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Abstra
t

We present a general theory of 
ovariant derivative operators (linear


onne
tions) on a Minkowski manifold (represented as an aÆne spa
e

(M;M

�

) using the powerful multiform 
al
ulus. When a gauge metri


extensor G (generated by a gauge distortion extensor h) is introdu
ed in

the Minkowski manifold, we get a theory that permits the introdu
tion of

general Riemann-Cartan-Weyl geometries. The 
on
ept of gauge 
ovari-

ant derivatives is introdu
ed as the key notion ne
essary to generate linear


onne
tions that are 
ompatible with G, thus permitting the 
onstru
tion

of Riemann-Cartan geometries. Many results of genuine mathemati
al

interest are obtained. Moreover, su
h results are fundamental for build-

ing a 
onsistent formulation of a theory of the gravitational �eld in 
at

spa
etime. Some important examples of appli
ations of our theory are

worked in details.
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1 Introdu
tion

In this paper we study the theory of 
ovariant derivative operators on the

Minkowski manifold using the multiform 
al
ulus (Hestenes and Sob
zyk, 1984:

Moya, Fern�andez, and Rodrigues, 1999, Moya, 1999). Before making use of

this formalism, we re
all the main ideas and problems dis
ussed in this paper

in the language of ordinary tensor 
al
ulus

1

. Let (M;�; �

�

) be the Minkowski

manifold and (M;�; �

�

; D

�

) Minkowski spa
etime (Wu and Sa
hs, 1993, Ro-

drigues and Rosa, 1989)

2

. The quadruple (M;�; �

�

;r), where r is an arbitrary


ovariant derivative operator (not ne
essarily 
ompatible with �) and su
h that

its torsion and 
urvature tensors are non zero will be 
alled a Riemann-Cartan-

Weyl (RCW) spa
etime

3

. We 
an introdu
e into Minkowski manifold an in�nite

number of nondegenerate symmetri
 tensors G 2 se
T

0

2

(M) (not ne
essarily of

Lorentzian signature). A quadruple (M;G; �

G

;r), where r is an arbitrary 
o-

variant derivative operator (not ne
essarily 
ompatible with G) and su
h that

its torsion and 
urvature are non zero will be 
alled a RCW spa
e. Su
h a

quadruple will be 
alled a spa
etime only if G has Lorentzian signature, in

whi
h 
ase it will be denoted by g, and will be 
alled a gauge metri
 �eld. Now,

given an invertible mapping h : se
TM ! se
TM , 
alled a gauge distortion

�eld, it indu
es on the Minkowski manifold a nondegenerate symmetri
 tensor

G, by

G(u;v) = �(h(u);h(v));8u;v 2 se
TM: (1.1)

A nontrivial mathemati
al question is the following: given an arbitrary RCW

spa
e (or spa
etime) (M;G; �

G

;r), where G is generated by h, 
onstru
t a

1

We hope that this will en
ourage physi
ists to read the paper.

2

M is a 4-dimensional manifold oriented by �

�

(the volume element 4-form) and time

oriented, whi
h is di�eomorphi
 to R

4

, � 2 se
T

0

2

(M) is a Lorentzian 
at metri
 and D

�

is

the Levi-Civita 
onne
tion of �:

3

More details and pre
ise de�nitions using the multiform 
al
ulus are given in se
tion 5.
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ovariant derivative operator from r and h, denoted by

^

r, su
h that it is


ompatible with G, i.e.,

^

rG = 0. In this paper a solution for this problem is

found by introdu
ing the 
on
ept of gauge 
ovariant derivatives.

Now, from the physi
al point of view, our interest in this problem 
omes

from the so 
alled 
at spa
etime formulations of gravitational theory (Logunov

and Mestvirishvili, 1989: Rodrigues and Souza, 1993; Pommaret, 1994), where

the gravitational �eld is supposed to be a �eld in the Faraday sense and not

a manifestation of a geometry, as in Einstein's general relativity. Re
ently,

(Doran, Lasenby and Gull (DLG), 1998) developed a theory of this kind (using

the multive
tor 
al
ulus (Hestenes and Sob
zyk, 1984)) whi
h they 
alled the

gauge theory of gravitation

4

. They believe to have produ
ed a theory that is a

generalization of the 
at spa
etime formulation of Einstein's general relativity.

One of the main ingredients of their theory is the introdu
tion of a 
ertain


ovariant derivative operator that they 
alled also a gauge 
ovariant derivative.

However, it happens that what DLG 
alled a gauge 
ovariant derivative is one

like r and not one as

^

r (this statement is proved below). It follows that in

their theory

5

rg 6= 0, 
ontrary to their statements (see, in parti
ular Appendix

C of (DLG,1993)) and as a 
onsequen
e their theory has the same de�
ien
y

as regards physi
al interpretation as Weyl theory (Weyl, 1918, 1922, Adler,

Bazin and S
hi�er, 1965). We are not going to dis
uss gravitational theories

in this paper. We only observe that a gauge theory of gravitational �eld in


at spa
etime, i.e., on Minkowski manifold, in
orporating the 
ompatibility of

the gauge 
ovariant derivative with g (the gauge metri
 �eld) and using the

multiform 
al
ulus, is given in (Fern�andez, Moya and Rodrigues, 1999a).

Before pro
eeding, we would like to observe that one of the authors of the

present paper already studied the geometry of Riemann-Cartan-Weyl spa
es in

(Rodrigues and Souza, 1993; Souza and Rodrigues, 1994; Rodrigues et al, 1995)

using the Cli�ord bundle of di�erential forms. However, the formalism in the

general 
ase is somewhat arti�
ial, the main reason being that a given 
ovariant

derivative operator de�ned in the tensor bundle, in general does not de�ne a 
o-

variant derivative operator in the Cli�ord bundle of di�erential forms, unless it

is 
ompatible with the metri
 �eld used in the de�nition of the Cli�ord bundle.

Thus, in this approa
h only Riemann-Cartan geometries 
an be properly stud-

ied, the RCW 
ases being treated in a 
orre
t, but arti�
ial way

6

. To over
ome

this problem it is ne
essary to develop the multiform 
al
ulus in a spe
ial way

that enhan
es its power (Moya, Fern�andez, and Rodrigues,1999, Moya 1999).

This 
an be done on
e we represent the Minkowski manifold as an aÆne spa
e,

with ve
tor spa
e M

�

.

