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Abstra
t

We des
ribe the hydrodynami
 behavior of the k-step ex
lusion pro
ess.

Sin
e the 
ux appearing in the hydrodynami
 equation for this parti
le system

is neither 
onvex nor 
on
ave, the set of possible solutions in
lude in addition

to entropi
 sho
ks and 
ontinuous solutions those with 
onta
t dis
ontinuities.

We �nish with a limit theorem for the tagged parti
le.

1 Introdu
tion and Notation

In his paper Liggett (1980) introdu
ed a Feller non 
onservative approximation of

the long range ex
lusion pro
ess to study the latter. A 
onservative version of this

dynami
s, 
alled k-step ex
lusion pro
ess was de�ned and studied in Guiol (1999).

It is des
ribed in the following way.

Let k 2 N

�

:= f1; 2; :::g, X := f0; 1g

Z

be the state spa
e, and let fX

n

g

n2N

be a

Markov 
hain on Z with transition matrix p(:; :) and P

x

(X

0

= x) = 1. Under the
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mild hypothesis sup

y2Z

P

x2Z

p(x; y) < +1, L

k

, de�ned below, is an in�nitesimal

pregenerator: For all 
ylinder fun
tion f ,

L

k

f(�) =

X

�(x)=1;�(y)=0

q

k

(x; y; �) [f(�

x;y

)� f(�)℄ ; (1)

where q

k

(x; y; �) = E

x

h

Q

�

y

�1

i=1

�(X

i

); �

y

� �

x

; �

y

� k

i

is the intensity for moving

from x to y on 
on�guration �, �

y

= inf fn � 1 : X

n

= yg is the �rst (non zero)

arrival time to site y of the 
hain starting at site x and �

x;y

is 
on�guration � where

the states of sites x and y were ex
hanged.

In words if a parti
le at site x wants to jump it may go to the �rst empty

site en
ountered before returning to site x following the 
hain X

n

(starting at x)

provided it takes less than k attempts; otherwise the movement is 
an
elled.

By Hille-Yosida's theorem, the 
losure of L

k

generates a 
ontinuous Markov

semi-group S

k

(t) on C(X) whi
h 
orresponds to the k-step ex
lusion pro
ess (�

t

)

t�0

.

Noti
e that when k = 1, (�

t

)

t�0

is the simple ex
lusion pro
ess. An important

property of k-step ex
lusion is that it is an attra
tive pro
ess.

Let I

k

be the set of invariant measures for (�

t

)

t�0

and let S be the set of trans-

lation invariant measures on X. If p(x; y) = p(0; y � x) for all x; y 2 Z and p(:; :) is

irredu
ible then

(I

k

\ S)

e

= f�

�

: � 2 [0; 1℄g ;

where the index e mean extremal and �

�

is the Bernoulli produ
t measure with


onstant density �, i.e. the measure with marginal

�

�

f� 2 X : �(x) = 1g = �:

In this paper we prove 
onservation of lo
al equilibrium for the totally asym-

metri
 pro
ess in the Riemann 
ase i.e.: p(x; x+1) = 1 for all x 2 Z and the initial

distribution is a produ
t measure with densities � to the left of the origin and �

to its right, we denote it by �

�;�

. The derived equation involves a 
ux whi
h is

neither 
on
ave nor 
onvex and appears for the �rst time as a hydrodynami
 limit

of an intera
ting parti
le system. Up to now the \
onstru
tive" proofs for hydrody-

nami
s relied on the 
on
avity of the 
ux, see Andjel & Vares (1987) or the papers

by Sepp�al�ainen (e.g. Sepp�al�ainen (1998)), whose key tool is the Lax-Hopf formula.

The entropy solution for the type of equation we 
onsider was �rst studied in Ballou

(1970). Su
h solutions 
an have entropy sho
ks as well as 
onta
t dis
ontinuities.

Our aim is to take advantage of Ballou's result to dedu
e 
onservation of lo
al equi-

librium also in a 
onstru
tive way, in the spirit of Andjel & Vares (1987). However
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we explain in the last se
tion how to derive hydrodynami
s for general initial pro�les,

and nearest neighbor dynami
s.

In se
tion 3 we prove a law of large numbers for a tagged parti
le in a k-step

ex
lusion pro
ess.

2 The hydrodynami
 equation

2.1 Heuristi
 derivation of the equation

Sin
e the pro
ess is (totally) asymmetri
 we take Euler s
aling. For every r 2 R

de�ne �

"

t

(r) := �

"

�1

t

(["

�1

r℄), where ["

�1

r℄ is the integer part of "

�1

r, for " > 0.

