
MAXWELL THEORY IS STILL A SOURCE OF SURPRISES

J. E. Maiorino

Instituto de F��sia \Gleb Wataghin" { Uniamp

C.P. 6165, 13083-970, Campinas, SP, Brasil

e-mail: maiorino�ime.uniamp.br

and

W. A. Rodrigues, Jr.

Centro de Pesquisa e Tenologia { UNISAL

Al. Almeida Garret, 267

13087-290, Campinas, SP, Brasil

and

Instituto de Matem�atia, Estat��stia e Computa�~ao Cient���a

Ime - Uniamp C.P. 6065

13083-970, Campinas, SP, Brasil

e-mail: walrod�ime.uniamp.br , walrod�pte.br

Abstrat

From time to time there are laims in the literature that Maxwell the-

ory is inonsistent even at the lassial level. In this paper we analyse a

new eletrodynamis proposed by Chubykalo and Smirnov-Rueda (C&SR)

whih has been proposed beause C&SR thought that they \demonstrated"

through an example that the Li�enard-Wiehert potentials are inadequate and

lead to inonsistenies when applied to the �elds generated by a uniformly

aelerated harge. We show that this partiular laim is non sequitur by ex-

hibiting the serious aws in C&SR alulations. We omment also on several

other misleading statements in their alternative formulation of eletrodynam-

is. The \separated potential method" disussed by C&SR leads them to

state that the omplete inhomogeneous wave equation for the potentials must

be separated in a Poisson equation (PE) (desribing in�nite spread veloity

of longitudinal perturbations) plus a free wave equation. We disuss the in-

onsisteny of these results and to show how lassial eletrodynamis is a

omplex and triky subjet we present genuine and exat non-transverse so-

lutions of Maxwell equations that travel with speed v 6= 1. Superluminal

solutions alled SEXWs are disussed sine �nite aperture approximations to

them have been produed reently. The existene of SEXWs leads us to dis-

uss the meaning of the Poynting vetor. In partiular we show that in the

ase of steady state eletromagneti on�gurations the right use of the Poynt-

ing vetor is ompatible with existing experiments whih disprove the results

1



obtained by C&SR with their \new eletrodynamis". Finally we omment

on a reent exat solution of the free Maxwell equations, obtained without the

Green's funtion method, whih implies that a uniformly aelerated harge

does not radiate, a result that really puts doubts on the general appliability

of the Li�enard-Wiehert potentials, sine it ontradits their predition, at

least for this ase.

1. Introdution

In

1

(and also in errata

2

and

3

) Chubykalo and Smirnov-Rueda (C&SR) intro-

due a new eletromagneti theory in substitution to Maxwell theory. They think

to have enough motivation for the enterprise sine they laim that Maxwell theory

produes errors when applied in many physial situations. Among the errors they

laim to have proved through an example that the Li�enard-Wiehert potentials are

inadequate and lead to inonsistenies of the onventional lassial eletrodynamis.

C&SR statement is based on their analysis of the potentials and �elds generated

by a uniformly aelerated harge. Aording to them the x-omponent E

x

of the

eletri �eld produed by a uniformly aelerated harge moving in the x diretion

and alulated with the Li�enard-Wiehert potentials does not satisfy the wave equa-

tion 2E

x

= 0 for spaetime points (t; ~x) not oupied by the harge. If their result

were true, it would imply in a serious inonsisteny. However, in setion 1 we show

that they made serious mistakes and when the orret alulations are done we get

2E

x

= 0, as it should. All our alulations have been heked using Redue 3.0.

In setion 3 we omment on other laims by C&SR having to do with their

reformulation of lassial eletrodynamis. In setions III and IV of their paper

C&SR introdued their \separated potential method" for solving the inhomoge-

neous wave equation for the vetor potential (A

�

) = (';

~

A). They separated '

and

~

A as ' = '

0

+ '

�

,

~

A =

~

A

0

+

~

A

�

where ('

0

;

~

A

0

) solves a Poisson equation

and ('

�

;

~

A

�

) solves the homogeneous wave equation. They laim that the Poisson

equation satis�ed by ('

0

;

~

A

0

) may be \onsidered as a wave equation with in�nite

spread veloity of longitudinal perturbations". This result forgot all the lassial

results onerning solutions of ellipti and hyperboli equations and is nonsequitur.

Also from the physial point of view, C&SR's proposal is at omplete variane with

the QED desription of e.g. the Coulomb �eld

4

and they tried to relate their \longi-

tudinal perturbations" to the so alled B(3) theory of Evans

5;6;7

, reated to explain

the so alled inverse Faraday e�et and where that author laims that the normal

transverse solution of the free Maxwell equations is always aompanied by a longi-
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tudinal (B(3)) magneti �eld whih is phase free. Evans' theory is aording to our

view misleading, but it deserves a whole omment whih will not be presented here.