Due to limitation of spa
e, in this paper we study only the a
tion of 
ovari-

ant derivative operators on form �elds and on (1; 1)-extensor �elds (whi
h are

4

Appli
ations of his theory appears in several papers, as e.g., (Challinor et al, 1997;

Dabrowski et al 1999; Doran et al,1999)

5

g is a (1; 1)- extensor �eld representing a metri
 g 2 se
T

0

2

(M). The de�nition of (p; q)-

extensor �elds is given in de�nition(1.8)

6

This does not means that a gauge theory of the gravitational �eld in the sense of

(Fern�andez, Moya and Rodrigues, 1999b) 
annot be done in the Cli�ord bundle formalism.
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the obje
ts that represent the tensor �elds h and g in our formalism). A study

of the a
tion of 
ovariant derivative operators on general multiform and exten-

sor �elds, in
luding a generalization of Cartan di�erential operator a
ting on

exform �elds (i.e., 
ompletely antisymmetri
 extensor �elds) and Lie derivatives

of multiform and extensor �elds, is given in (Fern�andez, Moya and Rodrigues,

1999b). Despite these limitations the results to be presented are really worth

studying and we hope that our readers will enjoy them. Finally, it is ne
essary to

re
all that the developments that follow 
an be only understood by readers who

are familiar with Cli�ord algebras as presented, e.g., in (Lounesto, 1997)

7

and

the multive
tor 
al
ulus as presented in (Hestenes and Sob
zyk, 1984: Moya,

Fern�andez, and Rodrigues, 1999; Moya, 1999).

1.1 Some preliminaries and notations

Given a global 
oordinate system overM; sayM 3 x$ x

�

(x) 2 R (� = 0; 1; 2; 3)

asso
iated to a inertial referen
e frame (Rodrigues and Rosa, 1989) at x 2 M .




�

�x

�

�

�

x

�

and hdx

�

j

x

i are the natural basis for the tangent ve
tor spa
e T

x

M

and the tangent 
ove
tor spa
e T

�

x

M:

We have,

� = �

��

dx

�


 dx

�

;

�

��

= �(

�

�x

�

;

�

�x

�

) = diag(1;�1;�1;�1): (1.2)

De�nition 1.1. T

x

M 3 v

x

is said to be equipolent to v

x

0

2 T

x

0

M (written

v

x

= v

x

0

) if and only if

�

(x)

(

�

�x

�

�

�

�

�

x

;v

x

) = �

(x

0

)

(

�

�x

�

�

�

�

�

x

0

;v

x

0

); (� = 0; 1; 2; 3): (1.3)

Note that

�

�x

�

�

�

�

�

x

=

�

�x

�

�

�

�

�

x

0

(� = 0; 1; 2; 3).

De�nition 1.2. The set of equivalent 
lasses of tangent ve
tors over the tangent

bundle,

M = fC

v

x

j for all x 2Mg; (1.4)

has a natural stru
ture of ve
tor spa
e, it is 
alled Minkowski ve
tor spa
e.

Note that

*

C

�

�x

�

�

�

�

�

x

+

is a natural basis for M (dimM = 4). With the

notations: ~v � C

v

x

and ~e

�

� C

�

�x

�

�

�

�

�

x

; we 
an write ~v = v

�

~e

�

:

7

It is parti
ularly important to emphasize that in our approa
h (
ontrary to the approa
h in

(Hestenes and Sob
zyk, 1984), it is ne
essary to distinguish between 
ontra
tions and internal

produ
ts, as done in (Lounesto, 1997; Moya, Fern�andez and Rodrigues, 1999a; Moya,1999).
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De�nition 1.3. The 2-tensor over M;

� :M�M! R; (1.5)

su
h that for ea
h ~v = C

v

x

and ~w = C

w

x

2M : �(~v; ~w) = �

(x)

(v

x

; w

x

); for all

x 2M; is 
alled Minkowski metri
 tensor.

Note that, for ea
h pair of basis ve
tors ~e

�

� C

�

�x

�

�

�

�

�

x

and ~e

�

� C

�

�x

�

�

�

�

�

x

; it

holds

�(~e

�

; ~e

�

) = diag(1;�1;�1;�1): (1.6)

De�nition 1.4. The dual basis of h~e

�

i will be symbolized by h


�

i ; i.e., 


�

2

M

�

� �

1

(M) and 


�

(~e

�

) = Æ

�

�

:

To 
ontinue, we observe the existen
e of a fundamental isomorphism between

M and �

1

(M) given by,

M3 ~a$ a 2 �

1

(M); (1.7)

su
h that if ~a = a

�

~e

�

then a = �

��

a

�




�

and if a = a

�




�

then ~a = �

��

a

�

~e

�

,

where �

��

= �(~e

�

; ~e

�

), �

��

= �

��

.

Remark 1. To ea
h basis ve
tor ~e

�


orrespond a basis form 


�

= �

��




�

:

De�nition 1.5. A s
alar produ
t of forms 
an be de�ned by

�

1

(M)� �

1

(M) 3 (a; b) 7! a � b 2 R; (1.8)

su
h that if ~a$ a and

~

b$ b then a � b = �(~a;

~

b):

Remark 2. 


�

�


�

= �

��

; 


�

�


�

= Æ

�

�

(h


�

i is 
alled the re
ipro
al basis of h


�

i)

and 


�

�


�

= �

��

. Thus, � admits the expansions � = �

��




�





�

= �

��




�





�

.

Remark 3. The oriented aÆne spa
e (M;M

�

) (oriented by 


5

= 


0

^


1

^


2

^




3

) is a representation of the Minkowski manifold.

Remark 4. (M;M

�

) equipped with the s
alar produ
t given by eq.(1.8) is a

representation of Minkowski spa
etime.

De�nition 1.6. Let hx

�

i be a global aÆne 
oordinate system for (M;M

�

), rel-

ative to an arbitrary point o 2M . A position form asso
iated to x 2M , is the

form over M (designed by the same letter), given by the following 
orrespon-

den
e

M 3 x� x = x

�




�

2 �

1

(M): (1.9)

Remark 5. We denote by C`(M) � C`(1; 3) � H(2), the spa
etime algebra,

i.e., the Cli�ord algebra (Lounesto, 1997) ofM

�

equipped with the s
alar prod-

u
t de�ned by eq.(1.8).

Remark 6. As a ve
tor spa
e over the reals, we have C`(M) =

4

P

p=0

�

p

(M):

5



De�nition 1.7. A smooth multiform �eld A on Minkowski spa
etime is a mul-

tiform valued fun
tion of position form,

�

1

(M) 3 x 7! A(x) 2 �(M) (1.10)

De�nition 1.8. Let 0 � p; q � 4. A (p; q)-extensor t is a linear mapping

t : �

p

(M)! �

q

(M): (1.11)

Remark 7. The set of all (p; q)-extensors is denoted by ext(�

p

(M);�

q

(M)):

De�nition 1.9. A smooth (p; q)-extensor �eld t on Minkowski spa
etime is a

di�erentiable (p; q)-extensor valued fun
tion of position form,

�

1

(M) 3 x 7! t

x

2 ext(�

p

(M);�

q

(M)): (1.12)

De�nition 1.10. The a-dire
tional derivative (a is an arbitrary form) of a

smooth multiform �eld X , denoted as a � �X; is de�ned by

a � �X = lim�! 0

X(x+ �a)�X(x)

�

=

d

d�

X(x+ �a)

�

�

�

�

�=0

: (1.13)

Remark 8. The 


�

-dire
tional derivative 


�

��X 
oin
ides with the 
oordinate

derivative

�X

�x

�

: For short, we will use the notation �

�

� 


�

� �:

De�nition 1.11. The gradient, divergen
e and 
url of a smooth multiform �eld

X; respe
tively denoted by �X; �yX and � ^X; are de�ned by

�X = 


�

(�

�

X): (1.14)

�yX = 


�

y(�

�

X): (1.15)

� ^X = 


�

^ (�

�

X): (1.16)

Remark 9. For any X , it holds �X = �yX + � ^X:

2 Covariant derivative of form �elds

De�nition 2.1. Let a be any form. A 
ovariant derivative operator r (or


onne
tion) a
ting on the set of smooth form �elds on Minkowski manifold,

modeled by M

�

, is the mapping

r

a

: hom[�

1

(M);�

1

(M)℄! hom[�

1

(M);�

1

(M)℄; (2.1)

satisfying the axioms: (i) for all s
alars �; �

0

and forms a; a

0

it holdsr

�a+�

0

a

0

b =

�r

a

b+ �

0

r

a

0

b (b 2 hom[�

1

(M);�

1

(M)℄), (ii) for all smooth s
alar �elds f; f

0

and form �elds b; b

0

it holds r

a

(fb+f

0

b

0

) = (a ��f)b+fr

a

b+(a ��f

0

)b

0

+f

0

r

a

b

0

(a 2 �

1

(M)). r

a

b is 
alled the dire
tional 
ovariant derivative of the form �eld

b.

Remark 10. The de�nition above is not empty. For example, the ordinary

dire
tional derivative a � �b is a well-de�ned dire
tional 
ovariant derivative. If

h is a smooth (1; 1)-extensor �eld whi
h has inverse h

�1

; then h

�1

(a � �h(b)); is

also a well-de�ned dire
tional 
ovariant derivative.

6



2.1 Conne
tion extensor �elds

We will show that, asso
iated to r

a

; there exist just two fundamental extensor

�elds, say b 7! 


a

(b) and a 7! 
(a); the �rst one being of type (1; 1) and the

se
ond one of type (1; 2): They are smooth extensor �elds over the Minkowski

spa
etime.

Proposition 2.2. There exists a unique smooth (1; 1)-extensor �eld b 7! 


a

(b);




a

(b) = b � �

n

r

a

n; (2.2)

su
h that for any smooth form �eld b; it holds

r

a

b = a � �b+ 


a

(b): (2.3)

Proof. Let b be an arbitrary form �eld; by using ax. (ii) into def.(2.1), we have

r

a

b = r

a

(b � 


�




�

) = (a � �b � 


�

)


�

+ b

�

r

a




�

= a � �b+ b � 


�

r

a




�

: (2.4)

This shows that there exists an (1; 1)-extensor �eld, de�ned as

n 7! 


a

(n) = n � 


�

r

a




�

; (2.5)

(note the linearity with respe
t to n 2 �

1

(M)) su
h that for any form �eld b,

it holds

r

a

b = a � �b+ 


a

(b): (2.6)

Now, by applying the dire
tional derivative operator b � �

n

(b is an arbitrary

form) on r

a

n = a � �n+ 


a

(n), we get

b � �

n

r

a

n = b � �

n

a � �n+ b � �

n




a

(n) = 0 + 


a

(b): (2.7)

Thus, the (1; 1)-extensor �eld 


a

is given by

b 7! 


a

(b) = b � �

n

r

a

n:

Remark 11. 


a

is indeed a smooth (1; 1)-extensor �eld over Minkowski spa
e-

time, asso
iated to the di�erential operator r

a

: It is 
onvenient to use the

short notations r

a

b = a � �b + 


a

(b) and 


a

(b) = b � �

n

r

a

n for r

a

b(x) =

a � �b(x) + 


a

j

x

(b(x)) and 


a

j

x

(b) = b � �

n(x)

r

a

n(x):

De�nition 2.3. The (1; 1)-extensor �eld 


a

will be 
alled �rst 
onne
tion ex-

tensor �eld asso
iated to r

a

.

Proposition 2.4. There exists a unique smooth (1; 2)-extensor �eld a 7! 
(a);


(a) = �

1

2

�

n

^ r

a

n (2.8)

7



su
h that the skew-symmetri
 part of 


a

(i.e., 


a�

=

1

2

(


a

� 


y

a

) and 


y

a

is the

adjoint

8

) of 


a


an be fa
torized by




a�

(b) = 
(a)� b; (2.9)

for any form �eld b:

Proof. Re
all that for any (1; 1)-extensor, say v 7! t(v); the skew-symmetri


part of t (i.e., t

�

(v) =

1

2

[t(v)� t

y

(v)℄) 
an be fa
torized as t

�

(v) =

1

2

bif(t)� v;

where bif(t) = ��

n

^ t(n) is the so-
alled biform of t:

Thus, for the skew-symmetri
 part of 


a

; taking into a

ount the eq.(2.2),

we have




a�

(b) =

1

2

bif(


a

)� b = (�

1

2

�

n

^ 


a

(n))� b = (�

1

2

�

n

^ r

a

n)� b: (2.10)

This implies the existen
e of a (1; 2)-extensor �eld, de�ned as

a 7! 
(a) = �

1

2

�

n

^ r

a

n; (2.11)

(note the linearity with respe
t to a 2 �

1

(M)), su
h that for any form �eld b;

it holds




a�

(b) = 
(a)� b:

Remark 12. 
 is indeed a smooth (1; 2)-extensor �eld over the Minkowski man-

ifold, asso
iated to r

a

: Convenient short notations for 


x

(a) = �

1

2

�

n(x)

^

r

a

n(x) and 


a�

�

�

x

(b) = 


x

(a) � b are 
(a) = �

1

2

�

n

^ r

a

n and 


a�

(b) =


(a)� b:

De�nition 2.5. The (1; 2)-extensor �eld 
 will be 
alled se
ond 
onne
tion

extensor �eld asso
iated to r

a

.

3 Asso
iated 
ovariant derivatives

De�nition 3.1. Asso
iated to a given dire
tional 
ovariant derivative operator

r

a

; we introdu
e two other dire
tional 
ovariant derivative operators r

�

a

and

r

0

a

; by

r

�

a

b = a � �b� 


y

a

(b): (3.1)

r

0

a

b =

1

2

(r

a

b+r

�

a

b): (3.2)

Remark 13. r

�

a

and r

0

a

are in fa
t operators a
ting on the set of smooth form

�elds satisfying the axiomati
 of def.(2.1).

8

Let m be and arbitrary (p; q)-extensor and let A 2 �

q

(M), B 2 �

p

(M). The adjoint of

m, denoted m

y

is the (q; p)-extensor su
h that m

y

(A) �B = A �m(B)

8



Proposition 3.2. For any smooth form �eld b; it holds

r

0

a

b = a � �b+ 


a�

(b) = a � �b+
(a)� b: (3.3)

Proof. By using the eq.(2.3), def.(3.1) and eq.(2.9), we obtain the required re-

sult.

