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Abstract

Existence and uniqueness of periodic strong solutions for the magne-
tohydrodynamic type equations are studied in this work

1. Introduction

In several situations the motion of incompressible electrical conducting
fluid can be modelled by the magnetohydrodynamics equation , which
correspond to the Navier-Stokes equations coupled with the Maxwell
equations. In presence of a free motion of heavy ions, not directly due
to the electrical field (see Schliiter [21], and Pikelner [15]), the magneto-
hydrodynamics equation can be reduced to

1
M ngtu-vu- hevh = - Ly + )
o py P P 2
h 1
a———Ah—l—u-Vh—h-Vu = —grad w (1.1)
ot uo
divu = 0
divh =

Here, u and h are respectively the unknown velocity and magnetic
fields; p* is the unknown hydrostatic pressure; w is an unknown function
related to the motion of heavy ions (in such way that the density of
electric current, jp, generated by this motion satisfies the relation rot
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Jjo = —oVw);p,, is the density of mass of the fluid (assumed to be a
positive constant); x> 0 is the constant magnetic permeability of the
medium; o > 0 is the constant electric conductivity; n > 0 is the constant
viscosity of the fluid; f is an given external force field.

We append to equation (1.1) the following boundary conditions

u|aQ = 0, h|aQ = 0. (1.2)

In this paper, we will consider the problem of the existence and
uniqueness of the periodic strong solutions in a bounded domain  C
RN, N = 3 or 4 : the given external force f be periodic in ¢ with some
period 7. Then we will prove the existence and uniqueness of periodic
strong solution (u, h) of the magnetohydrodynamic type equations (1.1)
with the same period 7

u(z,t+7) = u(z,t); h(z,t 4+ 7) = h(z,t) (1.3)

The initial value problem associated to the system (1.1) has been
studied by several authors. Lassner [13], by using the semigoup results
of Kato and Fujita [9], proved the existence and uniqueness of strong
solutions. Boldrini and Rojas-Medar , [5], [18] improved this results to
global solutions by using the spectral Galerkin method. Damasio and
Rojas-Medar [8] studied the regularity of weak solutions, Notte-Cuello
and Rojas-Medar [16] using an iterative approach to show the existence
and uniqueness of strong solutions. The initial value problem in a time
dependent domains was studied by Rojas-Medar and Beltran-Barrios [17]
and Berselli and Ferreira [4].

The periodic problem to the classical Navier-Stokes equatios, was
studied by Serrin [19] using the perturbation method and recently by
Kato [12] using the spectral Galerkin method. In this work we follow
[12].

Finally, we would like to say that, as it usual in this context, to sim-
plicity the notation in the expressions we will denote by C', C'y, . .. ,generic
positive constants depending only on the fixed data of the problem.

2. Preliminaries and Results

We begin by recalling certain definitions and facts to be used later in this
paper.



The L?(Q)-product and norm are denoted by (,) and | |, respec-
tively; the LP(Q2)-norm by | |m»,1 < p < oo; the H™(Q2)- norm are
denoted by || ||g= and the W*P(Q)-norm by | |y .».

Here H™(Q)) = W™2(Q) and W*P(Q) are the usual Sobolev space
H; () is the closure of C§°(2) in the H' — norm.

If B is a Banach space, we denote L9(0,7’; B) the Banach space of the
B-valued functions defined in the interval (0, T) that are L?-integrable
in the sense of Bochner.

Let Cg%,(Q) = {v € (C§°())Y; div e = 0}, V = closure of C§%(Q) in (Hg (€)™

and H = closure of Cg% () in (L*(€2))".

Let P be the orthogonal projection from (L*(Q2))" onto H obtained
by the usual Helmholtz decomposition. Then, the operator A : H — H
given by A = —PA with domain D(A) = (H%(Q))¥ N V is called the
Stokes operator.

In order to obtain regularity properties of the Stokes operator we will
assume that Q is of class C'"!' [2]. This assumption implies, in particu-
lar, that when Au € L*(Q), then u € H*(Q) and ||ul|z> and |Au] are
equivalent norms.

Now, let us introduce some functions spaces consisting of 7-periodic
functions. For k > 0, k € IN, we denote by

C*(r;B) = {f : IR — B/ fis 7- periodic and D!f € C(IR; B) para todo i < k}.

Then, let us define the norm

k
Ifllet iy = sup 3 1DLf (0)]]-

<t<T i=1

We denote for 1 < p < oo, the spaces
LP(t;B) ={f : IR — B/ f is measurable,7- periodic and || f||z»(r;5) < 00},
where N
e = ([ 1£01)" para 1< p< o

and
| fllLoe(rmy = sup [[f(0)]]5-
0<t<r



Similary, we denote by
W*P(r; B) = {f € LP(t; B) / Dif € L*(r; B) para todo i < k}.