Instead, we prefer to show that the free Maxwell equations have \extraordinary"

genuine and exat solutions whih are not transverse waves and whih propagate

with speed v 6= 1

8;9;10

. In partiular superluminal eletromagneti �eld on�gura-

tions alled SEXWs have been produed reently

11

. See also a omment on the

experiment desribed in

11

in

27

.

The existene of SEXWs lead us to examine more losely the meaning of the

Poynting vetor and to show expliitly that C&SR statement (se. V) that \the ux

of eletromagneti energy in the steady satate has no sense sine no presene of the

free eletromagneti �eld is supposed in this ase" is simply wrong. Indeed, there

exists also an experimental veri�ation that steady state eletromagneti �elds (even

stati ones) store angular momentum

12

.

In setion 4 we present our onlusions and briey disuss a new solution for the

eletromagneti �eld produed by a uniformly aelerated harge found by Turakulov

13

(without using the method of Green's funtions) whih shows no presene of

radiation. This solution gives results di�erent from the one obtained through the use

of the Li�enard-Wiehert potentials and, in some sense, shows that C&SR's ritiism

of the use of these potentials has some reason. Anyway, Turakulov's new solution

reopens an old problem that has been disussed by eminent physiists, e.g. Born

14

and Pauli

15

(see e.g.

16;17

for a disussion).

2. Li�enard-Wiehert Potentials Do Not Imply In Any Inonsisteny

Let (M; g;D) be Minkowski spaetime, M ' R

4

, g is the Lorentz metri and D

is the Levi{Civita onnetion of g. Let hx

�

i be a Lorentz-Einstein oordinate hart

for M : x

0

= t, x

1

= x, x

2

= y, x

3

= z. We use, in what follows, units suh that

 = 1. In this setion we show that, ontrary to C&SR statement, the x omponent

E

x

(t; ~x) of the eletri �eld generated by a uniformly aelerated harge, moving in

the x diretion, satis�es the wave equation for all x 2M not oupied by the harge,

i.e.,

2E

x

(t; ~x) = 0 : (1)

The fundamental aw in C&SR's alulations is that they use the lassial ,

instead of the relativisti equation of motion for a uniformly aelerated harge.

This error is lear in their eq.(5). The use of the wrong equation of motion produes

errors in the alulations of the seond order derivatives of E

x

, whih is an impliit

funtion of t and ~x due to the retarded Green's funtion used to obtain the Li�enard-
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Wiehert potential.

The orret alulations are: Let � : R � I 7!M , � : s 7! �(s) be the world-line

of a uniformly aelerated harge (hyperboli motion) where s is the proper time.

The equations of motion for the partile moving in the x diretion along the x axis

are, as it is well known,

x

1

(�(s)) =

1

a

osh(as) ; x

0

(�(s)) =

1

a

sinh(as) ; (2)

with x

2

(�(s)) = x

3

(�(s)) = 0. Then, writing

x(�(t)) � x(t) =

1

a

p

1 + a

2

t

2

; (3)

we an proeed as follows.

We begin by writing down the omplete solution of Maxell's equations for a

point harge q endowed with a onstant aeleration, obtained with the help of the

Li�enard-Wiehert potentials. The eletri �eld

~

E at a spaetime point (t; ~x) is

~

E(t; ~x) = q

(

~

R� R~v

0

=)(1� v

2

0

=

2

)

(R �

~

R:~v

0

=)

3

+ q

~

R� [(

~

R� R~v

0

=)�

_

~v

0

=

2

℄

(R�

~

R:~v

0

=)

3

(4)

In this equation R = j

~

Rj, v = j~vj and

~

R = ~x � ~x

0

, where ~x

0

is the position of the

harge at an instant of time t

0

(retarded time) given by the impliit funtion

F (~x; ~x

0

; t; t

0

) = t� t

0

�

R



= 0 ; (5)

R = [(x� x

0

)

2

+ (y � y

0

)

2

+ (z � z

0

)

2

℄

1=2

(6)

and where ~v

0

is the veloity of the harge at time t

0

and

_

~v

0

its aeleration. To

simplify our equations we now put  = 1 and q = 1. We also suppose that the

motion takes plae along the x axis, so that

~

R = (x � x

0

; y; z; ), ~v

0

= (v

0

; 0; 0) and

_

~v

0

= ( _v

0

; 0; 0). The eletri �eld at an observation point (t; ~x) is then

~

E(t; ~x) =

(1� v

2

0

)(x� x

0

� Rv

0

; y; z)

[R� (x� x

0

)v

0

℄

3
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+

(�y

2

� z

2

; (x� x

0

)y; (x� x

0

)z) _v

0

[R� (x� x

0

)v

0

℄

3

: (7)

The x omponent of the eletri �eld at an arbitrary point (t; ~x) of spaetime

(with the obvious exeption of the very position of the harge) is then

E

x

=

(1� v

2

0

)[(x� x

0

)� Rv

0

℄� r

2

_v

0

[R� (x� x

0

)v

0

℄

3

; (8)

where we make use of ylindrial oordinates for whih y

2

+ z

2

= r

2

and where

R = [r

2

+ (x� x

0

)

