part of 

a

(

a

is the �rst onnetion

extensor �eld assoiated to any ovariant derivative r

a

), then

r

a

i

d

= �2

a+

: (4.7)

Proof. >From def.(4.4) we an write

(r

a

i

d

)(b) = r

�

a

i

d

(b)� i

d

(r

a

b)

= r

�

a

(b)�r

a

b: (4.8)

Now, using eq.(3.1) and eq.(2.3), we get

(r

a

i

d

)(b) = a � �b� 

y

a

(b)� a � �b� 

a

(b)

(r

a

i

d

)(b) = �2

a+

(b):

Corollary 4.7. r

a

is i

d

-ompatible (i.e., r

a

i

d

= 0) if and only if 

a+

= 0 (i.e.,



a

= �

y

a

; 

a

is skew-symmetri).

Remark 14. It is important to have in mind that i

d

is the (1; 1)-extensor �eld

that represents the Minkowski metri tensor � 2 seT

0

2

(M):

Note that, given any ovariant derivative b 7! r

a

b it is possible (and onve-

nient) to introdue a well-de�ned ovariant derivative by b 7!

b

r

a

b = h

�1

(r

a

h(b)):

In the general gauge theory of gravitation,

b

r

a

is the so-alled h-gauge of r

a

:

Proposition 4.8. If 

a+

is the symmetri part of 

a

(

a

is the �rst onnetion

extensor �eld assoiated to r

a

), then

b

r

a

g = �2h

y



a+

h: (4.9)

Proof. Let b;  be smooth form �elds; by eq.(4.5) and eq.(2.3) we have

(

b

r

a

g)(b) �  = a � �(g(b) � )� g(

b

r

a

b) � � g(b) � (

b

r

a

)

= a � �(h(b) � h())�r

a

h(b) � h()� h(b) � r

a

h()

= �

a

h(b) � h()� h(b) � 

a

h()

= �(

a

h(b) + 

y

a

h(b)) � h()

= �2h

y



a+

h(b) � ; (4.10)

that is,

b

r

a

g = �2h

y



a+

h:

Corollary 4.9.

b

r

a

is g-ompatible (i.e.,

b

r

a

g = 0) if and only if 

a+

= 0 (i.e.,



a

= �

y

a

; 

a

is skew-symmetri).

Remark 15. Taking into aount the �rst orollary above, the seond orollary

above set:

b

r

a

is g-ompatible if and only if r

a

is i

d

-ompatible.

11



In (DLG, 1998) the authors introdue a ovariant derivative b 7! D

a

b =

a � �b+
(a)� b: Aording to our theory of ovariant derivation, D

a

would be

the most general ovariant derivative with the property of being i

d

-ompatible

(i.e., D

a

i

d

= 0): However, it is not g-ompatible as laimed by the mentioned

authors.

Observe that eq.(4.5) implies a logial equivalene between the property

D

a

i

d

= 0 and the following property a � �(b � ) = (D

a

b) �  + b � (D

a

); where

a; b;  are smooth form �elds. Hene, by putting a = �

�

x; b = g

�

and  = g

�

into the last identity and taking into aount the de�nitions and properties

used in (DLG,1998), it is not diÆult to get the di�erential equation �

�

g

��

=

�

�

��

g

��

+ �

�

��

g

��

; where �

�

��

= (D

�

�

x

g

�

) � g

�

: That one is only a oordinate

expression for the i

d

-ompatibility of D

a

; �

�

��

are hybrid onnetion oeÆients

among the natural basis and gauge basis!

A orret g-ompatible gauge theory of gravitation should be formulated by

taking into aount the orollary from prop.(4.9). Suh a theory is presented in

(Fern�andez, Moya and Rodrigues, 1999a)

5 Strutural extensor �elds

5.1 Nonmetriity extensor �eld

De�nition 5.1. Given a symmetri (1; 1) extensor �eld g (g = g

y

) and an

arbitrary ovariant derivative operator r on the Minkowski manifold. The

smooth biextensor �eld, say (a; b) 7! A(a; b) given by

A(a; b) = r

a

g(b); (5.1)

for any smooth form �elds a; b is alled nonmetriity of g relative to r.

