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1. INTRODUCTION

The notion of m-onvexity of funtions and integral mean was studied

by several authors, inluding Brukner and Ostrow [3℄, Toader [15℄, [16℄.

The set-valued versions of some of the above results were, reently,

given by

�

Slepak [14℄.

Our purpose here, roughly speaking, is to extend the previous works

to the fuzzy ontext as well to give some onvergene results for fuzzy

integral means.

The struture of this paper is as follows. In Setion 2 we give the

basi onepts and results that will be used in the artile and, in Setion

3, we study the m-onvexity and integral mean of fuzzy mappings and

its properties. Finally, in Setion 4 we show some results on onvergene

of mean integral for fuzzy mappings. Furthermore, some examples and

appliations are presented.
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2. BASIC CONCEPTS AND RESULTS

Let X be a real separable Banah spae with dual X

�

and K(X); K



(X);

respetively, the lass of all nonempty and ompat subsets of X, and

the lass of all nonempty ompat and onvex subsets of X.

The Hausdor� metri H on K(X) is de�ned by

H(A;B) = max

�

sup

a2A

d(a; B); sup

b2B

d(b; A)

�

;

and it is known that (K(X); H) is a omplete and separable metri spae

and K



(X) is a losed subspae of K(X). See [4,7,8,9,10,12℄.

Also, a linear struture of onvex one in K(X) is de�ned by

A+B = fa+ b= a 2 A; b 2 Bg and �A = f�a= a 2 Ag

for all A;B 2 K(X); � 2 R:

Definition 2.1. A set-valued funtion F : [0; b℄! K(X) is alled Borel

measurable, if its graph, i.e., the set f(t; x)= x 2 F (t)g, is a Borel subset

of [0; b℄�X:

Remark 2.2. Beause Lebesgue measure is omplete, the Borel measur-

ability of the set-valued mapping F is equivalent to the following ondi-

tion : for every Borel set B, F

�1

(B) = ft 2 [0; b℄= F (t) \ B 6= ;g where

L denotes the �-algebra of all Lebesgue-measurable subsets of interval

[0; b℄: Also, a measurable set-valued funtion F : [0; b℄ ! K(X) is alled

a random set (r.s.).

Definition 2.3. The integral of the set-valued funtion F : [0; b℄ !

K(X) is de�ned by

Z

b

0

Fdt =

�

Z

b

0

f(t)dt= f 2 S(F )

�

;

where

R

b

0

f(t)dt is the Bohner-integral and S(F ) is the set of all inte-

grable seletors of F , i.e.,

S(F ) =

�

f 2 L

1

([0; b℄; X)= f(t) 2 F (t) a:e:

	

:

This de�nition was introdued by Aumann [1℄ as a natural generalization

of the integration of single-valued funtions.
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Definition 2.4. A set-valued funtion F : [0; b℄ ! K(X) is said to

be integrably bounded, if there exists a single-valued integrable funtion

h : [0; b℄! X suh that jjxjj � h(t) for all x and t suh that x 2 F (t):

Remark 2.5. If F : [0; b℄ ! K(X) is an integrably bounded r.s., then

the Aumann integral of F is a nonempty subset of X.

Proposition 2.6. If � 2 R and F ,F

1

; F

2

: [0; b℄! K



(X) are integrably

bounded r.s., then

a)

R

b

0

Fdt 2 K



(X)

b)

R

b

0

(�F

1

+ F

2

)dt = �

R

b

0

F

1

dt+

R

b

0

F

2

dt :

For details see Hiai&Umegaki [5℄.

The following result is a generalization of Lebesgue's dominated onver-

gene theorem:

Theorem 2.7. If F

p

: 
!K(X ) are r.s and there is f 2 L

1

(
; IR) suh

that sup

p�1

jjg

p

(w)jj � f(w) for all g

p

2 S(F

p

), then if F

p

(w)

H

! F (w) a:e we

have

Z

F

p

H

!

Z

F as p!1 :

See [7, Theor. 17.2.6, p. 192℄.Also, see [8℄.

