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Abstract

From time to time there are claims in the literature that Maxwell the-
ory is inconsistent even at the classical level. In this paper we analyse a
new electrodynamics proposed by Chubykalo and Smirnov-Rueda (C&SR)
which has been proposed because C&SR thought that they “demonstrated”
through an example that the Liénard-Wiechert potentials are inadequate and
lead to inconsistencies when applied to the fields generated by a uniformly
accelerated charge. We show that this particular claim is non sequitur by ex-
hibiting the serious flaws in C&SR calculations. We comment also on several
other misleading statements in their alternative formulation of electrodynam-
ics. The “separated potential method” discussed by C&SR leads them to
state that the complete inhomogeneous wave equation for the potentials must
be separated in a Poisson equation (PE) (describing infinite spread velocity
of longitudinal perturbations) plus a free wave equation. We discuss the in-
consistency of these results and to show how classical electrodynamics is a
complex and tricky subject we present genuine and exact non-transverse so-
lutions of Maxwell equations that travel with speed v # 1. Superluminal
solutions called SEX Ws are discussed since finite aperture approximations to
them have been produced recently. The existence of SEX Ws leads us to dis-
cuss the meaning of the Poynting vector. In particular we show that in the
case of steady state electromagnetic configurations the right use of the Poynt-
ing vector is compatible with existing experiments which disprove the results



obtained by C&SR with their “new electrodynamics”. Finally we comment
on a recent exact solution of the free Maxwell equations, obtained without the
Green’s function method, which implies that a uniformly accelerated charge
does not radiate, a result that really puts doubts on the general applicability
of the Liénard-Wiechert potentials, since it contradicts their prediction, at
least for this case.

1. Introduction

In ! (and also in errata ? and *) Chubykalo and Smirnov-Rueda (C&SR) intro-
duce a new electromagnetic theory in substitution to Maxwell theory. They think
to have enough motivation for the enterprise since they claim that Maxwell theory
produces errors when applied in many physical situations. Among the errors they
claim to have proved through an example that the Liénard-Wiechert potentials are
inadequate and lead to inconsistencies of the conventional classical electrodynamics.
C&SR statement is based on their analysis of the potentials and fields generated
by a uniformly accelerated charge. According to them the z-component E, of the
electric field produced by a uniformly accelerated charge moving in the x direction
and calculated with the Liénard-Wiechert potentials does not satisfy the wave equa-
tion OF, = 0 for spacetime points (¢,Z) not occupied by the charge. If their result
were true, it would imply in a serious inconsistency. However, in section 1 we show
that they made serious mistakes and when the correct calculations are done we get
OF, = 0, as it should. All our calculations have been checked using REDUCE 3.0.

In section 3 we comment on other claims by C&SR having to do with their
reformulation of classical electrodynamics. In sections III and IV of their paper
C&SR introduced their “separated potential method” for solving the inhomoge-
neous wave equation for the vector potential (A*) = (p, A). They separated ¢
and A as ¢ = @y + ¢, A = Ay + A* where (cpo,go) solves a Poisson equation
and (¢*, ff*) solves the homogeneous wave equation. They claim that the Poisson
equation satisfied by (o, Ag) may be “considered as a wave equation with infinite
spread velocity of longitudinal perturbations”. This result forgot all the classical
results concerning solutions of elliptic and hyperbolic equations and is nonsequitur.
Also from the physical point of view, C&SR’s proposal is at complete variance with
the QED description of e.g. the Coulomb field ¢ and they tried to relate their “longi-
tudinal perturbations” to the so called B(3) theory of Evans %7, created to explain
the so called inverse Faraday effect and where that author claims that the normal
transverse solution of the free Maxwell equations is always accompanied by a longi-



tudinal (B(3)) magnetic field which is phase free. Evans’ theory is according to our
view misleading, but it deserves a whole comment which will not be presented here.
Instead, we prefer to show that the free Maxwell equations have “extraordinary”
genuine and exact solutions which are not transverse waves and which propagate
with speed v # 18910 In particular superluminal electromagnetic field configura-
tions called SEXWs have been produced recently'!. See also a comment on the
experiment described in ! in 2.

