On partitions with difference conditions. (Part II)

by José Plínio O. Santos^{*}

and

Paulo Mondek

Abstract

In this paper we present two general theorems having interesting special cases. From one of them we give a new proof for Theorems of Gordon using a bijection and from another we have a new combinatorial interpretation associated to a Theorem of Göllnitz.

1. Introduction

Many of the identities given by Slater [6] have been used in the proofs of several combinatorial results in partitions. In this work we use 34, 36, 48, 53 and 57 of Slater [6], listed, in this order, below

$$\sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n(n+2)}}{(q^2;q^2)_n} = \prod_{n=1}^{\infty} \frac{(1+q^{2n-1})(1-q^{8n-1})(1-q^{8n-7})(1-q^{8n})}{(1-q^{2n})}$$
(1)

$$\sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2}}{(q^2;q^2)_n} = \prod_{n=1}^{\infty} \frac{(1+q^{2n-1})(1-q^{8n-3})(1-q^{8n-5})(1-q^{8n})}{(1-q^{2n})}$$
(2)

$$\prod_{n=1}^{\infty} (1-q^{12n-5})(1-q^{12n-7})(1-q^{12n}) - q \prod_{n=1}^{\infty} (1-q^{12n-1})(1-q^{12n-11})(1-q^{12n})$$
(3)

$$=\prod_{n=1}^{\infty} (1-(-1)^n q^{3n-1})(1+(-1)^n q^{3n-2})(1-(-1)^n q^{3n})$$
$$\sum_{n=0}^{\infty} \frac{(q;q^2)_{2n} q^{4n^2}}{(q^4;q^4)_{2n}} =\prod_{n=1}^{\infty} \frac{(1-q^{12n-5})(1-q^{12n-7})(1-q^{12n})}{(1-q^{4n})}$$
(4)

$$\sum_{n=0}^{\infty} \frac{(-q;q^2)_{2n+1}q^{4n(n+1)}}{(q^4;q^4)_{2n+1}} = \prod_{n=1}^{\infty} \frac{(1+q^{12n-1})(1+q^{12n-11})(1-q^{12n})}{(1-q^{4n})}$$
(5)

* Partially supported by FAPESP.

to prove some results in partitions where we use the standard notation

$$(a;q)_0 = 1$$

 $(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$

and

$$(a;q)_{\infty} = \lim_{n \to \infty} (a;q)_n, \quad |q| < 1.$$

Here we proceed in a fashion similar to the one employed by Andrews [1], in the proofs of some theorems of Göllnitz.

2. The first general theorem

Theorem 1. Let $C_k(n)$ be the number of partitions of n in distinct parts of the form $n = a_1 + \cdots + a_s$ such that $a_s \equiv (k+1)$ or $(k+2)(mod \ 4)$ with $a_s \geq k+1, a_j \equiv (k+1)$ or $(k+2)(mod \ 4)$ if $a_{j+1} \equiv (k+2)$ or $(k+3)(mod \ 4)$, and $a_j \equiv k$ or $(k+3)(mod \ 4)$ if $a_{j+1} \equiv k$ or $(k+1)(mod \ 4)$. Then, for $k \geq 0$,

$$\sum_{n=0}^{\infty} C_k(n)q^n = \sum_{n=0}^{\infty} \frac{(-q;q^2)q^{n^2+kn}}{(q^4;q^4)_n}.$$

Proof. We define f(s, n) as the number of partitions of the type enumerated by $C_k(n)$ with the added restriction that the number of parts is exactly s. The following identity is true for f(s, n):

$$f(s,n) = f(s-1, n-2s-k+1) + f(s-1, n-4s-k+2) + f(s, n-4s)$$
(6)

To prove this we split the partitions enumerated by f(s, n) into three classes: (a) those in which k + 1 is a part, (b) those in which k + 2 is a part and (c) those with all parts > k + 2.