Proposition 3.3. For any smooth form �eld b; it holds

r

a

b = r

0

a

b+ 


a+

(b): (3.4)

r

�

a

b = r

0

a

b� 


a+

(b): (3.5)

Proof. The proof of formulas (3.4) and (3.5) follows dire
tly from eq.(2.3),

def.(3.1) and eq.(3.3).

Proposition 3.4. For any smooth form �elds b; 
 it holds

a � �(b � 
) = (r

a

b) � 
+ b � (r

�

a


): (3.6)

a � �(b � 
) = (r

0

a

b) � 
+ b � (r

0

a


): (3.7)

Proof. In order to prove the identity (3.6) we must use eq.(2.3) and def.(3.1).

The proof of the identity (3.7) is left to the reader.

4 Covariant derivative of (1,1)-extensor �elds

The di�erential operator r

a

a
ting on smooth form �elds 
an be extended

in order to a
t on smooth multiform �elds and on extensor �elds. The general

theory 
on
erning these extensions is given in (Fern�andez, Moya and Rodrigues,

1999b)

9

. Here we need only the a
tion of r

a

on (1; 1)-extensor �elds.

De�nition 4.1. If t is a smooth (1; 1)-extensor �eld, thenr

a

t is another smooth

(1; 1)-extensor �eld su
h that, for any smooth form �eld b; it holds

(r

a

t)(b) = r

�

a

t(b)� t(r

a

b): (4.1)

Proposition 4.2. The extended 
ovariant derivative t 7! r

a

t satis�es the fol-

lowing fundamental properties:

For all s
alars �; �

0

and forms a; a

0

and for any smooth form �eld b, it holds

(r

�a+�

0

a

0

t)(b) = �(r

a

t)(b) + �

0

(r

a

0

t)(b); (4.2)

For all smooth s
alar �elds f; f

0

and for any form a and form �elds b; b

0

it

holds

(r

a

t)(fb+ f

0

b

0

) = f(r

a

t)(b) + f

0

(r

a

t)(b

0

); (4.3)

9

In (Fern�andez, Moya and Rodrigues, 1999b) we introdu
e also a generalization of the


on
ept of Cartan's di�erential operator whi
h a
ts on the set of 
ompletely skew-symmetri


extensor �elds (the so 
alled exform �elds).

9



Proof. It follows from the def.(2.1) and the linearity properties of the smooth

(1; 1)-extensor �elds.

Proposition 4.3. For any smooth form �eld b; it holds

(r

a

t)(b) = a � �t(b)� t(r

a

b)� �

n

(t(b) � r

a

n): (4.4)

Proof. Let b be an arbitrary smooth form �eld. Taking into a

ount def.(4.1),

def.(3.1) and eq.(2.3) we have

(r

a

t)(b) = a � �t(b)� 


y

a

t(b)� t(r

a

b) = a � �t(b)� t(r

a

b)� �

n

(


y

a

t(b) � n)

= a � �t(b)� t(r

a

b)� �

n

(t(b) � (a � �n))� �

n

(t(b) � 


a

(n));

(r

a

t)(b) = a � �t(b)� t(r

a

b)� �

n

(t(b) � r

a

n):

Proposition 4.4. For all smooth form �elds b; 
 it holds

(r

a

t)(b) � 
 = a � �(t(b) � 
)� t(r

a

b) � 
� t(b) � (r

a


): (4.5)

Proof. Take two arbitrary smooth form �elds b; 
: Using eq.(4.4), eq.(2.2) and

eq.(2.3) we get

(r

a

t)(b) � 
 = (a � �t(b)) � 
� t(r

a

b) � 
� �

n

(t(b) � r

a

n) � 


= (a � �t(b)) � 
+ t(b) � (a � �
)� t(r

a

b) � 


�t(b) � (a � �
)� 
 � �

n

(t(b) � r

a

n)

= a � �(t(b) � 
)� t(r

a

b) � 
� t(b) � (a � �
)� t(b) � 


a

(
);

(r

a

t)(b) � 
 = a � �(t(b) � 
)� t(r

a

b) � 
� t(b) � r

a


:

Proposition 4.5. For all smooth (1; 1)-extensor �eld t, it holds

r

a

t

y

= (r

a

t)

y

: (4.6)

Proof. Let b; 
 be two arbitrary smooth form �elds. Using eq.(4.5) and the

fundamental s
alar produ
t property in the adjoint t

y

of the extensor t, we have

(r

a

t

y

)(b) � 
 = a � �(t

y

(b) � 
)� t

y

(r

a

b) � 
� t

y

(b) � r

a




= a � �(b � t(
))�r

a

b � t(
)� b � t(r

a


)

= a � �(t(
) � b)� t(r

a


) � b� t(
) � r

a

b

= (r

a

t)(
) � b = 
 � (r

a

t)

y

(b):

This implies that (r

a

t

y

)(b) = (r

a

t)

y

(b); that is r

a

t

y

= (r

a

t)

y

:

Finally, we will present two very important properties: one for an identity

extensor �eld i

d

and another for the so-
alled gauge metri
 extensor �eld g. In

the general gauge theory of gravitation, g � h

y

h; where h is a smooth (1; 1)-

extensor �eld whi
h has inverse h

�1

(h is the so-
alled gauge distortion extensor

�eld).

10



Proposition 4.6. If 


a+

is the symmetri
 part of 


a

(


a

is the �rst 
onne
tion

extensor �eld asso
iated to any 
ovariant derivative r

a

), then

r

a

i

d

= �2


a+

: (4.7)

Proof. >From def.(4.4) we 
an write

(r

a

i

d

)(b) = r

�

a

i

d

(b)� i

d

(r

a

b)

= r

�

a

(b)�r

a

b: (4.8)

Now, using eq.(3.1) and eq.(2.3), we get

(r

a

i

d

)(b) = a � �b� 


y

a

(b)� a � �b� 


a

(b)

(r

a

i

d

)(b) = �2


a+

(b):

Corollary 4.7. r

a

is i

d

-
ompatible (i.e., r

a

i

d

= 0) if and only if 


a+

= 0 (i.e.,




a

= �


y

a

; 


a

is skew-symmetri
).

Remark 14. It is important to have in mind that i

d

is the (1; 1)-extensor �eld

that represents the Minkowski metri
 tensor � 2 se
T

0

2

(M):

Note that, given any 
ovariant derivative b 7! r

a

b it is possible (and 
onve-

nient) to introdu
e a well-de�ned 
ovariant derivative by b 7!

b

r

a

b = h

�1

(r

a

h(b)):

In the general gauge theory of gravitation,

b

r

a

is the so-
alled h-gauge of r

a

:

Proposition 4.8. If 


a+

is the symmetri
 part of 


a

(


a

is the �rst 
onne
tion

extensor �eld asso
iated to r

a

), then

b

r

a

g = �2h

y




a+

h: (4.9)

Proof. Let b; 
 be smooth form �elds; by eq.(4.5) and eq.(2.3) we have

(

b

r

a

g)(b) � 
 = a � �(g(b) � 
)� g(

b

r

a

b) � 
� g(b) � (

b

r

a


)

= a � �(h(b) � h(
))�r

a

h(b) � h(
)� h(b) � r

a

h(
)

= �


a

h(b) � h(
)� h(b) � 


a

h(
)

= �(


a

h(b) + 


y

a

h(b)) � h(
)

= �2h

y




a+

h(b) � 
; (4.10)

that is,

b

r

a

g = �2h

y




a+

h:

Corollary 4.9.

b

r

a

is g-
ompatible (i.e.,

b

r

a

g = 0) if and only if 


a+

= 0 (i.e.,




a

= �


y

a

; 


a

is skew-symmetri
).