The existence of SEXWs lead us to examine more closely the meaning of the
Poynting vector and to show explicitly that C&SR statement (sec. V) that “the flux
of electromagnetic energy in the steady satate has no sense since no presence of the
free electromagnetic field is supposed in this case” is simply wrong. Indeed, there
exists also an experimental verification that steady state electromagnetic fields (even
static ones) store angular momentum 12,

In section 4 we present our conclusions and briefly discuss a new solution for the
electromagnetic field produced by a uniformly accelerated charge found by Turakulov
13 (without using the method of Green’s functions) which shows no presence of
radiation. This solution gives results different from the one obtained through the use
of the Liénard-Wiechert potentials and, in some sense, shows that C&SR’s criticism
of the use of these potentials has some reason. Anyway, Turakulov’s new solution
reopens an old problem that has been discussed by eminent physicists, e.g. Born '
and Pauli '° (see e.g. '®7 for a discussion).

2. Liénard-Wiechert Potentials Do Not Imply In Any Inconsistency

Let (M, g, D) be Minkowski spacetime, M ~ R*, g is the Lorentz metric and D
is the Levi-Civita connection of g. Let (x*) be a Lorentz-Einstein coordinate chart
for M: 2° =t, 2! = 2, 2?2 =y, 23 = 2. We use, in what follows, units such that
¢ = 1. In this section we show that, contrary to C&SR statement, the  component
E.(t, %) of the electric field generated by a uniformly accelerated charge, moving in
the x direction, satisfies the wave equation for all x € M not occupied by the charge,
i.e.,

OE,(t, ) =0. (1)

The fundamental flaw in C&SR’s calculations is that they use the classical,
instead of the relativistic equation of motion for a uniformly accelerated charge.
This error is clear in their eq.(5). The use of the wrong equation of motion produces
errors in the calculations of the second order derivatives of F,, which is an implicit
function of ¢ and &' due to the retarded Green’s function used to obtain the Liénard-



Wiechert potential.

The correct calculations are: Let o : R D I — M, 0 : s — o(s) be the world-line
of a uniformly accelerated charge (hyperbolic motion) where s is the proper time.
The equations of motion for the particle moving in the x direction along the z axis
are, as it is well known,

zt(o(s)) = 2cosh(as) ; 2(o(s)) = 2sinh(as) ; (2)

with 2%(o(s)) = 2*(o(s)) = 0. Then, writing

2(0(t) = a(t) = VIt (3)

a
we can proceed as follows.

We begin by writing down the complete solution of Maxell’s equations for a
point charge ¢ endowed with a constant acceleration, obtained with the help of the
Liénard-Wiechert potentials. The electric field E at a spacetime point (t,2) is

(ﬁ-—R%/Quf-ﬁ/a)
) @;R%kﬁ.
R x [(R — Riy/c) x /]

T R Ry oy @)

In this equation R = |R|, v = |#] and R = & — &, where &, is the position of the
charge at an instant of time ¢, (retarded time) given by the implicit function

ﬂﬁ%mmﬁ#—m—gzo; (5)
R=[(x —x0)" + (y — 90)* + (2 — 20)°]'/? (6)

and where 1 is the velocity of the charge at time ¢, and 1'70 its acceleration. To
simplify our equations we now put ¢ = 1 and ¢ = 1. We also suppose that the
motion takes place along the z axis, so that R = (x — z0,Y,2,), Uy = (vy,0,0) and
o = (7,0, 0). The electric field at an observation point (¢, &) is then

= o (1 =v§)(x =20 — Rug,y,2)
E(t,¥) = (R — (x — 9)00)?
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(—y* = 2%, (z — 2oy, (v — wp)2)00 _ (7)

+ (R — (x — xo)vo)?