Given a 
ontinuous fun
tion u

0

(x); x 2 R (initial density pro�le), we de�ne a

family of Bernoulli produ
t measures f�

"

u

0

g

">0

on X, by: For all x 2 Z,

�

"

u

0

f� 2 X : �(x) = 1g = u

0

("x):

We 
all f�

"

u

0

g the family of measures determined by the pro�le u

0

. Let u

"

(r; t) :=

R

(S

k

("

�1

t)�

"

0

(r))d�

"

u

0

(�

0

). Then for all r 2 R, u

"

(r; 0) 
onverges to u

0

(r) when "

goes to 0; applying the generator (1) to �

"

t

(r) we have

d

dt

S

k

(t"

�1

) (�

"

0

(r)) = "

�1

S

k

(t"

�1

)

"

�

k�1

X

i=0

i

Y

j=0

�

"

0

(r + j") [1� �

"

0

(r + (i + 1)")℄

+

k�1

X

i=0

i

Y

j=0

�

"

0

(r � j") [1� �

"

0

(r)℄

#

:

Assuming that lo
al equilibrium is preserved (thus expe
tation of produ
ts fa
tor),

and taking expe
tations with respe
t to �

"

u

0

, we obtain

�u

"

�t

(r; t) = "

�1

"

�

k�1

X

i=0

i

Y

j=0

u

"

(r + j"; t) [1� u

"

(r + (i+ 1)"; t)℄

+

k�1

X

i=0

i

Y

j=0

u

"

(r � j"; t) [1� u

"

(r; t)℄

#

:

If we now let " 
onverge to 0, u(r; t) := lim

"!0

u

"

(r; t) should satisfy
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8

>

<

>

:

�u

�t

+

�G

k

(u)

�x

= 0

u(x; 0) = u

0

(x);

(2)

where G

k

represents the 
ux of parti
les:

G

k

(u) =

k

X

j=1

ju

j

(1� u):

This is a non standard form be
ause G

k

is neither 
onvex nor 
on
ave, thus

equation (2) is no longer \a genuinely nonlinear 
onservation law", using the lan-

guage of Lax (1973). To deal with this equation, we have to use an extended version

of non linear Cau
hy problems treated by Ballou (1970).

Remark 2.1

Let k go to in�nity and denote by G

1

the limiting 
ux fun
tion:

G

1

(u) =

u

1� u

:

That 
ase 
orresponds to the totally asymmetri
 long range ex
lusion pro
ess. The

resulting equation is simpler be
ause the 
ux fun
tion G

1

is stri
tly 
onvex. The

hydrodynami
s in this 
ase should follow from the arguments of Aldous & Dia
onis

(1995) for the Hammersley's pro
ess.

For notational simpli
ity, from now on we restri
t ourselves to the 
ase k = 2.

However our arguments 
an be easily extended for all k.

2.2 Hydrodynami
s in the Riemann 
ase

2.2.1 Notation and result

Our main theorem 
hara
terizes the hydrodynami
 (Euler) limit of the 2-step ex
lu-

sion pro
ess at points of 
ontinuity, when the family of initial measures is determined

by a step fun
tion pro�le. From the heuristi
 derivation we would expe
t that in the

hydrodynami
 limit the density pro�le would satisfy equation (2). We show that

the limiting density pro�le at time t is the entropy solution of equation (2) starting

with the initial value u

0

, a step fun
tion pro�le. We now give a brief summary of

4



results 
on
erning the solution of equation (2), due to D.P. Ballou (1970), when u

0

is a step fun
tion. This will motivate the formulation of the theorem as well as some

aspe
ts of the proof.

Existen
e of weak solution to the Cau
hy problem given by equation (2) with

bounded measurable initial 
ondition was proved in Ballou (1970), under the as-

sumptions:

1. G

k

2 C

2

(R).

2. G

00

k

vanishes at a �nite number of points and 
hanges sign at these points.

In order to obtain uniqueness further 
onditions are needed. We require our

solutions to satisfy the:

Condition E: (O.A. Ole��nik)

Let x(t) be any 
urve of dis
ontinuity of the weak solution u(t; x), and let v be

any number lying between u

�

:= u(t; x(t)�0) and u

+

:= u(t; x(t)+0). Then ex
ept

possibly for a �nite number of t,

S[v; u

�

℄ � S[u

+

; u

�

℄;

where

S[v;w℄ :=

G

k

(w)�G

k

(v)

w � v

:

It is known (Ballou (1970)) that the following two 
onditions are ne
essary and

suÆ
ient for a pie
ewise smooth fun
tion u(x; t) to be a weak solution of equation

(2):

1. u(x; t) solves equation (2) at points of smoothness.

2.If x(t) is a 
urve of dis
ontinuity of the solution then the Rankine-Hugoniot


ondition (i.e. d(x(t))=dt = S[u

+

; u

�

℄) holds along x(t).

Moreover 
ondition E is suÆ
ient to ensure the uniqueness of pie
ewise smooth

solutions, whi
h are the entropy solutions to the equation. Hereafter we only deal

with the 
ase k = 2. We denote G(u) := G

2

(u).

If G were 
onvex (
on
ave) only two types of solutions would be possible. We

now des
ribe these two types of solutions.

Let u

0

(x) = �1

fx<0g

+ �1

fx�0g

.

If � > � (� > �), then the speed of 
hara
teristi
s whi
h start from x � 0

(given by G

0

) is greater than speed of 
hara
teristi
s whi
h start from x > 0. If the

interse
tion of 
hara
teristi
s o

urs along a 
urve x(t), then sin
e

S[u

+

; u

�

℄ =

G(�)�G(�)

�� �

= S[�; �℄

5



Rankine-Hugoniot 
ondition will be satis�ed if x

0

(t) = S[�; �℄. Thus

u(x; t) =

�

�; x � S[�; �℄t;

�; x > S[�; �℄t:

is a weak solution. The 
onvexity of G implies that 
ondition E is satis�ed a
ross

x(t). Therefore u(x; t) de�ned above is the unique entropi
 solution in this 
ase and

will be referred to as a sho
k in the sense of Lax (1973).