2

℄

1=2

. The �nal expression for the E

x

is obtained by replaing x

0

,

v

0

and _v

0

by their values at time t

0

, aording to eq.(3). We simplify the alulations

by putting a = 1. We have

x

0

= x(t

0

) =

q

1 + t

2

0

; (9)

v

0

= v(t

0

) =

t

0

q

1 + t

2

0

=

t

0

z

0

; (10)

_v

0

=

1

(1 + t

2

0

)

3=2

= z

�3

0

: (11)

The �nal result is written

E

x

=

x

0

(x� x

0

)� Rt

0

� r

2

[x

0

R� t0(x� x

0

)℄

3

=

N

D

3

; (12)

with

N = x

0

(x� x

0

)�Rt

0

� r

2

(13)

and

D = x

0

R� t

0

(x� x

0

) : (14)

Thus E

x

beomes an expliit funtion of N and D, whih are in turn expliit

funtions of r, z and t

0

only. The variable t

0

is itself an impliit funtion of r, z and

t through equation (5).

Now, if � is one of the independent variables r, z or t, the �rst derivative of E

x

with respet to � is simply

�E

x

��

=

DN

�

� 3ND

�

D

4

; (15)

where
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D

�

=

�D

��

+

�D

�t

0

�t

0

��

(16)

and

N

�

=

�N

��

+

�N

�t

0

�t

0

��

(17)

are the partial derivatives of N and D with respet to the � variable. The last

derivative in the r.h.s. of eqs. (16) and (17) is given by the formula

�t

0

��

= �

�F=��

�F=�t

0

: (18)

After doing the alulations and olleting terms we obtain for the �rst order

derivatives of E

z

:

�E

x

�r

=

�r[D

2

+ 3N(N + r

2

+ 1)℄

D

5

; (19)

�E

x

�x

=

x[D

2

� 3N(N + r

2

)℄

D

5

; (20)

�E

x

�t

=

�(t

0

+R)[D

2

� 3N(N + r

2

)℄

D

5

: (21)

This proedure thus greatly simpli�es the alulations. For instane, the seond

derivative of E

x

with respet to r, aording to (16), (17) and (19), is given by

�

2

�r

2

(E

x

) =

�

�r

 

�E

x

�r

!

+

�

�N

 

�E

x

�r

!

N

r

+

�

�D

 

�E

x

�r

!

D

r

: (22)

Notie that the partial derivative �=�r on the r.h.s. of (22) refers only to the expliit

dependene of �E

x

=�r on r, as the dependene impliit in the N and D terms is

dealt with by using the hain rule.

The �nal alulations are still not easy, so that we used Redue to perform

them. The result of replaing all derivatives in the l.h.s. of the homogeneous wave

equation (HWE) for E

x

,
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�

2

�r

2

E

x

+

1

r

�

�r

E

x

+

�

2

�x

2

E

x

�

�

2

�t

2

E

x

= 0 ; (23)

is a fration with denominator x

0

RD

7

6= 0 and whose numerator turns out to be

identially zero. This result shows that the x omponent of the eletri �eld alu-

lated with the Li�enard-Wiehert potentials does indeed satisfy the HWE in vauum,

for the points not oupied by the harge.

3. Non transverse solutions of the free Maxwell equations

Due to their wrong alulations using the Li�enard-Wiehert potentials for the

uniformly aelerated harge C&SR developed a new eletrodynami theory whih

aording to our view is also misleading. In setion III of their paper they gave

\reasons and foundations of the method of separated potentials." The idea behind

this method of separated potentials (MSP) is to break the potential A

�

= (';

~

A),

whih satis�es 2A

�

= J

�

, J

�

= (�;~|), into two parts ('

0

;

~

A

0

) and ('

�

;

~

A

�

) with

' = '

0

+ '

�

,

~

A =

~

A

0

+

~

A

�

suh that ('

0

;

~

A

0

) satisfy the Poisson equations

r

2

'

0

= �4��(t; ~x) ; r

2

~

A

0

= �4�~|(t; ~x) ; (24)

and ('

�

;

~

A

�

) satisfy the homogeneous wave equations

2'

�

= 0 ; 2

~

A

�

= 0 : (25)

They laim that this is neessary to solve the inonsistenies of lassial eletrody-

namis sine '

0

and

~

A

0

are impliit funtions of t !

The fat is that their approah ompletely forgets the well formulated theory of

the inhomogeneous wave equation as presented e.g. by Courant and Hilbert

18

and

Morse and Feshbah

19

. That the separation of 2A

�

= J

�

into equations (24) and

(25) is inorret an be seen diretly in their eq.(27) whih fails to reprodue the

�eld of a harge moving with uniform veloity, given in several textbooks, e.g.

20

.