If in those in class (a) we drop the part k + 1 and subtract 2 from each of the remaining parts we are left with a partition of n - (k + 1) - 2(s - 1) = n - 2s + 1 in exactly s - 1 parts each $\geq k + 1$ and these are the ones enumerated by f(s - 1, n - 2s - k + 1). From those in class (b) we drop the part k + 2 and subtract 4 from each of the remaining parts obtaining partitions that are enumerated by f(s - 1, n - 4s - k + 2) and for the ones in class (c) we subtract 4 from each part obtaining the partitions enumerated by f(s, n - 4s).

Defining

$$F(z,q) = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s,n) z^{s} q^{n}$$

and using (6) we obtain:

$$F(z,q) = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} (f(s-1, n-2s-k+1) + f(s-1, n-4s-k+2) + f(s, n-4s)z^{s}q^{n})$$

$$= zq^{k+1} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s-1, n-2s-k+1)(zq^{2})^{s-1}q^{n-2s-k+1} + zq^{k+2} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s-1, n-4s-k+2)(zq^{4})^{s-1}q^{n-4s-k+2} + \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s, n-4s)(zq^{4})^{s}q^{n-4s}$$

$$= zq^{k+1} F(zq^{2}, q) + zq^{k+2}F(zq^{4}, q) + F(zq^{4}, q).$$
(7)

If $F(z,q) = \sum_{n=0}^{\infty} \gamma_n z^n$ we may compare coefficients of z^n in (7) obtaining

$$\gamma_n = \gamma_{n-1} q^{2n+k-1} + \gamma_{n-1} q^{4n+k-2} + \gamma_n q^{4n}.$$

Therefore

$$\gamma_n = q^{2n+k-1} \frac{(1+q^{2n-1})}{(1-q^{4n})} \gamma_{n-1}$$
(8)

and observing that $\gamma_0 = 1$ we may iterate (8) to get

$$\gamma_n = \frac{(-q; q^2)_n q^{n^2 + kn}}{(q^4; q^4)_n}.$$

From this

$$F(z,q) = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2 + kn} z^n}{(q^4;q^4)_n}$$

and therefore

$$\sum_{n=0}^{\infty} C_k(n)q^n = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s,n)q^n$$
$$= F(1,q) = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2 + kn}}{(q^4;q^4)_n}$$

If we consider k = 0 in this theorem and denote $C_0(n)$ by C(n) we have that C(n) is the number of partitions of n in distinct parts of the form $n = a_1 + a_2 + ... + a_s$ where $a_s \equiv 1$ or $2 \pmod{4}$, $a_j \equiv 3$ or $4 \pmod{4}$ if $a_{j+1} \equiv 1$ or $4 \pmod{4}$ and $a_j \equiv 1$ or $2 \pmod{4}$ if $a_{j+1} \equiv 2$ or $3 \pmod{4}$.

If we let D(n) denote the number of partitions of n in parts that are distinct odd $\equiv \pm 5 \pmod{12}$ or even $\equiv \pm 4 \pmod{12}$ and let E(n) denote the number of partitions of n in distinct odd $\equiv \pm 1 \pmod{12}$ or even $\equiv \pm 4 \pmod{12}$ we have the following theorem:

Theorem 2. C(n) = D(n) + E(n-1) for every positive integer n.

Proof.

$$\sum_{n=0}^{\infty} C(n)q^{n} = \sum_{n=0}^{\infty} \frac{(-q;q^{2})_{n}q^{n^{2}}}{(q^{4};q^{4})_{n}}$$

$$= \sum_{n=0}^{\infty} \frac{(-q;q^{2})_{2n}q^{4n^{2}}}{(q^{4};q^{4})_{2n}} + q \sum_{n=0}^{\infty} \frac{(-q;q^{2})_{2n+1}q^{4n^{2}+4n}}{(q^{4};q^{4})_{2n+1}}$$

$$= \prod_{n=1}^{\infty} \frac{(1+q^{12n-5})(1+q^{12n-7})(1-q^{12n})}{(1-q^{4n})} +$$

$$q \prod_{n=1}^{\infty} \frac{(1+q^{12n-1})(1+q^{12n-11})(1-q^{12n})}{(1-q^{4n})}$$

$$= \sum_{n=0}^{\infty} D(n)q^{n} + q \sum_{n=0}^{\infty} E(n)q^{n}.$$
(9)

where we have used identities (4) and (5) after replacing in (4) "q" by "-q" which completes the proof.