In particular, H*(7; B) = W*?2(r; B), when B is a Hilbert space.
The following results will be using in this paper.

Proposition 2.1. (Giga e Miyakawa [10]). If 0 < 6 < 5 + 4, the fol-
lowing estimate is valid with a constant Cy; = C1(4,0, p),

|A™°Pu-Vv| < C|A%u||A?v| for any u € D(A%) and v € D(A”), (2.1)
withd+0+p>L 43 p+6> 3, and6,p>0.

We consider too the Sobolev inequality [10],

1.1 8
r) < if —>—-—— 2.2
[ulzr ) < Collu|ys, i —25 -y >0 (2.2)
and the inequality due to Giga and Miyakawa [10]
11 2y
ri) < C3]A7 f->-———>0 2.3
|uL(Q)_ 3] U|;1T_2 N (2.3)
Here, we note that if r = N in (2.3) it follows
N 1
Lemma 2.2. Ifu €D(A%) and 0 <60 < 3, then
[A%u(2)] < p'~7|A ()| (2.5)

where = min A; > 0.

Lemma 2.3. (Simon [20])Let X, B and Y Banach spaces such that X —
B — Y, where the firts embedding is compact and the second is contin-
uous. Then, if T' > 0 is finite, we have that the following embedding is
compact



L>®0, 75 X)N{¢p: ¢, € L"(0,7;Y} — C(0,T;B),se 1 <r < oc.
Ours results are the following.

Theorem 2.4. (Existence). Letf € H'(r; H) (7 > 0). Then there exists
a constant Ky = Ky(N) > 0 such that if

M = sup |f| S K07

N
0<t<T L2 (Q)

the problem (1.1)- (1.3) has an 7- periodic strong solution (u(t),h(t))
satisfying

(u,h) € (H(7; H))*n(H (r; D(A)))*N(L> (73 D(A)))* (W (75 V).

Theorem 2.5. (Uniqueness). The solution of (1.1)- (1.3) given in The-
orem 1.4 is unique.

The ideia of the proof is use the spectral Galerkin method together
with compactness arguments. The principal problem is obtain the uni-
form boundedness of certains norms of u”(¢) and h™(¢) in some point ¢*.
This difficult was early treated by Heywood [11] to prove the regulatity
of the classical solutions for Navier-Stokes equations.

3. Approximate problem and a priori estimates

By using the operator P, the periodic problem (1.1)- (1.3) is formulated
as a system of ordinary differential equations

iu(t) +vAu(t) + aP(u(t) - Vu(t)) — P(h(t) - Vh(t)) = aPf(t),

dt
%h(t) + xAh(t) + P(u(t) - Vh(t)) — P(h(t) - Vu(t)) = 0,
u(z,t+7) = u(z,t); h(z,t 4+ 7) = h(z,1).
Where,
— Pm N 1
a=—, V=—, X=—.
It It po



We consider V,, = span{w;(x), wy(z), ..., w,(z)} and the approxima-
tions u"(t) = X7, ¢jn(t)w;(z) and h"(t) = X7, dj,(t)w;(w), of u and
h, respectively satisfying the following system of ordinary differential
equations

(cu} + vAu" + aPu™ - Vu" — Ph™ - Vh",w/) = (af,w’),
(h” + xAh" + Pu" - Vh" — Ph" - Vu",w’) = 0, (3.1)
u'(t+7) = u’(t),
h"(t+7) = h"(t).

To show that the system (3.1) has an unique 7—periodic solution, we
consider the following linearized problem:

(au} + vAu™,w’') = (of —aPv"-Vv"+ Pb"-Vb" W), (3.2)
(b} + xAh" /) = (—Pu"-Vh" 4+ Ph" - Vu",w),

where v*(t) = X0, ejn(t)w’ () and b"(t) = L7, gjn(t)w () are func-
tions given in C*(7;V},).

It is well know that the linearized system (3.2) has an unique 7—periodic
solution (u”(t),h"(t)) € (C*(r;V,))?* (see for instance, [1], [6]). On the
other hand, it is easily checked that the map: (v™ b™) — (u™ h") is
continuous and compact in (C(7;V,,))%

By using the Leray-Schauder principle is sufficient to show the bound-
edness

sup |u"(t)| < C,

0<t<r

sup |h"(t)] < C,

0<t<r
where C'is a positive constant independent of A , for all solutions of (1.1)
replacing Pu"-Vu" by APu"-Vu" , Ph"-Vh" by APh"-Vh" | Pu"-Vh"
by APu” - Vh" and Ph™ - Vu"” by A Ph" - Vu" (0 < A < 1) (see [3]).

