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Abstrat

We desribe the hydrodynami behavior of the k-step exlusion proess.

Sine the ux appearing in the hydrodynami equation for this partile system

is neither onvex nor onave, the set of possible solutions inlude in addition

to entropi shoks and ontinuous solutions those with ontat disontinuities.

We �nish with a limit theorem for the tagged partile.

1 Introdution and Notation

In his paper Liggett (1980) introdued a Feller non onservative approximation of

the long range exlusion proess to study the latter. A onservative version of this

dynamis, alled k-step exlusion proess was de�ned and studied in Guiol (1999).

It is desribed in the following way.

Let k 2 N

�

:= f1; 2; :::g, X := f0; 1g

Z

be the state spae, and let fX

n

g

n2N

be a

Markov hain on Z with transition matrix p(:; :) and P

x

(X

0

= x) = 1. Under the
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mild hypothesis sup

y2Z

P

x2Z

p(x; y) < +1, L

k

, de�ned below, is an in�nitesimal

pregenerator: For all ylinder funtion f ,

L

k

f(�) =

X

�(x)=1;�(y)=0

q

k

(x; y; �) [f(�

x;y

)� f(�)℄ ; (1)

where q

k

(x; y; �) = E

x

h

Q

�

y

�1

i=1

�(X

i

); �

y

� �

x

; �

y

� k

i

is the intensity for moving

from x to y on on�guration �, �

y

= inf fn � 1 : X

n

= yg is the �rst (non zero)

arrival time to site y of the hain starting at site x and �

x;y

is on�guration � where

the states of sites x and y were exhanged.

In words if a partile at site x wants to jump it may go to the �rst empty

site enountered before returning to site x following the hain X

n

(starting at x)

provided it takes less than k attempts; otherwise the movement is anelled.

By Hille-Yosida's theorem, the losure of L

k

generates a ontinuous Markov

semi-group S

k

(t) on C(X) whih orresponds to the k-step exlusion proess (�

t

)

t�0

.

Notie that when k = 1, (�

t

)

t�0

is the simple exlusion proess. An important

property of k-step exlusion is that it is an attrative proess.

Let I

k

be the set of invariant measures for (�

t

)

t�0

and let S be the set of trans-

lation invariant measures on X. If p(x; y) = p(0; y � x) for all x; y 2 Z and p(:; :) is

irreduible then

(I

k

\ S)

e

= f�

�

: � 2 [0; 1℄g ;

where the index e mean extremal and �

�

is the Bernoulli produt measure with

onstant density �, i.e. the measure with marginal

�

�

f� 2 X : �(x) = 1g = �:

In this paper we prove onservation of loal equilibrium for the totally asym-

metri proess in the Riemann ase i.e.: p(x; x+1) = 1 for all x 2 Z and the initial

distribution is a produt measure with densities � to the left of the origin and �

to its right, we denote it by �

�;�

. The derived equation involves a ux whih is

neither onave nor onvex and appears for the �rst time as a hydrodynami limit

of an interating partile system. Up to now the \onstrutive" proofs for hydrody-

namis relied on the onavity of the ux, see Andjel & Vares (1987) or the papers

by Sepp�al�ainen (e.g. Sepp�al�ainen (1998)), whose key tool is the Lax-Hopf formula.

The entropy solution for the type of equation we onsider was �rst studied in Ballou

(1970). Suh solutions an have entropy shoks as well as ontat disontinuities.

Our aim is to take advantage of Ballou's result to dedue onservation of loal equi-

librium also in a onstrutive way, in the spirit of Andjel & Vares (1987). However
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we explain in the last setion how to derive hydrodynamis for general initial pro�les,

and nearest neighbor dynamis.

In setion 3 we prove a law of large numbers for a tagged partile in a k-step

exlusion proess.

2 The hydrodynami equation

2.1 Heuristi derivation of the equation

Sine the proess is (totally) asymmetri we take Euler saling. For every r 2 R

de�ne �

"

t

(r) := �

"

�1

t

(["

�1

r℄), where ["

�1

r℄ is the integer part of "

�1

r, for " > 0.