If � < � (� < �), then the 
hara
teristi
s starting respe
tively from x � 0 and

from x > 0 never meet. Moreover they never enter the spa
e-time wedge between

lines x = �t and x = �t. We 
an 
hoose values in this region to obtain a 
ontinuous

solution, the so-
alled 
ontinuous solution with a rarefa
tion fan: Let h be the

inverse of H := G

0

,

u(x; t) =

8

<

:

�; x � H(�)t;

h(x=t); H(�)t < x � H(�)t;

�; H(�)t < x:

It is possible to de�ne pie
ewise smooth weak solutions with a jump o

urring in the

wedge satisfying the Rankine-Hugoniot 
ondition. But the 
onvexity of G prevents

su
h solutions to satisfy 
ondition E. Thus the 
ontinuous solution with a rarefa
tion

fan is the unique entropi
 solution in this 
ase.

For the 2-step ex
lusion pro
ess, the 
ux fun
tion G is neither 
on
ave nor


onvex. Instead G(u) = u + u

2

� 2u

3

is 
onvex for u < 1=6 and 
on
ave for

u > 1=6. In this 
ase in addition to the sho
k and 
ontinuous solution with a

rarefa
tion fan it is possible to have solutions for whi
h the 
urve of dis
ontinuities

never enters the region of interse
ting 
hara
teristi
s. The quotation in boldfa
e is

the original number of lemmas, prop... in Ballou (1970), but the notation refers to

2-step ex
lusion:

De�nition 2.2 [B def2.1℄

For any u < 1=6, de�ne u

�

:= u

�

(u) as

u

�

= supf� > u : S[u; �℄ > S[v; u℄ 8v 2 (u; �)g:

For any u > 1=6, de�ne u

�

:= u

�

(u) as

u

�

= inff� < u : S[u; �℄ > S[v; u℄ 8v 2 (�; u)g:

6



In other words, for u < 1=6, if we 
onsider the upper 
onvex envelope G




of G on

(u;+1), then u

�

is the �rst point where G





oin
ides with G. In the same way when

u > 1=6, u

�

is the �rst point where the lower 
onvex envelope G




of G on (�1; u)


oin
ides with G. For � < 1=6, �

�

= (1� 2�)=4, and for � > 1=6, �

�

= (1� 2�)=4.

Let h

1

and h

2

be the inverses of H respe
tively restri
ted to (�1; 1=6) and to

(1=6;+1), i.e. h

1

(x) = (1=6)(1 �

p

7� 6x) and h

2

(x) = (1=6)(1 +

p

7� 6x) for

x 2 (�1; 7=6).

The following lemmas are taken from Ballou (1970).

Lemma 2.3 [B lem2.2℄ Let � < 1=6 be given, and suppose that �

�

< 1. Then

S[�; �

�

℄ = H(�

�

).

Lemma 2.4 [B lem2.4℄ Let � < 1=6 be given, and suppose that �

�

<1. Then �

�

is the only zero of S[u; �℄�H(u), u > �.

If � < � < 1=6, the relevant part of the 
ux fun
tion is 
onvex and the unique

entropi
 weak solution is the 
ontinuous solution with a rarefa
tion fan.

If � < � < �

�

(� < 1=6), then H(�) > H(�) if � < � � 1=6, and H(�) > H(�

�

) >

H(�) if 1=6 < � < �

�

sin
e H is de
reasing in this region. Thus H(�) > H(�), whi
h

implies an interse
tion of 
hara
teristi
s: The unique entropi
 weak solution is the

sho
k.

Let � < �

�

< � (� < 1=6): Lemma 2.4 applied to � suggests that a jump from �

�

to � along the line x = H(�

�

)t will satisfy the Rankine-Hugoniot 
ondition. Sin
e �

�

is spe
ially de�ned for this, a solution with su
h a jump will also satisfy 
ondition

E. Therefore if we 
an 
onstru
t a solution with the jump des
ribed above it will

be the unique entropi
 weak solution in this 
ase. Noti
e that sin
e H(�) < H(�

�

),

no 
hara
teristi
s interse
t along the line of dis
ontinuity x = H(�

�

)t. We 
all this


ase 
onta
t dis
ontinuity, following Ballou. The solution is de�ned by

u(x; t) =

8

<

:

�; x � H(�)t;

h

2

(x=t); H(�)t < x � H(�

�

)t;

�; H(�

�

)t < x:

Corresponding 
ases on the 
on
ave side of G are treated similarly.

Let � denote the shift operator. We are able now to state our result.