Now, we will give the extensions of the above results to the fuzzy ontext.

A fuzzy subset of X is a funtion u : X ! [0; 1℄ and, for 0 < � � 1,

we denote by L

�

u = fx 2 X= u(x) � �g the �-level of u, and L

0

u =

supp(u) = fx 2 x : u(x) > 0g is alled the support of u:

As an extension of K(X) (K



(X), respetively) we de�ne the spae F(X)

of all fuzzy ompat subsets u : X ! [0; 1℄ (the spae F



(X) of all fuzzy

ompat and onvex subsets of X, respetively) suh that

L

�

u 2 K(X) (L

�

u 2 K



(X);respetively); 8� 2 [0; 1℄:

Remark 2.8. If u 2 F(X); then the family fL

�

u= � 2 [0; 1℄g satis�es

the following properties :

a) L

0

u � L

�

u � L

�

u for all 0 � � � �;
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b) If �

n

% � then L

�

u = \

1

n=1

L

�

n

u (i.e., the level-appliation is

left-ontinuous),

) u = v , L

�

u = L

�

v; 8� 2 [0; 1℄

d) L

�

u 6= ; for all � 2 [0; 1℄ is equivalent to u(x) = 1 for some x 2 X:

e) If u 2 F(X), then u(x) = supf�= x 2 L

�

ug (see [9℄).

f) We an to de�ne a partial order � on F(X) by setting

u � v , u(x) � v(x); 8x 2 X , L

�

u � L

�

v; 8� 2 [0; 1℄:

Also, we an de�ne a metri on F(X) by using the Hausdor� metri

H as follows:

D(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v); 8u; v 2 F(X):

It is known that (F(X); D) is a omplete but non-separable metri

spae (see [12℄).

A linear struture of onvex one in F(X) is de�ned by

(u+ v)(x) = sup

y+z=x

minfu(y); v(z)g and (�u)(x) =

�

u(

x

�

) if � 6= 0

�

f0g

(x) if � = 0;

where u; v 2 F(X); � 2 R and �

A

denote the harateristi funtion

of A:

With these de�nitions we obtain L

�

(u+ v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u; for all u; v 2 F(X); � 2 [0; 1℄ and � 2 R (see [9℄, [10℄, [11℄).

Definition 2.9. Let � : [0; b℄ ! F(X) be a fuzzy mapping and de�ne

�

�

: [0; b℄ ! K(X) by �

�

(t) = L

�

�(t); 8� 2 [0; 1℄: Then � is alled

measurable if �

�

is measurable for all � 2 [0; 1℄. Also, � is alled in-

tegrably bounded if �

�

is an integrably bounded set-valued funtion for

every � 2 [0; 1℄.

If � is a measurable fuzzy mapping, then � is alled a fuzzy random

variable (f.r.v.). See [9℄.
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Proposition 2.10.([9℄) If � : [0; b℄ ! F(X) is an integrably bounded

f.r.v., then there exists a unique fuzzy set u 2 F(X) suh that L

�

u =

R

b

0

�

�

dt; 8� 2 [0; 1℄:

Definition 2.11. The element u 2 F(X) obtained in Proposition 2.10

de�ne the integral of the fuzzy random variable �; i.e.,

R

b

0

�dt = u ,

L

�

u =

R

b

0

�

�

dt; for every � 2 [0; 1℄:

Proposition 2.12. If �

1

;�

2

: [0; b℄ ! F



(X) are integrably bounded

f.r.v. and � 2 R, then

Z

b

0

(��

1

+ �

2

)dt = �

Z

b

0

�

1

dt+

Z

b

0

�

2

dt:

For more details on properties of the integral for f.r.v., see [4,6,8,9℄.

3. FUZZY M-CONVEXITY

Definition 3.1. Let m 2 [0; 1℄ arbitrary. A fuzzy mapping � : [0; b℄ !