Given a ontinuous funtion u

0

(x); x 2 R (initial density pro�le), we de�ne a

family of Bernoulli produt measures f�

"

u

0

g

">0

on X, by: For all x 2 Z,

�

"

u

0

f� 2 X : �(x) = 1g = u

0

("x):

We all f�

"

u

0

g the family of measures determined by the pro�le u

0

. Let u

"

(r; t) :=

R

(S

k

("

�1

t)�

"

0

(r))d�

"

u

0

(�

0

). Then for all r 2 R, u

"

(r; 0) onverges to u

0

(r) when "

goes to 0; applying the generator (1) to �

"

t

(r) we have

d

dt

S

k

(t"

�1

) (�

"

0

(r)) = "

�1

S

k

(t"

�1

)

"

�

k�1

X

i=0

i

Y

j=0

�

"

0

(r + j") [1� �

"

0

(r + (i + 1)")℄

+

k�1

X

i=0

i

Y

j=0

�

"

0

(r � j") [1� �

"

0

(r)℄

#

:

Assuming that loal equilibrium is preserved (thus expetation of produts fator),

and taking expetations with respet to �

"

u

0

, we obtain

�u

"

�t

(r; t) = "

�1

"

�

k�1

X

i=0

i

Y

j=0

u

"

(r + j"; t) [1� u

"

(r + (i+ 1)"; t)℄

+

k�1

X

i=0

i

Y

j=0

u

"

(r � j"; t) [1� u

"

(r; t)℄

#

:

If we now let " onverge to 0, u(r; t) := lim

"!0

u

"

(r; t) should satisfy
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8

>

<

>

:

�u

�t

+

�G

k

(u)

�x

= 0

u(x; 0) = u

0

(x);

(2)

where G

k

represents the ux of partiles:

G

k

(u) =

k

X

j=1

ju

j

(1� u):

This is a non standard form beause G

k

is neither onvex nor onave, thus

equation (2) is no longer \a genuinely nonlinear onservation law", using the lan-

guage of Lax (1973). To deal with this equation, we have to use an extended version

of non linear Cauhy problems treated by Ballou (1970).

Remark 2.1

Let k go to in�nity and denote by G

1

the limiting ux funtion:

G

1

(u) =

u

1� u

:

That ase orresponds to the totally asymmetri long range exlusion proess. The

resulting equation is simpler beause the ux funtion G

1

is stritly onvex. The

hydrodynamis in this ase should follow from the arguments of Aldous & Diaonis

(1995) for the Hammersley's proess.

For notational simpliity, from now on we restrit ourselves to the ase k = 2.

However our arguments an be easily extended for all k.

2.2 Hydrodynamis in the Riemann ase

2.2.1 Notation and result

Our main theorem haraterizes the hydrodynami (Euler) limit of the 2-step exlu-

sion proess at points of ontinuity, when the family of initial measures is determined

by a step funtion pro�le. From the heuristi derivation we would expet that in the

hydrodynami limit the density pro�le would satisfy equation (2). We show that

the limiting density pro�le at time t is the entropy solution of equation (2) starting

with the initial value u

0

, a step funtion pro�le. We now give a brief summary of
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results onerning the solution of equation (2), due to D.P. Ballou (1970), when u

0

is a step funtion. This will motivate the formulation of the theorem as well as some

aspets of the proof.

Existene of weak solution to the Cauhy problem given by equation (2) with

bounded measurable initial ondition was proved in Ballou (1970), under the as-

sumptions:

1. G

k

2 C

2

(R).

2. G

00

k

vanishes at a �nite number of points and hanges sign at these points.

In order to obtain uniqueness further onditions are needed. We require our

solutions to satisfy the:

Condition E: (O.A. Ole��nik)

Let x(t) be any urve of disontinuity of the weak solution u(t; x), and let v be

any number lying between u

�

:= u(t; x(t)�0) and u

+

:= u(t; x(t)+0). Then exept

possibly for a �nite number of t,

S[v; u

�

℄ � S[u

+

; u

�

℄;

where

S[v;w℄ :=

G

k

(w)�G

k

(v)

w � v

:

It is known (Ballou (1970)) that the following two onditions are neessary and

suÆient for a pieewise smooth funtion u(x; t) to be a weak solution of equation

(2):

1. u(x; t) solves equation (2) at points of smoothness.

2.If x(t) is a urve of disontinuity of the solution then the Rankine-Hugoniot

ondition (i.e. d(x(t))=dt = S[u

+

; u

�

℄) holds along x(t).

Moreover ondition E is suÆient to ensure the uniqueness of pieewise smooth

solutions, whih are the entropy solutions to the equation. Hereafter we only deal

with the ase k = 2. We denote G(u) := G

2

(u).

If G were onvex (onave) only two types of solutions would be possible. We

now desribe these two types of solutions.

Let u

0

(x) = �1

fx<0g

+ �1

fx�0g

.

If � > � (� > �), then the speed of harateristis whih start from x � 0

(given by G

0

) is greater than speed of harateristis whih start from x > 0. If the

intersetion of harateristis ours along a urve x(t), then sine

S[u

+

; u

�

℄ =

G(�)�G(�)

�� �

= S[�; �℄
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Rankine-Hugoniot ondition will be satis�ed if x

0

(t) = S[�; �℄. Thus

u(x; t) =

�

�; x � S[�; �℄t;

�; x > S[�; �℄t:

is a weak solution. The onvexity of G implies that ondition E is satis�ed aross

x(t). Therefore u(x; t) de�ned above is the unique entropi solution in this ase and

will be referred to as a shok in the sense of Lax (1973).