Theorem 2.5 Let v 2 R, �; � 6= 1=6, and �

�;�

the Bernoulli produ
t measure on Z

with densities � for x � 0 and � for x > 0. Then

lim

t!1

�

�;�

�

[vt℄

S

2

(t) = �

u(v;1)

7



at every 
ontinuity point of u(:; 1), where �

u(v;1)

denotes the produ
t measure with

density u(v; 1) de�ned by:

Case 1. � < � < 1=6: 
ontinuous solution, with a rarefa
tion fan

u(x; 1) =

8

<

:

�; x � H(�);

h

1

(x); H(�) < x � H(�);

�; H(�) < x:

Case 2. � < � < �

�

, (� < 1=6): entropy sho
k

u(x; 1) =

�

�; x � S[�; �℄;

�; x > S[�; �℄:

Case 3. � < �

�

< �, (� < 1=6): 
onta
t dis
ontinuity

u(x; 1) =

8

<

:

�; x � H(�);

h

2

(x); H(�) < x � H(�

�

);

�; H(�

�

) < x:

Case 4. 1=6 < � < �: 
ontinuous solution, with a rarefa
tion fan

u(x; 1) =

8

<

:

�; x � H(�);

h

2

(x); H(�) < x � H(�);

�; H(�) < x:

Case 5. � > � > �

�

, (� > 1=6): entropy sho
k

u(x; 1) =

�

�; x � S[�; �℄;

�; x > S[�; �℄:

Case 6. � > �

�

> �, (� > 1=6): 
onta
t dis
ontinuity

u(x; 1) =

8

<

:

�; x � H(�);

h

1

(x); H(�) < x � H(�

�

);

�; H(�

�

) < x:

Remark 2.6

For any k � 2 the pro�les will be of the same kind, be
ause G

k

has only one in
e
tion

point between 0 and 1 and is �rst 
onvex then 
on
ave.

Remark 2.7

Comparing with hydrodynami
s of simple ex
lusion we observe that k-step ex
lusion

(k � 2) has not only a stable in
reasing sho
k (Case 5) and a de
reasing 
ontin-

uous solution (Case 1) but also a stable de
reasing sho
k (Case 2), an in
reasing


ontinuous solution (Case 4) and two 
onta
t dis
ontinuities (Cases 3 and 6).

8



2.2.2 Proof of Theorem 2.5

It follows the s
heme introdu
ed in Andjel & Vares (1987), where the authors ob-

tained the hydrodynami
 limit for the one-dimensional zero-range pro
ess in the

Riemann 
ase, i.e. the hydrodynami
 equation

8

>

<

>

:

�u

�t

+

��(u)

�x

= 0

u(x; 0) = u

0

(x) = �1

fx<0g

+ �1

fx�0g

was derived. There �, the mean 
ux of parti
les through the origin, was a 
on
ave

fun
tion. Therefore, their proof used both the monotoni
ity of the pro
ess, still

valid here, and the 
on
avity of the 
ux, that we have to repla
e by an ad ho
 use

of the properties of the solution of (2).

Informally speaking, they �rst showed that a weak Ces�aro limit of (the measure

of) the pro
ess is an invariant and translation invariant measure. Then they showed

that the (Ces�aro) limiting density inside a ma
ros
opi
 box is equal to the di�eren
e

of the edge values of a 
ux fun
tion. These propositions were based on monotoni
ity,

and on the 
hara
terization of invariant and translation invariant measures (both

valid for k-step as well),thus we 
an quote them (with appropriate notation for the

k-step), and take them for granted.

Lemma 2.8 [AV 3.1℄ Let � be a probability measure on f0; 1g

Z

su
h that

(a) �

�

� � � �

�

for some 0 � � < � � 1, (b) either ��

1

� � or ��

1

� �.

Then any sequen
e T

n

! 1 has a subsequen
e T

n

k

for whi
h there exists D dense

(
ountable) subset of R su
h that for ea
h v 2 D,

lim

k!1

1

T

n

k

Z

T

n

k

0

��

[vt℄

S

2

(t)dt = �

v

for some �

v

2 I

2

\ S.

Lemma 2.9 [AV 3.2℄ For v 2 D, we 
an write �

v

=

R

�

�




v

(d�), where 


v

is a

probability on [�; �℄. Also, if u < v are in D,

lim

k!1

�S

2

(T

n

k

)

0

�

1

T

n

k

[vT

n

k

℄

X

[uT

n

k

℄

�(x)

1

A

= F (v)� F (u) (3)

with, for w 2 D, F (w) =

R

[w��G(�)℄


w

(d�):

9



The diÆ
ult part is then to prove that 


v

is in fa
t the Dira
 measure 
on
en-

trated on u(x; 1). They did it in Lemma [AV 3.3℄ and Theorem [AV 2.10℄ using the


on
avity of their 
ux fun
tion.

For k-step ex
lusion, at this point we will have to look separately at the six 
ases

given in the theorem.

To 
on
lude, Andjel & Vares had to prove that the Ces�aro limit implies a weak

limit, through the following propositions, based on monotoni
ity. We will use these

results also without proof.

