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Abstra
t

From time to time there are 
laims in the literature that Maxwell the-

ory is in
onsistent even at the 
lassi
al level. In this paper we analyse a

new ele
trodynami
s proposed by Chubykalo and Smirnov-Rueda (C&SR)

whi
h has been proposed be
ause C&SR thought that they \demonstrated"

through an example that the Li�enard-Wie
hert potentials are inadequate and

lead to in
onsisten
ies when applied to the �elds generated by a uniformly

a

elerated 
harge. We show that this parti
ular 
laim is non sequitur by ex-

hibiting the serious 
aws in C&SR 
al
ulations. We 
omment also on several

other misleading statements in their alternative formulation of ele
trodynam-

i
s. The \separated potential method" dis
ussed by C&SR leads them to

state that the 
omplete inhomogeneous wave equation for the potentials must

be separated in a Poisson equation (PE) (des
ribing in�nite spread velo
ity

of longitudinal perturbations) plus a free wave equation. We dis
uss the in-


onsisten
y of these results and to show how 
lassi
al ele
trodynami
s is a


omplex and tri
ky subje
t we present genuine and exa
t non-transverse so-

lutions of Maxwell equations that travel with speed v 6= 1. Superluminal

solutions 
alled SEXWs are dis
ussed sin
e �nite aperture approximations to

them have been produ
ed re
ently. The existen
e of SEXWs leads us to dis-


uss the meaning of the Poynting ve
tor. In parti
ular we show that in the


ase of steady state ele
tromagneti
 
on�gurations the right use of the Poynt-

ing ve
tor is 
ompatible with existing experiments whi
h disprove the results
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obtained by C&SR with their \new ele
trodynami
s". Finally we 
omment

on a re
ent exa
t solution of the free Maxwell equations, obtained without the

Green's fun
tion method, whi
h implies that a uniformly a

elerated 
harge

does not radiate, a result that really puts doubts on the general appli
ability

of the Li�enard-Wie
hert potentials, sin
e it 
ontradi
ts their predi
tion, at

least for this 
ase.

1. Introdu
tion

In

1

(and also in errata

2

and

3

) Chubykalo and Smirnov-Rueda (C&SR) intro-

du
e a new ele
tromagneti
 theory in substitution to Maxwell theory. They think

to have enough motivation for the enterprise sin
e they 
laim that Maxwell theory

produ
es errors when applied in many physi
al situations. Among the errors they


laim to have proved through an example that the Li�enard-Wie
hert potentials are

inadequate and lead to in
onsisten
ies of the 
onventional 
lassi
al ele
trodynami
s.

C&SR statement is based on their analysis of the potentials and �elds generated

by a uniformly a

elerated 
harge. A

ording to them the x-
omponent E

x

of the

ele
tri
 �eld produ
ed by a uniformly a

elerated 
harge moving in the x dire
tion

and 
al
ulated with the Li�enard-Wie
hert potentials does not satisfy the wave equa-

tion 2E

x

= 0 for spa
etime points (t; ~x) not o

upied by the 
harge. If their result

were true, it would imply in a serious in
onsisten
y. However, in se
tion 1 we show

that they made serious mistakes and when the 
orre
t 
al
ulations are done we get

2E

x

= 0, as it should. All our 
al
ulations have been 
he
ked using Redu
e 3.0.

In se
tion 3 we 
omment on other 
laims by C&SR having to do with their

reformulation of 
lassi
al ele
trodynami
s. In se
tions III and IV of their paper

C&SR introdu
ed their \separated potential method" for solving the inhomoge-

neous wave equation for the ve
tor potential (A

�

) = (';

~

A). They separated '

and

~

A as ' = '

0

+ '

�

,

~

A =

~

A

0

+

~

A

�

where ('

0

;

~

A

0

) solves a Poisson equation

and ('

�

;

~

A

�

) solves the homogeneous wave equation. They 
laim that the Poisson

equation satis�ed by ('

0

;

~

A

0

) may be \
onsidered as a wave equation with in�nite

spread velo
ity of longitudinal perturbations". This result forgot all the 
lassi
al

results 
on
erning solutions of ellipti
 and hyperboli
 equations and is nonsequitur.

Also from the physi
al point of view, C&SR's proposal is at 
omplete varian
e with

the QED des
ription of e.g. the Coulomb �eld

4

and they tried to relate their \longi-

tudinal perturbations" to the so 
alled B(3) theory of Evans

5;6;7

, 
reated to explain

the so 
alled inverse Faraday e�e
t and where that author 
laims that the normal

transverse solution of the free Maxwell equations is always a

ompanied by a longi-

2



tudinal (B(3)) magneti
 �eld whi
h is phase free. Evans' theory is a

ording to our

view misleading, but it deserves a whole 
omment whi
h will not be presented here.

Instead, we prefer to show that the free Maxwell equations have \extraordinary"

genuine and exa
t solutions whi
h are not transverse waves and whi
h propagate

with speed v 6= 1

8;9;10

. In parti
ular superluminal ele
tromagneti
 �eld 
on�gura-

tions 
alled SEXWs have been produ
ed re
ently

11

. See also a 
omment on the

experiment des
ribed in

11

in

27

.

