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1. INTRODUCTION

The notion of m-convexity of functions and integral mean was studied

by several authors, including Bruckner and Ostrow [3], Toader [15], [16].
The set-valued versions of some of the above results were, recently,

given by Slepak [14].

Our purpose here, roughly speaking, is to extend the previous works

to the fuzzy context as well to give some convergence results for fuzzy

integral means.

The structure of this paper is as follows. In Section 2 we give the
basic concepts and results that will be used in the article and, in Section
3, we study the m-convexity and integral mean of fuzzy mappings and
its properties. Finally, in Section 4 we show some results on convergence
of mean integral for fuzzy mappings. Furthermore, some examples and
applications are presented.
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2. BASIC CONCEPTS AND RESULTS

Let X be a real separable Banach space with dual X* and (X)), K.(X),
respectively, the class of all nonempty and compact subsets of X, and

the class of all nonempty compact and convex subsets of X.
The Hausdorff metric H on KC(X) is defined by

H(A, B) = max {sup d(a, B),sup d(b, A)} ,

acA beB

and it is known that (K(X), H) is a complete and separable metric space
and /C.(X) is a closed subspace of C(X). See [4,7,8,9,10,12].
Also, a linear structure of convex cone in (X)) is defined by

A+B={a+b/ac Abe B} and AMA={)la/ac A}

forall A,B € K(X), AeR
DEFINITION 2.1. A set-valued function F : [0,b] — K(X) is called Borel
measurable, if its graph, i.e., the set {(t,z)/ x € F(t)}, is a Borel subset
of [0, 6] x X.
REMARK 2.2. Because Lebesgue measure is complete, the Borel measur-
ability of the set-valued mapping F' is equivalent to the following condi-
tion : for every Borel set B, F~'(B) = {t € [0,b]/ F(t)N B # 0} where
L denotes the g-algebra of all Lebesgue-measurable subsets of interval
[0,b]. Also, a measurable set-valued function F : [0,b] — K(X) is called
a random set (r.s.).
DEFINITION 2.3. The integral of the set-valued function F : [0,b] —
K(X) is defined by

[fﬂﬁ:{[fﬂﬂﬂ/feS@j}

where fo t)dt is the Bochner-integral and S(F) is the set of all inte-
grable selectors of ', i.e.,

S(F) = {f € L'([0,0], X)/ f(t) € F(t) a.e.}.

This definition was introduced by Aumann [1] as a natural generalization
of the integration of single-valued functions.
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DEFINITION 2.4. A set-valued function F : [0,b] — K(X) is said to
be integrably bounded, if there exists a single-valued integrable function
h:[0,b] — X such that ||z|| < h(t) for all x and t such that v € F(t).
REMARK 2.5. If F': [0,b] — K(X) is an integrably bounded r.s., then
the Aumann integral of F' is a nonempty subset of X.

PROPOSITION 2.6. If A € R and F,Fy, F, : [0,b] = K.(X) are integrably
bounded r.s., then

a) [ Fdt € K.(X)
b) [YAF + Fy)dt = A [) Fydt + [} Fydt .

For details see Hiai&Umegaki [5].
The following result is a generalization of Lebesgue’s dominated conver-
gence theorem:

THEOREM 2.7. If F,: Q@ —K(X) are r.s and there is f € L'(Q2, IR) such
that sup||g,(w)|| < f(w) for all g, € S(F},), then if F,(w) LS F(w) a.e we
p>1

/Fpi/F as p—o00.

See [7, Theor. 17.2.6, p. 192].Also, see [8].

Now, we will give the extensions of the above results to the fuzzy context.
A fuzzy subset of X is a function u : X — [0,1] and, for 0 < a < 1,
we denote by L,u = {z € X/ u(z) > a} the a-level of u, and Lyu =
supp(u) = {z € x : u(x) > 0} is called the support of u.

As an extension of (X)) (K.(X), respectively) we define the space F(X)
of all fuzzy compact subsets u : X — [0, 1] (the space F.(X) of all fuzzy
compact and convex subsets of X, respectively) such that

have

Lou € K(X) (Lyu € K (X),respectively), Va € [0, 1].

REMARK 2.8. If u € F(X), then the family {L,u/ « € [0,1]} satisfies
the following properties :

a) Lou O Lou 2 Lgu for all 0 < o < f3,
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b) If a,, / « then Lou = N, Ly, u (i.e., the level-application is
left-continuous),

¢) u=v< Lyu = Lav, Ya € [0,1]

d) Lou # 0 for all a € [0, 1] is equivalent to u(x) = 1 for some z € X.
e) If u e F(X), then u(x) = sup{a/ x € Lyu} (see [9]).

f) We can to define a partial order C on F(X) by setting

uCveu(r) <v),Vere X < Lyu C Ly, Ya € [0, 1].