Another important omment that must be done here has to do with their state-

ment (in setion V) that in their MSP the Poisson equations for '

0

and

~

A

0

may

be onsidered as \wave equations with in�nite spread veloity of longitudinal per-

turbations." In this statement they mix the longitudinal exitations of QED in

the Gupta-Bleuler quantization method

4

with possible solutions of free Maxwell

equations that are not transverse waves.

�

This is indeed the ase sine they tried

�

Whittaker

49

showed that the Coulomb potential an be assoiated with an interferene pattern

of waves with frequenies 0 < ! < 1 whih travel from the soure with arbitrary veloity. The

7



to relate their results with the B(3) theory of Evans

5;6;7

reated to explain the so

alled inverse Faraday e�et. The main laim of Evans is that the usual plane wave

solution of Maxwell equations, whih as is well known is a transverse wave, is always

aompanied by a longitudinal magneti �eld (B(3)) whih is phase-free. We shall

leave the disussion of Evan's theory to another paper. Instead we are going to show

in the rest of this setion that the free Maxwell equations have non purely transverse

solutions whih orrespond in general to eletromagneti �eld on�gurations moving

with veloity v 6= 1 (again in units where  = 1)

8;9;10;23

.

In order to present examples of v 6= 1 solutions onsider a funtion � : M ! C

satisfying

2� = 0 : (26)

De�ne the variables

�

<

= [x

2

+ y

2

+ 

2

<

(z � v

<

t)

2

℄

1=2

; (27)



<

=

1

q

1� v

2

<

; !

2

<

� k

2

<

= 


2

<

; v

<

=

d!

<

dk

<

; (28)

�

>

= [�x

2

� y

2

+ 

2

>

(z � v

>

t)

2

℄

1=2

; (29)



>

=

1

q

v

2

>

� 1

; !

2

>

� k

2

>

= �


2

>

; v

>

= d!

>

=dk

>

: (30)

We an easily verify that the funtions �

`

m

<

and �

`

m

>

below are respetively

subluminal and superluminal solutions of the HWE. We have

�

`m

p

(t; ~x) = C

`

j

`

(


p

�

p

)P

`

m

(os �)e

im�

e

i(!

p

t�k

p

z)

(31)

where the index p =<; >, C

`

are onstants, j

`

are the spherial Bessel funtions,

P

`

m

are the Legendre funtions and (r; �; ') are the usual spherial oordinates.

�

`m

<

[�

`m

>

℄ has phase veloity (w

<

=k

<

) < 1[(w

>

=k

>

) > 1℄ and the modulation funtion

j

`

(


<

�

<

)[j

`

(


>

�

>

)℄ moves with group veloity v

<

[v

>

℄, where 0 � v

<

< 1 [1 < v

>

<

1℄. Both �

`m

<

and �

`m

>

are undistorted progressive waves (UPWs). This term has

been introdued by Courant and Hilbert (p. 760 of

18

). However they didn't suspet

eletri �eld is longitudinal for Whittaker's solution (as it should), in the sense that it is parallel

to the propagation vetor. We omment here that Whittaker's approah is not very rigorous, and,

indeed, the validity of his onlusions are true only in a manifold with the topology of (S

2

�R

2

).

8



of UPWs moving with speeds greater than  = 1. For use in what follows text we

write the expliit form of �

00

<

and �

00

>

, whih we denote simply by �

<

and �

>

:

�

p

(t; ~x) = C

sin(


p

�

p

)

�

p

e

i(!

p

t�k

p

z)

; p =< or > : (32)

When v

<

= 0, we have �

<

! �

0

,

�

0

(t; ~x) = C

sin


<

r

r

e

i


<

t

; r = (x

2

+ y

2

+ z

2

)

1=2

; (33)

a result �rst found in Bateman

21

. The solution �

<

appeared for the �rst time in

Barut and Chandola

22

.

We observe that if our interpretation of phase and group veloities is orret,

then there must be a Lorentz frame where �

<

is at rest. It is trivial to verify that

in the oordinate hart hx

0

�

i whih is a naturally adapted oordinate system to

I

0

, where I

0

= (1 � v

2

<

)

�1=2

�=�t + (v

<

=

q

1� v

2

<

)�=�z is a Lorentz frame moving

with speed v

<

in the z diretion relative to the inertial frame I = �=�t, �

p

goes in

�

0

(t

0

; ~x

0

) given by eq.(33) with t 7! t

0

, ~x 7! ~x

0

. We an also verify that there is no

Lorentz frame with veloity parameter 0 < V < 1 where �

>

is at rest.

We present still another example of a v > 1 solution of 2� = 0, alled the

X-wave

9;10;23

. This example is given here to show the general way to obtain v 6= 1

solutions of the wave equation. For more details see

8;9;10;24;25

.

Let

~

�(!;

~

k) be the Fourier transform of �(t; ~x), i.e.