De�nition 5.2. r is said to be g-ompatible if and only if A(a; b) = 0, for any

form �elds a; b.

5.2 Torsion extensor �eld

We show now, that there exists a well-de�ned smooth bi-exform �eld (i.e., a

skew-symmetri bi-extensor �eld), assoiated to 

a

; that measures the so-alled

torsion of r

a

. After that, we introdue the torsion extensor �eld.

Proposition 5.3. There exists a unique smooth bi-exform �eld (a; b) 7! �(a; b);

�(a; b) = 

a

(b)� 

b

(a); (5.2)

suh that for all smooth form �elds a; b it holds

r

a

b�r

b

a = [a; b℄ + �(a; b): (5.3)

Proof. Let a; b be two smooth form �elds. Using eq.(2.3), we have

r

a

b�r

b

a = a � �b+ 

a

(b)� b � �a� 

b

(a)

= [a; b℄ + 

a

(b)� 

b

(a); (5.4)

12



where [a; b℄ = a � �b� b � �a is the so-alled Lie braket of the form �elds a; b:

Eq.(5.4) implies the existene of a bi-exform �eld, de�ned as

(a; b) 7! �(a; b) = 

a

(b)� 

b

(a); (5.5)

(note the linearity with respet to a; b 2 �

1

(M) and the skew-symmetry under

interhange of their variables), suh that for all smooth form �elds a; b

r

a

b�r

b

a = [a; b℄ + �(a; b):

Remark 16. � is indeed a smooth bi-exform �eld, assoiated to r

a

: >From

eq.(2.2), it follows that �(a; b) = b � �

n

r

a

n� a � �

n

r

b

n.

De�nition 5.4. The bi-exform �eld � will be alled torsion bi-exform �eld.

Proposition 5.5. For any form �elds a; b it holds

�(a; b) = 

a+

(b)� 

b+

(a) + 
(a)� b� 
(b)� a: (5.6)

Proof. It is enough to use the deomposition of 

a

into symmetri and skew-

symmetri parts and the fatorization (2.9) into the def.(5.2).

Remark 17. In eq.(5.6), the bi-exform �eld 

a+

(b) � 

b+

(a) omes from the

symmetri part of 

a

and the bi-exform �eld 
(a) � b � 
(b) � a omes from

the skew-symmetri part of 

a

:

De�nition 5.6. The smooth (1; 2)-extensor �eld, say n 7! T (n); suh that for

eah x 2 �

1

(M) its adjoint is the smooth (2; 1)-extensor �eld given by, :

�

2

(M) 3 B 7! T

y

x

(B) =

1

2!

B � (�

a

^ �

b

)�

x

(a; b) 2 �

1

(M); (5.7)

will be alled torsion extensor �eld.

Remark 18. We usually employ the short notation T

y

(B) =

1

2

B�(�

a

^�

b

)�(a; b):

Proposition 5.7. For any forms a; b it holds

T

y

(a ^ b) = �(a; b): (5.8)

Proof. Taking into aount the skew-symmetry of �; we have

T

y

(a ^ b) =

1

2

(a ^ b) � (�

p

^ �

q

)�(p; q) =

1

2

(a � �

p

b � �

q

� a � �

q

b � �

p

)�(p; q)

=

1

2

[a � �

p

b � �

q

�(p; q)� a � �

q

b � �

p

�(p; q)℄ =

1

2

[�(a; b)� �(b; a)℄;

T

y

(a ^ b) = �(a; b):

13



5.3 Curvature extensor �eld

We show now the existene of two well-de�ned operators, assoiated to 

a

;

involved in the onept of urvature of the ovariant derivative operator r.

After that, we introdue the urvature extensor �eld.

Proposition 5.8. There exists a unique operator ating on the set of smooth

vetor �elds, say (a; b; ) 7! b!

1

(a; b; );

b!

1

(a; b; ) =  � �

n

(a � �

b

(n)� b � �

a

(n) + [

a

;

b

℄(n)); (5.9)

suh that for all smooth form �elds a; b;  it holds

[r

a

;r

b

℄ = [a � �; b � �℄+ b!