Proposition 2.10 [AV 3.4℄ Let � = �

�;�

. If

�

v

=

�

�

�

; if v 2 D; v < S[�; �℄

�

�

; if v 2 D; v > S[�; �℄

then

lim

T!1

1

T

Z

T

0

��

[vt℄

S

2

(t)dt = �

v

:

Proposition 2.11 [AV 3.5℄ If � satis�es

(a) � � �

�

, (b) ��

1

� �, (
) there exists v

0

�nite so that

lim

T!1

1

T

Z

T

0

��

[vt℄

S

2

(t)dt = �

�

for all v > v

0

. Then

lim

t!1

��

[vt℄

S

2

(t) = �

�

for all v > v

0

:

Proof of Theorem 2.5 in Cases 2 and 3. In 
ase 1, the proof is not di�erent

from the one given in Andjel & Vares (1987) sin
e G is 
onvex in the relevant region;

thus we omit it. In 
ase 2, G is not 
onvex in the relevant region, therefore we supply

a proof, though it is quite 
lose to the original one. Case 3 uses ideas from 
ases 1

and 2 and introdu
es some new ideas to deal with 
ompli
ations arising from the

non-
onvexity of G. Cases 4-6 are symmetri
 to 
ases 1-3 in the sense that the roles

played by 
onvexity and 
on
avity are ex
hanged.

The proof has 3 steps. The main ingredients are monotoni
ity, and inequalities

relying on the properties of S[:; :℄; G; H given before.

First step.

10



Using monotoni
ity of the 2-step ex
lusion, we 
an pro
eed as in the beginning

of the proof of Lemma [AV3.3℄, and get two �nite values v and �v so that: If v 2 D

and v > �v, then 


v

= Æ

�

, while 


v

= Æ

�

if v < v.

Se
ond step, preliminary.

Let u < v, both in D. Attra
tiveness of the pro
ess (sin
e �

�

� �

�;�

� �

�

) and

(3) imply

(v � u)� � v

Z

�


v

(d�)�

Z

G(�)


v

(d�)� u

Z

�


u

(d�) +

Z

G(�)


u

(d�)

� (v � u)�

(4)

(i) Taking u < v, the �rst step gives 


u

= Æ

�

, so the se
ond inequality of (4) is

simpli�ed in

v

Z

�


v

(d�)�

Z

G(�)


v

(d�)� u�+G(�) � (v � u)�

whi
h 
an be written

Z

[�;�℄

(G(�)�G(�))


v

(d�) � v

Z

[�;�℄

(�� �)


v

(d�) (5)

(ii) Similarly, for �v < v, 


v

= Æ

�

, and the �rst inequality of (4) reads

u

Z

[�;�℄

(�� �)


u

(d�) �

Z

[�;�℄

(G(�)�G(�))


u

(d�) (6)

Proof for Case 2: � < � < �

�

; � < 1=6:

The de�nition of �

�

implies that for every � 2 (�; �)

G(�)�G(�)

�� �

�

G(�)�G(�)

�� �

= S[�; �℄;

so that inequality (5) for v � v < S[�; �℄ (v 2 D) yields

v

Z

[�;�℄

(�� �)


v

(d�) � S[�; �℄

Z

[�;�℄

(�� �)


v

(�):

Sin
e v < S[�; �℄ we 
on
lude that 


v

= Æ

�

.

Starting from inequality (6) with �v � u > S[�; �℄ (u 2 D) and pro
eeding in a

similar manner we 
an show that 


u

= Æ

�

.

11



Proof for 
ase 3: � < �

�

< �; � < 1=6.

Se
ond step, part 1.

Let u < v, both in D, u < v, and v < H(�). On [�

�

; �), G is 
on
ave, thus for

every � 2 [�

�

; �℄

H(�) < S[�;�℄ � H(�

�

): (7)

If � 2 [�; �

�

) then from the de�nition of �

�

it follows that

S[�; �

�

℄ � H(�

�

): (8)

We de
ompose [�; �℄ = [�; �

�

℄ [ (�

�

; �℄, and (5) be
omes

v

Z

[�;�

�

℄

(�� �

�

)


v

(d�) + v

Z

[�;�

�

℄

(�

�

� �)


v

(d�) + v

Z

(�

�

;�℄

(�� �)


v

(d�) �

Z

[�;�

�

℄

(G(�)�G(�))


v

(d�) +

Z

(�

�

;�℄

(G(�)�G(�))


v

(d�):

(9)

By (8)

Z

[�;�

�

℄

(G(�)�G(�))


v

(d�) =

Z

[�;�

�

℄

[(G(�)�G(�

�

) +G(�

�

)�G(�)℄ 


v

(d�)

�

Z

[�;�

�

℄

[(�� �

�

)S[�

�

;�℄ +H(�

�

)(�

�

� �)℄ 


v

(d�)

and by (7)

Z

(�

�

;�℄

(G(�)�G(�))


v

(d�) � H(�)

Z

(�

�

;�℄

(�� �)


v

(d�):

Those two inequalities together with (9) give

(v � S[�

�

;�℄)(�� �

�

)

Z

[�;�

�

℄




v

(d�) + (v �H(�

�

))

Z

[�;�

�

℄

(�

�

� �)


v

(d�)

+(v �H(�))

Z

(�

�

;�℄

(�� �)


v

(d�) � 0:

Sin
e v < H(�), by (7), the only possibility is 


v

= Æ

�

.