If � < � (� < �), then the harateristis starting respetively from x � 0 and

from x > 0 never meet. Moreover they never enter the spae-time wedge between

lines x = �t and x = �t. We an hoose values in this region to obtain a ontinuous

solution, the so-alled ontinuous solution with a rarefation fan: Let h be the

inverse of H := G

0

,

u(x; t) =

8

<

:

�; x � H(�)t;

h(x=t); H(�)t < x � H(�)t;

�; H(�)t < x:

It is possible to de�ne pieewise smooth weak solutions with a jump ourring in the

wedge satisfying the Rankine-Hugoniot ondition. But the onvexity of G prevents

suh solutions to satisfy ondition E. Thus the ontinuous solution with a rarefation

fan is the unique entropi solution in this ase.

For the 2-step exlusion proess, the ux funtion G is neither onave nor

onvex. Instead G(u) = u + u

2

� 2u

3

is onvex for u < 1=6 and onave for

u > 1=6. In this ase in addition to the shok and ontinuous solution with a

rarefation fan it is possible to have solutions for whih the urve of disontinuities

never enters the region of interseting harateristis. The quotation in boldfae is

the original number of lemmas, prop... in Ballou (1970), but the notation refers to

2-step exlusion:

De�nition 2.2 [B def2.1℄

For any u < 1=6, de�ne u

�

:= u

�

(u) as

u

�

= supf� > u : S[u; �℄ > S[v; u℄ 8v 2 (u; �)g:

For any u > 1=6, de�ne u

�

:= u

�

(u) as

u

�

= inff� < u : S[u; �℄ > S[v; u℄ 8v 2 (�; u)g:
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In other words, for u < 1=6, if we onsider the upper onvex envelope G



of G on

(u;+1), then u

�

is the �rst point where G



oinides with G. In the same way when

u > 1=6, u

�

is the �rst point where the lower onvex envelope G



of G on (�1; u)

oinides with G. For � < 1=6, �

�

= (1� 2�)=4, and for � > 1=6, �

�

= (1� 2�)=4.

Let h

1

and h

2

be the inverses of H respetively restrited to (�1; 1=6) and to

(1=6;+1), i.e. h

1

(x) = (1=6)(1 �

p

7� 6x) and h

2

(x) = (1=6)(1 +

p

7� 6x) for

x 2 (�1; 7=6).

The following lemmas are taken from Ballou (1970).

Lemma 2.3 [B lem2.2℄ Let � < 1=6 be given, and suppose that �

�

< 1. Then

S[�; �

�

℄ = H(�

�

).

Lemma 2.4 [B lem2.4℄ Let � < 1=6 be given, and suppose that �

�

<1. Then �

�

is the only zero of S[u; �℄�H(u), u > �.

If � < � < 1=6, the relevant part of the ux funtion is onvex and the unique

entropi weak solution is the ontinuous solution with a rarefation fan.

If � < � < �

�

(� < 1=6), then H(�) > H(�) if � < � � 1=6, and H(�) > H(�

�

) >

H(�) if 1=6 < � < �

�

sine H is dereasing in this region. Thus H(�) > H(�), whih

implies an intersetion of harateristis: The unique entropi weak solution is the

shok.

Let � < �

�

< � (� < 1=6): Lemma 2.4 applied to � suggests that a jump from �

�

to � along the line x = H(�

�

)t will satisfy the Rankine-Hugoniot ondition. Sine �

�

is speially de�ned for this, a solution with suh a jump will also satisfy ondition

E. Therefore if we an onstrut a solution with the jump desribed above it will

be the unique entropi weak solution in this ase. Notie that sine H(�) < H(�

�

),

no harateristis interset along the line of disontinuity x = H(�

�

)t. We all this

ase ontat disontinuity, following Ballou. The solution is de�ned by

u(x; t) =

8

<

:

�; x � H(�)t;

h

2

(x=t); H(�)t < x � H(�

�

)t;

�; H(�

�

)t < x:

Corresponding ases on the onave side of G are treated similarly.

Let � denote the shift operator. We are able now to state our result.