We list below the partitions of 21 enumerated by C(21) and D(21) and the ones of 20 enumerated by E(20).

C(21) = 12	D(21) = 5	E(20) = 7
21	17 + 4	20
20 + 1	16 + 5	16 + 4
12 + 8 + 1	8 + 8 + 5	8 + 8 + 4
16 + 5	8 + 5 + 4 + 4	8 + 4 + 4 + 4
12 + 9	5+4+4+4+4	4 + 4 + 4 + 4 + 4
17 + 3 + 1		11 + 8 + 1
16 + 4 + 1		11 + 4 + 4 + 1
13 + 7 + 1		
13 + 6 + 2		
9 + 7 + 5		
12 + 5 + 3 + 1		
9 + 7 + 4 + 1		

It is interesting to observe that

$$C(n) = F_e(n) - F_0(n)$$
(10)

where $F_e(n)$ (resp. $F_0(n)$) is the number of partitions of n into parts $\neq 0, \pm 2 \pmod{12}$ with no repeated multiples of 3 and with an even (resp. odd) number of parts divisible by 3.

If fact by replacing "q" by "-q" in (3) we have

$$\prod_{n=1}^{\infty} (1+q^{12n-5})(1+q^{12n-7})(1-q^{12n}) + q \prod_{n=1}^{\infty} (1+q^{12n-1})(1+q^{12n-11})(1-q^{12n})$$
$$= \prod_{n=1}^{\infty} (1+q^{3n-1})(1+q^{3n-2})(1-q^{3n})$$

and observing that

$$\sum_{n=0}^{\infty} C(n)q^n \stackrel{(9)}{=} \prod_{n=1}^{\infty} \frac{(1+q^{3n-1})(1+q^{3q-2})(1-q^{3n})}{(1-q^{4n})}$$
$$= \frac{\prod_{\substack{n=1\\n\neq 0 (mod \ 4)}}^{\infty} (1-q^{3n})}{\prod_{\substack{n\neq 0 (mod \ 4)}}^{\infty} (1-q^n)}$$
$$= \sum_{n=0}^{\infty} (F_e(n) - F_0(n))q^n.$$

we have (10).

We state and prove, next, our second general result.

3. The second general theorem

Theorem 3. For $\ell \geq 0$ let $A_{\ell}(n)$ be the number of partitions of n of the form $n = a_1 + a_2 + \cdots + a_{2s-1} + a_{2s}$ such that $a_{2s} \geq a$ where $\ell = 2a + \varepsilon$ ($\varepsilon = 0$ or 1), $a_{2i-3} - a_{2i} \geq 3$ and $a_{2i-1} - a_{2i} = 1$ (when $a_{2i} \geq a + \varepsilon$) or 2. Then

$$\sum_{n=0}^{\infty} A_{\ell}(n)q^n = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2 + \ell n}}{(q^2;q^2)_n}$$

Proof. We define, for $\lambda = 1$ or 2, $g_{\lambda}(2s, n)$ as the number of partitions of the type enumerated by $A_{\ell}(n)$ with the added restriction that the number of parts is exactly 2s and such that $a_{2s-1} + a_{2s} \ge \ell + 2\lambda - 1$. For n = s = 0 we define $g_{\lambda}(2s, n) = 1$ and $g_{\lambda}(2s, n) = 0$ if n < 0 or s < 0 or n = 0 and s > 0.

In what follows we prove two identities for $g_{\lambda}(2s, n)$.