Se
ond step, part 2.
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Let u; v 2 D, su
h that v > �v, and H(�

�

) < u < v. We de
ompose ea
h integral

of (6) on the two intervals [�; �

�

℄ and (�

�

; �℄.

Z

(�

�

;�℄

(G(�)�G(�))


u

(d�)

=

Z

(�

�

;�℄

(G(�)�G(�

�

))


u

(d�) +

Z

(�

�

;�℄

(G(�

�

)�G(�))


u

(d�)

By de�nition of �

�

and by Lemma 2.3, for all � 2 [�; �

�

℄,

G(�)�G(�) � H(�

�

)(�� �);

and G being stri
tly 
on
ave on (�

�

; �℄, we have for all � 2 [�

�

; �℄

G(�)�G(�

�

) � H(�

�

)(�� �

�

):

Thus by (6)

u

Z

[�;�

�

℄

(�� �)


u

(d�) + u

Z

(�

�

;�℄

(�� �

�

)


u

(d�) + u

Z

(�

�

;�℄

(�

�

� �)


u

(d�)

�

Z

[�;�

�

℄

H(�

�

)(�� �)


u

(d�) +

Z

(�

�

;�℄

H(�

�

)(�� �

�

)


u

(d�)

+

Z

(�

�

;�℄

H(�

�

)(�

�

� �)


u

(d�)

whi
h 
an be written

(u�H(�

�

))

�

Z

[�;�

�

℄

(�� �)


u

(d�) +

Z

(�

�

;�℄

(�� �

�

)


u

(d�)

+

Z

(�

�

;�℄

(�

�

� �)


u

(d�)

�

� 0:

Sin
e u�H(�

�

) > 0, this implies

Z

[�;�℄

(�� �)


u

(d�) = 0

Therefore we 
on
lude 


u

= Æ

�

.

Se
ond step, 
on
lusion.

13



Using the two pre
eding parts, attra
tivity, Propositions 2.10 and 2.11, we 
on-


lude in 
ase 3

lim

t!1

�

�;�

�

[vt℄

S

2

(t) =

�

�

�

; if v < H(�)

�

�

; if v > H(�

�

)

(10)

and in 
ase 2

lim

t!1

�

�;�

�

[vt℄

S

2

(t) =

�

�

�

; if v < S[�; �℄

�

�

; if v > S[�; �℄

(11)

Third step, �rst part.

Let u

1

; v; v

1

2 D, u

1

< H(�) < v < H(�

�

) < v

1

, su
h that u

1

and v

1

belong to

an interval where G is 
on
ave. By attra
tivity,

lim sup

t!1

�

�;�

S

2

(t)

0

�

1

t

[vt℄

X

[u

1

t℄

�(x)

1

A

� (v � u

1

)� (12)

The se
ond step and (3) imply

lim

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[u

1

t℄

�(x)

1

A

= v

1

��G(�)� u

1

�+G(�)

whi
h, 
ombined with (12) gives

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�) +G(�)� v� (13)

Sin
e H(�) < v < H(�

�

), there exists some �, �

�

< � < �, with v = H(�), so that

� = h

2

(v). Let � < �

0

< �, we now apply (13) to �

�

0

;�

, and we use attra
tivity

through �

�

0

;�

� �

�;�

to get

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� lim inf

t!1

�

�

0

;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�) +G(�

0

)� v�

0

(14)
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By (3) again,

lim inf

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[vt℄

�(x)

1

A

� v

1

��G(�)� v

Z

[�;�℄

�


v

(d�) +

Z

[�;�℄

G(�)


v

(d�)

whi
h, together with (14), if we make �

0

! �, gives

G(�)� v� �

Z

[�;�℄

(G(�)� v�)


v

(d�) (15)

Sin
e G(�) is 
onvex when � 2 (�; 1=6) and 
on
ave when � 2 (1=6; �), for all v,

G(�)� v� has at most two 
riti
al points determined by the 
ondition G

0

(�) = v.

One satis�es 1=6 < � < � and is a lo
al maximum, the other (when it exists) is a

lo
al minimum with � < � < 1=6. We want to 
on
lude that the lo
al maximum is

a global maximum when � < � < �. We know from Lemma (2.3) that

G(�

�

)�G(�) = (�

�

� �)H(�

�

)

whi
h implies, sin
e v = H(�) < H(�

�

),

G(�

�

)� v�

�

> G(�)� v�

Be
ause G(�) � v� is in
reasing in (�

�

; �) (re
all that H(�) = v) we have: For all

� 2 (�

�

; �)

G(�)� v� > G(�

�

)� v�

�

> G(�)� v�

We 
on
lude that � is a global maximum:

max

�����

[G(�)� v�℄ = G(�)� v�

thus 


v

= Æ

�

= Æ

h

2

(v)

.

Third step, se
ond part.

This part follows 
losely the argument in Andjel & Vares (1987), but we detail

it for the sake of 
ompleteness. Sin
e the measures

1

T

R

T

0

�

�;�

�

[vt℄

S

2

(t) dt depend

monotoni
ally on v and form a relatively 
ompa
t set, we have for all v,

lim

T!1

1

T

Z

T

0

�

�;�

�

[vt℄

S

2

(t) dt = �

h

2

(v)

:

15



It remains to prove that

lim

t!1

�

�;�

�

[vt℄

S

2

(t) = �

h

2

(v)

when H(�) < v < H(�

�

) (by 
ontinuity of h

2

, this result will also be valid at H(�)).