Also, we can define a metric on F(X') by using the Hausdorff metric
H as follows:

D(u,v) = sup H(Lyu,Lyv), Yu,v € F(X).

a€g0,1]

It is known that (F(X), D) is a complete but non-separable metric
space (see [12]).

A linear structure of convex cone in F(X) is defined by

(14 0)(e) = s minfuly) o)) and (o) = { W A2

where u,v € F(X), A € R and x4 denote the characteristic function
of A.
With these definitions we obtain L, (u + v) = Lou + Lov and L, (Au) =
ALqu, for all u,v € F(X), a € [0,1] and A € R (see [9], [10], [11]).
DEFINITION 2.9. Let I' : [0,0] — F(X) be a fuzzy mapping and define
Ly 2 [0,0] = K(X) by Ty(t) = LI'(t), Ya € [0,1]. Then I' is called
measurable if T, is measurable for all o € [0,1]. Also, I' is called in-
tegrably bounded if I, is an integrably bounded set-valued function for
every o € [0, 1].

If I' is a measurable fuzzy mapping, then I' is called a fuzzy random
variable (f.r.v.). See [9].



PRrOPOSITION 2.10.([9]) If T" : [0,0] — F(X) is an integrably bounded
f.r.v., then there exists a unique fuzzy set u € F(X) such that Lou =
Jiy Dadt, Yo € [0,1].

DEFINITION 2.11. The element u € F(X) obtained in Proposition 2.10
define the integral of the fuzzy random wvariable ', i.e., fob ldt = u &
Lou = fob L.dt, for every a € [0, 1].

ProrosiTioN 2.12. If '),y : [0,b] — F.(X) are integrably bounded
for.v. and A € R, then

b b b
/(AF1+F2)dt:)\/ Fldt+/ [odt.
0 0 0

For more details on properties of the integral for f.r.v., see [4,6,8,9].

3. FUZZY M-CONVEXITY

DEFINITION 3.1. Let m € [0,1] arbitrary. A fuzzy mapping I : [0,b] —
F(X) is called m-convex if

t'(z) + m(1 — t)I'(y) C Ltz +m(1l —t)y)

for all x,y € [0,b] and t € [0,1]. Also, if m = 0, then we say that " is
starshaped and if m =1, we say that [' is convex.

REMARK 3.2. We observe that, I" is m-convex if only if for each « € [0, 1]
the set-valued mapping I', is m-convex, i.e.,

tla(@) + m(1 = )la(y) C Lalte + m(1 —t)y)

for all z,y € [0, 0], t € [0, 1].
DEFINITION 3.3. A fuzzy mapping A : [0,b] — F(X) is called decreasing
if for all z,y € [0, D]

v <y=Ax) 2 Ay)

or equivalently

r <y = Au(z) D Au(y), Ya € [0,1].



We consider the following sets of fuzzy mappings:
Kp ={I':[0,b] = F(X)/ ' is m — convex and xqo; € I'(0)}

S={r:[0,0] = F(X)/ z,y,x+y €[0,b] = ['(z+y) CT(z) +I'(y)}
If ' € S we say that I" is subadditive.

We observe that, due Remark 2.8, we have
xq0y CI'(0) & 0€I'4(0), Va € [0,1] & 0 € I'1(0)

where O is the null element of X.

LEMMA 3.4. If m € [0,1], T : [0,b] — F(X) is m-conver and x{o; C
['(0), then ' is starshaped.

PROOF.

Let « € [0,1] arbitrary. Then, by the m-convexity of I', follows that T,
is m-convex, hence

Lo(tr) = Dotz +m(1 —1t)0)
2 tla(z) +m(l —1)L'a(0)
D tly(z) +m(1l —t){0}
= tl,(x),
consequently, I'(tz) D tI'(x) for all ¢ € [0,1] and z € [0, b]. |

LEMMA 3.5. Let I' : [0,b] — F(X) a fuzzy mapping. Then T is starshaped
if and only if the fuzzy mapping A : (0,b] — F(X), A(x) = %F(x), is
decreasing.

PROOF.

(—). Since I is starshaped, we have tI'(y) C T'n(ty), for all « € [0, 1],
y € [0,b] and ¢t € [0,1]. Let =,y € (0,b] arbitraries, such that z < y .
Then, taking ¢t = 7 € (0,1], we obtain $I'w(y) C I'a(x), which implies
éFa(y) C 1l (x) for every o € [0, 1]. Therefore, A is decreasing.