Then, multiplying (3.2); and (3.2); by e;,(t) and g, (t) respectively,

and adding in j, we obtain
ad
2dt
1d
2dt

lu”)? + v|Vu"|? = (of,u") + A(h" - Vh", u"),

Ih"[> + x|Vh"|? = A(h" - Vu", h")



since a(u” - Vu",u") = (u” - Vh", h") = 0.
Adding the above inequalities and using (2.3), we get

d
%(a|un|2 + |h"?) + 2v|Vu"|? + 2x|Vh"|* = 2(af, u™)

20116 awrcn 2y 10" v 20
2C3C(N)a |f|LN/2(Q) [Vu"|

IAINA

where C'(N) = |2 and |Q| = the volume of Q. By using the Young
inequality, we obtain

d
E(a|u"|2 + |h"[?) 4+ v|Vu"* + 2x|Vh"|? < C,C(N)?*M? (3.3)

where Cy = C2a?/v and M is defined as in theorem 2.4. Moreover, since
(u™, h™) are T—periodic functions, we have

T d 9
sl n h" 2 =0.
| S ada? + et = 0
and consequently, from (3.3), we obtain
/ (V| Vu 2 + 2x|Vh"|2)dt < C4C(N)2M?r.
0

It follows by Mean Value Theorem for integral, that there exists ¢* €
[0, 7] such that

v|Vu™ (t*) 2 + 2x|Vh" (t*)|? < C,C(N)*M*7.

Now, using the Lemma 2.2, with 6 =0, 8 = 1/2, we get

(%) < p= | Vat (7). (3.4)
and consequently
()] < p VU () [* < CLO(N) M2/ (vp). (3.5)
Analogously,
Ih" () < p~ VR (#) ] < CLO(N)*M?/(2xp). (3.6)

7



Integrating (3.3) from t* to t + 7 (¢ € [0, 7]), we obtain

lu"(t +7)> + |h"(t + 1)

< alu(t)P + W ()P + CLO(NMP(t+ 7 — t*)
< aCC(NP?*M?*(uv) '+ CLO(N)*M?*(2uy) * + 27C,C(N)* M*?
= Kl.
Consequently,
sup [u"(t)|* < K1, sup |h"(t)]* < K, (3.7)
0<t<T 0<t<r

where K is independent of A and n. Thus, we have proved the existence
of the solution (u", h™) € (C*(7;V,,))*

Lemma 3.1. Let (u"(t),h"(t)) be the solution of (3.1) given above.

Suppose that
M < min{K,?* K;* 1}

where

Ky = v Y aCCsC(N)p™2 + C1C5C (N ™% + aC’30 IO(N) ')
Ky = X1(20105C(N);ﬂ%+%a030 LO(N) ).

Then, we have

|ATa"™ ()2 + |ATh" (1) > < C5sC(N) Y2 MY? for any t € (—o0, +00).

Proof. Taking A*’u”™ and A?"h" as test functions in (3.1); and (3.1);;
repectively, we get

5 dt|A7u |2 +1/|A u")? = (af, AYu") — a(Pu" - Vu", A*'u")
+(Ph" - Vh", A*"u"),

5 dt|A7h”|2+ X| = (Ph" - Vu", AY'h")

+(Pu" - Vh", A*"h").



Now, we estimate the right-hand sides of the above equalities as follows:

|(O[f, A27u")| S O[|f|LN/z(Q)|A27un|LN/(N—2)(Q)
142+

< aC3M|A™2 u"|,

here we use the Holder’s inequality and the estimate (1.1).

(Pv-Vb,A%¢)| = (A5 Pv-Vb,A 2 ¢)
< CiAV]| AT BT
where we use the Giga-Miyakawa estimate with = v and p = 27—2“
Now, adding the above estimates, we get

d d v Y

5 AT AT AT Py AT

1+2y 142y
< aCsM|A™Z "] + CralATu"| |42 u"[? (3.8)

+2C |ATh"||[ATT hY||ATE w4 Cy|ATa"||ATT hY)2

By using the Lemma 2.2 with § = v and = 3, we obtain from (2.5)
and (3.5)

p v ()

Cyrecnm

A" () * <
<

A (

and
| AL ()P < p P VRe(E)

< S oM
X

Consequently, if M < 1, we have

Cy
v
Cy
2x

AT () < 7 A=) RO(N) M2,

AR ()P < A 2O(N) M2,

Thus,
A" () P + [ATR ()P < CsC(N) M2

9



where Cy =

()12 4 ()1,

Let T* = sup{T / |A"u"(t)|> + |A"h"(t)|? < CsC(N)pu =2 M2 for
any t € [t*,T)}.

We will prove by contradiction that 7% = co. In fact, if 7% (¢* < T%)
is finite it should follow that

|AYu" (1) ]2 + |ATh"(t)|* < C5C(N) Y2 M2 for any t € [t*, T*) and

AT ()P o |ATR (1) = CoC(N ) 20 .