1

(a; b; ): (5.10)

Proof. Let a; b;  be three smooth form �elds; by using eq.(2.3) we have

r

a

(r

b

) = a � �b � �+ a � �

b

() + 

a

(b � �) + 

a



b

():

r

b

(r

a

) = b � �a � �+ b � �

a

() + 

b

(a � �) + 

b



a

(): (5.11)

Subtrating we get

[r

a

;r

b

℄ = [a � �; b � �℄+ a � �

b

()� 

b

(a � �)

�b � �

a

() + 

a

(b � �) + [

a

;

b

℄(): (5.12)

Now, using the formula b � �

n

a � �t(n) = a � �t(b) � t(a � �b), valid for any

smooth (1; 1)-extensor �eld, where a is a form and b; n are smooth form �elds,

we obtain

[r

a

;r

b

℄ = [a � �; b � �℄+  � �

n

(a � �

b

(n)� b � �

a

(n) + [

a

;

b

℄(n)): (5.13)

Eq.(5.13) implies the existene of an operator,

hom[�

1

(M);�

1

(M)℄

| {z }

3-opies

3 (a; b; ) 7! b!

1

(a; b; ) 2 hom[�

1

(M);�

1

(M)℄;

de�ned by

b!

1

(a; b; ) =  � �

n

(a � �

b

(n)� b � �

a

(n) + [

a

;

b

℄(n)); (5.14)

suh that for all smooth form �elds a; b; ;

[r

a

;r

b

℄ = [a � �; b � �℄+ b!

1

(a; b; ):

Remark 19. b!

1

is an operator, assoiated to the diretional ovariant deriva-

tive operator r

a

; whih is linear with respet to its third variable and skew-

symmetri under interhange of �rst and seond variables. In terms of r

a

; it is

obviously that b!

1

(a; b; ) =  � �

n

[r

a

;r

b

℄n.
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De�nition 5.9. The operator b!

1

will be alled �rst urvature operator.

Besides b!

1

; we introdue another operator related to urvature.

De�nition 5.10. The seond urvature operator b!

2

ating on the set of smooth

form �elds is given by

hom[�

1

(M);�

1

(M)℄

| {z }

2 opies

3 (a; b) 7! b!

2

(a; b) 2 hom[�

1

(M);�

2

(M)℄;

suh that

b!

2

(a; b) = �

1

2

�



^ b!

1

(a; b; ) = �

1

2

�

n

^ (a � �

b

(n)� b � �

a

(n) + [

a

;

b

℄(n)):

(5.15)

Remark 20. The operator b!

2

is skew-symmetri under interhange of their

variables. In terms of r

a

, we have b!

2

(a; b) = �

1

2

�

n

^ [r

a

;r

b

℄n.

Proposition 5.11. For any smooth vetor form �elds a; b it holds

b!

2

(a; b) =

1

2

bif([

a+

;

b+

℄) + a � �
(b)� b � �
(a) + 
(a)� 
(b): (5.16)

Proof. By straightforward alulation we have

b!

2

(a; b) = �

1

2

�

n

^ (a � �

b

(n)� b � �

a

(n) + [

a

;

b

℄(n))

= a � �(�

1

2

�

n

^ 

b

(n))� b � �(�

1

2

�

n

^ 

a

(n))�

1

2

�

n

^ [

a

;

b

℄(n)

= a � �
(b)� b � �
(a)

�

1

2

�

n

^ ([

a+

;

b+

℄ + [

a+

;

b�

℄ + [

a�

;

b+

℄ + [

a�

;

b�

℄)(n);

b!

2

(a; b) = a � �
(b)� b � �
(a)

�

1

2

�

n

^ [

a+

;

b+

℄(n)�

1

2

�

n

^ [

a+

;

b�

℄(n)

�

1

2

�

n

^ [

a�

;

b+

℄(n)�

1

2

�

n

^ [

a�

;

b�

℄(n): (5.17)

Now, using eq.(2.8), eq.(2.9) and Jaobi's identity A� (B�C) = (A�B)�

C +B � (A� C); we get

b!