The existen
e of SEXWs lead us to examine more 
losely the meaning of the

Poynting ve
tor and to show expli
itly that C&SR statement (se
. V) that \the 
ux

of ele
tromagneti
 energy in the steady satate has no sense sin
e no presen
e of the

free ele
tromagneti
 �eld is supposed in this 
ase" is simply wrong. Indeed, there

exists also an experimental veri�
ation that steady state ele
tromagneti
 �elds (even

stati
 ones) store angular momentum

12

.

In se
tion 4 we present our 
on
lusions and brie
y dis
uss a new solution for the

ele
tromagneti
 �eld produ
ed by a uniformly a

elerated 
harge found by Turakulov

13

(without using the method of Green's fun
tions) whi
h shows no presen
e of

radiation. This solution gives results di�erent from the one obtained through the use

of the Li�enard-Wie
hert potentials and, in some sense, shows that C&SR's 
riti
ism

of the use of these potentials has some reason. Anyway, Turakulov's new solution

reopens an old problem that has been dis
ussed by eminent physi
ists, e.g. Born

14

and Pauli

15

(see e.g.

16;17

for a dis
ussion).

2. Li�enard-Wie
hert Potentials Do Not Imply In Any In
onsisten
y

Let (M; g;D) be Minkowski spa
etime, M ' R

4

, g is the Lorentz metri
 and D

is the Levi{Civita 
onne
tion of g. Let hx

�

i be a Lorentz-Einstein 
oordinate 
hart

for M : x

0

= t, x

1

= x, x

2

= y, x

3

= z. We use, in what follows, units su
h that


 = 1. In this se
tion we show that, 
ontrary to C&SR statement, the x 
omponent

E

x

(t; ~x) of the ele
tri
 �eld generated by a uniformly a

elerated 
harge, moving in

the x dire
tion, satis�es the wave equation for all x 2M not o

upied by the 
harge,

i.e.,

2E

x

(t; ~x) = 0 : (1)

The fundamental 
aw in C&SR's 
al
ulations is that they use the 
lassi
al ,

instead of the relativisti
 equation of motion for a uniformly a

elerated 
harge.

This error is 
lear in their eq.(5). The use of the wrong equation of motion produ
es

errors in the 
al
ulations of the se
ond order derivatives of E

x

, whi
h is an impli
it

fun
tion of t and ~x due to the retarded Green's fun
tion used to obtain the Li�enard-
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Wie
hert potential.

The 
orre
t 
al
ulations are: Let � : R � I 7!M , � : s 7! �(s) be the world-line

of a uniformly a

elerated 
harge (hyperboli
 motion) where s is the proper time.

The equations of motion for the parti
le moving in the x dire
tion along the x axis

are, as it is well known,

x

1

(�(s)) =

1

a


osh(as) ; x

0

(�(s)) =

1

a

sinh(as) ; (2)

with x

2

(�(s)) = x

3

(�(s)) = 0. Then, writing

x(�(t)) � x(t) =

1

a

p

1 + a

2

t

2

; (3)

we 
an pro
eed as follows.

We begin by writing down the 
omplete solution of Maxell's equations for a

point 
harge q endowed with a 
onstant a

eleration, obtained with the help of the

Li�enard-Wie
hert potentials. The ele
tri
 �eld

~

E at a spa
etime point (t; ~x) is

~

E(t; ~x) = q

(

~

R� R~v

0

=
)(1� v

2

0

=


2

)

(R �

~

R:~v

0

=
)

3

+ q

~

R� [(

~

R� R~v

0

=
)�

_

~v

0

=


2

℄

(R�

~

R:~v

0

=
)

3

(4)

In this equation R = j

~

Rj, v = j~vj and

~

R = ~x � ~x

0

, where ~x

0

is the position of the


harge at an instant of time t

0

(retarded time) given by the impli
it fun
tion

F (~x; ~x

0

; t; t

0

) = t� t

0

�

R




= 0 ; (5)

R = [(x� x

0

)

2

+ (y � y

0

)

2

+ (z � z

0

)

2

℄

1=2

(6)

and where ~v

0

is the velo
ity of the 
harge at time t

0

and

_

~v

0

its a

eleration. To

simplify our equations we now put 
 = 1 and q = 1. We also suppose that the

motion takes pla
e along the x axis, so that

~

R = (x � x

0

; y; z; ), ~v

0

= (v

0

; 0; 0) and

_

~v

0

= ( _v

0

; 0; 0). The ele
tri
 �eld at an observation point (t; ~x) is then

~

E(t; ~x) =

(1� v

2

0

)(x� x

0

� Rv

0

; y; z)

[R� (x� x

0

)v

0

℄

3

4



+

(�y

2

� z

2

; (x� x

0

)y; (x� x

0

)z) _v

0

[R� (x� x

0

)v

0

℄

3

: (7)

The x 
omponent of the ele
tri
 �eld at an arbitrary point (t; ~x) of spa
etime

(with the obvious ex
eption of the very position of the 
harge) is then

E

x

=

(1� v

2

0

)[(x� x

0

)� Rv

0

℄� r

2

_v

0

[R� (x� x

0

)v

0

℄

3

; (8)

where we make use of 
ylindri
al 
oordinates for whi
h y

2

+ z

2

= r

2

and where

R = [r

2

+ (x� x

0

)