Therefore, for such a value t = T, the estimates of the right-hand side

of (3.8) are
aCs tun(t)]
< aCsCy IC(N) MY AT ()2 + AR (1) PHATE un (1)
< aCsCorC(N) L T MY AT ur (1))
—|—a03 C(N) M1/2|A B n(t)||A%hn(t)|
< —acs ‘o) ”M”Z (t)l2
+§ongC’ FO(N) M h"(t)]%,

aCh AU (1) ]| AT u (1)) < aCLCsC(N) V2 MY A7 un (1)),

O ATa™ (1)

2C1| AT (¢)||A™= " (1))
2C,C5C(N) 7*1/2M1/2|A

CLOSC (N~ M AT
+CyC5C(N) 22 A5

“u' (1)
()||A_7' u”(t)|
(&)

b (t)]%,

h"(t)|> < CLC5C (N 2 M2 | A5

VAN VAN

1+2’y

by

b (1)]*.

Consequently, the above estimate and (3.8) implies

ad
Z A u" (¢t 2
5 AT ()]

d Z’y 1
+ —|ATh" ()2 + v|ATE u (1) 2 = h (¢) |2

dt|

< (@O CsC (N~ + CLC5C(N) 42

10



—I-gongC LO(N) ) MY AT un(2)|
+(CLC5C(N) '~ 2 + C1C5C(N )m—lﬂ
—i—%ongC LO(N) L ) MY2|A7E he (¢))?
= K,MYPu[ATF ()] + Ks M2 x| AT he(8)],
where

K2:y‘l(aClC5C’(N)u7_1/2+ClC5C(N),u7_1/2+;anC’ LO(NY

K3 = x7'(2C,C5C(N)u ™7 + aC'30 'O(N)T

If M < min{K;, Ky, 1}, we have

—— A" (t)]* + t|A7h”(t)|2 <0att=T"

Thus, in a neighborhood of ¢ =T it follows

|AYa"(2)|2 4 |ATh" ()| < C5C(N) Y2 M2 for any t € [T, T* + 6)

which implies 7 = oo. Therefore, this given
|ATu"™(t)|> < C5C(N)p Y2 MY? for any t € (—o0, 00)
|ATh"(t)|> < CsC(N)p" =2 M*? for any t € (—o0, o0)

since u"(t) and h™(t) are periodics.

4. Estimates of derivatives of higher order

To show the convergence of the approximate solutions we shall derive
estimates of derivatives of higher order. By Lemma 3.1, if M is sufficiently
small the approximate solutions satisfy

sup |ATa"(t)| < C(M), sup |A"h"(t)| < C(M) (4.1)

with v = % — , where C (M) denotes a constant depending on M and
independent of n.

11



Lemma 4.1. Let (u”(t), h"(t)) be the solution of (3.1) given above. Set
Mo= ([ IgPant, A= ([ |6 P},

Then, we have

sup |Vu"™(t)|? < C(My, M), sup |Vh"(t)|> < C(My, M),

0<t<r 0<t<r

and
81;13(0&|11?(7f)|2 + [y (t)]*) < C(Mo, My, M),
where C(My, M) and C(My M, M) denote constants depending on My, My, M

and independing of n.
Proof. From (3.1) and using (2.1), we have

ad
2 dt
af[|Au”| + Cia|A"u™||Au”|? + 2C;|A7h"||AR"|| Au”|,

vu”|? + v|Au®|?
|

IN

1d
- th 2 Ahn 2
VB A
< A" AR + Cy|ATh"|| Ah"| | Au”).

Adding the above inequalities and using the estimate (4.1), we have

1d
577 (VW + [VR'[?) + v]Au"]” + x| AR"? (4.2)

alf||Au"| + CLC(M)|Au™? + 2C,C(M)|Ah™|| Au”| + C,C/(M)|Ah" |2
alf||Au"| + CLC(M)(a + 1)|Au™[? + 2C,C(M)| Ah" 2.

IN TN

Recalling the perioricity of Vu"(t) and Vh"(¢), we deduce from the above
inequality

/T(V|Aun|2 + x| AR ?)dt
0
< aMO(/Ty|Au"|2)1/2dt+ CO(M)(a+ 1) /TV|Au”|2dt
0 0
+20,C(M) / ") An 2.
0

12



or, if dy = min{v, x} > 0,

[ (Aw? + AR )

< aMOdgl(/OTy|Au"|2)1/2dt+ CLO(M)d5 (o + 2) /OTV|Au”|2dt.
Seeing that dy'C1C(M)(a + 3) < 1, we obtain
/OT(|Au”|2 + |AR"|)dt < C(Mo, M).
Newly, applying the Mean Value Theorem for integrals, we have that
there exists t* € [0, 7] such that
|Au”(t*)|* + |Ah™ (t9)|* < 7 1C(My, M).
By using the Lemma 2.2 | with § = % , 8 =1, we have
[Vu" ()] < p7HAu ()| < 57T O(Mo, M)

and
[Vh"()[* < p AR ()] < @ 'r 7 O (Mo, M).
Now, integrating the inequality (4.2) from t* to ¢t + 7 (¢t € [0,7]), we
deduce easily
sup |[Vu"(t)[? < C(Mo, M), (4.3)
0<t<r
sup [Vh"(t)* < C(Mo, M)