The x component of the electric field at an arbitrary point (¢,Z) of spacetime
(with the obvious exception of the very position of the charge) is then

(1 —v2)[(z — x¢) — Ruo] — 720y
R—(z—z)uwl (8)

where we make use of cylindrical coordinates for which y? + 22 = r? and where
R = [r? 4 (x — x0)?]"/?. The final expression for the E, is obtained by replacing z,
vy and ¥y by their values at time ¢y, according to eq.(3). We simplify the calculations

by putting a = 1. We have
zy = z(to) = /1 +1§; (9)

B, =

t t
vo = v(ty) = ——— = —=; (10)
V1+tg  *
. 1 _3
Vo — W =2Zy - (11)
The final result is written
— — Rty —r? N
g =tle-n) R —r N (12
[zoR — t0(x — x¢)]3 D3
with
N = zo(x — x9) — Rty — r? (13)
and
D= l'oR — to(.ﬁlf — 1‘0) . (]_4)

Thus E, becomes an explicit function of N and D, which are in turn explicit
functions of r, z and t; only. The variable ¢, is itself an implicit function of r, z and
t through equation (5).

Now, if « is one of the independent variables r, z or ¢, the first derivative of F,
with respect to a is simply

9E, DN, —3ND,
oo D4 ’

(15)

where



9D 9D ot

Da = a—a + 8—7508—@ (16)
and
B ON  ON 0ty
Na = a—a + 8—t08—a (17)

are the partial derivatives of N and D with respect to the « variable. The last
derivative in the r.h.s. of eqs. (16) and (17) is given by the formula

oty OF/da
da  OF[oty

After doing the calculations and collecting terms we obtain for the first order
derivatives of E,:

(18)

OE, —r[D*+3N(N+r?>+1)]

or D> ’ (19)
O0E, x[D?*—3N(N +r?)]
or Db ’ (20)
OE, —(to+ R)[D*> —3N(N +r?)]
ot D5 ' (21)

This procedure thus greatly simplifies the calculations. For instance, the second
derivative of E, with respect to r, according to (16), (17) and (19), is given by

0* 0 (0E, 0 (0E,
— (E,) = — — N,
g2 (Ee) 8T<8r>+8]\7<8r>
0 (0E,
= D,. 22
* oD ( or ) (22)
Notice that the partial derivative /0r on the r.h.s. of (22) refers only to the explicit
dependence of OF,/0r on r, as the dependence implicit in the N and D terms is
dealt with by using the chain rule.

The final calculations are still not easy, so that we used REDUCE to perform

them. The result of replacing all derivatives in the L.h.s. of the homogeneous wave
equation (HWE) for E,,




0? 10 0* 0?
—FE, —FE, +—FE,——E, =0, 23
o= T T T et T B (23)
is a fraction with denominator zoRD7 # 0 and whose numerator turns out to be
identically zero. This result shows that the x component of the electric field calcu-
lated with the Liénard-Wiechert potentials does indeed satisfy the HWE in vacuum,

for the points not occupied by the charge.

3. Non transverse solutions of the free Maxwell equations

Due to their wrong calculations using the Liénard-Wiechert potentials for the
uniformly accelerated charge C&SR developed a new electrodynamic theory which
according to our view is also misleading. In section III of their paper they gave
“reasons and foundations of the method of separated potentials.” The idea behind
this method of separated potentials (MSP) is to break the potential AF = (go,/f),
which satisfies JA# = J¢, J* = (p,]), into two parts (¢g, Ag) and (¢*, A*) with
¢ =@+ ¢*, A= Ay + A* such that (¢y, Ay) satisfy the Poisson equations

V2(P0 = _47Tp(t7 f) ) VZEU = _47Tj(t7 f) ) (24)

and (", /f*) satisfy the homogeneous wave equations

They claim that this is necessary to solve the inconsistencies of classical electrody-
namics since g and ffo are implicit functions of ¢ !