2

℄

1=2

. The �nal expression for the E

x

is obtained by repla
ing x

0

,

v

0

and _v

0

by their values at time t

0

, a

ording to eq.(3). We simplify the 
al
ulations

by putting a = 1. We have

x

0

= x(t

0

) =

q

1 + t

2

0

; (9)

v

0

= v(t

0

) =

t

0

q

1 + t

2

0

=

t

0

z

0

; (10)

_v

0

=

1

(1 + t

2

0

)

3=2

= z

�3

0

: (11)

The �nal result is written

E

x

=

x

0

(x� x

0

)� Rt

0

� r

2

[x

0

R� t0(x� x

0

)℄

3

=

N

D

3

; (12)

with

N = x

0

(x� x

0

)�Rt

0

� r

2

(13)

and

D = x

0

R� t

0

(x� x

0

) : (14)

Thus E

x

be
omes an expli
it fun
tion of N and D, whi
h are in turn expli
it

fun
tions of r, z and t

0

only. The variable t

0

is itself an impli
it fun
tion of r, z and

t through equation (5).

Now, if � is one of the independent variables r, z or t, the �rst derivative of E

x

with respe
t to � is simply

�E

x

��

=

DN

�

� 3ND

�

D

4

; (15)

where

5



D

�

=

�D

��

+

�D

�t

0

�t

0

��

(16)

and

N

�

=

�N

��

+

�N

�t

0

�t

0

��

(17)

are the partial derivatives of N and D with respe
t to the � variable. The last

derivative in the r.h.s. of eqs. (16) and (17) is given by the formula

�t

0

��

= �

�F=��

�F=�t

0

: (18)

After doing the 
al
ulations and 
olle
ting terms we obtain for the �rst order

derivatives of E

z

:

�E

x

�r

=

�r[D

2

+ 3N(N + r

2

+ 1)℄

D

5

; (19)

�E

x

�x

=

x[D

2

� 3N(N + r

2

)℄

D

5

; (20)

�E

x

�t

=

�(t

0

+R)[D

2

� 3N(N + r

2

)℄

D

5

: (21)

This pro
edure thus greatly simpli�es the 
al
ulations. For instan
e, the se
ond

derivative of E

x

with respe
t to r, a

ording to (16), (17) and (19), is given by

�

2

�r

2

(E

x

) =

�

�r

 

�E

x

�r

!

+

�

�N

 

�E

x

�r

!

N

r

+

�

�D

 

�E

x

�r

!

D

r

: (22)

Noti
e that the partial derivative �=�r on the r.h.s. of (22) refers only to the expli
it

dependen
e of �E

x

=�r on r, as the dependen
e impli
it in the N and D terms is

dealt with by using the 
hain rule.

The �nal 
al
ulations are still not easy, so that we used Redu
e to perform

them. The result of repla
ing all derivatives in the l.h.s. of the homogeneous wave

equation (HWE) for E

x

,

6



�

2

�r

2

E

x

+

1

r

�

�r

E

x

+

�

2

�x

2

E

x

�

�

2

�t

2

E

x

= 0 ; (23)

is a fra
tion with denominator x

0

RD

7

6= 0 and whose numerator turns out to be

identi
ally zero. This result shows that the x 
omponent of the ele
tri
 �eld 
al
u-

lated with the Li�enard-Wie
hert potentials does indeed satisfy the HWE in va
uum,

for the points not o

upied by the 
harge.

3. Non transverse solutions of the free Maxwell equations

Due to their wrong 
al
ulations using the Li�enard-Wie
hert potentials for the

uniformly a

elerated 
harge C&SR developed a new ele
trodynami
 theory whi
h

a

ording to our view is also misleading. In se
tion III of their paper they gave

\reasons and foundations of the method of separated potentials." The idea behind

this method of separated potentials (MSP) is to break the potential A

�

= (';

~

A),

whi
h satis�es 2A

�

= J

�

, J

�

= (�;~|), into two parts ('

0

;

~

A

0

) and ('

�

;

~

A

�

) with

' = '

0

+ '

�

,

~

A =

~

A

0

+

~

A

�

su
h that ('

0

;

~

A

0

) satisfy the Poisson equations

r

2

'

0

= �4��(t; ~x) ; r

2

~

A

0

= �4�~|(t; ~x) ; (24)

and ('

�

;

~

A

�

) satisfy the homogeneous wave equations

2'

�

= 0 ; 2

~

A

�

= 0 : (25)

They 
laim that this is ne
essary to solve the in
onsisten
ies of 
lassi
al ele
trody-

nami
s sin
e '

0

and

~

A

0

are impli
it fun
tions of t !

The fa
t is that their approa
h 
ompletely forgets the well formulated theory of

the inhomogeneous wave equation as presented e.g. by Courant and Hilbert

18

and

Morse and Feshba
h

19

. That the separation of 2A

�

= J

�

into equations (24) and

(25) is in
orre
t 
an be seen dire
tly in their eq.(27) whi
h fails to reprodu
e the

�eld of a 
harge moving with uniform velo
ity, given in several textbooks, e.g.

20

.

Another important 
omment that must be done here has to do with their state-

ment (in se
tion V) that in their MSP the Poisson equations for '

0

and

~

A

0

may

be 
onsidered as \wave equations with in�nite spread velo
ity of longitudinal per-

turbations." In this statement they mix the longitudinal ex
itations of QED in

the Gupta-Bleuler quantization method

4

with possible solutions of free Maxwell

equations that are not transverse waves.