F(X) is alled m-onvex if

t�(x) +m(1� t)�(y) � �(tx+m(1� t)y)

for all x; y 2 [0; b℄ and t 2 [0; 1℄: Also, if m = 0, then we say that � is

starshaped and if m = 1, we say that � is onvex.

Remark 3.2.We observe that, � is m-onvex if only if for eah � 2 [0; 1℄

the set-valued mapping �

�

is m-onvex, i.e.,

t�

�

(x) +m(1� t)�

�

(y) � �

�

(tx+m(1� t)y)

for all x; y 2 [0; b℄, t 2 [0; 1℄:

Definition 3.3. A fuzzy mapping � : [0; b℄! F(X) is alled dereasing

if for all x; y 2 [0; b℄

x � y ) �(x) � �(y)

or equivalently

x � y ) �

�

(x) � �

�

(y); 8� 2 [0; 1℄:
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We onsider the following sets of fuzzy mappings:

K

m

= f� : [0; b℄! F(X)= � is m� onvex and �

f0g

� �(0)g

S = f� : [0; b℄! F(X)= x; y; x+ y 2 [0; b℄) �(x+ y) � �(x) + �(y)g:

If � 2 S we say that � is subadditive.

We observe that, due Remark 2.8, we have

�

f0g

� �(0), 0 2 �

�

(0); 8� 2 [0; 1℄, 0 2 �

1

(0)

where 0 is the null element of X.

Lemma 3.4. If m 2 [0; 1℄; � : [0; b℄ ! F(X) is m-onvex and �

f0g

�

�(0), then � is starshaped.

Proof.

Let � 2 [0; 1℄ arbitrary. Then, by the m-onvexity of �; follows that �

�

is m-onvex, hene

�

�

(tx) = �

�

(tx +m(1� t)0)

� t�

�

(x) +m(1� t)�

�

(0)

� t�

�

(x) +m(1� t)f0g

= t�

�

(x);

onsequently, �(tx) � t�(x) for all t 2 [0; 1℄ and x 2 [0; b℄: �

Lemma 3.5. Let � : [0; b℄! F(X) a fuzzy mapping. Then � is starshaped

if and only if the fuzzy mapping � : (0; b℄ ! F(X); �(x) =

1

x

�(x); is

dereasing.

Proof.

(!). Sine � is starshaped, we have t�

�

(y) � �

�

(ty); for all � 2 [0; 1℄,

y 2 [0; b℄ and t 2 [0; 1℄: Let x; y 2 (0; b℄ arbitraries, suh that x � y .

Then, taking t =

x

y

2 (0; 1℄, we obtain

x

y

�

�

(y) � �

�

(x); whih implies

1

y

�

�

(y) �

1

x

�

�

(x) for every � 2 [0; 1℄: Therefore, � is dereasing.

( ). If � is dereasing then, for eah � 2 [0; 1℄; t 2 [0; 1℄ and x 2 [0; b℄ we

have

�

�

(tx)

tx

�

�

�

(x)

x

; i.e., �

�

(tx) � t�

�

(x): Therefore, �(tx) � t�(x) and,

onsequently, � is starshaped. �
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Now, we will show that the lass K

m

; m 2 [0; 1℄; is monotone (de-

reasing) with respet to m:

Theorema 3.6. If 0 � n � m � 1 then K

1

� K

m

� K

n

� K

0

� S:

Proof.

If � 2 K

m

; m > 0; then � is m-onvex and �

f0g

� �(0): Thus, due

Lemma 3.4, � is starshaped (i.e., � 2 K

0

). Therefore, for n � m; we

have

�(tx+ n(1� t)y) = �(tx +m(1� t)

n

m

y)

� t�(x) +m(1� t)�(

n

m

y)

� t�(x) + n(1� t)�(y)

for all x; y 2 [0; b℄ and t 2 [0; 1℄. This prove that K

m

� K

n

:

It remains to show that K

0

� S. Take x; y 2 [0; b℄ suh that x + y 2

[0; b℄ and � 2 K

0

. If either x = 0 or y = 0 the proof is trivial. Assume

that x; y > 0. Then, due Lemma 3.5 and the starshapeness of �, we have

�(x + y) = (x + y)