Remark 15. Taking into a

ount the �rst 
orollary above, the se
ond 
orollary

above set:

b

r

a

is g-
ompatible if and only if r

a

is i

d

-
ompatible.

11



In (DLG, 1998) the authors introdu
e a 
ovariant derivative b 7! D

a

b =

a � �b+
(a)� b: A

ording to our theory of 
ovariant derivation, D

a

would be

the most general 
ovariant derivative with the property of being i

d

-
ompatible

(i.e., D

a

i

d

= 0): However, it is not g-
ompatible as 
laimed by the mentioned

authors.

Observe that eq.(4.5) implies a logi
al equivalen
e between the property

D

a

i

d

= 0 and the following property a � �(b � 
) = (D

a

b) � 
 + b � (D

a


); where

a; b; 
 are smooth form �elds. Hen
e, by putting a = �

�

x; b = g

�

and 
 = g

�

into the last identity and taking into a

ount the de�nitions and properties

used in (DLG,1998), it is not diÆ
ult to get the di�erential equation �

�

g

��

=

�

�

��

g

��

+ �

�

��

g

��

; where �

�

��

= (D

�

�

x

g

�

) � g

�

: That one is only a 
oordinate

expression for the i

d

-
ompatibility of D

a

; �

�

��

are hybrid 
onne
tion 
oeÆ
ients

among the natural basis and gauge basis!

A 
orre
t g-
ompatible gauge theory of gravitation should be formulated by

taking into a

ount the 
orollary from prop.(4.9). Su
h a theory is presented in

(Fern�andez, Moya and Rodrigues, 1999a)

5 Stru
tural extensor �elds

5.1 Nonmetri
ity extensor �eld

De�nition 5.1. Given a symmetri
 (1; 1) extensor �eld g (g = g

y

) and an

arbitrary 
ovariant derivative operator r on the Minkowski manifold. The

smooth biextensor �eld, say (a; b) 7! A(a; b) given by

A(a; b) = r

a

g(b); (5.1)

for any smooth form �elds a; b is 
alled nonmetri
ity of g relative to r.

De�nition 5.2. r is said to be g-
ompatible if and only if A(a; b) = 0, for any

form �elds a; b.

5.2 Torsion extensor �eld

We show now, that there exists a well-de�ned smooth bi-exform �eld (i.e., a

skew-symmetri
 bi-extensor �eld), asso
iated to 


a

; that measures the so-
alled

torsion of r

a

. After that, we introdu
e the torsion extensor �eld.

Proposition 5.3. There exists a unique smooth bi-exform �eld (a; b) 7! �(a; b);

�(a; b) = 


a

(b)� 


b

(a); (5.2)

su
h that for all smooth form �elds a; b it holds

r

a

b�r

b

a = [a; b℄ + �(a; b): (5.3)

Proof. Let a; b be two smooth form �elds. Using eq.(2.3), we have

r

a

b�r

b

a = a � �b+ 


a

(b)� b � �a� 


b

(a)

= [a; b℄ + 


a

(b)� 


b

(a); (5.4)

12



where [a; b℄ = a � �b� b � �a is the so-
alled Lie bra
ket of the form �elds a; b:

Eq.(5.4) implies the existen
e of a bi-exform �eld, de�ned as

(a; b) 7! �(a; b) = 


a

(b)� 


b

(a); (5.5)

(note the linearity with respe
t to a; b 2 �

1

(M) and the skew-symmetry under

inter
hange of their variables), su
h that for all smooth form �elds a; b

r

a

b�r

b

a = [a; b℄ + �(a; b):

Remark 16. � is indeed a smooth bi-exform �eld, asso
iated to r

a

: >From

eq.(2.2), it follows that �(a; b) = b � �

n

r

a

n� a � �

n

r

b

n.

De�nition 5.4. The bi-exform �eld � will be 
alled torsion bi-exform �eld.

Proposition 5.5. For any form �elds a; b it holds

�(a; b) = 


a+

(b)� 


b+

(a) + 
(a)� b� 
(b)� a: (5.6)

Proof. It is enough to use the de
omposition of 


a

into symmetri
 and skew-

symmetri
 parts and the fa
torization (2.9) into the def.(5.2).

Remark 17. In eq.(5.6), the bi-exform �eld 


a+

(b) � 


b+

(a) 
omes from the

symmetri
 part of 


a

and the bi-exform �eld 
(a) � b � 
(b) � a 
omes from

the skew-symmetri
 part of 


a

:

De�nition 5.6. The smooth (1; 2)-extensor �eld, say n 7! T (n); su
h that for

ea
h x 2 �

1

(M) its adjoint is the smooth (2; 1)-extensor �eld given by, :

�

2

(M) 3 B 7! T

y

x

(B) =

1

2!

B � (�

a

^ �

b

)�

x

(a; b) 2 �

1

(M); (5.7)

will be 
alled torsion extensor �eld.

Remark 18. We usually employ the short notation T

y

(B) =

1

2

B�(�

a

^�

b

)�(a; b):

Proposition 5.7. For any forms a; b it holds

T

y

(a ^ b) = �(a; b): (5.8)

Proof. Taking into a

ount the skew-symmetry of �; we have

T

y

(a ^ b) =

1

2

(a ^ b) � (�

p

^ �

q

)�(p; q) =

1

2

(a � �

p

b � �

q

� a � �

q

b � �

p

)�(p; q)

=

1

2

[a � �

p

b � �

q

�(p; q)� a � �

q

b � �

p

�(p; q)℄ =

1

2

[�(a; b)� �(b; a)℄;

T

y

(a ^ b) = �(a; b):
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5.3 Curvature extensor �eld

We show now the existen
e of two well-de�ned operators, asso
iated to 


a

;

involved in the 
on
ept of 
urvature of the 
ovariant derivative operator r.

After that, we introdu
e the 
urvature extensor �eld.

Proposition 5.8. There exists a unique operator a
ting on the set of smooth

ve
tor �elds, say (a; b; 
) 7! b!

1

(a; b; 
);

b!

1

(a; b; 
) = 
 � �

n

(a � �


b

(n)� b � �


a

(n) + [


a

;


b

℄(n)); (5.9)

su
h that for all smooth form �elds a; b; 
 it holds

[r

a

;r

b

℄
 = [a � �; b � �℄
+ b!