0<t<r o

where C'(My, M) is independent of n.
By other hand, from equations (3.1) we have

(cu} + vAu" uy) = (af —aPu"-Vu"+ Ph"-Vh" u}),
(h + xAh™ h}) = (—Pu"-Vh" + Ph"-Vu" h})

or, equivalently

d

SV 4 afuf? = (af uf) + a(Pu” - Vu',uf) + (Ph" - Vh',up),
d

52 [V [ = (P - Vu', by) — (Pu” - Vh', by). (44)

13



Now, we estimate the right-hand sides of the above inequalities, we have
«
[(of, )| < SIEP + 3 =

and

(V- Vb, ¢)| < |V |VDllg,] ax
< CyGs|A™V|| VD[ VY|

where we use the Holder’ inequality, the estimate (2.3) and Sobolev’s
embedding with r = 2% and § = 1.

Thus, by using the above estimates and the equalities (4.4), we get
1d
2dt
§|f|2 + §|U?| + C’gC'3|A7u”||Vu”||Vu?|
+CC3[ATH [V [[Vuf| + CoC3]A7u"|[Vh"[|VhY|
+C5C5|A7h"||Vu"||Vh}|
o o
§|f|2 + §|u?| + CyC3C (Mg, M)|Vul| + C (Mg, M)|VhY|.

— (V[Vu"] + x|Vh"[*) + afuf|* + [b} "

IN

Integrating from 0 to 7, we have

[ alui? + B2 < SME+C(Mo, M) [ (V| + VB s, (45)

2

By other hand, differentiating with respect to ¢ the equalities (3.1),
we obtain

(ouf; + vAuy, o)

(of; — aPu} - Vu" + aPu”™ - Vu} + Ph} - Vh" + Ph™ . Vh, w/),
(h}, + xAh}', o) | (4.6)
(=Puy - Vh" — Pu” - Vh} + Phy - Vu" + Ph" - Vu}',w’).

Multiplying the first equality by ¢}, (¢) and the second equality by d},(t),
and summing the result for 7 = 1,...,n, we obtain

ad

9 dt|ut |2 +v|Vuy |2

14



= (afy,u}) — a(Pu} - Vu",u}) + (Ph - Vh" u}) + (Ph" - Vh}', uy),
1d,. ., n
§£|ht|2+X|ht ° (4.7)
= (Ph}-Vu" h})+ (Ph" - Vu}, hy) — (Pu} - Vh", hy),

since (Pu" - Vu},u}) = (Pu” - Vh} h}') = 0.
We observe that using the Holder’s inequality, we obtain

|(P¢t . Vv,bt)| < |¢zt|LN|V"||bt|m§_f_\f2

and using the inequality (2.2) and (2.3) with » = 3 and § = 1, we infer
of the above inequality

|(Po, - Vv,by)| < CoC3|A79,||V V]|V (4.8)
for any ¢, v, b € V. Analogously,
|(Po - Vv, by)| < CoC3|Aby| |V || Vvyl. (4.9)

If, we use the estimate (4.8) for second and third terms in equality (4.7);
and the estimate (4.9) in the last term of this equality, we get

ad
§@|ufl2 +v|Vup|? < ap | [Vup| + aCyCs|ATa}| [Vu"||Vuy|
+CyC3|A"hy || Vh" ||Vuy| + CoCs|ATu}||[Vh" || Vh}| (4.10)

similarly, we have

1d
57 /P XIVh][* < CoCs[AThE| |V || Vhy| (4.11)

+C,yC5| A7hy || VR"||Vu} | + CoCs|A7u} || Vh" || Vhy|.
Adding the inequalities (4.10) and (4.11), we get

1 d n n n n
5@(04111: |2 + |hj |2) + v|Vuj |2 + x| Vh{ |2

ap HE||Vul'| + aCyCsC/(My, M)|AMu}||Vul|
+202030(M0, M) |A7h?| |VU?| + 20203C(M0, M) |A711?| |Vh?|
+CyC3C (Mo, M)|AhY||Vh|

VAN

15



where we use the estimates (4.3).
By using the interpolation inequality (o = 0,3 = 1/2)

|ATo| < Cy|APo| 57| ATy| 7
where 0 < § <y < 8; Cy = C(6,0,7) and v € D(AP) , we have

1 ) n|l—
[ATup| < C(0, 5, y)|Azup 7| A0y |2,

we observe )
|Azv] = [Vv],
and
|A% | = |v].
thus,

n 1 n n|l—
|ATuy| < C(0, 5;7)|Vut 7 g [
Then, the first term in (??) is bounded as follows

aCyC3C (Mo, M)| A7} || Vuy| aCyC3CyC (Mo, M)|Vul|*|uf |27 |Vu}|

<
< aC’ZC’3C4C’(M0,M)|Vu?|27+1|u?|1_27.