�

This is indeed the 
ase sin
e they tried

�

Whittaker

49

showed that the Coulomb potential 
an be asso
iated with an interferen
e pattern

of waves with frequen
ies 0 < ! < 1 whi
h travel from the sour
e with arbitrary velo
ity. The

7



to relate their results with the B(3) theory of Evans

5;6;7


reated to explain the so


alled inverse Faraday e�e
t. The main 
laim of Evans is that the usual plane wave

solution of Maxwell equations, whi
h as is well known is a transverse wave, is always

a

ompanied by a longitudinal magneti
 �eld (B(3)) whi
h is phase-free. We shall

leave the dis
ussion of Evan's theory to another paper. Instead we are going to show

in the rest of this se
tion that the free Maxwell equations have non purely transverse

solutions whi
h 
orrespond in general to ele
tromagneti
 �eld 
on�gurations moving

with velo
ity v 6= 1 (again in units where 
 = 1)

8;9;10;23

.

In order to present examples of v 6= 1 solutions 
onsider a fun
tion � : M ! C

satisfying

2� = 0 : (26)

De�ne the variables

�

<

= [x

2

+ y

2

+ 


2

<

(z � v

<

t)

2

℄

1=2

; (27)




<

=

1

q

1� v

2

<

; !

2

<

� k

2

<

= 


2

<

; v

<

=

d!

<

dk

<

; (28)

�

>

= [�x

2

� y

2

+ 


2

>

(z � v

>

t)

2

℄

1=2

; (29)




>

=

1

q

v

2

>

� 1

; !

2

>

� k

2

>

= �


2

>

; v

>

= d!

>

=dk

>

: (30)

We 
an easily verify that the fun
tions �

`

m

<

and �

`

m

>

below are respe
tively

subluminal and superluminal solutions of the HWE. We have

�

`m

p

(t; ~x) = C

`

j

`

(


p

�

p

)P

`

m

(
os �)e

im�

e

i(!

p

t�k

p

z)

(31)

where the index p =<; >, C

`

are 
onstants, j

`

are the spheri
al Bessel fun
tions,

P

`

m

are the Legendre fun
tions and (r; �; ') are the usual spheri
al 
oordinates.

�

`m

<

[�

`m

>

℄ has phase velo
ity (w

<

=k

<

) < 1[(w

>

=k

>

) > 1℄ and the modulation fun
tion

j

`

(


<

�

<

)[j

`

(


>

�

>

)℄ moves with group velo
ity v

<

[v

>

℄, where 0 � v

<

< 1 [1 < v

>

<

1℄. Both �

`m

<

and �

`m

>

are undistorted progressive waves (UPWs). This term has

been introdu
ed by Courant and Hilbert (p. 760 of

18

). However they didn't suspe
t

ele
tri
 �eld is longitudinal for Whittaker's solution (as it should), in the sense that it is parallel

to the propagation ve
tor. We 
omment here that Whittaker's approa
h is not very rigorous, and,

indeed, the validity of his 
on
lusions are true only in a manifold with the topology of (S

2

�R

2

).

8



of UPWs moving with speeds greater than 
 = 1. For use in what follows text we

write the expli
it form of �

00

<

and �

00

>

, whi
h we denote simply by �

<

and �

>

:

�

p

(t; ~x) = C

sin(


p

�

p

)

�

p

e

i(!

p

t�k

p

z)

; p =< or > : (32)

When v

<

= 0, we have �

<

! �

0

,

�

0

(t; ~x) = C

sin


<

r

r

e

i


<

t

; r = (x

2

+ y

2

+ z

2

)

1=2

; (33)

a result �rst found in Bateman

21

. The solution �

<

appeared for the �rst time in

Barut and Chandola

22

.

We observe that if our interpretation of phase and group velo
ities is 
orre
t,

then there must be a Lorentz frame where �

<

is at rest. It is trivial to verify that

in the 
oordinate 
hart hx

0

�

i whi
h is a naturally adapted 
oordinate system to

I

0

, where I

0

= (1 � v

2

<

)

�1=2

�=�t + (v

<

=

q

1� v

2

<

)�=�z is a Lorentz frame moving

with speed v

<

in the z dire
tion relative to the inertial frame I = �=�t, �

p

goes in

�

0

(t

0

; ~x

0

) given by eq.(33) with t 7! t

0

, ~x 7! ~x

0

. We 
an also verify that there is no

Lorentz frame with velo
ity parameter 0 < V < 1 where �

>

is at rest.

We present still another example of a v > 1 solution of 2� = 0, 
alled the

X-wave

9;10;23

. This example is given here to show the general way to obtain v 6= 1

solutions of the wave equation. For more details see

8;9;10;24;25

.

Let

~

�(!;

~

k) be the Fourier transform of �(t; ~x), i.e.

~

�(!;

~

k) =

Z

R

3

d

3

x

Z

+1

�1

dt�(t; ~x)e

�i(

~

k~x�!t)

; (34)

�(t; ~x) =

1

(2�)

4

Z

R

3

d

3

~

k

Z

+1

�1

d!

~

�(!;

~

k)e

i(

~

k~x�!t)

; (35)

Inserting (34) in the HWE (26) gives

(!