The fact is that their approach completely forgets the well formulated theory of
the inhomogeneous wave equation as presented e.g. by Courant and Hilbert '® and
Morse and Feshbach '°. That the separation of OA* = J* into equations (24) and
(25) is incorrect can be seen directly in their eq.(27) which fails to reproduce the
field of a charge moving with uniform velocity, given in several textbooks, e.g. 2

Another important comment that must be done here has to do with their state-
ment (in section V) that in their MSP the Poisson equations for ¢, and Ay may
be considered as “wave equations with infinite spread velocity of longitudinal per-
turbations.” In this statement they mix the longitudinal excitations of QED in
the Gupta-Bleuler quantization method * with possible solutions of free Maxwell
equations that are not transverse waves.* This is indeed the case since they tried

*Whittaker *° showed that the Coulomb potential can be associated with an interference pattern
of waves with frequencies 0 < w < 0o which travel from the source with arbitrary velocity. The



to relate their results with the B(3) theory of Evans %7 created to explain the so
called inverse Faraday effect. The main claim of Evans is that the usual plane wave
solution of Maxwell equations, which as is well known is a transverse wave, is always
accompanied by a longitudinal magnetic field (B(3)) which is phase-free. We shall
leave the discussion of Evan’s theory to another paper. Instead we are going to show
in the rest of this section that the free Maxwell equations have non purely transverse
solutions which correspond in general to electromagnetic field configurations moving
with velocity v # 1 (again in units where ¢ = 1) %1023,

In order to present examples of v # 1 solutions consider a function ® : M — C
satisfying

0o =0. (26)
Define the variables
Eo= [+ 9P + 12 (2 — 0ct)]'?; (27)
7<=7,—11_Ui; we — kS =% U<:§(Z—iv (28)
& = [—® =y’ + 3 (2 — 0st)*)V%; (29)
Vs> = ﬁ; w? —k2=-0%; v =dws/dks . (30)

>

We can easily verify that the functions ®%» and ®% below are respectively
subluminal and superluminal solutions of the HWE. We have

DU (t, &) = Cyje(&y) Pl (cos )™ ellert=ho2) (31)

where the index p =<, >, C, are constants, j, are the spherical Bessel functions,
P! are the Legendre functions and (r,6, ) are the usual spherical coordinates.
4 [®4"] has phase velocity (w</k<) < 1[(ws/ks) > 1] and the modulation function
Je(2E)[Je(25€5 )] moves with group velocity ve [vs], where 0 <ov. < 1[1 <ws <
oo]. Both ®%" and @Y™ are undistorted progressive waves (UPWs). This term has
been introduced by Courant and Hilbert (p. 760 of '*). However they didn’t suspect

electric field is longitudinal for Whittaker’s solution (as it should), in the sense that it is parallel
to the propagation vector. We comment here that Whittaker’s approach is not very rigorous, and,
indeed, the validity of his conclusions are true only in a manifold with the topology of (S% x R?).



of UPWs moving with speeds greater than ¢ = 1. For use in what follows text we
write the explicit form of ®% and ®%°, which we denote simply by ®. and :

(0 .
Q,(t,7) = C’Sm(gipmez(wptkpz) ; p=< or > . (32)
p
When v. = 0, we have & — P,
WO
By(t, 7) = C <Lt (32 4 g2 4 )12 (33)

r

a result first found in Bateman 2!. The solution ®. appeared for the first time in
Barut and Chandola 2.

We observe that if our interpretation of phase and group velocities is correct,
then there must be a Lorentz frame where ®_ is at rest. It is trivial to verify that
in the coordinate chart (x"‘> which is a naturally adapted coordinate system to
I', where I' = (1 — v2)7Y29/0t + (v</y/1 —v2)9/0z is a Lorentz frame moving
with speed v in the z direction relative to the inertial frame I = 0/0t, ®, goes in
Qo (t',2") given by eq.(33) with ¢ — t', # — &’. We can also verify that there is no
Lorentz frame with velocity parameter 0 < V' < 1 where @+ is at rest.

We present still another example of a v > 1 solution of O0® = 0, called the
X-wave 21923 This example is given here to show the general way to obtain v # 1
solutions of the wave equation. For more details see ®%10:242,

Let ®(w, k) be the Fourier transform of ®(t, 7), i.e.