1

(a; b; 
): (5.10)

Proof. Let a; b; 
 be three smooth form �elds; by using eq.(2.3) we have

r

a

(r

b


) = a � �b � �
+ a � �


b

(
) + 


a

(b � �
) + 


a




b

(
):

r

b

(r

a


) = b � �a � �
+ b � �


a

(
) + 


b

(a � �
) + 


b




a

(
): (5.11)

Subtra
ting we get

[r

a

;r

b

℄
 = [a � �; b � �℄
+ a � �


b

(
)� 


b

(a � �
)

�b � �


a

(
) + 


a

(b � �
) + [


a

;


b

℄(
): (5.12)

Now, using the formula b � �

n

a � �t(n) = a � �t(b) � t(a � �b), valid for any

smooth (1; 1)-extensor �eld, where a is a form and b; n are smooth form �elds,

we obtain

[r

a

;r

b

℄
 = [a � �; b � �℄
+ 
 � �

n

(a � �


b

(n)� b � �


a

(n) + [


a

;


b

℄(n)): (5.13)

Eq.(5.13) implies the existen
e of an operator,

hom[�

1

(M);�

1

(M)℄

| {z }

3-
opies

3 (a; b; 
) 7! b!

1

(a; b; 
) 2 hom[�

1

(M);�

1

(M)℄;

de�ned by

b!

1

(a; b; 
) = 
 � �

n

(a � �


b

(n)� b � �


a

(n) + [


a

;


b

℄(n)); (5.14)

su
h that for all smooth form �elds a; b; 
;

[r

a

;r

b

℄
 = [a � �; b � �℄
+ b!

1

(a; b; 
):

Remark 19. b!

1

is an operator, asso
iated to the dire
tional 
ovariant deriva-

tive operator r

a

; whi
h is linear with respe
t to its third variable and skew-

symmetri
 under inter
hange of �rst and se
ond variables. In terms of r

a

; it is

obviously that b!

1

(a; b; 
) = 
 � �

n

[r

a

;r

b

℄n.
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De�nition 5.9. The operator b!

1

will be 
alled �rst 
urvature operator.

Besides b!

1

; we introdu
e another operator related to 
urvature.

De�nition 5.10. The se
ond 
urvature operator b!

2

a
ting on the set of smooth

form �elds is given by

hom[�

1

(M);�

1

(M)℄

| {z }

2 
opies

3 (a; b) 7! b!

2

(a; b) 2 hom[�

1

(M);�

2

(M)℄;

su
h that

b!

2

(a; b) = �

1

2

�




^ b!

1

(a; b; 
) = �

1

2

�

n

^ (a � �


b

(n)� b � �


a

(n) + [


a

;


b

℄(n)):

(5.15)

Remark 20. The operator b!

2

is skew-symmetri
 under inter
hange of their

variables. In terms of r

a

, we have b!

2

(a; b) = �

1

2

�

n

^ [r

a

;r

b

℄n.

Proposition 5.11. For any smooth ve
tor form �elds a; b it holds

b!

2

(a; b) =

1

2

bif([


a+

;


b+

℄) + a � �
(b)� b � �
(a) + 
(a)� 
(b): (5.16)

Proof. By straightforward 
al
ulation we have

b!

2

(a; b) = �

1

2

�

n

^ (a � �


b

(n)� b � �


a

(n) + [


a

;


b

℄(n))

= a � �(�

1

2

�

n

^ 


b

(n))� b � �(�

1

2

�

n

^ 


a

(n))�

1

2

�

n

^ [


a

;


b

℄(n)

= a � �
(b)� b � �
(a)

�

1

2

�

n

^ ([


a+

;


b+

℄ + [


a+

;


b�

℄ + [


a�

;


b+

℄ + [


a�

;


b�

℄)(n);

b!

2

(a; b) = a � �
(b)� b � �
(a)

�

1

2

�

n

^ [


a+

;


b+

℄(n)�

1

2

�

n

^ [


a+

;


b�

℄(n)

�

1

2

�

n

^ [


a�

;


b+

℄(n)�

1

2

�

n

^ [


a�

;


b�

℄(n): (5.17)

Now, using eq.(2.8), eq.(2.9) and Ja
obi's identity A� (B�C) = (A�B)�

C +B � (A� C); we get

b!

2

(a; b) = a � �
(b)� b � �
(a) +

1

2

bif([


a+

;


b+

℄) +

1

2

bif([


a+

;


b�

℄)

+

1

2

bif([


a�

;


b+

℄)�

1

2

�

n

^ ([
(a)� 
(b)℄� n): (5.18)

Sin
e [


a+

;


b+

℄ and [


a+

;


b�

℄ are symmetri
 extensors, their biforms van-

ish. Using the formula �

n

^ (B � n) = �2B; where B is a biform and n is a

form we get

b!

2

(a; b) =

1

2

bif([


a+

;


b+

℄) + a � �
(b)� b � �
(a) + 
(a)� 
(b):
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Remark 21. In eq.(5.16), the bi-exform �eld

1

2

bif([


a+

;


b+

℄) 
omes from the

symmetri
 part of 


a

and the operator (a; b) 7! a ��
(b)�b ��
(a)+
(a)�
(b)


omes from the skew-symmetri
 part of 


a

:

De�nition 5.12. The smooth (2; 2)-extensor �eld, say B 7! R(B); for ea
h

x 2 �

1

(M) :

�

2

(M) 3 B 7! R

x

(B) =

1

2!

B � (�

a(x)

^ �

b(x)

)b!

2

(a; b)(x) 2 �

2

(M); (5.19)

will be 
alled 
urvature extensor �eld.

Remark 22. We usually employ the short notationR(B) =

1

2

B�(�

a

^�

b

)b!

2

(a; b).

Proposition 5.13. For all smooth form �elds a; b it holds

R(a ^ b) = b!

2

(a; b)� 
([a; b℄): (5.20)

Proof. Due the skew-symmetry of b!

2

(a; b); we have

R(a ^ b) =

1

2

(a ^ b) � (�

p

^ �

q

)b!

2

(a; b)

=

1

2

[a � �

p

b � �

q

b!

2

(p; q)� a � �

q

b � �

p

b!

2

(p; q)℄

=

1

2

[a � �

p

b � �

q

b!

2

(p; q)� a � �

p

b � �

q

b!

2

(q; p)℄

=

1

2

[a � �

p

b � �

q

b!

2

(p; q) + a � �

p

b � �

q

b!

2

(p; q)℄;

R(a ^ b) = a � �

p

b � �

q

b!

2

(p; q): (5.21)

Taking into a

ount eq.(5.16) and using the general formula for a smooth

(1; k)-extensor �elds b � �

n

a � �t(n) = a � �t(b)� t(a � �b);where a is a form and

b; n are smooth form �elds, we obtain

R(a ^ b) = a � �

p

b � �

q

(

1

2

bif([


p+

;


q+

℄) + p � �
(q)� q � �
(p) + 
(p)� 
(q))

=

1

2

bif([


a+

;


b+

℄) + a � �
(b)� 
(a � �b)

�b � �
(a) + 
(b � �a) + 
(a)� 
(b);

R(a ^ b) = b!