Analogously, we have
[AThy| < C4|[Vh [ [y ]2,
and thus the last term of (??) is bounded of the following manner

CoC3C (Mo, M)|ATh|[Vhy| CyC304C (Mo, M)|Vhy 77| |~7|Vhy|

<

< CyCsC4C (M, M)|Vh 2+ ho 27,
Now, we look the mixtes terms of (?7)

20,C3C(My, M)|ATh}||Vu}| < 20,C3C,C (Mg, M)|Vh! | |h} ' 2| Vu}|
similarly

20203C(M0, M)|A7u?||Vh?| S 20203C4C(M0, M)|VU?|2’Y|U?|172’Y|V11?|
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The above estimates imply the following differential inequality

1 d n n n
Sl P B ) + vVl ? + 3 VB

ap e || Vul'| + aCyCsCC (M, M) |Vuf [ [up |t
+CyC50,C (My, M)|Vh} 7 |12 (4.12)
+2C2C3C1C (Mo, M)|VhE [ b} [~V uy|
+2C,C5C,C (Mg, M)|Vul [*"[ul'|* 27| Vh}|.

VAN

Integrating over [0, 7] we have, since u and h are periodics,
| @IV V) < CML) + aCaCaCuC(My, M) [ 97+ g2
+CaCaCiC (M, M) [ |VhG [ by 21
+20,C5C4C (Mo, M) /0 VR e V|
F20,C5C,C (Mo, M) [ 907127 g 27|V |
We will prove the following estimate
[ @IV 4+ X VB) < C(Ma, Mo, M), (4.13)
If N =3, we have v = i, thus the last inequality implies
/ VUl + VU ?) < O(M) + C(Mo, M / Vur |} jur|?
+C(o, M) [V (414)
+C(Mo, M) [ 9B 07} 7w
+C(Mo, M) [ 07| fup VB
By using the Holder inequality, we get
v < g [ v
analogously

4 ’I’L§ nl T n T n
L vmg < (g pan [ omg e

17



and
T n L n L n 4 n 4 n 2 n 4
L varE e Evag < apzan [ v e

T T n 1 T n
(O tazan o [ 1o v e

IN

IN

analogously
| IR Vg | < (Pt IORRE( V),
0 0 0 0

;From the inequality (4.12) and by using the above inequality to-
gether with (4.5), we obtain

| wIVap TR < €, Mo, M) [ o T+ x|V )3
which implies the boundeness for N = 3,
| IVuE + X|Vhy ) < C(My, My, M),

If N =4, we have v = $ and from the inequality (4.12), we have

ld n n n n
577w l” + By ) + v[Vui | + x| Vhi |

ap” || |Vu} |+ C (Mo, M)|Vup|* 4+ C (Mo, M)|Vhy||[Vu}|
+C (Mo, M)|Vh} .

IN

. From this, we find

1d
—(aluy P+ [y [*)+v|Vuy [+x|Vhi [P < C(M1)+C(My, M) (v|Vuy [*+x|Vhi[?).

2 dt
thus,

[ 19 PV ) < CO)+C(0Mo, M) [ (1907 P-4 VPt

Since, we can take (1 — C'(My, My, M)) > 0, we obtain the desired

result for N = 4.
Newly, by using the mean-value theorem for integral, we have that

there exists t* € [0, 7], such that

18



v|Vuy (t))* + x|Vhy (t*)]* < 7 1C (Mo, My, M). (4.15)

Consequently,
u? () < T Var ()
< vilultriO(My My, M)
and
() < w7 VRE(E)

<
< x twtrtO(My My, M)

Integrating (4.12) from ¢* to t+7 with ¢ € [0, 7], and using the above
estimates, we get

Sl;p(f)élll?(t)|2 + [y (1)) < O (Mo, My, M).