(i)
$$g_1(2s,n) = g_2(2s-2,n-2s-\ell) + g_1(2s-2,n-2s-\ell+1) + g_1(2s,n-2s)$$

(ii) $g_2(2s,n) = g_1(2s,n-2s).$

To prove the first one we split the partitions enumerated by $g_1(2s, n)$ into two classes: (a) those partitions in which $\left\lfloor \frac{\ell}{2} \right\rfloor$ or $\left\lfloor \frac{\ell+1}{2} \right\rfloor$ is a part; (b) those in which neither $\left\lfloor \frac{\ell}{2} \right\rfloor$ nor $\left\lfloor \frac{\ell+1}{2} \right\rfloor$ is a part.

The ones in class (a) can have as the two smallest parts either " $\left\lfloor \frac{\ell+4}{2} \right\rfloor + \left\lfloor \frac{\ell+1}{2} \right\rfloor$ " or " $\left\lfloor \frac{\ell+3}{2} \right\rfloor + \left\lfloor \frac{\ell}{2} \right\rfloor$ ". In the first case if we remove the two smallest parts and subtract 1 from each of the remaining parts we are left with a partition of $n - (\ell+2) - (2s-2) = n - 2s - \ell$ in exactly 2s - 2 parts where $a_{2s-3} - a_{2s-2} \ge \ell + 3$. These are the partitions enumerated by $g_2(2s-2, n-2s-\ell)$.

From those in class (a) having " $\left\lfloor \frac{\ell+3}{2} \right\rfloor + \left\lfloor \frac{\ell}{2} \right\rfloor$ " as the two smallest parts we remove these two and subtract 1 from each of the remaining parts. We are, in this case, left with a partition of $n - (\ell+1) - (2s-2) = n - 2s - \ell + 1$ in exactly 2s - 2 parts where $a_{2s-3} - a_{2s-2} \ge \ell + 1$ which are enumerated by $g_1(2s-2, n-2s-\ell+1)$.

Is is important of observe that after doing these operations the restrictions on difference between parts is not changed.

Now we consider the partitions in class (b). Considering that neither $\left\lfloor \frac{\ell}{2} \right\rfloor$ nor $\left\lfloor \frac{\ell+1}{2} \right\rfloor$ is a part we can subtract 1 from each part obtaining partitions of n-2s in 2s parts which are the ones enumerated by $g_1(2s, n-2s)$.

The prove of (ii) follows by the fact that if we subtract 1 from each part of a

partition such that $a_{2s-1} + a_{2s} \ge \ell + 3$ the resulting one is such that $a_{2s-1} + a_{2s} \ge \ell + 1$. We define, now,

$$G_{\lambda}(z,q) = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{\lambda}(2s,n) z^{2s} q^n.$$

Using (i) we have

$$G_{1}(z,q) = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2s,n)g_{1}(2s,n)z^{2s}q^{n}$$

$$= \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} (g_{2}(2s-2,n-2s-\ell))$$

$$+g_{1}(2s-2,n-2s-\ell+1) + g_{1}(2s,n-2s))z^{2s}q^{n}$$

$$= z^{2}q^{\ell+2} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2s-2,n-4s-\ell)(zq^{2})^{2s-2}q^{n-4s-\ell} +$$

$$z^{2}q^{\ell+1} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2s-2,n-2s-\ell+1)(zq)^{2s-2}q^{n-2s-\ell+1} +$$

$$\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2s,n-2s)(zq)^{2s}q^{n-2s}$$

$$= z^{2}q^{\ell+2}G_{1}(zq^{2},q) + z^{2}q^{\ell+1}G_{1}(zq,q) + G_{1}(zq,q)$$
(11)

where, on the third sum, we used (ii).

Now, comparing the coefficients of z^{2n} in (11) after making the substitution

$$G_1(z,q) = \sum_{n=0}^{\infty} \gamma_n z^{2n}$$

we have

$$\gamma_n = q^{4n+\ell-2}\gamma_{n-1} + q^{2n+\ell-1}\gamma_{n-1} + q^{2n}\gamma_n.$$