Theorem 2.5 Let v 2 R, �; � 6= 1=6, and �

�;�

the Bernoulli produt measure on Z

with densities � for x � 0 and � for x > 0. Then

lim

t!1

�

�;�

�

[vt℄

S

2

(t) = �

u(v;1)

7



at every ontinuity point of u(:; 1), where �

u(v;1)

denotes the produt measure with

density u(v; 1) de�ned by:

Case 1. � < � < 1=6: ontinuous solution, with a rarefation fan

u(x; 1) =

8

<

:

�; x � H(�);

h

1

(x); H(�) < x � H(�);

�; H(�) < x:

Case 2. � < � < �

�

, (� < 1=6): entropy shok

u(x; 1) =

�

�; x � S[�; �℄;

�; x > S[�; �℄:

Case 3. � < �

�

< �, (� < 1=6): ontat disontinuity

u(x; 1) =

8

<

:

�; x � H(�);

h

2

(x); H(�) < x � H(�

�

);

�; H(�

�

) < x:

Case 4. 1=6 < � < �: ontinuous solution, with a rarefation fan

u(x; 1) =

8

<

:

�; x � H(�);

h

2

(x); H(�) < x � H(�);

�; H(�) < x:

Case 5. � > � > �

�

, (� > 1=6): entropy shok

u(x; 1) =

�

�; x � S[�; �℄;

�; x > S[�; �℄:

Case 6. � > �

�

> �, (� > 1=6): ontat disontinuity

u(x; 1) =

8

<

:

�; x � H(�);

h

1

(x); H(�) < x � H(�

�

);

�; H(�

�

) < x:

Remark 2.6

For any k � 2 the pro�les will be of the same kind, beause G

k

has only one inetion

point between 0 and 1 and is �rst onvex then onave.

Remark 2.7

Comparing with hydrodynamis of simple exlusion we observe that k-step exlusion

(k � 2) has not only a stable inreasing shok (Case 5) and a dereasing ontin-

uous solution (Case 1) but also a stable dereasing shok (Case 2), an inreasing

ontinuous solution (Case 4) and two ontat disontinuities (Cases 3 and 6).
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2.2.2 Proof of Theorem 2.5

It follows the sheme introdued in Andjel & Vares (1987), where the authors ob-

tained the hydrodynami limit for the one-dimensional zero-range proess in the

Riemann ase, i.e. the hydrodynami equation

8

>

<

>

:

�u

�t

+

��(u)

�x

= 0

u(x; 0) = u

0

(x) = �1

fx<0g

+ �1

fx�0g

was derived. There �, the mean ux of partiles through the origin, was a onave

funtion. Therefore, their proof used both the monotoniity of the proess, still

valid here, and the onavity of the ux, that we have to replae by an ad ho use

of the properties of the solution of (2).

Informally speaking, they �rst showed that a weak Ces�aro limit of (the measure

of) the proess is an invariant and translation invariant measure. Then they showed

that the (Ces�aro) limiting density inside a marosopi box is equal to the di�erene

of the edge values of a ux funtion. These propositions were based on monotoniity,

and on the haraterization of invariant and translation invariant measures (both

valid for k-step as well),thus we an quote them (with appropriate notation for the

k-step), and take them for granted.

Lemma 2.8 [AV 3.1℄ Let � be a probability measure on f0; 1g

Z

suh that

(a) �

�

� � � �

�

for some 0 � � < � � 1, (b) either ��

1

� � or ��

1

� �.

Then any sequene T

n

! 1 has a subsequene T

n

k

for whih there exists D dense

(ountable) subset of R suh that for eah v 2 D,

lim

k!1

1

T

n

k

Z

T

n

k

0

��

[vt℄

S

2

(t)dt = �

v

for some �

v

2 I

2

\ S.

Lemma 2.9 [AV 3.2℄ For v 2 D, we an write �

v

=

R

�

�



v

(d�), where 

v

is a

probability on [�; �℄. Also, if u < v are in D,

lim

k!1

�S

2

(T

n

k

)

0

�

1

T

n

k

[vT

n

k

℄

X

[uT

n

k

℄

�(x)

1

A

= F (v)� F (u) (3)

with, for w 2 D, F (w) =

R

[w��G(�)℄

w

(d�):

9



The diÆult part is then to prove that 

v

is in fat the Dira measure onen-

trated on u(x; 1). They did it in Lemma [AV 3.3℄ and Theorem [AV 2.10℄ using the

onavity of their ux funtion.

For k-step exlusion, at this point we will have to look separately at the six ases

given in the theorem.

To onlude, Andjel & Vares had to prove that the Ces�aro limit implies a weak

limit, through the following propositions, based on monotoniity. We will use these

results also without proof.

Proposition 2.10 [AV 3.4℄ Let � = �

�;�

. If

�

v

=

�

�

�

; if v 2 D; v < S[�; �℄

�

�

; if v 2 D; v > S[�; �℄

then

lim

T!1

1

T

Z

T

0

��

[vt℄

S

2

(t)dt = �

v

:

Proposition 2.11 [AV 3.5℄ If � satis�es

(a) � � �

�

, (b) ��

1

� �, () there exists v

0

�nite so that

lim

T!1

1

T

Z

T

0

��

[vt℄

S

2

(t)dt = �

�

for all v > v

0

. Then

lim

t!1

��

[vt℄

S

2

(t) = �

�

for all v > v

0

:

Proof of Theorem 2.5 in Cases 2 and 3. In ase 1, the proof is not di�erent

from the one given in Andjel & Vares (1987) sine G is onvex in the relevant region;

thus we omit it. In ase 2, G is not onvex in the relevant region, therefore we supply

a proof, though it is quite lose to the original one. Case 3 uses ideas from ases 1

and 2 and introdues some new ideas to deal with ompliations arising from the

non-onvexity of G. Cases 4-6 are symmetri to ases 1-3 in the sense that the roles

played by onvexity and onavity are exhanged.