Lemma 4.2. Let (u™(t),h"(t)) be the approximate solution of (3.1)
given above. Then, we have

sup |[Au”™(t)] < C(My, My, M), (4.16)
t

sup |[AL™(¢)| < C(My, My, M),

t

[T A @ + AR O )dt < C(My M, M), (417)

/0 ([ui ()" + [hiz () [*)dt < C (Mo My, M) (4.18)
Proof. From the equalities (3.1), we obtain easily

(au} +vAu", Au") = (aof —aPu"-Vu"+ Ph" - Vh", Au"),
(h? + xAh™ Ah™) = (—Pu"-Vh" + Ph"-Vu", Ah"),

consequently

v|Au"? < a|f||Au"|+alul ||Au”|+a|Pu™-Vu" ||Au”|+|Ph™-Vh" || Au"|,
(4.19)
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x|Ah"* < |h}||Ah™| + |Ph" - Vu"||Ah"| + |Pu" - Vh"||Ah"|. (4.20)
Now, we use the Proposition 2.1 with § = v and p = 1, to obtain
|P¢ - Vo| < C1C(M)|A7¢|| Av| < CLCO(M)|Av] (4.21)
where we use the estimate (4.21) , here we set ¢ = u™ or h" and v = u”
or h".

The inequalities (4.19) and (4.20) together with (4.21) imply

v|Au"? + x|Ah"? < olf||Au”| + aful||Au”| + |h}||Ah"|
+2C,C(M)|Ah" > + C,C(M)(1 + )| Au™|.

Using the Young inequality to the third first terms and the fact that
C(M) is small, we obtain

|Au" (1) < C(Mo, My, M), |AR™(t)| < O(Mp, My, M).  (4.22)

. From of the inequality (3.1), we have

d
%%Wuﬂz +v|Au}]? = (af;, Au}) — a(Pu} - Vu", Au}) + o(Pu” - Vu}, Au})
(Phy - Vh*, Au}) + (Ph" - VB, Au),
1d n|2 n|2 n n n n n n
§E|Vht| + x|Ah}|? = —(Pu}-Vh" Ah}) — (Pu" - Vh}, Ah})

+(Ph} - Vu", Ah}) + (Ph" - Vu}, Ah}).
Now, we estimate the right-hand side as is usual, for example

|(P¢t ) VVabt)| < |¢t| ﬂ|VV|LN|Abt|

LN=2

and
((P¢- Vi, by)| < 9] o [VVi[n]Ab|

for any ¢,v,b €V,,.
Consequently, by using the lemmas 2.1, we have

20



1 d n n n n
5%(a|Vut |2 + [Vh} |2) + v|Auj |2 + x| Ahj |2

2
o 1 1
% f:]? + aC,Cs|Vul|| A7 2u"|| Au?| + aCyCs|Vu"||A7 2 u}|| Au?|

IN

+CoC5|VhY || A7 20| Au}| + CoC5|Vh"||A7F2h}||Au}|  (4.23)
+CoC5|Vu? || A7 20" || AR} | + CoC3|Vu”|| A7 2h} || AhY|
+C,Cs|VhY||ATF 3" || ARP| 4 CoC5|Vh"|| A7 2 ul|| AR?|.

If N =3, then v = i, thus the lemma 2.1, implies
d n|2 n|2 v n|2 n|2

%(Mvut "+ [Vh{[") + §|Aut ” + x| Ahy|

2
[£.” + C(Mo, My, M)|Vup || Auf| + C (Mo, My, M)|Auy|| Auj|

IA
S N

2w
+C(My, My, M)|Vh}||Au?| + C(My, My, M)|ATh}||Au?| (4.24)
+C(My, My, M)|Vu}||AhP| + C(My, My, M)|ATh?||Ah?|
+C(My, My, M)|Vh}||ALP| + C(My, My, M)|ATu?||Ah}|.

By using the momentum inequality with v = %, o= % and =1, we
obtain

|ATh}||Au}| < C|Vh|?|Ah}|Z|Au}|.
Analogously

Afup||Au}| < C|Vup | [Aug 3,
|ATh?||Ah}| < C|Vh?|#|ARY|3,

|ATu?||AR?| < C|Vu?|?|Aul|? AR},

Consequently, by using the Young inequality, we have in (4.24)
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d v
%(aIVu?F + |Vh ) + §|Au?l2 + x|Ah}|?
< CIf)* + C(My, My, M)(a|Vul[> + [Vh?|?).

Integrating from t* to t € [0, 7], we get

a|Vup (t)]* + [Vhi(t)[]* + /t*(§|Aut (s)* + x|ARE (s)[*)ds
< CO(My) + C(My, My, M) + a|Vul(t*)]* + [Vh ()
S C(M07 Ml: M):
where we use the estimates of the lemma 2.1.

If N =4, then v = %, this in (4.23), we have

S IV VB [2) + 2w 4 x| ARy

C|f,|> + C(My, My, M)|Vul'||Aul| + C(My, My, M)|Vh}|| Au?|
+C (Mo, My, M)|Ab}||Auf| 4 C'(Mo, My, M)|Vuy|[Ahy|
+C(My, My, M)|Ah} > + C(My, My, M)|Vh]'||Ah}|
+C(My, My, M)|Au|%.