2

�

~

k

2

)

~

�(!;

~

k) = 0 (36)

and we are going to look for solutions of the HWE and eq.(36) in the sense of

distributions. We rewrite (36) as

(!

2

� k

2

z

� 


2

)

~

�(!;

~

k) = 0 : (37)

It is obvious that (37) is always satis�ed if we take

9



�(!;

~

k) = �(

�

k; �)Æ(k

z

�

�

k 
os �)Æ(! �

�

k) ; (38)

where �(

�

k; �) is an arbitrary fun
tion and where

k

z

=

�

k 
os � ; 
os � =

k

z

!

; ! > 0 ; 
 =

�

k sin � ;

�

k > 0 : (39)

We re
all that

~


 = (k

x

; k

y

), ~� = (x; y) and we 
hoose

~


:~� = 
� 
os �. Now,

putting eq.(38) in eq.(35) we get

�(t; ~x) =

1

(2�)

4

Z

1

0

d

�

k

�

k sin

2

� e

i(

�

k 
os � z�

�

kt)

�

�

�

Z

2�

0

d� �(

�

k; �)e

i

�

k� sin � 
os �

�

: (40)

Choosing

�(

�

k; �) = (2�)

3

z

0

e

�

�

kz

0

sin �

�

k sin �

; (41)

where z

0

> 0 is a 
onstant, we obtain

�(t; ~x) = z

0

sin �

Z

1

0

d

�

k e

�

�

kz

0

sin �

�

�

�

1

2�

Z

2�

0

d�e

i

�

k� sin � 
os �

�

e

i

�

k(
os � z�t)

: (42)

Calling z

0

sin � = a

0

> 0, the last equation be
omes

�

>

X

0

(t; ~x) = a

0

Z

1

0

d

�

ke

�

�

ka

0

J

0

(

�

k� sin �)e

i

�

k(
os � z�t)

: (43)

Writing

�

k =

�

k

<

we see that

J

0

(

�

k

<

� sin �)e

i

�

k

<

(z 
os ��t)

(44)

is a subluminal Bessel beam

9;26

, a solution of the HWE moving in the positive z

dire
tion with group velo
ity less than one, sin
e for this beam !

2

� k

2

<

= 


2

. From

eq.(43) we also have

10



�

>

X

0

(t; ~x) =

a

0

q

(� sin �)

2

+ (a

0

+ i(z 
os � � t))

2

; (45)

so that this solution propagates with speed v = 1= 
os �. For sound waves this result

has been 
on�rmed experimentally. More pre
isely, a �nite aperture approximation

(Rayleigh-Sommerfeld method

10;26;27;28

) to �

>

X

0

was produ
ed by a spe
ial trans-

du
er

29

and it has been veri�ed

17;25

that it travels with speed 


s

= 
os �, where 


s

is

the \sound velo
ity" that appears in the a
ousti
al wave equation.

From the v 6= 1 solutions of 2� = 0 we 
an immediately obtain solutions of the

free Maxwell equations travelling with v < 1 or v > 1 by means of the so 
alled Hertz

potential method

8;9;10;30

. The results are more easily presented using the formalism

of di�erential forms (see e.g.

31

). Let (M; g;D) be Minkowski spa
etime and let

e

�

2 se
 TM (TM is the tangent bundle) be an orthonormal basis, g(e

�

; e

�

) = �

��

(�

��

= diag(1;�1;�1;�1)) and e

�

= �=�x

�

, hx

�

i being Lorentz-Einstein 
oordinate

fun
tions. Let 


�

2 se
 T

�

M (T

�

M is the 
otangent bundle) be the dual basis and

let 


�

= �

��




�

. We have 


�

= dx

�

. Now, let

V

(M) =

P

4

p=1

V

p

(M) be the real

exterior algebra bundle, where

V

0

(M) is identi�ed with the ring of real fun
tions

and

V

1

(M) � T

�

M . By C


V

(M) we mean the 
omplex exterior algebra bundle. As

is well known the ele
tromagneti
 �eld is represented by a two-form F 2 se


V

2

(M).

We have

F =

1

2

F

��




�

^ 


�

; F

��

=

0

B

B

B

�

0 �E

1

�E

2

�E

3

E

1

0 �B

3

B

2

E

2

B

3

0 �B

1

E

3

�B

2

B

1

0

1

C

C

C

A

; (46)

where (E

1

; E

2

; E

3

) and (B

1

; B

2

; B

3

) are respe
tively the Cartesian 
omponents of

the ele
tri
 and magneti
 �elds.

If ? :

V

p

(M)!

V

4�p

(M) is the Hodge star operator and Æ :

V

p

(M)!

V

p+1

(M),

Æ(!

p

) = (�)

p

?

�1

d ? !

p

, ?

�1

? = 1 and where d :

V

p

(M) !

V

p+1

(M) is the exterior

derivative operator, then the free Maxwell equations read

dF = 0 ; ÆF = 0 : (47)

Now, if A 2 se


V

1

(M) is the ve
tor potential, su
h that F = dA, then if ÆA = 0

(Lorenz gauge

y

) we have the following

y

Not Lorentz gauge, please. See e.g. Penrose and Rindler

32

.