. o +00 T
d(w, k) = /R dx [ _dt O(t, 7)e k=) (34)

1
(2m)*
Inserting (34) in the HWE (26) gives

- ftoo ~ [
O(t,7) = /R &k [ dw (w, Fe R, (35)

(W? = B2)®(w, k) =0 (36)

and we are going to look for solutions of the HWE and eq.(36) in the sense of
distributions. We rewrite (36) as

(W? — k2 = Q)P (w, k) =0. (37)
It is obvious that (37) is always satisfied if we take



®(w, k) = Z(k,n)d(k, — k cosn)d(w — k), (38)

where Z(k,n) is an arbitrary function and where

k,=kcosn, cosn=—,w>0, Q=ksinn, k>0. (39)

SHES

We recall that O = (ky, ky), p = (z,y) and we choose Qﬁ = Qpcosf. Now,
putting eq.(38) in eq.(35) we get

- 1 T2 i(k cosn z—kt)
O(t, ) = o) /0 dk ksin“ne " X
21 _ - .
x| [T an =k pyetosiet] (40)
0
Choosing
—Ezosinn
T 20€
=(k,n) = (2m)* == 41
(ko) = (2 25 (41)
where zg > 0 is a constant, we obtain
O(t,7) = =z sinn/ dk e~ F#osinn 5
0
1 2w - -
% _/ dgezkpsmncosﬂ:| ezk(cosnz—t) ) (42)
2w Jo
Calling zysinn = ag > 0, the last equation becomes
%, (t,7) = ao/ dke % Jy (kpsin n)e*osnz=b), (43)
0
Writing k = k. we see that
Jo (k< psin)ett<zcosn (44)

is a subluminal Bessel beam ?%¢, a solution of the HWE moving in the positive z

direction with group velocity less than one, since for this beam w? — k2 = Q. From
eq.(43) we also have

10



ap
\/(psinn)2 + (ag +i(zcosn —t))? 7

so that this solution propagates with speed v = 1/ cosn. For sound waves this result
has been confirmed experimentally. More precisely, a finite aperture approximation
(Rayleigh-Sommerfeld method 02272 to &% was produced by a special trans-
ducer ? and it has been verified 172> that it travels with speed ¢,/ cosn, where ¢, is
the “sound velocity” that appears in the acoustical wave equation.

From the v # 1 solutions of O0® = 0 we can immediately obtain solutions of the
free Maxwell equations travelling with v < 1 or v > 1 by means of the so called Hertz
potential method %1030 The results are more easily presented using the formalism
of differential forms (see e.g. 3!). Let (M, g, D) be Minkowski spacetime and let
e, € secTM (TM is the tangent bundle) be an orthonormal basis, g(e,, €,) = 1
(n = diag(l,—-1,—-1,—-1)) and e, = 9/0z", (z*) being Lorentz-Einstein coordinate
functions. Let v* € secT*M (T*M is the cotangent bundle) be the dual basis and
let v, = nwy”. We have v* = da#. Now, let A(M) = >,_; A’(M) be the real
exterior algebra bundle, where A’(A) is identified with the ring of real functions
and A'(M) = T*M. By C®\(M) we mean the complex exterior algebra bundle. As
is well known the electromagnetic field is represented by a two-form F € sec \?(M).
We have

%, (t,7) = (45)

0 -E' —-E? —-F°

E'' 0 -B® B?

E? B? 0 -B' |’
E?* —-B* B! 0

1
F = SFMy, Ay, F* = (46)

where (E', E?, E3) and (B!, B?, B?) are respectively the Cartesian components of
the electric and magnetic fields.

If % : AP(M) — A*7P(M) is the Hodge star operator and § : AP(M) — APTH(M),
§(w,) = (=P *xLdxw,, % =1 and where d : AP(M) — APTH(M) is the exterior
derivative operator, then the free Maxwell equations read

dF =0, 6F =0, (47)

Now, if A € sec A'(M) is the vector potential, such that F' = dA, then if 64 = 0
(Lorenz gauge) we have the following

tNot Lorentz gauge, please. See e.g. Penrose and Rindler 2.
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Theorem: Let IT € sec A*(M) be the so called Hertz potential. Suppose that IT
satisfies the wave equation, i.e. OII = 0. If we take A = —dII we have that F' = dA
satisfies dF' = 0, 6F = 0 16,

From this theorem we see that if ® € secC ® A\°(M) satisfies O® = 0 we can
find nontrivial solutions of of eqs.(47) by choosing, e.g.,