(¢-). If A is decreasing then, for each o € [0,1], t € [0, 1] and x € [0, b] we
have Let2) 5 F"‘T(‘T), ie., I'y(tx) D tI'y(x). Therefore, ['(tz) D tI'(z) and,

tx
consequently, I' is starshaped. [ |



Now, we will show that the class K,,, m € [0, 1], is monotone (de-
creasing) with respect to m.
THEOREMA 3.6. I[f0<n<m<1then K1 C K, CK,CKy,CS.
PROOF.
IfI' € Ky, m > 0, then I' is m-convex and xqo; € I'(0). Thus, due
Lemma 3.4, T" is starshaped (i.e., I' € Kj). Therefore, for n < m, we
have

Lt +n(1 —t)y)

T(t +m(1 — t)%y)

U

t(2) +m(1 = )l (~y)
D tl'(z) +n(l —t)[(y)

for all z,y € [0,b] and t € [0, 1]. This prove that K,, C K,.

It remains to show that Ky, C S. Take x,y € [0, b] such that x +y €
[0,0] and T" € K. If either x = 0 or y = 0 the proof is trivial. Assume
that ;¥ > 0. Then, due Lemma 3.5 and the starshapeness of [', we have

faty) = @rpi?
s ey
B VE )
= ['(z)+T'(y).
This prove that I" € S. [ |

DEFINITION 3.7. Let I : [0,0] — F(X) an integrably bounded f.r.v., then
the fuzzy mapping My : (0,0] — F(X) given by

My () = é/xF(t)dt Ve (0,0,

15 called the fuzzy integral mean of T'.

LEMA 3.8. The a-level of Mp(x) is given by LoMp(z) = T [ Do(t)dt,
for each x € (0,b].

PROOF.

L, (% fox Tdt) = 2 Lq (fox Tdt) = %fox L, ldt = %fox r,dt. [
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REMARK 3.9. We observe that making the change of variable t = ws,
the a-level of Mp can be writte as L, Mp(x fo (xs)ds, i.e., Mp(x) =

fo xs)ds.

THEOREM 3.10. Let I' : [0,0] — F.(X) an integrably bounded f.r.v.. If
[' is m-convex, then so is Mr.

PROOF.

Let T" be m-convex and z,y € [0,b], and ¢ € [0,1]. Then, by using
Remark 3.2 and Lemma 3.8, we obtain

LoMr(tx +m(l —t)y) = /1 Lo(trs +m(l —t)ys)ds
5 /0 (I (@) + m(1 — ) a(ys))ds

= t/ol Lo(zs)ds +m(l — 1) /01 Lo(ys)ds
= tL,Mp(z)+m(l —t)L,Mr(y),

thus, My is m-convex. [ |
COROLLARY 3.11. If I is an starshaped and integrably bounded f.r.v.,
then so is Mp.

COROLLARY 3.12. IfT' is a convex and integrably bounded f.r.v., then so
18 MF.

REMARK 3.13. Let F : [0,b] — K(R) a set-valued function such that F'
has the form F(z) = [f(x), g(x)], where f,¢ : [0,b] = Rand f < g. Then,
the measurability of F' implies the measurability of f and g. Moreover,
if F' is integrably bounded then f and g are integrable functions (in
the Lebesgue sense). Also, in this case, the subadditivity of F' implies
the subadditivity of Mp(z) = L [/ Fdt, ie., Mp(z +y) C Mp(z) +
Mp(y), Va,y € (0,b] such that x +y € (0,b] (see [14]).

THEOREM 3.14. If " : [0,b] — F.(X) is an integrably bounded f.r.v.,
then the subadditivity of I' implies the subadditivity of M.

PROOF.

From subadditivity of " follows that ', is subadditive for each « € [0, 1].
Let @ € [0,1] and y* : X — R an arbitrary continuous linear functional
in X*, and consider the set-valued function y*ol, : [0,b] — K(R) defined
by

(y" o Ta)(2) = y*(Lalx)), Vo € [0,0].
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Since for every x € [0,b], I'y(z) is a nonempty, compact and convex
subset of X, due continuity of y*, y* o I, has the form (y* o I',)(z) =
[f(x),g(x)], where f,g:[0,0] - R and f < g. Now, since that ', is an
integrably bounded r.s., then so is y* o I',. Consequently, from Remark
3.13, follows that f and g are integrable functions. Thus, by Remark
3.13, implies that M,-.r,is also subadditive, i.e.,

(y'o My )(x) = / Ty ()t = o ( / o(rs)ds) = / y* (Da(s))ds

X

is subadditive, that is,
z,y,v+y € (0,0] = (y*oMr,)(x+y) € (y oMr,)(x)+(y o Mr,)(y). (1)

Since I',, is an integrably bounded r.s. taking compact values, follows
that for each z € (0,b], My, () is a compact set (see [5] ). Consequently,
(y* o My, )(z) € K(X),V z € (0,b]. So, from (1) and linearity of y* we
obtain

(y* o Mr,)(z) + (y* o Mr,)(y)
y*(Mr, (z) + Mr,(y))

(y" o Mr,)(z+y) C
C

for all z,y € (0,b] and = + y € (0, b].