2

(a; b) = a � �
(b)� b � �
(a) +

1

2

bif([

a+

;

b+

℄) +

1

2

bif([

a+

;

b�

℄)

+

1

2

bif([

a�

;

b+

℄)�

1

2

�

n

^ ([
(a)� 
(b)℄� n): (5.18)

Sine [

a+

;

b+

℄ and [

a+

;

b�

℄ are symmetri extensors, their biforms van-

ish. Using the formula �

n

^ (B � n) = �2B; where B is a biform and n is a

form we get

b!

2

(a; b) =

1

2

bif([

a+

;

b+

℄) + a � �
(b)� b � �
(a) + 
(a)� 
(b):

15



Remark 21. In eq.(5.16), the bi-exform �eld

1

2

bif([

a+

;

b+

℄) omes from the

symmetri part of 

a

and the operator (a; b) 7! a ��
(b)�b ��
(a)+
(a)�
(b)

omes from the skew-symmetri part of 

a

:

De�nition 5.12. The smooth (2; 2)-extensor �eld, say B 7! R(B); for eah

x 2 �

1

(M) :

�

2

(M) 3 B 7! R

x

(B) =

1

2!

B � (�

a(x)

^ �

b(x)

)b!

2

(a; b)(x) 2 �

2

(M); (5.19)

will be alled urvature extensor �eld.

Remark 22. We usually employ the short notationR(B) =

1

2

B�(�

a

^�

b

)b!

2

(a; b).

Proposition 5.13. For all smooth form �elds a; b it holds

R(a ^ b) = b!

2

(a; b)� 
([a; b℄): (5.20)

Proof. Due the skew-symmetry of b!

2

(a; b); we have

R(a ^ b) =

1

2

(a ^ b) � (�

p

^ �

q

)b!

2

(a; b)

=

1

2

[a � �

p

b � �

q

b!

2

(p; q)� a � �

q

b � �

p

b!

2

(p; q)℄

=

1

2

[a � �

p

b � �

q

b!

2

(p; q)� a � �

p

b � �

q

b!

2

(q; p)℄

=

1

2

[a � �

p

b � �

q

b!

2

(p; q) + a � �

p

b � �

q

b!

2

(p; q)℄;

R(a ^ b) = a � �

p

b � �

q

b!

2

(p; q): (5.21)

Taking into aount eq.(5.16) and using the general formula for a smooth

(1; k)-extensor �elds b � �

n

a � �t(n) = a � �t(b)� t(a � �b);where a is a form and

b; n are smooth form �elds, we obtain

R(a ^ b) = a � �

p

b � �

q

(

1

2

bif([

p+

;

q+

℄) + p � �
(q)� q � �
(p) + 
(p)� 
(q))

=

1

2

bif([

a+

;

b+

℄) + a � �
(b)� 
(a � �b)

�b � �
(a) + 
(b � �a) + 
(a)� 
(b);

R(a ^ b) = b!

2

(a; b)� 
([a; b℄):

6 Examples

6.1 Levi-Civita derivative

We suppose the existene of a smooth (1; 1)-extensor �eld on the Minkowski

manifold (modeled by (M;M

�

)), say n 7! g(n); whih is symmetri (i.e., g = g

y

)

and has inverse. It will be alled gauge metri extensor �eld.
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We introdue two fundamental operators ating on the set of smooth form

�elds on (M;M

�

):

(a) The Christo�el operator of the �rst kind,

hom[�

1

(M);�

1

(M)℄

| {z }

3 opies

3 (a; b; ) 7! [a; b; ℄ 2 hom[�

1

(M); R℄; (6.1)

where

2[a; b; ℄ = a � �(g(b) � )

= b � �(g() � a)�  � �(g(a) � b)

+ g() � [a; b℄ + g(b) � [; a℄� g(a) � [b; ℄: (6.2)

and where [a; b℄ is the Lie braket of the form �elds a; b.

(b) The Christo�el operator of the seond kind,

hom[�

1

(M);�

1

(M)℄

| {z }

3 opies

3 (a; b; ) 7!