�(x+ y)

x + y

� x

�(x + y)

x + y

+ y

�(x+ y)

x + y

� x

�(x)

x

+ y

�(y)

y

= �(x) + �(y):

This prove that � 2 S: �

Definition 3.7. Let � : [0; b℄! F(X) an integrably bounded f.r.v., then

the fuzzy mapping M

�

: (0; b℄! F(X) given by

M

�

(x) =

1

x

Z

x

0

�(t)dt ; 8x 2 (0; b℄;

is alled the fuzzy integral mean of �.

Lema 3.8. The �-level of M

�

(x) is given by L

�

M

�

(x) =

1

x

R

x

0

�

�

(t)dt;

for eah x 2 (0; b℄:

Proof.

L

�

�

1

x

R

x

0

�dt

�

=

1

x

L

�

�
R

x

0

�dt

�

=

1

x

R

x

0

L

�

�dt =

1

x

R

x

0

�

�

dt. �
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Remark 3.9. We observe that making the hange of variable t = xs,

the �-level of M

�

an be writte as L

�

M

�

(x) =

R

1

0

�

�

(xs)ds; i.e., M

�

(x) =

R

1

0

�(xs)ds:

Theorem 3.10. Let � : [0; b℄ ! F



(X) an integrably bounded f.r.v.. If

� is m-onvex, then so is M

�

:

Proof.

Let � be m-onvex and x; y 2 [0; b℄; and t 2 [0; 1℄. Then, by using

Remark 3.2 and Lemma 3.8, we obtain

L

�

M

�

(tx+m(1� t)y) =

Z

1

0

�

�

(txs +m(1� t)ys)ds

�

Z

1

0

(t�

�

(xs) +m(1� t)�

�

(ys))ds

= t

Z

1

0

�

�

(xs)ds+m(1� t)

Z

1

0

�

�

(ys)ds

= tL

�

M

�

(x) +m(1� t)L

�

M

�

(y);

thus, M

�

is m-onvex. �

Corollary 3.11. If � is an starshaped and integrably bounded f.r.v.,

then so is M

�

.

Corollary 3.12. If � is a onvex and integrably bounded f.r.v., then so

is M

�

.

Remark 3.13. Let F : [0; b℄! K(R) a set-valued funtion suh that F

has the form F (x) = [f(x); g(x)℄; where f; g : [0; b℄! R and f � g: Then,

the measurability of F implies the measurability of f and g: Moreover,

if F is integrably bounded then f and g are integrable funtions (in

the Lebesgue sense). Also, in this ase, the subadditivity of F implies

the subadditivity of M

F

(x) =

1

x

R

x

0

Fdt; i.e., M

F

(x + y) � M

F

(x) +

M

F

(y); 8x; y 2 (0; b℄ suh that x + y 2 (0; b℄ (see [14℄).

Theorem 3.14. If � : [0; b℄ ! F



(X) is an integrably bounded f.r.v.,

then the subadditivity of � implies the subadditivity of M

�

:

Proof.

From subadditivity of � follows that �

�

is subadditive for eah � 2 [0; 1℄.

Let � 2 [0; 1℄ and y

�

: X ! R an arbitrary ontinuous linear funtional

in X

�

, and onsider the set-valued funtion y

�

Æ�

�

: [0; b℄! K(R) de�ned

by

(y

�

Æ �

�

)(x) = y

�

(�

�

(x)); 8x 2 [0; b℄:

8



Sine for every x 2 [0; b℄, �

�

(x) is a nonempty, ompat and onvex

subset of X, due ontinuity of y

�

, y

�

Æ �

�

has the form (y

�

Æ �

�

)(x) =

[f(x); g(x)℄; where f; g : [0; b℄ ! R and f � g: Now, sine that �

�

is an

integrably bounded r.s., then so is y

�

Æ �

�

: Consequently, from Remark

3.13, follows that f and g are integrable funtions. Thus, by Remark

3.13, implies that M

y

�

Æ�

�

is also subadditive, i.e.,

(y

�

ÆM

�

�

)(x) =

1

x

Z

x

0

y

�

(�

�

(t))dt = y

�

(

Z

1

0

�

�

(xs)ds) =

Z

1

0

y

�

(�

�

(xs))ds

is subadditive, that is,

x; y; x+y 2 (0; b℄) (y

�

ÆM

�

�

)(x+y) � (y

�

ÆM

�

�

)(x)+(y

�

ÆM

�

�

)(y): (1)

Sine �

�

is an integrably bounded r.s. taking ompat values, follows

that for eah x 2 (0; b℄; M

�

�

(x) is a ompat set (see [5℄ ). Consequently,

(y

�

ÆM

�

�

)(x) 2 K(X); 8 x 2 (0; b℄. So, from (1) and linearity of y

�

we

obtain

(y

�

ÆM

�

�

)(x + y) � (y

�

ÆM

�

�

)(x) + (y

�

ÆM

�

�

)(y)

� y

�

(M

�

�

(x) +M

�

�

(y))

for all x; y 2 (0; b℄ and x + y 2 (0; b℄:

We will prove that the set-valued funtion M

�

�

must be subadditive.

By ontradition, assume that there are x; y 2 (0; b℄; suh that x + y 2

(0; b℄ and

M

�

�

(x + y) * M

�

�

(x) +M

�

�

(y):

Then there exist p 2 M

�

�

(x+ y) suh that p =2 M

�

�

(x) +M

�

�

(y): So, by

using the separation Hahn-Banah Theorem, there exist  2 R and " > 0

suh that

y

�

(p) � + " and sup

q2M

�

�

(x)+M

�

�

(y)

y

�

(q) � :

But this ontradits the inlusion (1), and the proof is ompleted. �

9



4. CONVERGENCE OF INTEGRAL MEAN

In this setion we onsider the spae B([0; b℄;F(X)) of all f.r.v. � :

[0; b℄! F(X), endowed of the uniformmetriD

1

de�ned byD

1

(�;�) = sup

x2[0;b℄

D(�(x);�(x)):

It is known that (B([0; b℄;F(X)); D

1

) is a omplete metri spae.

Proposition 4.1. Let �

n

;� 2 B([0; b℄;F(X)) suh that �

n

D

1

! �:

Then M

�

n

D

1

! M

�

on (0; b℄.

Proof.

If �

n

D

1

! �; then given � > 0 there exists n

0

2 N suh that

D(�

n

(x);�(x)) < � ; 8n � n

0

; 8x 2 [0; b℄:

Now, for n � n

0

; we have

D(M

�

n

(x);M

�

(x)) = D

�

1

x

Z

x

0

�

n

(t)dt;

1

x

Z

x

0

�(t)dt

�

=

1

x

D

�

Z

x

0

�

n

(t)dt;

Z

x

0

�(t)dt

�

�

1

x

Z

x

0

D(�

n

(t);�(t))dt <

1

x

Z

x

0

�dt = �:

Therefore M

�

n

D

1

! M

�

. �

We reall that if A 2 K(X), the support funtion �

A

: X

�

! R is de�ned

as

�

A

(x

�

) =max

a2A

< x

�

; a >; 8x

�

2 X

�

:

It is important to remark that if A;B 2 K



(X) then, as a diret onse-

quene of the separation Hahn-Banah theorem, we obtain: �

A

= �

B

,

A = B:

In the fuzzy ontext, the support funtion s

u

: [0; 1℄�X

�

! R of a fuzzy

set u 2 F(X); is de�ned by s

u

(�; x

�

) = �

L

�

u

(x

�

); 8(�; x

�

) 2 [0; 1℄�X

�

:

We observe that if u = �

A

; A 2 K(X), then

s

u

(�; x

�

) = �

A

(x

�

); 8� 2 [0; 1℄:

For details on support funtions see [2℄, [4℄, [10℄, [11℄.
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A beautiful result due Aumann [1℄ (see also [2℄), is the following

Theorem 4.2. ([1℄). If F is a measurable, losed, nonempty and inte-

grably bounded set-valued funtion on [a; b℄, then

�

R

b

a

F (t)dt

(x

�

) =

Z

b

a

�

F (t)

(x

�

)dt:

Proposition 4.3. If � : [0; b℄! F(X) is an integrably bounded f.r.v.,

then

s

M

�

(x)

(�; �) =

Z

1

0

s

�(xs)

(�; �)ds 8x 2 (0; b℄:

Proof.