~

�(!;

~

k) =

Z

R

3

d

3

x

Z

+1

�1

dt�(t; ~x)e

�i(

~

k~x�!t)

; (34)

�(t; ~x) =

1

(2�)

4

Z

R

3

d

3

~

k

Z

+1

�1

d!

~

�(!;

~

k)e

i(

~

k~x�!t)

; (35)

Inserting (34) in the HWE (26) gives

(!

2

�

~

k

2

)

~

�(!;

~

k) = 0 (36)

and we are going to look for solutions of the HWE and eq.(36) in the sense of

distributions. We rewrite (36) as

(!

2

� k

2

z

� 


2

)

~

�(!;

~

k) = 0 : (37)

It is obvious that (37) is always satis�ed if we take

9



�(!;

~

k) = �(

�

k; �)Æ(k

z

�

�

k os �)Æ(! �

�

k) ; (38)

where �(

�

k; �) is an arbitrary funtion and where

k

z

=

�

k os � ; os � =

k

z

!

; ! > 0 ; 
 =

�

k sin � ;

�

k > 0 : (39)

We reall that

~


 = (k

x

; k

y

), ~� = (x; y) and we hoose

~


:~� = 
� os �. Now,

putting eq.(38) in eq.(35) we get

�(t; ~x) =

1

(2�)

4

Z

1

0

d

�

k

�

k sin

2

� e

i(

�

k os � z�

�

kt)

�

�

�

Z

2�

0

d� �(

�

k; �)e

i

�

k� sin � os �

�

: (40)

Choosing

�(

�

k; �) = (2�)

3

z

0

e

�

�

kz

0

sin �

�

k sin �

; (41)

where z

0

> 0 is a onstant, we obtain

�(t; ~x) = z

0

sin �

Z

1

0

d

�

k e

�

�

kz

0

sin �

�

�

�

1

2�

Z

2�

0

d�e

i

�

k� sin � os �

�

e

i

�

k(os � z�t)

: (42)

Calling z

0

sin � = a

0

> 0, the last equation beomes

�

>

X

0

(t; ~x) = a

0

Z

1

0

d

�

ke

�

�

ka

0

J

0

(

�

k� sin �)e

i

�

k(os � z�t)

: (43)

Writing

�

k =

�

k

<

we see that

J

0

(

�

k

<

� sin �)e

i

�

k

<

(z os ��t)

(44)

is a subluminal Bessel beam

9;26

, a solution of the HWE moving in the positive z

diretion with group veloity less than one, sine for this beam !

2

� k

2

<

= 


2

. From

eq.(43) we also have

10



�

>

X

0

(t; ~x) =

a

0

q

(� sin �)

2

+ (a

0

+ i(z os � � t))

2

; (45)

so that this solution propagates with speed v = 1= os �. For sound waves this result

has been on�rmed experimentally. More preisely, a �nite aperture approximation

(Rayleigh-Sommerfeld method

10;26;27;28

) to �

>

X

0

was produed by a speial trans-

duer

29

and it has been veri�ed

17;25

that it travels with speed 

s

= os �, where 

s

is

the \sound veloity" that appears in the aoustial wave equation.

From the v 6= 1 solutions of 2� = 0 we an immediately obtain solutions of the

free Maxwell equations travelling with v < 1 or v > 1 by means of the so alled Hertz

potential method

8;9;10;30

. The results are more easily presented using the formalism

of di�erential forms (see e.g.

31

). Let (M; g;D) be Minkowski spaetime and let

e

�

2 se TM (TM is the tangent bundle) be an orthonormal basis, g(e

�

; e

�

) = �

��

(�

��

= diag(1;�1;�1;�1)) and e

�

= �=�x

�

, hx

�

i being Lorentz-Einstein oordinate

funtions. Let 

�

2 se T

�

M (T

�

M is the otangent bundle) be the dual basis and

let 

�

= �

��



�

. We have 

�

= dx

�

. Now, let

V

(M) =

P

4

p=1

V

p

(M) be the real

exterior algebra bundle, where

V

0

(M) is identi�ed with the ring of real funtions

and

V

1

(M) � T

�

M . By C


V

(M) we mean the omplex exterior algebra bundle. As

is well known the eletromagneti �eld is represented by a two-form F 2 se

V

2

(M).

We have

F =

1

2

F

��



�

^ 

�

; F

��

=

0

B

B

B

�

0 �E

1

�E

2

�E

3

E

1

0 �B

3

B

2

E

2

B

3

0 �B

1

E

3

�B

2

B

1

0

1

C

C

C

A

; (46)

where (E

1

; E

2

; E

3

) and (B

1

; B

2

; B

3

) are respetively the Cartesian omponents of

the eletri and magneti �elds.

If ? :

V

p

(M)!

V

4�p

(M) is the Hodge star operator and Æ :

V

p

(M)!

V

p+1

(M),

Æ(!

p

) = (�)

p

?

�1

d ? !

p

, ?

�1

? = 1 and where d :

V

p

(M) !