11



Theorem: Let � 2 se


V

2

(M) be the so 
alled Hertz potential. Suppose that �

satis�es the wave equation, i.e. 2� = 0. If we take A = �Æ� we have that F = dA

satis�es dF = 0, ÆF = 0

16

.

From this theorem we see that if � 2 se
C 


V

0

(M) satis�es 2� = 0 we 
an

�nd nontrivial solutions of of eqs.(47) by 
hoosing, e.g.,

� = �


1

^ 


2

; (48)

where � is one of the fun
tions shown above in eqs.(32,45), and then taking F =

Re [�dÆ�℄.

For example, if � = �

0

given by eq.(33) we get, putting

� = Re�

0




1

^ 


2

� ?(Im�

0




1

^ 


2

) ; (49)

that

F

0

=

C

r

3

[sin
t(�
r sin � sin'� � 
os � sin � 
os')


0

^ 


1

� sin
t(�
r sin � 
os'+ � sin � 
os � sin')


0

^ 


2

+ sin
t(� sin

2

� � 2�)


0




3

+ 
os
t(� sin

2

� � 2�)


1

^ 


2

+ 
os 
t(� sin � 
os � sin'+ �
r sin � 
os')


1

^ 


3

+ 
os 
t(�� sin � 
os � 
os'+ �
r sin � sin')


2

^ 


3

℄ (50)

with � = 
r 
os 
r � sin
r, � = 3� + 


2

r

2

sin
r. Writing expli
itly

~

E and

~

B we

have

~

E =

~

W sin
t ;

~

B =

~

W 
os 
t ; (51)

with

~

W = �C

 

�
y

r

3

�

�xz

r

5

;�

�
x

r

3

�

�yz

r

5

;

�(x

2

+ y

2

)

r

5

�

2�

r

3

!

: (52)

We noti
e in passing that r�

~

W = 


~

W , the so 
alled for
e-free �eld that appears in

magnetohydrodynami
s problems. We see from eq.(52) that F is a non-transverse

stationary solution of the free Maxwell equations in va
uum. We 
an also easily

verify that the �eld invariants are non null.

If we take

12



� = �

X

0




1

^ 


2

; (53)

where �

X

0

is given by eq.(45), we get the superluminal ele
tromagneti
 X-wave

(SEXW)

10;23

. Expli
itly we get an F

X

0


orresponding to ele
tri
 and magneti


�elds

~

E

X

0

and

~

B

X

0

, whose 
omponents in polar 
oordinates are

(

~

E

X

0

)

�

= 0 ; (54a)

(

~

E

X

0

)

�

=

1

�

i

M

6

p

MM

2

�

X

0

; (54b)

(

~

B

X

0

)

�

= 
os �(

~

E

X

0

)

�

; (54
)

(

~

B

X

0

)

�

= 0 ; (54d)

(

~

B

X

0

)

z

= � sin

2

�

M

7

p

M

�

X

0

: (54e)

The fun
tions M

i

(i = 2; : : : ; 7) in (54) are

M

2

= � +

p

M ; (55a)

M

3

=

1

p

M

� ; (55b)

M

4

=

3

p

M

� ; (55
)

M

5

= � ; (55d)

M

6

= �

2

sin

2

�

M

4

M

M

2

; (55e)

M

7

= �

1

p

M

+

3

p

M

3

�

2

: (55f)

We immediately see from eqs.(54) that the F

X

0

is indeed a superluminal solution of

the free Maxwell equations whi
h propagates with speed 1= 
os � in the z dire
tion.

13



For the Poynting ve
tor we get

(

~

P

X

0

)

�

= �Re f(

~

E

X

0

)

�

gRe f(

~

B

X

0

)

z

g ; (56a)

(

~

P

X

0

)

�

= 0 ; (56b)

(

~

P

X

0

)

z

= jRe f(

~

E

X

0

)

�

gj

2

; (56
)

and for the energy density we obtain

u

X

0

= (1 + 
os

2

�)

h

jRe f(

~

E

X

0

)

�

gj

2

i

+ jRe f(

~

B

X

0

)

z

gj

2

; (57)

and we have that j

~

P j=u < 1, a general result. Now, the question 
annot be eluded

of what is the velo
ity of transport of energy of the v 6= 1 (in parti
ular, the v > 1)

solutions of Maxwell equations ?

We 
an �nd in many physi
s textbooks (e.g.

33

) and in s
ienti�
 papers

34

the

following argument. Consider an arbitrary solution of ME in va
uum dF = ÆF = 0.

Then it follows that the Poynting ve
tor and the energy density of the �eld are

~

P =

~

E �

~

B ; u =

1

2

(

~

E

2

+

~

B

2

) (58)

It is obvious that the following inequality always holds:

v

"

=

j

~

P j

u

� 1: (59)

Now, the law of 
onservation of energy-momentum over a �nite volume V with

boundary S = �V reads in integral form

�

�t

�

Z Z Z

V

dv

1

2

(

~

E

2

+

~

B

2

)

�

=

I

S

d

~

S:

~

P (60)

Eq.(60) is interpreted saying that

H

S

d

~

S:

~

P is the �eld energy 
ux a
ross the surfa
e

S = �V , so that

~

P is the 
ux density | the amount of �eld energy passing through

a unit area of the surfa
e in unit time.

