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1. INTRODUCTION

The notion of m-
onvexity of fun
tions and integral mean was studied

by several authors, in
luding Bru
kner and Ostrow [3℄, Toader [15℄, [16℄.

The set-valued versions of some of the above results were, re
ently,

given by

�

Slepak [14℄.

Our purpose here, roughly speaking, is to extend the previous works

to the fuzzy 
ontext as well to give some 
onvergen
e results for fuzzy

integral means.

The stru
ture of this paper is as follows. In Se
tion 2 we give the

basi
 
on
epts and results that will be used in the arti
le and, in Se
tion

3, we study the m-
onvexity and integral mean of fuzzy mappings and

its properties. Finally, in Se
tion 4 we show some results on 
onvergen
e

of mean integral for fuzzy mappings. Furthermore, some examples and

appli
ations are presented.
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2. BASIC CONCEPTS AND RESULTS

Let X be a real separable Bana
h spa
e with dual X

�

and K(X); K




(X);

respe
tively, the 
lass of all nonempty and 
ompa
t subsets of X, and

the 
lass of all nonempty 
ompa
t and 
onvex subsets of X.

The Hausdor� metri
 H on K(X) is de�ned by

H(A;B) = max

�

sup

a2A

d(a; B); sup

b2B

d(b; A)

�

;

and it is known that (K(X); H) is a 
omplete and separable metri
 spa
e

and K




(X) is a 
losed subspa
e of K(X). See [4,7,8,9,10,12℄.

Also, a linear stru
ture of 
onvex 
one in K(X) is de�ned by

A+B = fa+ b= a 2 A; b 2 Bg and �A = f�a= a 2 Ag

for all A;B 2 K(X); � 2 R:

Definition 2.1. A set-valued fun
tion F : [0; b℄! K(X) is 
alled Borel

measurable, if its graph, i.e., the set f(t; x)= x 2 F (t)g, is a Borel subset

of [0; b℄�X:

Remark 2.2. Be
ause Lebesgue measure is 
omplete, the Borel measur-

ability of the set-valued mapping F is equivalent to the following 
ondi-

tion : for every Borel set B, F

�1

(B) = ft 2 [0; b℄= F (t) \ B 6= ;g where

L denotes the �-algebra of all Lebesgue-measurable subsets of interval

[0; b℄: Also, a measurable set-valued fun
tion F : [0; b℄ ! K(X) is 
alled

a random set (r.s.).

Definition 2.3. The integral of the set-valued fun
tion F : [0; b℄ !

K(X) is de�ned by

Z

b

0

Fdt =

�

Z

b

0

f(t)dt= f 2 S(F )

�

;

where

R

b

0

f(t)dt is the Bo
hner-integral and S(F ) is the set of all inte-

grable sele
tors of F , i.e.,

S(F ) =

�

f 2 L

1

([0; b℄; X)= f(t) 2 F (t) a:e:

	

:

This de�nition was introdu
ed by Aumann [1℄ as a natural generalization

of the integration of single-valued fun
tions.
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Definition 2.4. A set-valued fun
tion F : [0; b℄ ! K(X) is said to

be integrably bounded, if there exists a single-valued integrable fun
tion

h : [0; b℄! X su
h that jjxjj � h(t) for all x and t su
h that x 2 F (t):

Remark 2.5. If F : [0; b℄ ! K(X) is an integrably bounded r.s., then

the Aumann integral of F is a nonempty subset of X.

Proposition 2.6. If � 2 R and F ,F

1

; F

2

: [0; b℄! K




(X) are integrably

bounded r.s., then

a)

R

b

0

Fdt 2 K




(X)

b)

R

b

0

(�F

1

+ F

2

)dt = �

R

b

0

F

1

dt+

R

b

0

F

2

dt :

For details see Hiai&Umegaki [5℄.

The following result is a generalization of Lebesgue's dominated 
onver-

gen
e theorem:

Theorem 2.7. If F

p

: 
!K(X ) are r.s and there is f 2 L

1

(
; IR) su
h

that sup

p�1

jjg

p

(w)jj � f(w) for all g

p

2 S(F

p

), then if F

p

(w)

H

! F (w) a:e we

have

Z

F

p

H

!