We will prove that the set-valued function My, must be subadditive.
By contradiction, assume that there are z,y € (0,b], such that x +y €
(0, b] and

My, (x +vy) & Mp, (x) + Mr, (y)-
Then there exist p € M, (z + y) such that p ¢ Mr, (z) + Mr, (y). So, by
using the separation Hahn-Banach Theorem, there exist c € R and £ > 0
such that

y*(p) > c+e and SUPge Mr, (2)+ Mr, () y*(q) <ec.

But this contradicts the inclusion (1), and the proof is completed. B



4. CONVERGENCE OF INTEGRAL MEAN

In this section we consider the space B([0,b], F(X)) of all frv. T' :
[0,b] = F(X), endowed of the uniform metric D, defined by D (I', A) = sup

z€[0,b]
D(T'(z), A(x)).

It is known that (B([0,b], F(X)), D) is a complete metric space.
PROPOSITION 4.1. Let I'y, I € B([0,b], F(X)) such that T'), 25 T
Then My, 2% My oon (0,0].

PROOF.
Ifr, Doy [', then given € > 0 there exists ny € N such that
D(Ty(z),[(x)) <€ , ¥Yn > ng, Yz €]0,b).
Now, for n > ny, we have
1 [* 1 [
DMy (2), Mr(z)) = D (-/ I, (t)dt. —/ F(t)dt)
T Jo L Jo
1 T T
- 1p (/ Fn(t)dt,/ F(t)dt)
z 0 0
1 [ 1 [*
< —/ D(T(8), T(t))dt < —/ edt — c.
T Jo L Jo
Therefore My, Do M. [ |

We recall that if A € (X)), the support function o4 : X* — R is defined
as

oa(x”) =maz< z*,a >, Vo' € X
ac

It is important to remark that if A, B € K.(X) then, as a direct conse-
quence of the separation Hahn-Banach theorem, we obtain: o4 = o &
A=B.

In the fuzzy context, the support function s, : [0,1] x X* — R of a fuzzy
set u € F(X), is defined by s, (o, 2*) = op, 4 (2%), V(, 2*) € [0,1] x X*.
We observe that if u = x4, A € K(X), then

sy(a, ™) = o4(2"), Ya € 10, 1].

For details on support functions see [2], [4], [10], [11].

10



A beautiful result due Aumann [1] (see also [2]), is the following
THEOREM 4.2. ([1]). If F is a measurable, closed, nonempty and inte-
grably bounded set-valued function on [a,b], then

b
JffF(t)dt(x*) :/ () (x")dt.

PROPOSITION 4.3. If T':[0,b] — F(X) is an integrably bounded f.r.v.,
then

1
SMF(I)('a ) :/ SF(zs)('y )ds Vo € (O,b]
0

PROOF.
Let z € (0,b] arbitrary and (a,y) € [0,1] x S®~!. Then, Theorem 4.2
and Remark 3.9, we have

SM[‘(CE)(a7 y) = OLqMp(z) (y) = O-fol Fa(xs)ds(y)

1 1
= /JFQ(IS)(y)dsz/ Sr(ws) (v, y)ds.
0 0

Therefore spp(z) (@, y) = fol or(s) (@, y)ds. YV € (0,b]. |
PROPOSITION 4.4. Let I : [0,b] — F(X) a D-continuous fuzzy mapping.
If x, — x in (0, 0], then Myp(x,,) 2 My (z).

PROOF.

Since I' is D-continuous on [0, b], then I' is uniformly continuous. There-
fore given € > 0, there exist § > 0 such that

| z —w |< ¢ implies D(I'(2),T'(w)) < e. (2)
Also, due z,, — x, there exist ny € N such that | z, —x |[< §, Vn >
noy. Now, we note that if | z,, —x |< 0 and s € [0, 1], then 6 > | z, —x |>|
xps — xs | . Thus, for n > ng, by Remark 3.9 and (2) we have

D(Mr(z,), Mr(z)) = D(/0 F(xns)ds,/o ['(xs)ds)

< /OD(F(an),F(xS))ds<6.
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Therefore, My (x,,) T My (z). |
Let u € F(X) be and consider the level-application o — L,u which
is a set-valued function taking compact valued. Define

Fo(X)={uve F(X)/ a— Lyu H — continuous on [0, 1]},

the space of all compact and level-continuous fuzzy set on X.