The proof has 3 steps. The main ingredients are monotoniity, and inequalities

relying on the properties of S[:; :℄; G; H given before.

First step.
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Using monotoniity of the 2-step exlusion, we an proeed as in the beginning

of the proof of Lemma [AV3.3℄, and get two �nite values v and �v so that: If v 2 D

and v > �v, then 

v

= Æ

�

, while 

v

= Æ

�

if v < v.

Seond step, preliminary.

Let u < v, both in D. Attrativeness of the proess (sine �

�

� �

�;�

� �

�

) and

(3) imply

(v � u)� � v

Z

�

v

(d�)�

Z

G(�)

v

(d�)� u

Z

�

u

(d�) +

Z

G(�)

u

(d�)

� (v � u)�

(4)

(i) Taking u < v, the �rst step gives 

u

= Æ

�

, so the seond inequality of (4) is

simpli�ed in

v

Z

�

v

(d�)�

Z

G(�)

v

(d�)� u�+G(�) � (v � u)�

whih an be written

Z

[�;�℄

(G(�)�G(�))

v

(d�) � v

Z

[�;�℄

(�� �)

v

(d�) (5)

(ii) Similarly, for �v < v, 

v

= Æ

�

, and the �rst inequality of (4) reads

u

Z

[�;�℄

(�� �)

u

(d�) �

Z

[�;�℄

(G(�)�G(�))

u

(d�) (6)

Proof for Case 2: � < � < �

�

; � < 1=6:

The de�nition of �

�

implies that for every � 2 (�; �)

G(�)�G(�)

�� �

�

G(�)�G(�)

�� �

= S[�; �℄;

so that inequality (5) for v � v < S[�; �℄ (v 2 D) yields

v

Z

[�;�℄

(�� �)

v

(d�) � S[�; �℄

Z

[�;�℄

(�� �)

v

(�):

Sine v < S[�; �℄ we onlude that 

v

= Æ

�

.

Starting from inequality (6) with �v � u > S[�; �℄ (u 2 D) and proeeding in a

similar manner we an show that 

u

= Æ

�

.

11



Proof for ase 3: � < �

�

< �; � < 1=6.

Seond step, part 1.

Let u < v, both in D, u < v, and v < H(�). On [�

�

; �), G is onave, thus for

every � 2 [�

�

; �℄

H(�) < S[�;�℄ � H(�

�

): (7)

If � 2 [�; �

�

) then from the de�nition of �

�

it follows that

S[�; �

�

℄ � H(�

�

): (8)

We deompose [�; �℄ = [�; �

�

℄ [ (�

�

; �℄, and (5) beomes

v

Z

[�;�

�

℄

(�� �

�

)

v

(d�) + v

Z

[�;�

�

℄

(�

�

� �)

v

(d�) + v

Z

(�

�

;�℄

(�� �)

v

(d�) �

Z

[�;�

�

℄

(G(�)�G(�))

v

(d�) +

Z

(�

�

;�℄

(G(�)�G(�))

v

(d�):

(9)

By (8)

Z

[�;�

�

℄

(G(�)�G(�))

v

(d�) =

Z

[�;�

�

℄

[(G(�)�G(�

�

) +G(�

�

)�G(�)℄ 

v

(d�)

�

Z

[�;�

�

℄

[(�� �

�

)S[�

�

;�℄ +H(�

�

)(�

�

� �)℄ 

v

(d�)

and by (7)

Z

(�

�

;�℄

(G(�)�G(�))

v

(d�) � H(�)

Z

(�

�

;�℄

(�� �)

v

(d�):

Those two inequalities together with (9) give

(v � S[�

�

;�℄)(�� �

�

)

Z

[�;�

�

℄



v

(d�) + (v �H(�

�

))

Z

[�;�

�

℄

(�

�

� �)

v

(d�)

+(v �H(�))

Z

(�

�

;�℄

(�� �)

v

(d�) � 0:

Sine v < H(�), by (7), the only possibility is 

v

= Æ

�

.

Seond step, part 2.

12



Let u; v 2 D, suh that v > �v, and H(�

�

) < u < v. We deompose eah integral

of (6) on the two intervals [�; �

�

℄ and (�

�

; �℄.