V

p+1

(M) is the exterior

derivative operator, then the free Maxwell equations read

dF = 0 ; ÆF = 0 : (47)

Now, if A 2 se

V

1

(M) is the vetor potential, suh that F = dA, then if ÆA = 0

(Lorenz gauge

y

) we have the following

y

Not Lorentz gauge, please. See e.g. Penrose and Rindler

32

.

11



Theorem: Let � 2 se

V

2

(M) be the so alled Hertz potential. Suppose that �

satis�es the wave equation, i.e. 2� = 0. If we take A = �Æ� we have that F = dA

satis�es dF = 0, ÆF = 0

16

.

From this theorem we see that if � 2 seC 


V

0

(M) satis�es 2� = 0 we an

�nd nontrivial solutions of of eqs.(47) by hoosing, e.g.,

� = �

1

^ 

2

; (48)

where � is one of the funtions shown above in eqs.(32,45), and then taking F =

Re [�dÆ�℄.

For example, if � = �

0

given by eq.(33) we get, putting

� = Re�

0



1

^ 

2

� ?(Im�

0



1

^ 

2

) ; (49)

that

F

0

=

C

r

3

[sin
t(�
r sin � sin'� � os � sin � os')

0

^ 

1

� sin
t(�
r sin � os'+ � sin � os � sin')

0

^ 

2

+ sin
t(� sin

2

� � 2�)

0



3

+ os
t(� sin

2

� � 2�)

1

^ 

2

+ os 
t(� sin � os � sin'+ �
r sin � os')

1

^ 

3

+ os 
t(�� sin � os � os'+ �
r sin � sin')

2

^ 

3

℄ (50)

with � = 
r os 
r � sin
r, � = 3� + 


2

r

2

sin
r. Writing expliitly

~

E and

~

B we

have

~

E =

~

W sin
t ;

~

B =

~

W os 
t ; (51)

with

~

W = �C

 

�
y

r

3

�

�xz

r

5

;�

�
x

r

3

�

�yz

r

5

;

�(x

2

+ y

2

)

r

5

�

2�

r

3

!

: (52)

We notie in passing that r�

~

W = 


~

W , the so alled fore-free �eld that appears in

magnetohydrodynamis problems. We see from eq.(52) that F is a non-transverse

stationary solution of the free Maxwell equations in vauum. We an also easily

verify that the �eld invariants are non null.

If we take

12



� = �

X

0



1

^ 

2

; (53)

where �

X

0

is given by eq.(45), we get the superluminal eletromagneti X-wave

(SEXW)

10;23

. Expliitly we get an F

X

0

orresponding to eletri and magneti

�elds

~

E

X

0

and

~

B

X

0

, whose omponents in polar oordinates are

(

~

E

X

0

)

�

= 0 ; (54a)

(

~

E

X

0

)

�

=

1

�

i

M

6

p

MM

2

�

X

0

; (54b)

(

~

B

X

0

)

�

= os �(

~

E

X

0

)

�

; (54)

(

~

B

X

0

)

�

= 0 ; (54d)

(

~

B

X

0

)

z

= � sin

2

�

M

7

p

M

�

X

0

: (54e)

The funtions M

i

(i = 2; : : : ; 7) in (54) are

M

2

= � +

p

M ; (55a)

M

3

=

1

p

M

� ; (55b)

M

4

=

3

p

M

� ; (55)

M

5

= � ; (55d)

M

6

= �

2

sin

2

�

M

4

M

M

2

; (55e)

M

7

= �

1

p

M

+

3

p

M

3

�

2

: (55f)

We immediately see from eqs.(54) that the F

X

0

is indeed a superluminal solution of

the free Maxwell equations whih propagates with speed 1= os � in the z diretion.

13



For the Poynting vetor we get

(

~

P

X

0

)

�

= �Re f(

~

E

X

0

)

�

gRe f(

~

B

X

0

)

z

g ; (56a)

(

~

P

X

0

)

�

= 0 ; (56b)

(

~

P

X

0

)

z

= jRe f(

~

E

X

0

)

�

gj

2

; (56)

and for the energy density we obtain

u

X

0

= (1 + os

2

�)

h

jRe f(

~

E

X

0

)

�

gj

2

i

+ jRe f(

~

B

X

0

)

z

gj

2

; (57)

and we have that j

~

P j=u < 1, a general result. Now, the question annot be eluded

of what is the veloity of transport of energy of the v 6= 1 (in partiular, the v > 1)

solutions of Maxwell equations ?

We an �nd in many physis textbooks (e.g.

33

) and in sienti� papers

34

the

following argument. Consider an arbitrary solution of ME in vauum dF = ÆF = 0.