Z

F as p!1 :

See [7, Theor. 17.2.6, p. 192℄.Also, see [8℄.

Now, we will give the extensions of the above results to the fuzzy 
ontext.

A fuzzy subset of X is a fun
tion u : X ! [0; 1℄ and, for 0 < � � 1,

we denote by L

�

u = fx 2 X= u(x) � �g the �-level of u, and L

0

u =

supp(u) = fx 2 x : u(x) > 0g is 
alled the support of u:

As an extension of K(X) (K




(X), respe
tively) we de�ne the spa
e F(X)

of all fuzzy 
ompa
t subsets u : X ! [0; 1℄ (the spa
e F




(X) of all fuzzy


ompa
t and 
onvex subsets of X, respe
tively) su
h that

L

�

u 2 K(X) (L

�

u 2 K




(X);respe
tively); 8� 2 [0; 1℄:

Remark 2.8. If u 2 F(X); then the family fL

�

u= � 2 [0; 1℄g satis�es

the following properties :

a) L

0

u � L

�

u � L

�

u for all 0 � � � �;
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b) If �

n

% � then L

�

u = \

1

n=1

L

�

n

u (i.e., the level-appli
ation is

left-
ontinuous),


) u = v , L

�

u = L

�

v; 8� 2 [0; 1℄

d) L

�

u 6= ; for all � 2 [0; 1℄ is equivalent to u(x) = 1 for some x 2 X:

e) If u 2 F(X), then u(x) = supf�= x 2 L

�

ug (see [9℄).

f) We 
an to de�ne a partial order � on F(X) by setting

u � v , u(x) � v(x); 8x 2 X , L

�

u � L

�

v; 8� 2 [0; 1℄:

Also, we 
an de�ne a metri
 on F(X) by using the Hausdor� metri


H as follows:

D(u; v) = sup

�2[0;1℄

H(L

�

u; L

�

v); 8u; v 2 F(X):

It is known that (F(X); D) is a 
omplete but non-separable metri


spa
e (see [12℄).

A linear stru
ture of 
onvex 
one in F(X) is de�ned by

(u+ v)(x) = sup

y+z=x

minfu(y); v(z)g and (�u)(x) =

�

u(

x

�

) if � 6= 0

�

f0g

(x) if � = 0;

where u; v 2 F(X); � 2 R and �

A

denote the 
hara
teristi
 fun
tion

of A:

With these de�nitions we obtain L

�

(u+ v) = L

�

u + L

�

v and L

�

(�u) =

�L

�

u; for all u; v 2 F(X); � 2 [0; 1℄ and � 2 R (see [9℄, [10℄, [11℄).

Definition 2.9. Let � : [0; b℄ ! F(X) be a fuzzy mapping and de�ne

�

�

: [0; b℄ ! K(X) by �

�

(t) = L

�

�(t); 8� 2 [0; 1℄: Then � is 
alled

measurable if �

�

is measurable for all � 2 [0; 1℄. Also, � is 
alled in-

tegrably bounded if �

�

is an integrably bounded set-valued fun
tion for

every � 2 [0; 1℄.

If � is a measurable fuzzy mapping, then � is 
alled a fuzzy random

variable (f.r.v.). See [9℄.
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Proposition 2.10.([9℄) If � : [0; b℄ ! F(X) is an integrably bounded

f.r.v., then there exists a unique fuzzy set u 2 F(X) su
h that L

�

u =

R

b

0

�

�

dt; 8� 2 [0; 1℄:

Definition 2.11. The element u 2 F(X) obtained in Proposition 2.10

de�ne the integral of the fuzzy random variable �; i.e.,

R

b

0

�dt = u ,

L

�

u =

R

b

0

�

�

dt; for every � 2 [0; 1℄:

Proposition 2.12. If �

1

;�

2

: [0; b℄ ! F




(X) are integrably bounded

f.r.v. and � 2 R, then

Z

b

0

(��

1

+ �

2

)dt = �

Z

b

0

�

1

dt+

Z

b

0

�

2

dt:

For more details on properties of the integral for f.r.v., see [4,6,8,9℄.