Z

(�

�

;�℄

(G(�)�G(�))

u

(d�)

=

Z

(�

�

;�℄

(G(�)�G(�

�

))

u

(d�) +

Z

(�

�

;�℄

(G(�

�

)�G(�))

u

(d�)

By de�nition of �

�

and by Lemma 2.3, for all � 2 [�; �

�

℄,

G(�)�G(�) � H(�

�

)(�� �);

and G being stritly onave on (�

�

; �℄, we have for all � 2 [�

�

; �℄

G(�)�G(�

�

) � H(�

�

)(�� �

�

):

Thus by (6)

u

Z

[�;�

�

℄

(�� �)

u

(d�) + u

Z

(�

�

;�℄

(�� �

�

)

u

(d�) + u

Z

(�

�

;�℄

(�

�

� �)

u

(d�)

�

Z

[�;�

�

℄

H(�

�

)(�� �)

u

(d�) +

Z

(�

�

;�℄

H(�

�

)(�� �

�

)

u

(d�)

+

Z

(�

�

;�℄

H(�

�

)(�

�

� �)

u

(d�)

whih an be written

(u�H(�

�

))

�

Z

[�;�

�

℄

(�� �)

u

(d�) +

Z

(�

�

;�℄

(�� �

�

)

u

(d�)

+

Z

(�

�

;�℄

(�

�

� �)

u

(d�)

�

� 0:

Sine u�H(�

�

) > 0, this implies

Z

[�;�℄

(�� �)

u

(d�) = 0

Therefore we onlude 

u

= Æ

�

.

Seond step, onlusion.

13



Using the two preeding parts, attrativity, Propositions 2.10 and 2.11, we on-

lude in ase 3

lim

t!1

�

�;�

�

[vt℄

S

2

(t) =

�

�

�

; if v < H(�)

�

�

; if v > H(�

�

)

(10)

and in ase 2

lim

t!1

�

�;�

�

[vt℄

S

2

(t) =

�

�

�

; if v < S[�; �℄

�

�

; if v > S[�; �℄

(11)

Third step, �rst part.

Let u

1

; v; v

1

2 D, u

1

< H(�) < v < H(�

�

) < v

1

, suh that u

1

and v

1

belong to

an interval where G is onave. By attrativity,

lim sup

t!1

�

�;�

S

2

(t)

0

�

1

t

[vt℄

X

[u

1

t℄

�(x)

1

A

� (v � u

1

)� (12)

The seond step and (3) imply

lim

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[u

1

t℄

�(x)

1

A

= v

1

��G(�)� u

1

�+G(�)

whih, ombined with (12) gives

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�) +G(�)� v� (13)

Sine H(�) < v < H(�

�

), there exists some �, �

�

< � < �, with v = H(�), so that

� = h

2

(v). Let � < �

0

< �, we now apply (13) to �

�

0

;�

, and we use attrativity

through �

�

0

;�

� �

�;�

to get

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� lim inf

t!1

�

�

0

;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�) +G(�

0

)� v�

0

(14)
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By (3) again,

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�)� v

Z

[�;�℄

�

v

(d�) +

Z

[�;�℄

G(�)

v

(d�)

whih, together with (14), if we make �

0

! �, gives

G(�)� v� �

Z

[�;�℄

(G(�)� v�)

v

(d�) (15)

Sine G(�) is onvex when � 2 (�; 1=6) and onave when � 2 (1=6; �), for all v,

G(�)� v� has at most two ritial points determined by the ondition G

0

(�) = v.

One satis�es 1=6 < � < � and is a loal maximum, the other (when it exists) is a

loal minimum with � < � < 1=6. We want to onlude that the loal maximum is

a global maximum when � < � < �. We know from Lemma (2.3) that

G(�

�

)�G(�) = (�

�

� �)H(�

�

)

whih implies, sine v = H(�) < H(�

�

),

G(�

�

)� v�

�

> G(�)� v�

Beause G(�) � v� is inreasing in (�

�

; �) (reall that H(�) = v) we have: For all

� 2 (�

�

; �)

G(�)� v� > G(�

�

)� v�

�

> G(�)� v�

We onlude that � is a global maximum:

max

�����

[G(�)� v�℄ = G(�)� v�

thus 

v

= Æ

�

= Æ

h

2

(v)

.

Third step, seond part.

This part follows losely the argument in Andjel & Vares (1987), but we detail

it for the sake of ompleteness. Sine the measures

1

T

R

T

0

�

�;�

�

[vt℄

S

2

(t) dt depend

monotonially on v and form a relatively ompat set, we have for all v,

lim

T!1

1

T

Z

T

0

�

�;�

�

[vt℄

S

2

(t) dt = �

h

2

(v)

:

15



It remains to prove that

lim

t!1

�

�;�

�

[vt℄

S

2

(t) = �

h

2

(v)

when H(�) < v < H(�

�

) (by ontinuity of h

2

, this result will also be valid at H(�)).