Then it follows that the Poynting vetor and the energy density of the �eld are

~

P =

~

E �

~

B ; u =

1

2

(

~

E

2

+

~

B

2

) (58)

It is obvious that the following inequality always holds:

v

"

=

j

~

P j

u

� 1: (59)

Now, the law of onservation of energy-momentum over a �nite volume V with

boundary S = �V reads in integral form

�

�t

�

Z Z Z

V

dv

1

2

(

~

E

2

+

~

B

2

)

�

=

I

S

d

~

S:

~

P (60)

Eq.(60) is interpreted saying that

H

S

d

~

S:

~

P is the �eld energy ux aross the surfae

S = �V , so that

~

P is the ux density | the amount of �eld energy passing through

a unit area of the surfae in unit time.

Now, for plane wave solutions of Maxwell equations,

v

"

= 1 (61)

14



and this result gives origin to the \dogma" that free eletromagneti �elds transport

energy at speed v

"

=  = 1.

However, v

"

� 1 is always true, even for superluminal solutions of ME, as the

ones we have just mentioned. The same is true for the superluminal modi�ed Bessel

beam found by Band

34

. He maintains there that sine v

"

� 1 there is no onit

between superluminal solutions of ME and Relativity Theory sine what Relativity

forbids is the propagation of energy with speed greater than .

Here we hallenge this onlusion. (A disussion on this issue and of whether

Relativity Theory is ompatible or not with the superluminal solutions of Maxwell

equations an be found e.g. in

9;10;28

.) The fat is that as well known

~

P is not

uniquely de�ned. Eq.(60) ontinues to hold true if we make the substitution

~

P 7!

~

P +

~

P

0

with r:

~

P

0

= 0. But of ourse we an easily �nd for subluminal, luminal or

superluminal solutions of Maxwell equations a

~

P

0

suh that

j

~

P +

~

P

0

j

u

� 1: (62)

We thus ome to the onlusion that the question of the transport of energy in

superluminal UPWs solutions of ME is an experimental question. For the aousti

superluminal X-solution of the HWE the energy around the peak region seems to

ow together with the wave, i.e. with speed 

1

= 

s

= os � where 

s

is the veloity

parameter appearing in the aousti wave equation. The same seems to be true for

the SEXW launhed in free spae by Saari and Reivelt

11

. These examples (together

with results obtained for the ow of energy in the tunneling of mirowaves

50

) show

that, at least in the extension oupied by the �eld on�guration, energy an ow

with superluminal veloities.

Before ending we give another example to illustrate that eq.(59) is devoid of

physial meaning. Consider a spherial ondutor in eletrostati equilibrium with

uniform super�ial harge density (total harge Q) and with a dipole magneti

moment. Then, we have

~

E = Q

r

r

2

;

~

B =

C

r

3

(2 os � r+ sin � �) ; (63)

~

P =

~

E �

~

B =

CQ

r

5

sin �' ; (64)

u =

1

2

 

Q

2

r

4

+

C

2

r

6

(3 os

2

� + 1)

!

: (65)
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Thus

v

"

=

j

~

P j

u

=

2CQr sin �

r

2

Q

2

+ C

2

(3 os

2

� + 1)

6= 0 for r 6= 0. (66)

Sine the �elds are stati the onservation law eq.(60) ontinues to hold true, as

there is no motion of harges and for any losed surfae ontaining the spherial

ondutor we have

I

S

d

~

S:

~

P = 0: (67)

But nothing is in motion !

To end this setion we reall that in se. 2.19 of his book Stratton

30

presents a

disussion of the Poynting vetor and energy transfer whih essentially agrees with

the view presented above. Indeed he �nishes that setion with the words

30

: \By

this standard there is every reason to retain the Poynting-Heaviside viewpoint until

a lash with new experimental evidene shall all for its revision."

The last example seems at �rst sight to endorse C&SR statement in se. V of

their paper that \the ux of eletromagneti energy in the steady state has no sense

sine no presene of the free eletromagneti �eld is supposed in this ase." How-

ever, from eq.(64) it is lear that there is angular momentum stored in the stati

eletromagneti �eld. If the sphere is disharged by its south pole, it will aquire

a mehanial angular momentum whih (supposing there is no radiation) is equal

to the eletromagneti angular momentum stored in the �eld, as an be seen by an

elementary alulation. An experimental veri�ation of this not so well known phe-

nomenon has been obtained by Graham and Lahoz

12

. By harging and disharging

a apaitor in a magneti �eld orthogonal to the

~

E �eld inside the apaitor they

showed that the apaitor osillates, thus transforming eletromagneti angular mo-

mentum in mehanial angular momentum. Graham and Lahoz's experiment shows

de�nitively that C&SR statement onerning the meaning of the Poynting vetor

for the steady state is ompletely wrong. However, as one an see from the other

examples disussed above, are must be taken with the onept of propagation of

energy and other results derived from the relation j

~

P j=u < 1.