3. FUZZY M-CONVEXITY

Definition 3.1. Let m 2 [0; 1℄ arbitrary. A fuzzy mapping � : [0; b℄ !

F(X) is 
alled m-
onvex if

t�(x) +m(1� t)�(y) � �(tx+m(1� t)y)

for all x; y 2 [0; b℄ and t 2 [0; 1℄: Also, if m = 0, then we say that � is

starshaped and if m = 1, we say that � is 
onvex.

Remark 3.2.We observe that, � is m-
onvex if only if for ea
h � 2 [0; 1℄

the set-valued mapping �

�

is m-
onvex, i.e.,

t�

�

(x) +m(1� t)�

�

(y) � �

�

(tx+m(1� t)y)

for all x; y 2 [0; b℄, t 2 [0; 1℄:

Definition 3.3. A fuzzy mapping � : [0; b℄! F(X) is 
alled de
reasing

if for all x; y 2 [0; b℄

x � y ) �(x) � �(y)

or equivalently

x � y ) �

�

(x) � �

�

(y); 8� 2 [0; 1℄:
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We 
onsider the following sets of fuzzy mappings:

K

m

= f� : [0; b℄! F(X)= � is m� 
onvex and �

f0g

� �(0)g

S = f� : [0; b℄! F(X)= x; y; x+ y 2 [0; b℄) �(x+ y) � �(x) + �(y)g:

If � 2 S we say that � is subadditive.

We observe that, due Remark 2.8, we have

�

f0g

� �(0), 0 2 �

�

(0); 8� 2 [0; 1℄, 0 2 �

1

(0)

where 0 is the null element of X.

Lemma 3.4. If m 2 [0; 1℄; � : [0; b℄ ! F(X) is m-
onvex and �

f0g

�

�(0), then � is starshaped.

Proof.

Let � 2 [0; 1℄ arbitrary. Then, by the m-
onvexity of �; follows that �

�

is m-
onvex, hen
e

�

�

(tx) = �

�

(tx +m(1� t)0)

� t�

�

(x) +m(1� t)�

�

(0)

� t�

�

(x) +m(1� t)f0g

= t�

�

(x);


onsequently, �(tx) � t�(x) for all t 2 [0; 1℄ and x 2 [0; b℄: �

Lemma 3.5. Let � : [0; b℄! F(X) a fuzzy mapping. Then � is starshaped

if and only if the fuzzy mapping � : (0; b℄ ! F(X); �(x) =

1

x

�(x); is

de
reasing.

Proof.

(!). Sin
e � is starshaped, we have t�

�

(y) � �

�

(ty); for all � 2 [0; 1℄,

y 2 [0; b℄ and t 2 [0; 1℄: Let x; y 2 (0; b℄ arbitraries, su
h that x � y .

Then, taking t =

x

y

2 (0; 1℄, we obtain

x

y

�

�

(y) � �

�

(x); whi
h implies

1

y

�

�

(y) �

1

x

�

�

(x) for every � 2 [0; 1℄: Therefore, � is de
reasing.

( ). If � is de
reasing then, for ea
h � 2 [0; 1℄; t 2 [0; 1℄ and x 2 [0; b℄ we

have

�

�

(tx)

tx

�

�

�

(x)

x

; i.e., �

�

(tx) � t�

�

(x): Therefore, �(tx) � t�(x) and,


onsequently, � is starshaped. �
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Now, we will show that the 
lass K

m

; m 2 [0; 1℄; is monotone (de-


reasing) with respe
t to m:

Theorema 3.6. If 0 � n � m � 1 then K

1

� K

m

� K

n

� K

0

� S:

Proof.