[I=&y' A2, (48)

where @ is one of the functions shown above in eqs.(32,45), and then taking F =
Re [—dd I1].
For example, if ® = ®( given by eq.(33) we get, putting

II = Re Q)Ofyl A ’y2 — x(Im (13071 A ’)/2) , (49)
that

C
Fy = —[sin Qt(afdr sin fsin ¢ — FcosOsind cos p)yo A 1
r
— sin Qt(afdrsin @ cos ¢ + [ sin @ cos O sin )y A Yo
sin Qt(B sin® @ — 2a)yyy3 + cos Qt(Bsin? 0 — 2a)71 A 7o
cos Qt(f sin 0 cos O sin ¢ + adrsin 0 cos p)y1 A 73
cos Qt(— [ sin b cos 0 cos ¢ + afdrsin 0 sin p)ye A 3] (50)

+ o+ +

with @ = Qrcos Qr — sin Qr, 8 = 3a + Q?r?sin Qr. Writing explicitly E and B we
have

E=WsinQt, B=W cosQt, (51)
with

> Q Q 249?02
W:_C<a y_/)’:r;Z,_oz x  Pyz Bla +y)__04>_

r3 r r3 rs’ rs r3 (52)

We notice in passing that V x W = QW, the so called force-free field that appears in
magnetohydrodynamics problems. We see from eq.(52) that F' is a non-transverse
stationary solution of the free Maxwell equations in vacuum. We can also easily
verify that the field invariants are non null.

If we take

12



I=ox,7" AY?, (53)

where ®x, is given by eq.(45), we get the superluminal electromagnetic X-wave
(SEXW) 1923 Explicitly we get an Fy, corresponding to electric and magnetic
fields Ex, and By,, whose components in polar coordinates are

(Exo)p =03 (54a)

. 1. Mg
(Exg)o = PITA (54b)
(Bx,)p = cosn(Ex,)o; (54c)
(By,)p =0; (54d)

The functions M;(i = 2,...,7) in (54) are

My=1+VM; (5ba)
My = —— (55b)
T VM
M= -2 (55¢)
VM
Ms =T1; (55d)
L, M
Mg = p? sin® nﬁMQ ; (55e)
1 3
M; = . (55f)

- _|_ -

vM M3
We immediately see from eqgs.(54) that the Flx, is indeed a superluminal solution of
the free Maxwell equations which propagates with speed 1/ cosn in the z direction.

13



For the Poynting vector we get

(Px,)p = —Re{(Ex,)o}Re {(Bx,):} ; (56a)
(Pxy)o = 0; (56b)
(Px,): = Re {(Ex,)o}|*; (56¢)

and for the energy density we obtain

wx, = (L+cos’n) [[Re {(Ex,)o} | + [Re {(Bx,):} | (57)

and we have that |P|/u < 1, a general result. Now, the question cannot be eluded
of what is the velocity of transport of energy of the v # 1 (in particular, the v > 1)
solutions of Maxwell equations ?

We can find in many physics textbooks (e.g. and in scientific papers 3! the
following argument. Consider an arbitrary solution of ME in vacuum dF = §F = 0.
Then it follows that the Poynting vector and the energy density of the field are

33)

— — — ]_ —, —
P=ExB, u:E(E%rB?) (58)
It is obvious that the following inequality always holds:
Id
L =— <1. 59
ve="1— < (59)

Now, the law of conservation of energy-momentum over a finite volume V' with
boundary S = 0V reads in integral form

Sy} far

Eq.(60) is interpreted saying that ¢ dS.P is the field energy flux across the surface

S =0V, so that P is the flux density — the amount of field energy passing through
a unit area of the surface in unit time.
Now, for plane wave solutions of Maxwell equations,

v, =1 (61)

14



and this result gives origin to the “dogma” that free electromagnetic fields transport
energy at speed v. =c = 1.

However, v, < 1 is always true, even for superluminal solutions of ME, as the
ones we have just mentioned. The same is true for the superluminal modified Bessel
beam found by Band 3*. He maintains there that since v, < 1 there is no conflict
between superluminal solutions of ME and Relativity Theory since what Relativity
forbids is the propagation of energy with speed greater than c.