Now, for plane wave solutions of Maxwell equations,

v

"

= 1 (61)

14



and this result gives origin to the \dogma" that free ele
tromagneti
 �elds transport

energy at speed v

"

= 
 = 1.

However, v

"

� 1 is always true, even for superluminal solutions of ME, as the

ones we have just mentioned. The same is true for the superluminal modi�ed Bessel

beam found by Band

34

. He maintains there that sin
e v

"

� 1 there is no 
on
i
t

between superluminal solutions of ME and Relativity Theory sin
e what Relativity

forbids is the propagation of energy with speed greater than 
.

Here we 
hallenge this 
on
lusion. (A dis
ussion on this issue and of whether

Relativity Theory is 
ompatible or not with the superluminal solutions of Maxwell

equations 
an be found e.g. in

9;10;28

.) The fa
t is that as well known

~

P is not

uniquely de�ned. Eq.(60) 
ontinues to hold true if we make the substitution

~

P 7!

~

P +

~

P

0

with r:

~

P

0

= 0. But of 
ourse we 
an easily �nd for subluminal, luminal or

superluminal solutions of Maxwell equations a

~

P

0

su
h that

j

~

P +

~

P

0

j

u

� 1: (62)

We thus 
ome to the 
on
lusion that the question of the transport of energy in

superluminal UPWs solutions of ME is an experimental question. For the a
ousti


superluminal X-solution of the HWE the energy around the peak region seems to


ow together with the wave, i.e. with speed 


1

= 


s

= 
os � where 


s

is the velo
ity

parameter appearing in the a
ousti
 wave equation. The same seems to be true for

the SEXW laun
hed in free spa
e by Saari and Reivelt

11

. These examples (together

with results obtained for the 
ow of energy in the tunneling of mi
rowaves

50

) show

that, at least in the extension o

upied by the �eld 
on�guration, energy 
an 
ow

with superluminal velo
ities.

Before ending we give another example to illustrate that eq.(59) is devoid of

physi
al meaning. Consider a spheri
al 
ondu
tor in ele
trostati
 equilibrium with

uniform super�
ial 
harge density (total 
harge Q) and with a dipole magneti


moment. Then, we have

~

E = Q

r

r

2

;

~

B =

C

r

3

(2 
os � r+ sin � �) ; (63)

~

P =

~

E �

~

B =

CQ

r

5

sin �' ; (64)

u =

1

2

 

Q

2

r

4

+

C

2

r

6

(3 
os

2

� + 1)

!

: (65)
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Thus

v

"

=

j

~

P j

u

=

2CQr sin �

r

2

Q

2

+ C

2

(3 
os

2

� + 1)

6= 0 for r 6= 0. (66)

Sin
e the �elds are stati
 the 
onservation law eq.(60) 
ontinues to hold true, as

there is no motion of 
harges and for any 
losed surfa
e 
ontaining the spheri
al


ondu
tor we have

I

S

d

~

S:

~

P = 0: (67)

But nothing is in motion !

To end this se
tion we re
all that in se
. 2.19 of his book Stratton

30

presents a

dis
ussion of the Poynting ve
tor and energy transfer whi
h essentially agrees with

the view presented above. Indeed he �nishes that se
tion with the words

30

: \By

this standard there is every reason to retain the Poynting-Heaviside viewpoint until

a 
lash with new experimental eviden
e shall 
all for its revision."

The last example seems at �rst sight to endorse C&SR statement in se
. V of

their paper that \the 
ux of ele
tromagneti
 energy in the steady state has no sense

sin
e no presen
e of the free ele
tromagneti
 �eld is supposed in this 
ase." How-

ever, from eq.(64) it is 
lear that there is angular momentum stored in the stati


ele
tromagneti
 �eld. If the sphere is dis
harged by its south pole, it will a
quire

a me
hani
al angular momentum whi
h (supposing there is no radiation) is equal

to the ele
tromagneti
 angular momentum stored in the �eld, as 
an be seen by an

elementary 
al
ulation. An experimental veri�
ation of this not so well known phe-

nomenon has been obtained by Graham and Lahoz

12

. By 
harging and dis
harging

a 
apa
itor in a magneti
 �eld orthogonal to the

~

E �eld inside the 
apa
itor they

showed that the 
apa
itor os
illates, thus transforming ele
tromagneti
 angular mo-

mentum in me
hani
al angular momentum. Graham and Lahoz's experiment shows

de�nitively that C&SR statement 
on
erning the meaning of the Poynting ve
tor

for the steady state is 
ompletely wrong. However, as one 
an see from the other

examples dis
ussed above, 
are must be taken with the 
on
ept of propagation of

energy and other results derived from the relation j

~

P j=u < 1.

To end this long se
tion we re
all that even if Saari and Reivelt

11

agree that

they have produ
ed a superluminal ele
tromagneti
 �eld 
on�guration, they think

that no trouble with Relativity theory o

urs be
ause they think that SEXWs are

not signals in the Sommerfeld-Brillouin sense

35

. We do not agree with their opinion

16



and our view is expressed in

27;28

.

z

The main problem|obje
t of intense dis
ussions

on the Workshop: \Superluminal (?) Velo
ities" held at Cologne in June 98

x

|is:

what 
onstitutes a real signal? The Sommerfel-Brillouin signal is a pure mathemat-

i
al 
on
ept and 
annot exist in the physi
al world sin
e it must have an in�nite

frequen
y spe
trum. This point has been thoughtfully dis
ussed by Nimtz

36

(one of

the organizers of the Workshop quoted above) who showed that real signals must be

ne
essarily frequen
y band limited, a fa
t that, he argues, implies that superluminal

signals of this kind 
an violate Einstein's 
ausality. We dis
uss this 
laim in

50

.