If � 2 K

m

; m > 0; then � is m-
onvex and �

f0g

� �(0): Thus, due

Lemma 3.4, � is starshaped (i.e., � 2 K

0

). Therefore, for n � m; we

have

�(tx+ n(1� t)y) = �(tx +m(1� t)

n

m

y)

� t�(x) +m(1� t)�(

n

m

y)

� t�(x) + n(1� t)�(y)

for all x; y 2 [0; b℄ and t 2 [0; 1℄. This prove that K

m

� K

n

:

It remains to show that K

0

� S. Take x; y 2 [0; b℄ su
h that x + y 2

[0; b℄ and � 2 K

0

. If either x = 0 or y = 0 the proof is trivial. Assume

that x; y > 0. Then, due Lemma 3.5 and the starshapeness of �, we have

�(x + y) = (x + y)

�(x+ y)

x + y

� x

�(x + y)

x + y

+ y

�(x+ y)

x + y

� x

�(x)

x

+ y

�(y)

y

= �(x) + �(y):

This prove that � 2 S: �

Definition 3.7. Let � : [0; b℄! F(X) an integrably bounded f.r.v., then

the fuzzy mapping M

�

: (0; b℄! F(X) given by

M

�

(x) =

1

x

Z

x

0

�(t)dt ; 8x 2 (0; b℄;

is 
alled the fuzzy integral mean of �.

Lema 3.8. The �-level of M

�

(x) is given by L

�

M

�

(x) =

1

x

R

x

0

�

�

(t)dt;

for ea
h x 2 (0; b℄:

Proof.

L

�

�

1

x

R

x

0

�dt

�

=

1

x

L

�

�
R

x

0

�dt

�

=

1

x

R

x

0

L

�

�dt =

1

x

R

x

0

�

�

dt. �
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Remark 3.9. We observe that making the 
hange of variable t = xs,

the �-level of M

�


an be writte as L

�

M

�

(x) =

R

1

0

�

�

(xs)ds; i.e., M

�

(x) =

R

1

0

�(xs)ds:

Theorem 3.10. Let � : [0; b℄ ! F




(X) an integrably bounded f.r.v.. If

� is m-
onvex, then so is M

�

:

Proof.

Let � be m-
onvex and x; y 2 [0; b℄; and t 2 [0; 1℄. Then, by using

Remark 3.2 and Lemma 3.8, we obtain

L

�

M

�

(tx+m(1� t)y) =

Z

1

0

�

�

(txs +m(1� t)ys)ds

�

Z

1

0

(t�

�

(xs) +m(1� t)�

�

(ys))ds

= t

Z

1

0

�

�

(xs)ds+m(1� t)

Z

1

0

�

�

(ys)ds

= tL

�

M

�

(x) +m(1� t)L

�

M

�

(y);

thus, M

�

is m-
onvex. �

Corollary 3.11. If � is an starshaped and integrably bounded f.r.v.,

then so is M

�

.

Corollary 3.12. If � is a 
onvex and integrably bounded f.r.v., then so

is M

�

.

Remark 3.13. Let F : [0; b℄! K(R) a set-valued fun
tion su
h that F

has the form F (x) = [f(x); g(x)℄; where f; g : [0; b℄! R and f � g: Then,

the measurability of F implies the measurability of f and g: Moreover,

if F is integrably bounded then f and g are integrable fun
tions (in

the Lebesgue sense). Also, in this 
ase, the subadditivity of F implies

the subadditivity of M

F

(x) =

1

x

R

x

0

Fdt; i.e., M

F

(x + y) � M

F

(x) +

M

F

(y); 8x; y 2 (0; b℄ su
h that x + y 2 (0; b℄ (see [14℄).

Theorem 3.14. If � : [0; b℄ ! F




(X) is an integrably bounded f.r.v.,

then the subadditivity of � implies the subadditivity of M

�

:

Proof.

From subadditivity of � follows that �

�

is subadditive for ea
h � 2 [0; 1℄.

Let � 2 [0; 1℄ and y

�

: X ! R an arbitrary 
ontinuous linear fun
tional

in X

�

, and 
onsider the set-valued fun
tion y

�

Æ�

�

: [0; b℄! K(R) de�ned

by

(y

�

Æ �

�

)(x) = y

�

(�

�

(x)); 8x 2 [0; b℄:
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Sin
e for every x 2 [0; b℄, �

�

(x) is a nonempty, 
ompa
t and 
onvex

subset of X, due 
ontinuity of y

�

, y

�

Æ �

�

has the form (y

�

Æ �

�

)(x) =

[f(x); g(x)℄; where f; g : [0; b℄ ! R and f � g: Now, sin
e that �

�

is an

integrably bounded r.s., then so is y

�

Æ �

�

: Consequently, from Remark

3.13, follows that f and g are integrable fun
tions. Thus, by Remark

3.13, implies that M

y

�

Æ�

�

is also subadditive, i.e.,

(y

�

ÆM

�

�

)(x) =

1

x

Z

x

0

y

�

(�

�

(t))dt = y

�

(

Z

1

0

�

�

(xs)ds) =

Z

1

0

y

�

(�

�

(xs))ds

is subadditive, that is,

x; y; x+y 2 (0; b℄) (y

�

ÆM

�

�

)(x+y) � (y

�

ÆM

�

�

)(x)+(y

�

ÆM

�

�

)(y): (1)

Sin
e �

�

is an integrably bounded r.s. taking 
ompa
t values, follows

that for ea
h x 2 (0; b℄; M

�

�

(x) is a 
ompa
t set (see [5℄ ). Consequently,

(y

�

ÆM

�

�

)(x) 2 K(X); 8 x 2 (0; b℄. So, from (1) and linearity of y

�

we

obtain

(y

�

ÆM

�

�

)(x + y) � (y

�

ÆM

�

�

)(x) + (y

�

ÆM

�

�

)(y)

� y

�

(M

�

�

(x) +M

�

�

(y))

for all x; y 2 (0; b℄ and x + y 2 (0; b℄:

We will prove that the set-valued fun
tion M

�

�

must be subadditive.

By 
ontradi
tion, assume that there are x; y 2 (0; b℄; su
h that x + y 2

(0; b℄ and

M

�

�

(x + y) * M

�

�

(x) +M

�

�

(y):

Then there exist p 2 M

�

�

(x+ y) su
h that p =2 M

�

�

(x) +M

�

�

(y): So, by

using the separation Hahn-Bana
h Theorem, there exist 
 2 R and " > 0

su
h that

y

�

(p) � 
+ " and sup

q2M

�

�

(x)+M

�

�

(y)

y

�

(q) � 
:

But this 
ontradi
ts the in
lusion (1), and the proof is 
ompleted. �
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4. CONVERGENCE OF INTEGRAL MEAN

In this se
tion we 
onsider the spa
e B([0; b℄;F(X)) of all f.r.v. � :

[0; b℄! F(X), endowed of the uniformmetri
D

1

de�ned byD

1

(�;�) = sup

x2[0;b℄

D(�(x);�(x)):

It is known that (B([0; b℄;F(X)); D

1

) is a 
omplete metri
 spa
e.

Proposition 4.1. Let �

n

;� 2 B([0; b℄;F(X)) su
h that �

n

D

1

! �:

Then M

�

n

D

1

! M

�

on (0; b℄.

Proof.

If �

n

D

1

! �; then given � > 0 there exists n

0

2 N su
h that

D(�

n

(x);�(x)) < � ; 8n � n

0

; 8x 2 [0; b℄:

Now, for n � n

0

; we have

D(M

�

n

(x);M

�

(x)) = D

�

1

x

Z

x

0

�

n

(t)dt;

1

x

Z

x

0

�(t)dt

�

=

1

x

D

�

Z

x

0

�

n

(t)dt;

Z

x

0

�(t)dt

�

�

1

x

Z

x

0

D(�

n

(t);�(t))dt <

1

x

Z

x

0

�dt = �:

Therefore M

�

n

D

1

! M

�

. �

We re
all that if A 2 K(X), the support fun
tion �

A

: X

�

! R is de�ned

as

�

A

(x

�

) =max

a2A

< x

�

; a >; 8x

�

2 X

�

:

It is important to remark that if A;B 2 K




(X) then, as a dire
t 
onse-

quen
e of the separation Hahn-Bana
h theorem, we obtain: �

A

= �

B

,

A = B:

In the fuzzy 
ontext, the support fun
tion s

u

: [0; 1℄�X

�

! R of a fuzzy

set u 2 F(X); is de�ned by s

u

(�; x

�

) = �

L

�

u

(x

�

); 8(�; x

�

) 2 [0; 1℄�X

�

:

We observe that if u = �

A

; A 2 K(X), then

s

u

(�; x

�

) = �

A

(x

�

); 8� 2 [0; 1℄:

For details on support fun
tions see [2℄, [4℄, [10℄, [11℄.
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A beautiful result due Aumann [1℄ (see also [2℄), is the following

Theorem 4.2. ([1℄). If F is a measurable, 
losed, nonempty and inte-

grably bounded set-valued fun
tion on [a; b℄, then

�

R

b

a

F (t)dt

(x

�

) =

Z

b

a

�

F (t)

(x

�

)dt:

Proposition 4.3. If � : [0; b℄! F(X) is an integrably bounded f.r.v.,

then

s

M

�

(x)

(�; �) =

Z

1

0

s

�(xs)

(�; �)ds 8x 2 (0; b℄:

Proof.

Let x 2 (0; b℄ arbitrary and (�; y) 2 [0; 1℄ � S

n�1

. Then, Theorem 4.2

and Remark 3.9, we have

s

M

�

(x)

(�; y) = �

L

�

M

�

(x)

(y) = �

R

1

0

�

�

(xs)ds

(y)

=

Z

1

0

�

�

�

(xs)

(y)ds =

Z

1

0

s

�(xs)

(�; y)ds:

Therefore s

M

�

(x)

(�; y) =

R

1

0

�

�(xs)

(�; y)ds: 8x 2 (0; b℄: �

Proposition 4.4. Let � : [0; b℄! F(X) a D-
ontinuous fuzzy mapping.

If x

n

! x in (0; b℄, then M

�

(x

n

)

D

! M

�

(x).

Proof.

Sin
e � is D-
ontinuous on [0; b℄, then � is uniformly 
ontinuous. There-

fore given � > 0, there exist Æ > 0 su
h that

j z � w j< Æ implies D(�(z);�(w)) < �: (2)

Also, due x

n

! x; there exist n

0

2 N su
h that j x

n

� x j< Æ; 8n �

n

0

: Now, we note that if j x

n

�x j< Æ and s 2 [0; 1℄, then Æ > j x

n

�x j�j

x

n

s� xs j : Thus, for n � n

0

; by Remark 3.9 and (2) we have

D(M

�

(x

n

);M

�

(x)) = D(

Z

1

0

�(x

n

s)ds;

Z

1

0

�(xs)ds)

�

Z

1

0

D(�(x

n

s);�(xs))ds < �:

11



Therefore, M

�

(x

n

)

D

! M

�

(x). �

Let u 2 F(X) be and 
onsider the level-appli
ation � 7! L

�

u whi
h

is a set-valued fun
tion taking 
ompa
t valued. De�ne

F

C

(X) = fu 2 F(X)= � 7! L

�

u H � 
ontinuous on [0; 1℄g ;

the spa
e of all 
ompa
t and level-
ontinuous fuzzy set on X:

It is known that (F

C

(X); D) is a 
omplete and separable metri
 spa
e

(see [11℄, [12℄). Also, for more details on level-
ontinuity of fun
tions, see

[13℄.

Theorem 4.5. If � : [0; b℄! F

C

(X) is an integrably bounded f.r.v., then

M

�

(x) 2 F

C

(X); 8x 2 [0; 1℄:

Proof.

Let x 2 [0; b℄ and �

n

; � 2 [0; 1℄ su
h that �

n

! �: Sin
e �

0

is an

integrably r.s., then there exist f 2 L

1

([0; b℄; X) su
h that jjwjj � f(t) for

all w and t su
h that w 2 �

0

(t): Be
ause �

�

(t) � �

0

(t); 8� 2 [0; 1℄; then

sup

n�1

k g

n

(t) k� f(t) for all g

n

2 S(�

�

n

): Thus, due �

�

n

(y) = L

�

n

�(y)

H

�!

n!1

L

�

�(y) = �

�

(y);for ea
h y 2 [0; b℄; by Remark 3.9 and Th.2.7, we obtain

L

�

n

M

�

(x) =

Z

1

0

�

�

n

(xs)ds �!

n!1

Z

1

0

�

�

(xs)ds = L

�

M

�

(x):

Therefore, M

�

(x) is level-
ontinuous. �

Example 4.6. Consider � : [0; 1℄! F(R) de�ned by

�(x)(t) =

8

>

>

<

>

>

:

8

<

:

2t

x

if 0 � t �

x

2

1 if

x

2

� t � 1

0 if t =2 [0; 1℄

if x 6= 0

�

[0;1℄

if x = 0:

Then, for x 2 (0; 1℄; we want to 
al
ulate M

�

(x): For this, �rstly we

observe that L

�

�(x) =

�

�x

2

; 1

�

for ea
h � 2 (0; 1℄; therefore �

�

(xs) =

�

�xs

2

; 1

�

: Thus, for every r 2 R;

�

�

�

(xs)

(r) =

�

r if r � 0

�xsr

2

if r < 0:

Consequently, due Th. 4.2, we have

12



�

R

1

0

�

�

(xs)ds

(r) =

�

r if r � 0

�xr

4

if r < 0:

= �

[

�x

4

;1

℄

(r)

Therefore,

R

1

0

�

�

(xs)ds = L

�

R

1

0

�(xs)ds =

�

�x

4

; 1

�

, 8� 2 [0; 1℄:

Now, if u =

R

1

0

�(xs)ds then, L

0

u = [0; 1℄ and L

1

u = [

x

4

; 1℄, and by

Remark 2.8, u(r) = supf�= r 2 [

�x

4

; 1℄g =

4r

x

; i.e.,

M

�

(x)(r) = u

x

(r) =

8

<

:

4r

x

if 0 � r �

x

4

1 if

x

4

� r � 1

0 if r =2 [0; 1℄:

Finally, the reader 
an be 
he
k that � is a 
onvex, subadditve and


ontinuous (a
tually, � is an

1

2

-
ontra
tion) fuzzy mapping taking values

in F

C

(X); and so is M

�

on (0; 1℄:N

The next example shows a dis
ontinuous fuzzy mapping � on [0; 1℄ taking

values in F(R) n F

C

(R) a:e:; and whose integral mean M

�

is a D{


ontinuous fuzzy mapping on (0; 1℄ taking values in F

C

(R):

Example 4.7. Consider � : [0; 1℄! F(R) de�ned by

�(x)(t) =

8

>

>

<

>

>

:

8

<

:

x if 0 � t < 1

1 if t = 1

0 if t =2 [0; 1℄

if x 6= 1

�

[0;1℄

if x = 1:

We observe that if x 2 (0; 1) then �(x) =2 F

C

(R); i.e., �(x) is not

level-
ontinuous. In fa
t, a straightforwad 
al
ulus shows that, in this


ase, �(x) is level-dis
ontinuous in � = x:

Nevertheless, the reader 
an be 
he
k that

M

�

(x)(r) = u

x

(r) =

8

<

:

rx if 0 � r < 1

1 if r = 1

0 if r =2 [0; 1℄:

Thus,

L

�

M

�

(x) = L

�

u

x

(r) =

�
�

�

x

; 1

�

if 0 � � � x

f1g if x � � � 1;

and it is easy to see that M

�

(x) 2 F

C

(R); 8x 2 (0; 1℄: .
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Finally, be
ause D(�(x);�(y)) = 1; 8x 6= y; we obtain that � is not

D�
ontinuous on [0; 1℄. Now, if 0 < x � y � 1 and y � � � 1, then

H(L

�

u

x

; L

�

u

y

) = H(f1g; f1g) = 0: Therefore,

D(M

�

(x);M

�

(y)) = sup

�2[0;1℄

H(L

�

u

x

; L

�

u

y

)

= sup

�2[0;x℄

(HL

�

u

x

; L

�

u

y

)_ sup

�2[x;y℄

H(L

�

u

x

; L

�

u

y

)

= sup

�2[0;x℄

H([

�

x

; 1℄; [

�

y

; 1℄)_ sup

�2[x;y℄

H(f1g; [

�

y

; 1℄)

= sup

�2[0;x℄

�

�

�

�

�

x

�

�

y

�

�

�

�

_ sup

�2[x;y℄

�

�

�

�

1�

�

y

�

�

�

�

= 1�

x

y

:

Thus, D(M

�

(x

n

);M

�

(x)) ! 0 as x

n

! x; i:e:; � is D�
ontinuous \in

mean" on (0; 1℄:N
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