Here we challenge this conclusion. (A discussion on this issue and of whether
Relativity Theory is compatible or not with the superluminal solutions of Maxwell
equations can be found e.g. in 12) The fact is that as well known P is not
uniquely defined. Eq.(60) continues to hold true if we make the substitution P
P + P with V.P' = 0. But of course we can easily find for subluminal, luminal or
superluminal solutions of Maxwell equations a P’ such that

!/
M > 1. (62)
u
We thus come to the conclusion that the question of the transport of energy in
superluminal UPWs solutions of MFE is an experimental question. For the acoustic
superluminal X-solution of the HWE the energy around the peak region seems to
flow together with the wave, i.e. with speed ¢; = ¢,/ cosn where ¢ is the velocity
parameter appearing in the acoustic wave equation. The same seems to be true for
the SEXW launched in free space by Saari and Reivelt!'!. These examples (together
with results obtained for the flow of energy in the tunneling of microwaves ®°) show
that, at least in the extension occupied by the field configuration, energy can flow
with superluminal velocities.

Before ending we give another example to illustrate that eq.(59) is devoid of
physical meaning. Consider a spherical conductor in electrostatic equilibrium with
uniform superficial charge density (total charge )) and with a dipole magnetic
moment. Then, we have

- r = C ,
=0 B:ﬁ(2cosﬁr+s1n90), (63)
_Fxp-Y9y
P=ExB=—sinfyp, (64)
r
1 QZ 2 )
u:§<F+F(SCOS 0+1)| . (65)

15



Thus

P 2CQrsin g
w22+ C2%(3cos260 4+ 1)
Since the fields are static the conservation law eq.(60) continues to hold true, as

there is no motion of charges and for any closed surface containing the spherical
conductor we have

#0 forr #0. (66)

Ve

ﬁdiﬁ:o. (67)

But nothing is in motion !

To end this section we recall that in sec. 2.19 of his book Stratton 3° presents a
discussion of the Poynting vector and energy transfer which essentially agrees with
the view presented above. Indeed he finishes that section with the words 3°: “By
this standard there is every reason to retain the Poynting-Heaviside viewpoint until
a clash with new experimental evidence shall call for its revision.”

The last example seems at first sight to endorse C&SR statement in sec. V of
their paper that “the flux of electromagnetic energy in the steady state has no sense
since no presence of the free electromagnetic field is supposed in this case.” How-
ever, from eq.(64) it is clear that there is angular momentum stored in the static
electromagnetic field. If the sphere is discharged by its south pole, it will acquire
a mechanical angular momentum which (supposing there is no radiation) is equal
to the electromagnetic angular momentum stored in the field, as can be seen by an
elementary calculation. An experimental verification of this not so well known phe-
nomenon has been obtained by Graham and Lahoz 2. By charging and discharging
a capacitor in a magnetic field orthogonal to the E field inside the capacitor they
showed that the capacitor oscillates, thus transforming electromagnetic angular mo-
mentum in mechanical angular momentum. Graham and Lahoz’s experiment shows
definitively that C&SR statement concerning the meaning of the Poynting vector
for the steady state is completely wrong. However, as one can see from the other
examples discussed above, care must be taken with the concept of propagation of
energy and other results derived from the relation |P|/u < 1.

To end this long section we recall that even if Saari and Reivelt'" agree that
they have produced a superluminal electromagnetic field configuration, they think
that no trouble with Relativity theory occurs because they think that SEXWs are
not signals in the Sommerfeld-Brillouin sense®. We do not agree with their opinion

tll
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and our view is expressed in?"?®.* The main problem—object of intense discussions
on the Workshop: “Superluminal (?) Velocities” held at Cologne in June 985—is:
what constitutes a real signal? The Sommerfel-Brillouin signal is a pure mathemat-
ical concept and cannot exist in the physical world since it must have an infinite
frequency spectrum. This point has been thoughtfully discussed by Nimtz3® (one of
the organizers of the Workshop quoted above) who showed that real signals must be
necessarily frequency band limited, a fact that, he argues, implies that superluminal
signals of this kind can violate Einstein’s causality. We discuss this claim in .