2

(a; b)� 
([a; b℄):

6 Examples

6.1 Levi-Civita derivative

We suppose the existen
e of a smooth (1; 1)-extensor �eld on the Minkowski

manifold (modeled by (M;M

�

)), say n 7! g(n); whi
h is symmetri
 (i.e., g = g

y

)

and has inverse. It will be 
alled gauge metri
 extensor �eld.
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We introdu
e two fundamental operators a
ting on the set of smooth form

�elds on (M;M

�

):

(a) The Christo�el operator of the �rst kind,

hom[�

1

(M);�

1

(M)℄

| {z }

3 
opies

3 (a; b; 
) 7! [a; b; 
℄ 2 hom[�

1

(M); R℄; (6.1)

where

2[a; b; 
℄ = a � �(g(b) � 
)

= b � �(g(
) � a)� 
 � �(g(a) � b)

+ g(
) � [a; b℄ + g(b) � [
; a℄� g(a) � [b; 
℄: (6.2)

and where [a; b℄ is the Lie bra
ket of the form �elds a; b.

(b) The Christo�el operator of the se
ond kind,

hom[�

1

(M);�

1

(M)℄

| {z }

3 
opies

3 (a; b; 
) 7!

�




a; b

�

2 hom[�

1

(M); R℄; (6.3)

su
h that

�




a; b

�

= [a; b; g

�1

(
)℄: (6.4)

The Christo�el operator of the �rst kind has several useful properties, namely

for any form �elds a; a

0

; b; 
 and any s
alar �eld f ,we have:

[a+ a

0

; b; 
℄ = [a; b; 
℄ + [a

0

; b; 
℄

[fa; b; 
℄ = f [a; b; 
℄: (6.5)

[a; b+ b

0

; 
℄ = [a; b; 
℄ + [a; b

0

; 
℄

[a; fb; 
℄ = f [a; b; 
℄ + (a � �f)g(b) � 
: (6.6)

[a; b; 
+ 


0

℄ = [a; b; 
℄ + [a; b; 


0

℄

[a; b; f
℄ = f [a; b; 
℄: (6.7)

Now, we 
an de�ne the Levi-Civita 
ovariant derivative D as follows:

hom[�

1

(M);�

1

(M)℄ 3 b 7! D

a

b 2 hom[�

1

(M);�

1

(M)℄; (6.8)

su
h that if a 2 hom[�

1

(M);�

1

(M)℄; thenD

a

b � �

n

�

n

a; b

�

= �

n

[a; b; g

�1

(n)℄.

Observe that for any smooth form �elds a; b; 
 we have

(D

a

b) � 
 =

�




a; b

�

: (6.9)
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D

a

is a well-de�ned dire
tional 
ovariant derivative. In fa
t, the linearity

with respe
t to the dire
tion a is 
onsequen
e of eq.(6.5). Also, if f is a s
alar

�eld and b; b

0

are form �elds. Using eq.(6.7), we have

D

a

(b+ b

0

) = �

n

[a; b+ b

0

; g

�1

(n)℄

= �

n

[a; b; g

�1

(n)℄ + �

n

[a; b

0

; g

�1

(n)℄;

= D

a

b+D

a

b

0

: (6.10)

D

a

(fb) = �

n

[a; fb; g

�1

(n)℄

= f�

n

[a; b; g

�1

(n)℄ + �

n

(a � �f)(g(b) � g

�1

(n));

= (a � �f)b+ fD

a

b: (6.11)

Thus, the ax.(ii) into def.(2.1) is satis�ed.

Theorem 6.1. . Let a; b; 
 be arbitrary smooth form �elds, then

g(D

a

b) � 
+ g(b) �D

a


 = a � �(g(b) � 
): (6.12)

Proof.

g(D

a

b) � 
+ g(b) �D

a


 = �

n

[a; b; g

�1

(n)℄ � g(
) + g(b) � �

n

[a; 
; g

�1

(n)℄

= [a; b; g

�1

g(
)℄ + [a; 
; g

�1

g(b)℄;

g(D

a

b) � 
+ g(b) �D

a


 = a � �(g(b) � 
):

We have used def.(6.8) and in the last line an important identity for the Christof-

fel operator of the �rst kind, namely, [a; b; 
℄ + [a; 
; b℄ = a � �(g(b) � 
):

Remark 23. The above theorem is known as Ri

i theorem for the Levi-Civita

derivative.

Corollary 6.1. Let a; b be arbitrary smooth form �elds,

D

�

a

= g(D

a

g

�1

(b)): (6.13)

Proof. On
e again, let a; b; 
 be arbitrary smooth form �elds. Using the Ri

i

theorem (eq.(6.12)) we have

a � �(b � 
) = a � �(g(b) � g

�1

(
))

= g(D

a

b) � g

�1

(
) + g(b) �D

a

g

�1

(
)

= (D

a

b) � 
+ b � g(D

a

g

�1

(
)): (6.14)

Comparing eq.(6.14) with the identity eq.(3.6), it follows

D

�

a

b = g(D

a

g

�1

(b)): (6.15)

Proposition 6.2. g is 
ompatible with D, i.e., for any form �eld a, the exten-

sion of the Levi-Civita derivative a
ting on the smooth (1; 1)-extensor �eld g

(the gauge metri
 extensor �eld) vanishes,

D

a

g = 0: (6.16)
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Proof.

(D

a

g)(b) = D

�

a

g(b)� g(D

a

b)

= g(D

a

g

�1

g(b))� g(D

a

b);

(D

a

g)(b) = 0:

Finally, we will see that Levi-Civita derivative is torsionless.

In fa
t, a

ording to eq.(5.3), we 
an write

�(a; b) = D

a

b�D

b

a� [a; b℄

= �

n

(D

a

b � n�D

b

a � n)� [a; b℄

= �

n

(

�

n

a; b

�

�

�

n

b; a

�

)� [a; b℄

= �

n

([a; b; g

�1

(n)℄� [b; a; g

�1

(n)℄) � [a; b℄; (6.17)

and using the remarkable identity [a; b; 
℄� [b; a; 
℄ = g(
) � [a; b℄ yields

�(a; b) = �

n

gg

�1

(n) � [a; b℄� [a; b℄ = 0; (6.18)

that is, T

y

(a ^ b) = 0:

6.2 Hestenes derivative

Take a smooth even multiform �eld over the Minkowski manifold modeled by

(M;M

�

), say �

1

(M) 3 x 7! R(x) 2 �

+

(M) (where �

+

(M) � C`(M) is

the set of even multiforms), su
h that R(x)

e

R(x) = 1: It is 
alled a Lorentz

rotator, sin
e for any x 2 8�

1

(M); R(x) 2 Spin

+

(1; 3) ' SL(2;C), whi
h is

the universal 
overing group of L

"

+

, the restri
t ortho
hronous Lorentz group

(Lounesto, 1997).