For this, let ~�

v

be a weak limit of �

�;�

�

[vt℄

S

2

(t). It is enough to show

(a) ~�

v

� �

h

2

(v)

; (b) ~�

v

(�(0)) = h

2

(v):

(a) Let � = h

1

(v), with H(�) < v < H(�

�

), v = H(�). Let �

�

<

~

� < � < �, then

v < H(

~

�) and �

~

�;�

�

[vt℄

S

2

(t) � �

�;�

�

[vt℄

S

2

(t). Added to (10), this yields

lim

t!1

�

~

�;�

�

[vt℄

S

2

(t) = �

~

�

� lim

t!1

�

�;�

�

[vt℄

S

2

(t) = ~�

v

:

Hen
e, by 
ontinuity, if

~

� 
onverges to �,

~�

v

� �

�

= �

h

2

(v)

:

(b) Let u

1

< H(�) < H(�

�

) < v

1

. By the de�nition of u(x; t) in that 
ase,

Z

v

1

u

1

u(x; 1) dx =

Z

H(�)

u

1

� dx+

Z

H(�

�

)

H(�)

h

2

(x) dx+

Z

v

1

H(�

�

)

� dx

= �(H(�)� u

1

) +

Z

�

�

�

�H

0

(�) d� + �(v

1

�H(�

�

))

= v

1

�� u

1

��G(�) +G(�)

where we have integrated by parts the integral of the se
ond line (derived by a


hange of variables); therefore, by (3),

lim

t!1

�

�;�

S

2

(t)

0

�

1

t

[v

1

t℄

X

[u

1

t℄

�(x)

1

A

=

Z

v

1

u

1

u(x; 1) dx (16)

and (b) follows from (16) and (a), with the same argument as in [2℄ p.332 (proof of

Theorem 3.2), based on monotoni
ity.
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3 Asymptoti
 behavior of a tagged parti
le

We introdu
e here an interpretation of the k-step ex
lusion dynami
s valid in the

totally asymmetri
 
ase. Up to now we 
onsidered that a parti
le might jump from

x to the �rst empty site in fx+1; :::; x+kg. If we want to leave the parti
les ordered

we 
ould equally say that the parti
le at x pushes the \pa
k" of (� k) neighboring

parti
les in front of it, ea
h one moving of one unit to the right. In other words,

if there is no parti
le at site x + 1 then the parti
le at site x goes to site x + 1; if

there is one parti
le at site x + 1 and no parti
le at site x + 2 then the parti
le at

x pushes the parti
le of site x+ 1 to site x+ 2 and o

upies site x+ 1; and so on...

Then the generator reads

L

k

f(�) =

X

x2Z

k�1

X

i=0

i

Y

j=0

�(x+ j) (1� �(x+ i + 1))

�

f(�

x;x+1;:::;x+i+1

)� f(�)

�

(17)

where

�

x

1

;x

2

;:::;x

l

(u) =

8

<

:

�(x

l

) if u = x

1

;

�(x

i�1

) if u = x

i

; i = 2; :::; l;

�(u) otherwise:

It is easy to see, 
omparing (17) to (1), that they do 
orrespond in this setting,

be
ause we do not label the parti
les. The interest of (17) w.r.t. (1) is that it keeps

tra
k of the parti
les' order. We will need this interpretation in the next se
tion.

Similarly, we de�ne a Tagged \Pushing" Parti
le, and the generator of the k-step

ex
lusion pro
ess as seen from this Tagged Pushing Parti
le is

e

L

k

(�) =

k�1

X

i=0

X

x6=0;�1;:::;�(i+1)

i

Y

j=0

�(x + j) (1� �(x+ i+ 1))

�

f(�

x;x+1;:::;x+i+1

)� f(�)

�

+

k

X

n=1

n�1

Y

m=1

�(m)(1� �(n))[f(�

1

�

0;1;:::;n

)� f(�)℄

+

k�1

X

n=1

k�n

X

l=1

�1

Y

m=�l

�(m)

m�1

Y

i=1

�(i)(1� �(n))

�

f(�

1

�

�l;:::;0;:::;n

)� f(�)

�

:

To be 
learer, let us write and 
omment it for k = 2.

e

L

2

(�) =

X

x6=0;�1

�(x)(1� �(x + 1))

�

f(�

x;x+1

)� f(�)

�

(18)
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+(1� �(1))

�

f(�

1

�

0;1

)� f(�)

�

(19)

+

X

x6=0;�1;�2

�(x)�(x+ 1)(1� �(x + 2))

�

f(�

x;x+1;x+2

)� f(�)

�

(20)

+�(1)(1� �(2))

�

f(�

1

�

0;1;2

)� f(�)

�

(21)

+�(�1)(1� �(1))

�

f(�

1

�

�1;0;1

)� f(�)

�

: (22)

Part (18) is simple ex
lusion involving sites away from the origin, part (19) 
orre-

sponds to the \
lassi
al" tagged parti
le for simple ex
lusion. Part (20) is a \stri
tly"

2 steps ex
lusion involving sites away from the origin. Part (21) des
ribes the \push-

ing" of the tagged parti
le. Finally in part (22) the tagged parti
le is \pushed" by

another parti
le.