4. Conclusions

In this paper we showed that contrary to the statements of C&SR the Liénard-
Wiechert potentials do not seem to lead to any inconsistency when applied to the
fields of a charge in hyperbolic motion. Nevertheless this does not mean that the
question “does a uniformly accelerated charge radiate ?” has a consensuous answer.
This is well illustrated by the dozens of papers in the literature dealing with this
subject. A good review with the main references is the paper by Fulton and Rohrlich
16 where the authors conclude that there 4s radiation. This conclusion, based on
the Liénard-Wiechert potentials, is achieved by a clever definition of what radiation
means and the use of a Lorentz invariant definition.

However, Turakulov ** has recently found an ezact solution of Maxwell equations
(with the method of separation of variables) for the fields generated by a charge in
hyperbolic motion that shows no radiation. The existence of this exact solution
shows that the uncritica use of Liénard-Wiechert potentials for any conceivable
electromagnétic situation may be non sequitur. If the charge is moving in the z
direction and if (¢, p, 0, 2) are the usual cylindrical coordinate functions naturally
adapted to the inertial frame I = 9/0t 3", Turakulov’s solution, valid for the domains
|z| < [t] and |z| > |t], is

2 22 — 12 4 p* + a?
At = 2;2 — t2 ( ’7R+R7 -1 y (68&)

2 42 4 2 2
A, = t 2Z2—=t"+p°+a 1) . (68b)
22— t2 \/R+R,

where

YA more detailed discussion about the velocity of energy propagation (including the case of super-
luminal tunneling of microwaves) is given in 0.

$The papers presented at the Workshop appeared in Ann. der Physik. 7 (1998).
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2
R, = <\/|z2—t2|+a> e (692)

and

2
R_ = < |22 — 2| — a) + p? (69b)

It must be mentioned that this solution is similar to the Born solution ** but they
indeed differ from the Liénard-Wiechert potentials and give, as can be easily verified,
a null magnetic field at the moment of zero velocity. The criticisms of Fulton and
Rohrlich ' to the Born solution which, being valid for both domains z — ¢ > 0 and
z—t < 0, describes the retarded field of a uniformly accelerated charge ¢ moving with
equation of motion z(t) = 1v/1 + a?t? together with the advanced field of a uniformly
accelerated charge —¢ moving with equation of motion z(¢) = —Fv/1 + a?¢? does not
apply to Turakulov’s solution. It is important to emphasize here that he proved %,
using the method of separation of variables, that there is emission of radiation under
infinitesimally small changes of the acceleration of a moving charge. Also, solution
(68) solves the problem of the charge in a gravitational field (equivalence principle)
in a trivial way.

We end this paper recalling that there are yet several claims in the literature
that classical electrodynamics is an inconsistent theory. Some claims are based on
experimental results like those by Pappas 3 and Graneau “%*!', where they maintain
that there are several experiments concerning the action of a current in metalic
conductors which are in disagreement with the Biot-Savart or the Lorentz force
laws and which do agree only with the Ampere force law *2. Recently, Pappas’s
experiment on the force acting on an Ampere bridge has been repeated by Cavalleri
and colaborators **. They found that contrary to Pappas’s claims the Lorentz force
explains the experimental results with great accuracy.

From the theoretical point of view there are also several claims that the Ampere
and Lorentz force laws predict different results for the forces that a circuit produces
in a part of itself. This result has been found to be wrong by Assis ** and has been
reconfirmed by Cavalleri **. Another well difused statement is that a conducting
wire carrying a current does not generate an electric field outside the wire. This
statement is false, both theoretically 4" and experimentally *®.

The examples discussed in this paper show that classical electromagnetic theory
is a complex subject, less known than we suppose and that care must be taken in
studying every one of its problems.
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ones studied above, we quote also the Maxwell-Dirac equivalence

We think that there are still many surprises in Maxwell theory. Besides the
1546 which re-

veals unsuspected connections between electrodynamics and relativistic quantum
mechanics.
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