De�nition 6.3. A Lorentz extensor �eld l

x

is a smooth (1; 1)-extensor �eld

over M

�

su
h that for ea
h x 2 �

1

(M) :

�

1

(M) 3 n 7! l

x

(n) 2 �

1

(M);

l

x

(n) = R(x)n

e

R(x): (6.19)

Some important properties for Lorentz extensor �eld n 7! l(n) = Rn

e

R;

are: For any multiform �eld X;the extension

10

of l, denoted l is su
h that

l(X) = RX

e

R . Also det(l) = 1, l

y

(n) =

e

RnR (where l

y

is the adjoint of l), and

l

�1

= l

y

.

De�nition 6.4. Let (h"

�

i ; h"

�

i) be any pair of re
ipro
al frames (i.e., "

�

� "

�

=

Æ

�

�

), then the pair of re
ipro
al frames (hl("

�

)i ; hl

?

("

�

)i); where l

?

� (l

�1

)

y

=

(l

y

)

�1

(in this 
ase, it holds l

?

= l) are 
alled the l-gauge frames of (h"

�

i ; h"

�

i).

10

The extension of a (1; 1)-extensor t is the general extensor t de�ned by the properties:

t(�) = �, � 2 R and t(a

1

^ ::: ^ a

k

) = t(a

1

) ^ ::: ^ t(a

k

), a

1

; :::; a

k

2 �

1

(M):
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The existen
e of a multiform �eld R; with the properties R(x) 2 �

+

(M)

(i.e., R(x) = R(x)) and R(x)

e

R(x) = 1, implies the existen
e of a smooth (1; 2)-

extensor �eld. For ea
h x 2 �

1

(M) :

�

1

(M) 3 a 7! !

x

(a) 2 �

2

(M); (6.20)

su
h that !

x

(a) = (�2a � �R(x))

e

R(x):

Observe that the 
anoni
al biforms !(


�

) = (�2�

�

R)

e

R are the so 
alled

Darboux biform �elds. This suggests 
alling ! the Darboux extensor �eld (Ro-

drigues et al, 1996)

We prove now two important properties involving the Darboux extensor

�eld.

Proposition 6.5. For the l-gauge frames of the fundamental frames (h


�

i ; h


�

i);

we have

a � �l(


�

) = l(


�

)� !(a);

a � �l(


�

) = l(


�

)� !(a) (6.21)

Proof. Using the known property R

e

R =

e

RR = 1 and the def.(6.20),

a � �l(


�

) = (a � �R)


�

e

R+R


�

(a � �

e

R)

= (a � �R)

e

RR


�

e

R+R


�

e

RR(a � �

e

R)

= �

1

2

!(a)l(


�

) + l(


�

)

1

2

!(a);

a � �l(


�

) = l(


�

)� !(a):

In analogous way, a � �l(


�

) = l(


�

)� !(a):

For the Darboux extensor �eld we have a remarkable identity.

Proposition 6.6. For any smooth form �elds a; b it holds

a � �!(b)� b � �!(a) + !(a)� !(b) = !([a; b℄): (6.22)

Proof. We have,

a � �!(b) = �2((a � �b � �R)

e

R+ (b � �R)(a � �

e

R)) (6.23)

b � �!(a) = �2((b � �a � �R)

e

R+ (a � �R)(b � �

e

R)): (6.24)

Thus,

a � �!(b)� b � �!(a) = �2(([a � �; b � �℄R)

e

R+ (b � �R)(a � �

e

R)� (a � �R)(b � �

e

R))

= �2(([a; b℄ � �R)

e

R+ (b � �R)(a � �

e

R)� (a � �R)(b � �

e

R))

= !([a; b℄)� 2((b � �R)(a � �

e

R)� (a � �R)(b � �

e

R)); (6.25)

where we used the identity [a ��; b ��℄X = [a; b℄ ��X where a; b are smooth form

�elds and X is a smooth multiform �eld.
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Also,

!(a)!(b) = 4(a � �R)

e

R(b � �R)

e

R

= �4(a � �R)(b � �

e

R); (6.26)

!(b)!(a) = �4(b � �R)(a � �

e

R); (6.27)

whi
h implies that

!(a)� !(b) = �2((a � �R)(b � �

e

R)� (b � �R)(a � �

e

R)): (6.28)

Comparing eq.(6.25) with eq.(6.28), we �nally obtain

a � �!(b)� b � �!(a) + !(a)� !(b) = !([a; b℄):

De�nition 6.7. The Hestenes dire
tional 
ovariant derivative (Hestenes deriva-

tive, for short) d

a

; is de�ned by

hom[�

1

(M);�

1

(M)℄ 3 b 7! d

a

b 2 hom[�

1

(M);�

1

(M)℄; (6.29)

su
h that d

a

b � l(a � �l

�1

(b)) = l(a � �l

y

(b)).

As the reader 
an easily prove it is indeed a well-de�ned dire
tional 
ovariant

derivative, sin
e it satis�es the axiomati
 in def.(2.1).

Proposition 6.8. The asso
iated derivatives d

�

a

and d

0

a


oin
ide with d

a

, i.e.,

for any smooth form �eld b, we have

d

�

a

b = d

a

b = d

0

a

b: (6.30)

Proof. Let a; b; 
 be arbitrary smooth form �elds, then

a � �(b � 
) = a � �(l

�1

(b) � l

y

(
))

= a � �l

�1

(b) � l

y

(
) + l

�1

(b) � a � �l

y

(
)

= l(a � �l

�1

(b)) � 
+ b � l

?

(a � �l

y

(
))

= l(a � �l

�1

(b)) � 
+ b � l(a � �l

�1

(
))

= (d

a

b) � 
+ b � (d

a


): (6.31)

Comparing the eq.(6.31) with the identity (3.6) and employing the def.(3.2),

it follows

d

�

a

b = d

a

b = d

0

a

b: (6.32)

The result above, eq.(6.32), means that Hestenes derivative is i

d

-
ompatible.

Finally, we will �nd the se
ond 
onne
tion extensor �eld asso
iated to Hestenes

derivative.
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Proposition 6.9. The se
ond 
onne
tion extensor �eld asso
iated to Hestenes

derivative 
oin
ides with the Darboux extensor �eld,


(a) = !(a): (6.33)

Proof.


(a) = �

1

2

�

n

^ d

a

n = �

1

2

�

n

^ l(a � �l

�1

(n)) = �

1

2




�

^ l(a � �l

�1

(


�

)): (6.34)

hen
e, using the remarkable identity 


�

^ l(a ��l

�1

(


�

))+ l

?

(


�

)^a ��l(


�

) = O

and the eq.(6.21), we have


(a) =

1

2

l

?

(


�

) ^ a � �l(


�

)

=

1

2

l

?

(


�

) ^ (l(


�

)� !(a))

=

1

2

�

n

^ (n� !(a))


(a) = !(a):

we have employed the invariant representation property for 
url operator �

n

^

and the formula �

n

^ (n�B) = 2B:

Remark 24. Eq.(6.30) together with the eq.(6.21) imply that the 
urvature

extensor �eld of the Hestenes derivative is null.
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