It is known that (F¢(X), D) is a complete and separable metric space
(see [11], [12]). Also, for more details on level-continuity of functions, see
[13].

THEOREM 4.5. If ' : [0,0] — Fc(X) is an integrably bounded f.r.v., then
Mr(x) € Fo(X), Vo € [0,1].

PROOF.

Let x € [0,b] and «,,« € [0,1] such that «, — «a. Since I'y is an
integrably r.s., then there exist f € L'([0,b], X) such that ||w]| < f(¢) for
all w and t such that w € I'y(¢). Because I's(t) C I'y(t), VS € [0, 1], then

sup| gu(t) |< f(¢) for all g, € S(Ta,). Thus, due Ty, (y) = L, [(y) —=
n>1 n—00
L,I'(y) = Lu(y),for each y € [0,0], by Remark 3.9 and Th.2.7, we obtain

1

1
Lo, Mp(x) = / [y, (zs)ds — [Co(xs)ds = Lo Myp(x).
0

=0 Jo
Therefore, Mr(x) is level-continuous. |
ExXAMPLE 4.6. Consider I' : [0,1] — F(R) defined by
Aogf 0<t<?
@ =4 | ijf ?5[85]1 et

X[O,l} Zf xz =0.

Then, for x € (0,1], we want to calculate Mp(z). For this, firstly we
observe that L,I'(z) = [2,1] for each o € (0,1], therefore 'y(zs) =

[225 1] . Thus, for every r € R,

OTq (zs) (r) =

{r if r>0

awsr <,

Consequently, due Th. 4.2, we have
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o if r>0
O3 Pates)is (") —{ ar jp oy 2o = Ofea](r)
Therefore, fo (zs)ds = Ly, fo zs)ds = [%£, 1], Vo € [0,1].
Now, if u = fo ['(xs)ds then, Lou = [0,1] and Lyu = [,
Remark 2.8, u(r) = sup{a/ r € [22,1]} = 2 | ie.

Tz )T

1], and by

Loif 0<r<t
Mp(z)(r) =u,(r) = 1 if $<r<1
0 if r¢]lo,1].

Finally, the reader can be check that I' is a convex, subadditve and
continuous (actually, I is an i-contraction) fuzzy mapping taking values
in Fo(X), and so is My on (0, 1].A

The next example shows a discontinuous fuzzy mapping I on [0, 1] taking
values in F(R) \ Fc¢(R) a.e., and whose integral mean Mp is a D-
continuous fuzzy mapping on (0, 1] taking values in F¢(R).

EXAMPLE 4.7. Counsider I' : [0,1] — F(R) defined by

x if 0<t<1

B 1 if t=1 if 141
F@W =9 10 ir t¢0,1
X[O,l] Zf x=1.

We observe that if z € (0,1) then I'(z) ¢ Fc(R), ie., I'(z) is not
level-continuous. In fact, a straightforwad calculus shows that, in this
case, ['(x) is level-discontinuous in o = .

Nevertheless, the reader can be check that

re iof 0<r<1
Mp(z)(r) =uy(r)=¢ 1 if r=1
0 if ré¢]lo,1]
Thus,

21 if 0<a<z
Lo My (z) = Laug(r) = {El}] Z; gj;agl,

and it is easy to see that Mp(x) € F¢(R), Vx € (0,1]. .
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Finally, because D(I'(z),I'(y)) = 1, Vo # y, we obtain that I' is not
D—continuous on [0,1]. Now, if 0 < z <y < 1 and y < a < 1, then
H(Lquy, Louy) = H({1},{1}) = 0. Therefore,

D(MF(‘T)J MF(y)) = Sl[lp] H(Laux; Lauy)
ac|0,1
= sup (HLgug, Louy)V sup H(Lyug, Lyuy)
a€(0,z] a€lz,y]
« « «
= sup H([—,l],[—,l])\/ sup H({l},[—,l])
a€l0,z] T Y aclz,y] Y
a o« «
= sup ———‘v sup |1 ——
acl0z] | T Y a€lz,y| Y
= 1-Z,
Y

Thus, D(My(z,), My(z)) — 0 as ©,, — =, i.e., I' is D—continuous “in
mean” on (0,1].A
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