IN

The Young inequality implies

d
T (@[ Vul[® + [VRY[?) + v]Aup " + x| Ay [*

< C|f]* + C(My, My, M)|Vul|? + C(My, My, M)|Vh}|?
+C (Mg, My, M)|Ah} > + C (Mg, My, M)|Au}|?.

Since, we can consider (min{v, x} — C(M,, My, M)) > 0, integrating
from t* to t + 7,we obtain

t+7
of Ty (t+ 1) + [Vhy(t+ 1) + [ ([ Aup(s)[ + AR (5)[)ds

t+71
< C’(Ml)—i-C’(MO,Ml,M)/t* (IVu(s)[2ds + |[Vh*(s)[)ds (4.25)
| Vul (%) ] + | VhI ().
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Therefore, using the estimates (4.13) and (4.15), we obtain the desired
estimative.
Equalities (4.6) imply

aluil” = afi,uy) —v(Au?, up) — o(Puf - Vu©, up) — a(Pu” - Vuy, ug)

+(Phy - Vh" uy) + (Ph" - Vh, uy;),

lhy,[* = —x(Ahf,hj) — (Pu} - Vh", h) — (Pu" - Vhy, hy)

Consequently,

aluf? < C(IE]? + |Au}? + [VuPP|Au"? + |Au”?|Vu?|?
+|Vh?[*|A7h"|* + |Ah"|*|Vh]|?),

by [* < CARI" + [Vuy[F[Ah" " + [Au"|*| Vh} [
+|Vh A 0" [* + [AR" [ Vuy .

By using the estimates (4.25), (4.16) and (4.17), we obtain the esti-
mate (4.18).

5. Proof of Theorems

By the Aubin-Lions theorem, we have from estimates (3.7) that there
exist a subsequences u”™(t) and h"(¢) such that

u" — u, h" — h, strongly in L*(7; V).
Also, by the estimates (4.1), we have

u" — u, h" — h, w" in L™(7; D(A)).
and
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u} — uy, hy = hy, w* in L>(7; V).
and the functions u(¢) and h(t) satisfies
uw,h € H*(r; H) N H(1; D(A)) N L>®(7; D(A)) N WhHe (75 V).
We will show that
uy — u, hy — hy, strongly in L=(7; H).

Taking ¢ = u; and ¢ = h; in Lemma 2.3, with X = VY = B = H,
we obtain the desired convergences.

Once these later convergences are established, it is a standard proce-
dure take the limit along the previous subsequences in (3.1) to conclude
that (u,h) is a periodic strong solution of (1.1)-(1.3).

To prove the uniqueness, we consider that (uy, h;) and (ug, h,) are
two solutions of problem (1.1)- (1.3). By defining differences

0 =u; —uy, { =h; — hy.

They satisfy

(9t+VA97 ¢) = (€Vh1 +h2 v€7 ¢) —@(9-Vu2,¢) +O[(112 V@, ¢)7
(gt + XAga w) = (5 -Vu; + hy - V07 w) - (9 ) Vhl; 77[)) o (U.g : Vé-; 77[))
for all ¢, € V.

Setting ¢ = # and 1 = £ in the above inequalities, after of adding,
we get

S = (@O +[EP*)+v[VOP+xIVE* = (0-VE, hi)—(€ VE w)+a(60-VO, uy).

By other hand, using the Giga-Miyakawa result with 6 =, « = p =
%, we get

(9 ' vga hl)

(A77PO - VE Ahy)
Cy| AR9||A%¢]|AThy|
C1C(M)|V0||VE|

IA N
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where, we use the estimate given in the lemma 1.1. Analogously
alf - Vo, uy) < C.C(M)|VOP,
(£ V& w) < CIOM)|VEP
Consequently, we obtain

%%(aw? +[€]%) + v|VO]? + x|VEP < C(M)(v|VO? + x| VE]P). (5.1)

Since C (M) < 1, we have
% (alof? + |6+ LOIVOP + I VEP) <0
We recall that
01 < p=H VO, JE]* < umVER.
Consequently,
L(vul0 + xulé*) < L(v|VO]* + x|VE).
Thus, we have in (5.1)

d
(@l + [€]%) + La(al6]* + 1€%) <0,
where L; = Lpymin{v, x}(+ + 1) > 0.
Finally,

a0t + [E()]* < (al0(0)]” + £(0)[*) exp(—Lat)

for any t € (0,00).
Since 0(t) and &(t) are periodic in ¢, for any ¢t € (—oo, +00) there
exists a positive integer ngy such that t 4+ nog7 > 0 and

al0@®) + 1€ = alf(t + nor)|* + [€(t + no7)[*.
Hence, it follows,
ald@®) + [E@E)F < (al0(0)]* + [£(0)]*) exp(—Lint)
(n > ng), which implies

alf(t)]? + )P =0
and finally u; = uy and h; = h,.
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