�



a; b

�

2 hom[�

1

(M); R℄; (6.3)

suh that

�



a; b

�

= [a; b; g

�1

()℄: (6.4)

The Christo�el operator of the �rst kind has several useful properties, namely

for any form �elds a; a

0

; b;  and any salar �eld f ,we have:

[a+ a

0

; b; ℄ = [a; b; ℄ + [a

0

; b; ℄

[fa; b; ℄ = f [a; b; ℄: (6.5)

[a; b+ b

0

; ℄ = [a; b; ℄ + [a; b

0

; ℄

[a; fb; ℄ = f [a; b; ℄ + (a � �f)g(b) � : (6.6)

[a; b; + 

0

℄ = [a; b; ℄ + [a; b; 

0

℄

[a; b; f℄ = f [a; b; ℄: (6.7)

Now, we an de�ne the Levi-Civita ovariant derivative D as follows:

hom[�

1

(M);�

1

(M)℄ 3 b 7! D

a

b 2 hom[�

1

(M);�

1

(M)℄; (6.8)

suh that if a 2 hom[�

1

(M);�

1

(M)℄; thenD

a

b � �

n

�

n

a; b

�

= �

n

[a; b; g

�1

(n)℄.

Observe that for any smooth form �elds a; b;  we have

(D

a

b) �  =

�



a; b

�

: (6.9)
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D

a

is a well-de�ned diretional ovariant derivative. In fat, the linearity

with respet to the diretion a is onsequene of eq.(6.5). Also, if f is a salar

�eld and b; b

0

are form �elds. Using eq.(6.7), we have

D

a

(b+ b

0

) = �

n

[a; b+ b

0

; g

�1

(n)℄

= �

n

[a; b; g

�1

(n)℄ + �

n

[a; b

0

; g

�1

(n)℄;

= D

a

b+D

a

b

0

: (6.10)

D

a

(fb) = �

n

[a; fb; g

�1

(n)℄

= f�

n

[a; b; g

�1

(n)℄ + �

n

(a � �f)(g(b) � g

�1

(n));

= (a � �f)b+ fD

a

b: (6.11)

Thus, the ax.(ii) into def.(2.1) is satis�ed.

Theorem 6.1. . Let a; b;  be arbitrary smooth form �elds, then

g(D

a

b) � + g(b) �D

a

 = a � �(g(b) � ): (6.12)

Proof.

g(D

a

b) � + g(b) �D

a

 = �

n

[a; b; g

�1

(n)℄ � g() + g(b) � �

n

[a; ; g

�1

(n)℄

= [a; b; g

�1

g()℄ + [a; ; g

�1

g(b)℄;

g(D

a

b) � + g(b) �D

a

 = a � �(g(b) � ):

We have used def.(6.8) and in the last line an important identity for the Christof-

fel operator of the �rst kind, namely, [a; b; ℄ + [a; ; b℄ = a � �(g(b) � ):

Remark 23. The above theorem is known as Rii theorem for the Levi-Civita

derivative.

Corollary 6.1. Let a; b be arbitrary smooth form �elds,

D

�

a

= g(D

a

g

�1

(b)): (6.13)

Proof. One again, let a; b;  be arbitrary smooth form �elds. Using the Rii

theorem (eq.(6.12)) we have

a � �(b � ) = a � �(g(b) � g

�1

())

= g(D

a

b) � g

�1

() + g(b) �D

a

g

�1

()

= (D

a

b) � + b � g(D

a

g

�1

()): (6.14)

Comparing eq.(6.14) with the identity eq.(3.6), it follows

D

�

a

b = g(D

a

g

�1

(b)): (6.15)

Proposition 6.2. g is ompatible with D, i.e., for any form �eld a, the exten-

sion of the Levi-Civita derivative ating on the smooth (1; 1)-extensor �eld g

(the gauge metri extensor �eld) vanishes,

D

a

g = 0: (6.16)
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Proof.

(D

a

g)(b) = D

�

a

g(b)� g(D

a

b)

= g(D

a

g

�1

g(b))� g(D

a

b);

(D

a

g)(b) = 0:

Finally, we will see that Levi-Civita derivative is torsionless.