For this, let ~�

v

be a weak limit of �

�;�

�

[vt℄

S

2

(t). It is enough to show

(a) ~�

v

� �

h

2

(v)

; (b) ~�

v

(�(0)) = h

2

(v):

(a) Let � = h

1

(v), with H(�) < v < H(�

�

), v = H(�). Let �

�

<

~

� < � < �, then

v < H(

~

�) and �

~

�;�

�

[vt℄

S

2

(t) � �

�;�

�

[vt℄

S

2

(t). Added to (10), this yields

lim

t!1

�

~

�;�

�

[vt℄

S

2

(t) = �

~

�

� lim

t!1

�

�;�

�

[vt℄

S

2

(t) = ~�

v

:

Hene, by ontinuity, if

~

� onverges to �,

~�

v

� �

�

= �

h

2

(v)

:

(b) Let u

1

< H(�) < H(�

�

) < v

1

. By the de�nition of u(x; t) in that ase,

Z

v

1

u

1

u(x; 1) dx =

Z

H(�)

u

1

� dx+

Z

H(�

�

)

H(�)

h

2

(x) dx+

Z

v

1

H(�

�

)

� dx

= �(H(�)� u

1

) +

Z

�

�

�

�H

0

(�) d� + �(v

1

�H(�

�

))

= v

1

�� u

1

��G(�) +G(�)

where we have integrated by parts the integral of the seond line (derived by a

hange of variables); therefore, by (3),

lim

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[u

1

t℄

�(x)

1

A

=

Z

v

1

u

1

u(x; 1) dx (16)

and (b) follows from (16) and (a), with the same argument as in [2℄ p.332 (proof of

Theorem 3.2), based on monotoniity.
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3 Asymptoti behavior of a tagged partile

We introdue here an interpretation of the k-step exlusion dynamis valid in the

totally asymmetri ase. Up to now we onsidered that a partile might jump from

x to the �rst empty site in fx+1; :::; x+kg. If we want to leave the partiles ordered

we ould equally say that the partile at x pushes the \pak" of (� k) neighboring

partiles in front of it, eah one moving of one unit to the right. In other words,

if there is no partile at site x + 1 then the partile at site x goes to site x + 1; if

there is one partile at site x + 1 and no partile at site x + 2 then the partile at

x pushes the partile of site x+ 1 to site x+ 2 and oupies site x+ 1; and so on...

Then the generator reads

L

k

f(�) =

X

x2Z

k�1

X

i=0

i

Y

j=0

�(x+ j) (1� �(x+ i + 1))

�

f(�

x;x+1;:::;x+i+1

)� f(�)

�

(17)

where

�

x

1

;x

2

;:::;x

l

(u) =

8

<

:

�(x

l

) if u = x

1

;

�(x

i�1

) if u = x

i

; i = 2; :::; l;

�(u) otherwise:

It is easy to see, omparing (17) to (1), that they do orrespond in this setting,

beause we do not label the partiles. The interest of (17) w.r.t. (1) is that it keeps

trak of the partiles' order. We will need this interpretation in the next setion.

Similarly, we de�ne a Tagged \Pushing" Partile, and the generator of the k-step

exlusion proess as seen from this Tagged Pushing Partile is

e

L

k

(�) =

k�1

X

i=0

X

x6=0;�1;:::;�(i+1)

i

Y

j=0

�(x + j) (1� �(x+ i+ 1))

�

f(�

x;x+1;:::;x+i+1

)� f(�)

�

+

k

X

n=1

n�1

Y

m=1

�(m)(1� �(n))[f(�

1

�

0;1;:::;n

)� f(�)℄

+

k�1

X

n=1

k�n

X

l=1

�1

Y

m=�l

�(m)

m�1

Y

i=1

�(i)(1� �(n))

�

f(�

1

�

�l;:::;0;:::;n

)� f(�)

�

:

To be learer, let us write and omment it for k = 2.

e

L

2

(�) =

X

x6=0;�1

�(x)(1� �(x + 1))

�

f(�

x;x+1

)� f(�)

�

(18)
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+(1� �(1))

�

f(�

1

�

0;1

)� f(�)

�

(19)

+

X

x6=0;�1;�2

�(x)�(x+ 1)(1� �(x + 2))

�

f(�

x;x+1;x+2

)� f(�)

�

(20)

+�(1)(1� �(2))

�

f(�

1

�

0;1;2

)� f(�)

�

(21)

+�(�1)(1� �(1))

�

f(�

1

�

�1;0;1

)� f(�)

�

: (22)

Part (18) is simple exlusion involving sites away from the origin, part (19) orre-

sponds to the \lassial" tagged partile for simple exlusion. Part (20) is a \stritly"

2 steps exlusion involving sites away from the origin. Part (21) desribes the \push-

ing" of the tagged partile. Finally in part (22) the tagged partile is \pushed" by

another partile.