4. Con
lusions

In this paper we showed that 
ontrary to the statements of C&SR the Li�enard-

Wie
hert potentials do not seem to lead to any in
onsisten
y when applied to the

�elds of a 
harge in hyperboli
 motion. Nevertheless this does not mean that the

question \does a uniformly a

elerated 
harge radiate ?" has a 
onsensuous answer.

This is well illustrated by the dozens of papers in the literature dealing with this

subje
t. A good review with the main referen
es is the paper by Fulton and Rohrli
h

16

, where the authors 
on
lude that there is radiation. This 
on
lusion, based on

the Li�enard-Wie
hert potentials, is a
hieved by a 
lever de�nition of what radiation

means and the use of a Lorentz invariant de�nition.

However, Turakulov

13

has re
ently found an exa
t solution of Maxwell equations

(with the method of separation of variables) for the �elds generated by a 
harge in

hyperboli
 motion that shows no radiation. The existen
e of this exa
t solution

shows that the un
riti
a use of Li�enard-Wie
hert potentials for any 
on
eivable

ele
tromagn�eti
 situation may be non sequitur. If the 
harge is moving in the z

dire
tion and if (t; �; �; z) are the usual 
ylindri
al 
oordinate fun
tions naturally

adapted to the inertial frame I = �=�t

37

, Turakulov's solution, valid for the domains

jzj < jtj and jzj > jtj, is

A

t

=

z

z

2

� t

2

 

z

2

� t

2

+ �

2

+ a

2

p

R

+

R

�

� 1

!

; (68a)

A

z

=

t

z

2

� t

2

 

z

2

� t

2

+ �

2

+ a

2

p

R

+

R

�

� 1

!

; (68b)

where

z

A more detailed dis
ussion about the velo
ity of energy propagation (in
luding the 
ase of super-

luminal tunneling of mi
rowaves) is given in

50

.

x

The papers presented at the Workshop appeared in Ann. der Physik. 7 (1998).
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R

+

=

�

q

jz

2

� t

2

j+ a

�

2

+ �

2

(69a)

and

R

�

=

�

q

jz

2

� t

2

j � a

�

2

+ �

2

(69b)

It must be mentioned that this solution is similar to the Born solution

14

but they

indeed di�er from the Li�enard-Wie
hert potentials and give, as 
an be easily veri�ed,

a null magneti
 �eld at the moment of zero velo
ity. The 
riti
isms of Fulton and

Rohrli
h

16

to the Born solution whi
h, being valid for both domains z � t > 0 and

z�t < 0, des
ribes the retarded �eld of a uniformly a

elerated 
harge q moving with

equation of motion z(t) =

1

a

p

1 + a

2

t

2

together with the advan
ed �eld of a uniformly

a

elerated 
harge �q moving with equation of motion z(t) =

�1

a

p

1 + a

2

t

2

does not

apply to Turakulov's solution. It is important to emphasize here that he proved

38

,

using the method of separation of variables, that there is emission of radiation under

in�nitesimally small 
hanges of the a

eleration of a moving 
harge. Also, solution

(68) solves the problem of the 
harge in a gravitational �eld (equivalen
e prin
iple)

in a trivial way.

We end this paper re
alling that there are yet several 
laims in the literature

that 
lassi
al ele
trodynami
s is an in
onsistent theory. Some 
laims are based on

experimental results like those by Pappas

39

and Graneau

40;41

, where they maintain

that there are several experiments 
on
erning the a
tion of a 
urrent in metali



ondu
tors whi
h are in disagreement with the Biot-Savart or the Lorentz for
e

laws and whi
h do agree only with the Amp�ere for
e law

42

. Re
ently, Pappas's

experiment on the for
e a
ting on an Amp�ere bridge has been repeated by Cavalleri

and 
olaborators

43

. They found that 
ontrary to Pappas's 
laims the Lorentz for
e

explains the experimental results with great a

ura
y.

From the theoreti
al point of view there are also several 
laims that the Amp�ere

and Lorentz for
e laws predi
t di�erent results for the for
es that a 
ir
uit produ
es

in a part of itself. This result has been found to be wrong by Assis

44

and has been

re
on�rmed by Cavalleri

43

. Another well difused statement is that a 
ondu
ting

wire 
arrying a 
urrent does not generate an ele
tri
 �eld outside the wire. This

statement is false, both theoreti
ally

47

and experimentally

48

.

The examples dis
ussed in this paper show that 
lassi
al ele
tromagneti
 theory

is a 
omplex subje
t, less known than we suppose and that 
are must be taken in

studying every one of its problems.

18



We think that there are still many surprises in Maxwell theory. Besides the

ones studied above, we quote also the Maxwell-Dira
 equivalen
e

45;46

whi
h re-

veals unsuspe
ted 
onne
tions between ele
trodynami
s and relativisti
 quantum

me
hani
s.
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