In fat, aording to eq.(5.3), we an write

�(a; b) = D

a

b�D

b

a� [a; b℄

= �

n

(D

a

b � n�D

b

a � n)� [a; b℄

= �

n

(

�

n

a; b

�

�

�

n

b; a

�

)� [a; b℄

= �

n

([a; b; g

�1

(n)℄� [b; a; g

�1

(n)℄) � [a; b℄; (6.17)

and using the remarkable identity [a; b; ℄� [b; a; ℄ = g() � [a; b℄ yields

�(a; b) = �

n

gg

�1

(n) � [a; b℄� [a; b℄ = 0; (6.18)

that is, T

y

(a ^ b) = 0:

6.2 Hestenes derivative

Take a smooth even multiform �eld over the Minkowski manifold modeled by

(M;M

�

), say �

1

(M) 3 x 7! R(x) 2 �

+

(M) (where �

+

(M) � C`(M) is

the set of even multiforms), suh that R(x)

e

R(x) = 1: It is alled a Lorentz

rotator, sine for any x 2 8�

1

(M); R(x) 2 Spin

+

(1; 3) ' SL(2;C), whih is

the universal overing group of L

"

+

, the restrit orthohronous Lorentz group

(Lounesto, 1997).

De�nition 6.3. A Lorentz extensor �eld l

x

is a smooth (1; 1)-extensor �eld

over M

�

suh that for eah x 2 �

1

(M) :

�

1

(M) 3 n 7! l

x

(n) 2 �

1

(M);

l

x

(n) = R(x)n

e

R(x): (6.19)

Some important properties for Lorentz extensor �eld n 7! l(n) = Rn

e

R;

are: For any multiform �eld X;the extension

10

of l, denoted l is suh that

l(X) = RX

e

R . Also det(l) = 1, l

y

(n) =

e

RnR (where l

y

is the adjoint of l), and

l

�1

= l

y

.

De�nition 6.4. Let (h"

�

i ; h"

�

i) be any pair of reiproal frames (i.e., "

�

� "

�

=

Æ

�

�

), then the pair of reiproal frames (hl("

�

)i ; hl

?

("

�

)i); where l

?

� (l

�1

)

y

=

(l

y

)

�1

(in this ase, it holds l

?

= l) are alled the l-gauge frames of (h"

�

i ; h"

�

i).

10

The extension of a (1; 1)-extensor t is the general extensor t de�ned by the properties:

t(�) = �, � 2 R and t(a

1

^ ::: ^ a

k

) = t(a

1

) ^ ::: ^ t(a

k

), a

1

; :::; a

k

2 �

1

(M):
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The existene of a multiform �eld R; with the properties R(x) 2 �

+

(M)

(i.e., R(x) = R(x)) and R(x)

e

R(x) = 1, implies the existene of a smooth (1; 2)-

extensor �eld. For eah x 2 �

1

(M) :

�

1

(M) 3 a 7! !

x

(a) 2 �

2

(M); (6.20)

suh that !

x

(a) = (�2a � �R(x))

e

R(x):

Observe that the anonial biforms !(

�

) = (�2�

�

R)

e

R are the so alled

Darboux biform �elds. This suggests alling ! the Darboux extensor �eld (Ro-

drigues et al, 1996)

We prove now two important properties involving the Darboux extensor

�eld.

Proposition 6.5. For the l-gauge frames of the fundamental frames (h

�

i ; h

�

i);

we have

a � �l(

�

) = l(

�

)� !(a);

a � �l(

�

) = l(

�

)� !(a) (6.21)

Proof. Using the known property R

e

R =

e

RR = 1 and the def.(6.20),

a � �l(

�

) = (a � �R)

�

e

R+R

�

(a � �

e

R)

= (a � �R)

e

RR

�

e

R+R

�

e

RR(a � �

e

R)

= �

1

2

!(a)l(

�

) + l(

�

)

1

2

!(a);

a � �l(

�

) = l(

�

)� !(a):

In analogous way, a � �l(

�

) = l(

�

)� !(a):

For the Darboux extensor �eld we have a remarkable identity.