A straightforward adaptation of the simple exlusion ase (see Ferrari (1986))

gives

Theorem 3.1 The Palm measure b�

�

of �

�

(i.e. the measure onX de�ned by b�

�

(:) =

�

�

(:j�(0) = 1)) is invariant and ergodi for the k-step exlusion proess as seen from

a tagged pushed partile.

Sketh of proof: For instane when k = 2 it is enough to show

�f�(�1)�(0)(1� �(1))f(�

�1;0;1

)g = �f�(0)�(1)(1� �(2))f(�

1

�

0;1;2

)g

and

�f�(�2)�(�1)(1� �(0))f(�

�2;�1;0

)g = �f�(�1)�(0)(1� �(1))f(�

1

�

�1;0;1

)g

whih are obvious for any � 2 S (reall that S is the set of translation invariant

measures on X).

Theorem 3.2 Law of large numbers for the Tagged Pushing Partile (k = 2).

For a 2-step exlusion proess with initial distribution �

�

, if Y (t) denotes the

position at time t of a Tagged Pushing Partile starting at the origin then

lim

t!1

Y (t)

t

= (1� �)(1 + 2�) P

b�

�

a:s:
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Proof: Using the notation of Ferrari (1992a) pp. 41-43 we de�ne the instantaneous

inrement of the position of the Tagged Pushing Partile by

 (�) := lim

h!0

E(Y (t + h)� Y (t)jY

t

= x)

h

= (1� �(x+ 1)) + �(x� 1)(1� �(x+ 1)) + �(x+ 1)(1� �(x+ 2)):

So

Z

 d�

�

= 1� �+ 2�(1� �):

Furthermore lim

h!0

E

�

�

(Y (t+h)�Y (t))

2

=h < +1 so that the onditions of theorem

9.2 of Ferrari (1992a) are satis�ed, whih gives the result.

Remark 3.3

Referring to results of Guiol (1999), we notie that a Tagged Pushing Partile X

t

behaves as a regular tagged partile in the k-step exlusion. Indeed, intuitively,

the \regular" tagged partile an make long jumps, so is expeted to move faster,

but it annot be pushed; and the rate at whih the Tagged Pushing Partile moves

ompensates exatly those long jumps.

4 Generalizations

1. We obtained onservation of loal equilibrium for the Riemann ase. It an be

generalized to an initial produt measure with a non-onstant pro�le of bounded vari-

ation following the papers of Rezakhanlou (1991) and Landim (1993) (see also Kipnis

& Landim (1999) hapters 8 and 9). Indeed Condition E is equivalent to Kru�zkov

entropy inequality (see Godlewski & Raviart(1991), Lemma 6.1 p.88) whih is the

key tool of the latter proofs. Moreover, sine we are working with a one-dimensional

totally asymmetri proess, we an equivalently onsider its interpretation de�ned

by (17); this way, partiles do not jump over eah other. We an therefore follow

Setion 6 of Rezakhanlou (1991) whih ontains a two-blok estimate valid only for

one-dimensional nearest neighbor proesses, and enables to onlude the derivation

of hydrodynami equation without using Young measures. The key point onsists

in oupling two versions of the proess, to prove that the number of sign hanges

between them an only derease, due to attrativity and the redution to a one-

dimensional nearest neighbor ase. For k-step exlusion, this result is a straightfor-

ward adaptation of Liggett (1976), Lemma 5.1. For the same reason, extension to

deterministi initial on�gurations is possible, using Venkatsubramani (1995).
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2. We treated only totally asymmetri k-step exlusion but our proof is also valid

for nearest neighbor asymmetri transition rates, whih lead to a ux funtion with

the same properties. However one has to ompute arefully this funtion, due to

the omplexity of the k-step dynamis. For instane for k = 5 and transition rates

p(x; x + 1) = p, p(x; x� 1) = q = 1� p, p > q, we obtain

G

p;q

5

(u) = u(1� u) [(p� q) f(1 + 2u) + 3u

2

(1� pq)

+4u

3

(1� 2pq) + 5u

4

(1� 3pq + p

2

q

2

)g+ 3u

2

2p

4

q℄ :

Indeed the last term orresponds to a \yle" jump: To go from x to x + 3 when

sites x+ 1 and x+ 2 are oupied, the partile follows the path (x; x+ 1; x+ 2; x+

1; x+ 2; x+ 3).

The extension to an initial produt measure with a general pro�le is still possible,

using Rezakhanlou (1991) and Landim (1993), but with the help of Young measures.
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