To end this long setion we reall that even if Saari and Reivelt

11

agree that

they have produed a superluminal eletromagneti �eld on�guration, they think

that no trouble with Relativity theory ours beause they think that SEXWs are

not signals in the Sommerfeld-Brillouin sense

35

. We do not agree with their opinion

16



and our view is expressed in

27;28

.

z

The main problem|objet of intense disussions

on the Workshop: \Superluminal (?) Veloities" held at Cologne in June 98

x

|is:

what onstitutes a real signal? The Sommerfel-Brillouin signal is a pure mathemat-

ial onept and annot exist in the physial world sine it must have an in�nite

frequeny spetrum. This point has been thoughtfully disussed by Nimtz

36

(one of

the organizers of the Workshop quoted above) who showed that real signals must be

neessarily frequeny band limited, a fat that, he argues, implies that superluminal

signals of this kind an violate Einstein's ausality. We disuss this laim in

50

.

4. Conlusions

In this paper we showed that ontrary to the statements of C&SR the Li�enard-

Wiehert potentials do not seem to lead to any inonsisteny when applied to the

�elds of a harge in hyperboli motion. Nevertheless this does not mean that the

question \does a uniformly aelerated harge radiate ?" has a onsensuous answer.

This is well illustrated by the dozens of papers in the literature dealing with this

subjet. A good review with the main referenes is the paper by Fulton and Rohrlih

16

, where the authors onlude that there is radiation. This onlusion, based on

the Li�enard-Wiehert potentials, is ahieved by a lever de�nition of what radiation

means and the use of a Lorentz invariant de�nition.

However, Turakulov

13

has reently found an exat solution of Maxwell equations

(with the method of separation of variables) for the �elds generated by a harge in

hyperboli motion that shows no radiation. The existene of this exat solution

shows that the unritia use of Li�enard-Wiehert potentials for any oneivable

eletromagn�eti situation may be non sequitur. If the harge is moving in the z

diretion and if (t; �; �; z) are the usual ylindrial oordinate funtions naturally

adapted to the inertial frame I = �=�t

37

, Turakulov's solution, valid for the domains

jzj < jtj and jzj > jtj, is

A

t

=

z

z

2

� t

2

 

z

2

� t

2

+ �

2

+ a

2

p

R

+

R

�

� 1

!

; (68a)

A

z

=

t

z

2

� t

2

 

z

2

� t

2

+ �

2

+ a

2

p

R

+

R

�

� 1

!

; (68b)

where

z

A more detailed disussion about the veloity of energy propagation (inluding the ase of super-

luminal tunneling of mirowaves) is given in

50

.

x

The papers presented at the Workshop appeared in Ann. der Physik. 7 (1998).
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R

+

=

�

q

jz

2

� t

2

j+ a

�

2

+ �

2

(69a)

and

R

�

=

�

q

jz

2

� t

2

j � a

�

2

+ �

2

(69b)

It must be mentioned that this solution is similar to the Born solution

14

but they

indeed di�er from the Li�enard-Wiehert potentials and give, as an be easily veri�ed,

a null magneti �eld at the moment of zero veloity. The ritiisms of Fulton and

Rohrlih

16

to the Born solution whih, being valid for both domains z � t > 0 and

z�t < 0, desribes the retarded �eld of a uniformly aelerated harge q moving with

equation of motion z(t) =

1

a

p

1 + a

2

t

2

together with the advaned �eld of a uniformly

aelerated harge �q moving with equation of motion z(t) =

�1

a

p

1 + a

2

t

2

does not

apply to Turakulov's solution. It is important to emphasize here that he proved

38

,

using the method of separation of variables, that there is emission of radiation under

in�nitesimally small hanges of the aeleration of a moving harge. Also, solution

(68) solves the problem of the harge in a gravitational �eld (equivalene priniple)

in a trivial way.

We end this paper realling that there are yet several laims in the literature

that lassial eletrodynamis is an inonsistent theory. Some laims are based on

experimental results like those by Pappas

39

and Graneau

40;41

, where they maintain

that there are several experiments onerning the ation of a urrent in metali

ondutors whih are in disagreement with the Biot-Savart or the Lorentz fore

laws and whih do agree only with the Amp�ere fore law

42

. Reently, Pappas's

experiment on the fore ating on an Amp�ere bridge has been repeated by Cavalleri

and olaborators

43

. They found that ontrary to Pappas's laims the Lorentz fore

explains the experimental results with great auray.

From the theoretial point of view there are also several laims that the Amp�ere

and Lorentz fore laws predit di�erent results for the fores that a iruit produes

in a part of itself. This result has been found to be wrong by Assis

44

and has been

reon�rmed by Cavalleri

43

. Another well difused statement is that a onduting

wire arrying a urrent does not generate an eletri �eld outside the wire. This

statement is false, both theoretially

47

and experimentally

48

.

The examples disussed in this paper show that lassial eletromagneti theory

is a omplex subjet, less known than we suppose and that are must be taken in

studying every one of its problems.

18



We think that there are still many surprises in Maxwell theory. Besides the

ones studied above, we quote also the Maxwell-Dira equivalene

45;46

whih re-

veals unsuspeted onnetions between eletrodynamis and relativisti quantum

mehanis.
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