Proposition 6.6. For any smooth form �elds a; b it holds

a � �!(b)� b � �!(a) + !(a)� !(b) = !([a; b℄): (6.22)

Proof. We have,

a � �!(b) = �2((a � �b � �R)

e

R+ (b � �R)(a � �

e

R)) (6.23)

b � �!(a) = �2((b � �a � �R)

e

R+ (a � �R)(b � �

e

R)): (6.24)

Thus,

a � �!(b)� b � �!(a) = �2(([a � �; b � �℄R)

e

R+ (b � �R)(a � �

e

R)� (a � �R)(b � �

e

R))

= �2(([a; b℄ � �R)

e

R+ (b � �R)(a � �

e

R)� (a � �R)(b � �

e

R))

= !([a; b℄)� 2((b � �R)(a � �

e

R)� (a � �R)(b � �

e

R)); (6.25)

where we used the identity [a ��; b ��℄X = [a; b℄ ��X where a; b are smooth form

�elds and X is a smooth multiform �eld.
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Also,

!(a)!(b) = 4(a � �R)

e

R(b � �R)

e

R

= �4(a � �R)(b � �

e

R); (6.26)

!(b)!(a) = �4(b � �R)(a � �

e

R); (6.27)

whih implies that

!(a)� !(b) = �2((a � �R)(b � �

e

R)� (b � �R)(a � �

e

R)): (6.28)

Comparing eq.(6.25) with eq.(6.28), we �nally obtain

a � �!(b)� b � �!(a) + !(a)� !(b) = !([a; b℄):

De�nition 6.7. The Hestenes diretional ovariant derivative (Hestenes deriva-

tive, for short) d

a

; is de�ned by

hom[�

1

(M);�

1

(M)℄ 3 b 7! d

a

b 2 hom[�

1

(M);�

1

(M)℄; (6.29)

suh that d

a

b � l(a � �l

�1

(b)) = l(a � �l

y

(b)).

As the reader an easily prove it is indeed a well-de�ned diretional ovariant

derivative, sine it satis�es the axiomati in def.(2.1).

Proposition 6.8. The assoiated derivatives d

�

a

and d

0

a

oinide with d

a

, i.e.,

for any smooth form �eld b, we have

d

�

a

b = d

a

b = d

0

a

b: (6.30)

Proof. Let a; b;  be arbitrary smooth form �elds, then

a � �(b � ) = a � �(l

�1

(b) � l

y

())

= a � �l

�1

(b) � l

y

() + l

�1

(b) � a � �l

y

()

= l(a � �l

�1

(b)) � + b � l

?

(a � �l

y

())

= l(a � �l

�1

(b)) � + b � l(a � �l

�1

())

= (d

a

b) � + b � (d

a

): (6.31)

Comparing the eq.(6.31) with the identity (3.6) and employing the def.(3.2),

it follows

d

�

a

b = d

a

b = d

0

a

b: (6.32)

The result above, eq.(6.32), means that Hestenes derivative is i

d

-ompatible.

Finally, we will �nd the seond onnetion extensor �eld assoiated to Hestenes

derivative.
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Proposition 6.9. The seond onnetion extensor �eld assoiated to Hestenes

derivative oinides with the Darboux extensor �eld,


(a) = !(a): (6.33)

Proof.


(a) = �

1

2

�

n

^ d

a

n = �

1

2

�

n

^ l(a � �l

�1

(n)) = �

1

2



�

^ l(a � �l

�1

(

�

)): (6.34)

hene, using the remarkable identity 

�

^ l(a ��l

�1

(

�

))+ l

?

(

�

)^a ��l(

�

) = O

and the eq.(6.21), we have


(a) =

1

2

l

?

(

�

) ^ a � �l(

�

)

=

1

2

l

?

(

�

) ^ (l(

�

)� !(a))

=

1

2

�

n

^ (n� !(a))


(a) = !(a):

we have employed the invariant representation property for url operator �

n

^

and the formula �

n

^ (n�B) = 2B:

Remark 24. Eq.(6.30) together with the eq.(6.21) imply that the urvature

extensor �eld of the Hestenes derivative is null.
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