A straightforward adaptation of the simple ex
lusion 
ase (see Ferrari (1986))

gives

Theorem 3.1 The Palm measure b�

�

of �

�

(i.e. the measure onX de�ned by b�

�

(:) =

�

�

(:j�(0) = 1)) is invariant and ergodi
 for the k-step ex
lusion pro
ess as seen from

a tagged pushed parti
le.

Sket
h of proof: For instan
e when k = 2 it is enough to show

�f�(�1)�(0)(1� �(1))f(�

�1;0;1

)g = �f�(0)�(1)(1� �(2))f(�

1

�

0;1;2

)g

and

�f�(�2)�(�1)(1� �(0))f(�

�2;�1;0

)g = �f�(�1)�(0)(1� �(1))f(�

1

�

�1;0;1

)g

whi
h are obvious for any � 2 S (re
all that S is the set of translation invariant

measures on X).

Theorem 3.2 Law of large numbers for the Tagged Pushing Parti
le (k = 2).

For a 2-step ex
lusion pro
ess with initial distribution �

�

, if Y (t) denotes the

position at time t of a Tagged Pushing Parti
le starting at the origin then

lim

t!1

Y (t)

t

= (1� �)(1 + 2�) P

b�

�

a:s:
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Proof: Using the notation of Ferrari (1992a) pp. 41-43 we de�ne the instantaneous

in
rement of the position of the Tagged Pushing Parti
le by

 (�) := lim

h!0

E(Y (t + h)� Y (t)jY

t

= x)

h

= (1� �(x+ 1)) + �(x� 1)(1� �(x+ 1)) + �(x+ 1)(1� �(x+ 2)):

So

Z

 d�

�

= 1� �+ 2�(1� �):

Furthermore lim

h!0

E

�

�

(Y (t+h)�Y (t))

2

=h < +1 so that the 
onditions of theorem

9.2 of Ferrari (1992a) are satis�ed, whi
h gives the result.

Remark 3.3

Referring to results of Guiol (1999), we noti
e that a Tagged Pushing Parti
le X

t

behaves as a regular tagged parti
le in the k-step ex
lusion. Indeed, intuitively,

the \regular" tagged parti
le 
an make long jumps, so is expe
ted to move faster,

but it 
annot be pushed; and the rate at whi
h the Tagged Pushing Parti
le moves


ompensates exa
tly those long jumps.

4 Generalizations

1. We obtained 
onservation of lo
al equilibrium for the Riemann 
ase. It 
an be

generalized to an initial produ
t measure with a non-
onstant pro�le of bounded vari-

ation following the papers of Rezakhanlou (1991) and Landim (1993) (see also Kipnis

& Landim (1999) 
hapters 8 and 9). Indeed Condition E is equivalent to Kru�zkov

entropy inequality (see Godlewski & Raviart(1991), Lemma 6.1 p.88) whi
h is the

key tool of the latter proofs. Moreover, sin
e we are working with a one-dimensional

totally asymmetri
 pro
ess, we 
an equivalently 
onsider its interpretation de�ned

by (17); this way, parti
les do not jump over ea
h other. We 
an therefore follow

Se
tion 6 of Rezakhanlou (1991) whi
h 
ontains a two-blo
k estimate valid only for

one-dimensional nearest neighbor pro
esses, and enables to 
on
lude the derivation

of hydrodynami
 equation without using Young measures. The key point 
onsists

in 
oupling two versions of the pro
ess, to prove that the number of sign 
hanges

between them 
an only de
rease, due to attra
tivity and the redu
tion to a one-

dimensional nearest neighbor 
ase. For k-step ex
lusion, this result is a straightfor-

ward adaptation of Liggett (1976), Lemma 5.1. For the same reason, extension to

deterministi
 initial 
on�gurations is possible, using Venkatsubramani (1995).
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2. We treated only totally asymmetri
 k-step ex
lusion but our proof is also valid

for nearest neighbor asymmetri
 transition rates, whi
h lead to a 
ux fun
tion with

the same properties. However one has to 
ompute 
arefully this fun
tion, due to

the 
omplexity of the k-step dynami
s. For instan
e for k = 5 and transition rates

p(x; x + 1) = p, p(x; x� 1) = q = 1� p, p > q, we obtain

G

p;q

5

(u) = u(1� u) [(p� q) f(1 + 2u) + 3u

2

(1� pq)

+4u

3

(1� 2pq) + 5u

4

(1� 3pq + p

2

q

2

)g+ 3u

2

2p

4

q℄ :

Indeed the last term 
orresponds to a \
y
le" jump: To go from x to x + 3 when

sites x+ 1 and x+ 2 are o

upied, the parti
le follows the path (x; x+ 1; x+ 2; x+

1; x+ 2; x+ 3).

The extension to an initial produ
t measure with a general pro�le is still possible,

using Rezakhanlou (1991) and Landim (1993), but with the help of Young measures.
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