Let x 2 (0; b℄ arbitrary and (�; y) 2 [0; 1℄ � S

n�1

. Then, Theorem 4.2

and Remark 3.9, we have

s

M

�

(x)

(�; y) = �

L

�

M

�

(x)

(y) = �

R

1

0

�

�

(xs)ds

(y)

=

Z

1

0

�

�

�

(xs)

(y)ds =

Z

1

0

s

�(xs)

(�; y)ds:

Therefore s

M

�

(x)

(�; y) =

R

1

0

�

�(xs)

(�; y)ds: 8x 2 (0; b℄: �

Proposition 4.4. Let � : [0; b℄! F(X) a D-ontinuous fuzzy mapping.

If x

n

! x in (0; b℄, then M

�

(x

n

)

D

! M

�

(x).

Proof.

Sine � is D-ontinuous on [0; b℄, then � is uniformly ontinuous. There-

fore given � > 0, there exist Æ > 0 suh that

j z � w j< Æ implies D(�(z);�(w)) < �: (2)

Also, due x

n

! x; there exist n

0

2 N suh that j x

n

� x j< Æ; 8n �

n

0

: Now, we note that if j x

n

�x j< Æ and s 2 [0; 1℄, then Æ > j x

n

�x j�j

x

n

s� xs j : Thus, for n � n

0

; by Remark 3.9 and (2) we have

D(M

�

(x

n

);M

�

(x)) = D(

Z

1

0

�(x

n

s)ds;

Z

1

0

�(xs)ds)

�

Z

1

0

D(�(x

n

s);�(xs))ds < �:

11



Therefore, M

�

(x

n

)

D

! M

�

(x). �

Let u 2 F(X) be and onsider the level-appliation � 7! L

�

u whih

is a set-valued funtion taking ompat valued. De�ne

F

C

(X) = fu 2 F(X)= � 7! L

�

u H � ontinuous on [0; 1℄g ;

the spae of all ompat and level-ontinuous fuzzy set on X:

It is known that (F

C

(X); D) is a omplete and separable metri spae

(see [11℄, [12℄). Also, for more details on level-ontinuity of funtions, see

[13℄.

Theorem 4.5. If � : [0; b℄! F

C

(X) is an integrably bounded f.r.v., then

M

�

(x) 2 F

C

(X); 8x 2 [0; 1℄:

Proof.

Let x 2 [0; b℄ and �

n

; � 2 [0; 1℄ suh that �

n

! �: Sine �

0

is an

integrably r.s., then there exist f 2 L

1

([0; b℄; X) suh that jjwjj � f(t) for

all w and t suh that w 2 �

0

(t): Beause �

�

(t) � �

0

(t); 8� 2 [0; 1℄; then

sup

n�1

k g

n

(t) k� f(t) for all g

n

2 S(�

�

n

): Thus, due �

�

n

(y) = L

�

n

�(y)

H

�!

n!1

L

�

�(y) = �

�

(y);for eah y 2 [0; b℄; by Remark 3.9 and Th.2.7, we obtain

L

�

n

M

�

(x) =

Z

1

0

�

�

n

(xs)ds �!

n!1

Z

1

0

�

�

(xs)ds = L

�

M

�

(x):

Therefore, M

�

(x) is level-ontinuous. �

Example 4.6. Consider � : [0; 1℄! F(R) de�ned by

�(x)(t) =

8

>

>

<

>

>

:

8

<

:

2t

x

if 0 � t �

x

2

1 if

x

2

� t � 1

0 if t =2 [0; 1℄

if x 6= 0

�

[0;1℄

if x = 0:

Then, for x 2 (0; 1℄; we want to alulate M

�

(x): For this, �rstly we

observe that L

�

�(x) =

�

�x

2

; 1

�

for eah � 2 (0; 1℄; therefore �

�

(xs) =

�

�xs

2

; 1

�

: Thus, for every r 2 R;

�

�

�

(xs)

(r) =

�

r if r � 0

�xsr

2

if r < 0:

Consequently, due Th. 4.2, we have

12



�

R

1

0

�

�

(xs)ds

(r) =

�

r if r � 0

�xr

4

if r < 0:

= �

[

�x

4

;1

℄

(r)

Therefore,

R

1

0

�

�

(xs)ds = L

�

R

1

0

�(xs)ds =

�

�x

4

; 1

�

, 8� 2 [0; 1℄:

Now, if u =

R

1

0

�(xs)ds then, L

0

u = [0; 1℄ and L

1

u = [

x

4

; 1℄, and by

Remark 2.8, u(r) = supf�= r 2 [

�x

4

; 1℄g =

4r

x

; i.e.,

M

�

(x)(r) = u

x

(r) =

8

<

:

4r

x

if 0 � r �

x

4

1 if

x

4

� r � 1

0 if r =2 [0; 1℄:

Finally, the reader an be hek that � is a onvex, subadditve and

ontinuous (atually, � is an

1

2

-ontration) fuzzy mapping taking values

in F

C

(X); and so is M

�

on (0; 1℄:N

The next example shows a disontinuous fuzzy mapping � on [0; 1℄ taking

values in F(R) n F

C

(R) a:e:; and whose integral mean M

�

is a D{

ontinuous fuzzy mapping on (0; 1℄ taking values in F

C

(R):

Example 4.7. Consider � : [0; 1℄! F(R) de�ned by

�(x)(t) =

8

>

>

<

>

>

:

8

<

:

x if 0 � t < 1

1 if t = 1

0 if t =2 [0; 1℄

if x 6= 1

�

[0;1℄

if x = 1:

We observe that if x 2 (0; 1) then �(x) =2 F

C

(R); i.e., �(x) is not

level-ontinuous. In fat, a straightforwad alulus shows that, in this

ase, �(x) is level-disontinuous in � = x:

Nevertheless, the reader an be hek that

M

�

(x)(r) = u

x

(r) =

8

<

:

rx if 0 � r < 1

1 if r = 1

0 if r =2 [0; 1℄:

Thus,

L

�

M

�

(x) = L

�

u

x

(r) =

�
�

�

x

; 1

�

if 0 � � � x

f1g if x � � � 1;

and it is easy to see that M

�

(x) 2 F

C

(R); 8x 2 (0; 1℄: .
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Finally, beause D(�(x);�(y)) = 1; 8x 6= y; we obtain that � is not

D�ontinuous on [0; 1℄. Now, if 0 < x � y � 1 and y � � � 1, then

H(L

�

u

x

; L

�

u

y

) = H(f1g; f1g) = 0: Therefore,

D(M

�

(x);M

�

(y)) = sup

�2[0;1℄

H(L

�

u

x

; L

�

u

y

)

= sup

�2[0;x℄

(HL

�

u

x

; L

�

u

y

)_ sup

�2[x;y℄

H(L

�

u

x

; L

�

u

y

)

= sup

�2[0;x℄

H([

�

x

; 1℄; [

�

y

; 1℄)_ sup

�2[x;y℄

H(f1g; [

�

y

; 1℄)

= sup

�2[0;x℄

�

�

�

�

�

x

�

�

y

�

�

�

�

_ sup

�2[x;y℄

�

�

�

�

1�

�

y

�

�

�

�

= 1�

x

y

:

Thus, D(M

�

(x

n

);M

�

(x)) ! 0 as x

n

! x; i:e:; � is D�ontinuous \in

mean" on (0; 1℄:N
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