Therefore

$$\gamma_n = q^{2n+\ell-1} \frac{(1+q^{2n-1})}{(1-q^{2n})} \cdot \gamma_{n-1}$$
(12)

and, observing that $\gamma_0 = 1$, we may iterate this n - 1 times to get:

$$\gamma_n = \frac{(-q; q^2)_n q^{n^2 + \ell n}}{(q^2; q^2)_n}.$$

Then

$$G_1(z,q) = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2 + \ell n}}{(q^2;q^2)_n} z^{2n}$$

and the theorem follows since

$$\sum_{n=0}^{\infty} A_{\ell}(n)q^{n} = \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2s,n)q^{n} = G_{1}(1,q)$$
$$= \sum_{n=0}^{\infty} \frac{(-q;q^{2})_{n}q^{n^{2}+\ell n}}{(q^{2};q^{2})_{n}}$$

Particular cases of Theorem 3.

If we take $\ell = 0$ in Theorem 3 we have the following result:

Theorem 4. The number of partitions of n in an even number of parts, 2s, such that $a_{2j-1} - a_{2j} = 1$ or 2 and $a_{2s} \ge 0$ is equal to the number of partitions of n in parts $\equiv \pm 1, 4 \pmod{8}$.

Proof. By Theorem 3 we have

$$\sum_{n=0}^{\infty} A_0(n)q^n = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2}}{(q^2;q^2)_n}$$
$$\stackrel{(2)}{=} \prod_{n=1}^{\infty} \frac{1}{(1-q^{8n-1})(1-q^{8n-4})(1-q^{8n-7})}$$

For $\ell = 1$ we have:

Theorem 5. $A_1(n)$ is equal to the number of partitions of n in parts $\equiv 1, 5, 6 \pmod{8}$.

Proof. By Theorem 3 and corollary 2.7, p. 21 of Andrews [2] with q replaced by q^2 and a = -q we have:

$$\sum_{n=0}^{\infty} A_1(n)q^n = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n(n+1)}}{(q^2;q^2)_n}$$

= $(-q^3;q^4)_{\infty}(-q^2;q^2)_{\infty}$
= $\prod_{n=1}^{\infty} \frac{1}{(1-q^{8n-2})(1-q^{8n-3})(1-q^{8n-7})}$

In [4] Santos and Mondek gave a family of partitions including as special case the following theorem of Göllnitz.

"Let $G_1(n)$ denote the number of partitions of n into parts, where each part is congruent to one of 1, 5 or 6 (mod 8). Let $H_1(n)$ denote the number of partitions of n of the form $b_1 + b_2 + \cdots + b_j$, where $b_i \ge b_{i+1} + 2$ and strict inequality holds if b_i is odd. Then for each $n, G_1(n) = H_1(n)$."

It is clear that by our Theorem 5 we have a new combinatorial interpretation for partitions enumerated by $H_1(n)$.

For $\ell = 2$ we get the following result:

Theorem 6. The number of partitions of n in an even number of parts, 2s, such that $a_{2j-1} - a_{2j} = 1$ or 2, and $a_{2s} \ge 1$, is equal to the number of partitions of n in parts $\equiv \pm 3, 4 \pmod{8}$.

Proof. By Theorem 3 and equation (1) we have:

$$\sum_{n=0}^{\infty} A_2(n)q^n = \sum_{n=0}^{\infty} \frac{(-q;q^2)_n q^{n^2+2n}}{(q^2;q^2)_n}$$
$$= \prod_{n=1}^{\infty} \frac{1}{(1-q^{8n-3})(1-q^{8n-4})(1-q^{8n-5})}$$

9

4. A Bijection

We now describe a transformation between the partitions defined by $A_2(n)$ and partitions of n in s parts.

The partitions of n with an even number of parts 2s where $a_{2j-1} - a_{2j} = 1$ or $2, a_{2s} \ge 1$ can be transformed into partitions of n in s parts just by adding the parts $a_{2j-1} + a_{2j}$, i.e., the partition

$$a_1 + a_2 + \dots + a_{2j-1} + a_{2j} + a_{2j+1} + \dots + a_{2s}$$

is transformed in

$$b_1 + b_2 + \cdots + b_i + \cdots + b_s$$

where $b_j = a_{2j-1} + a_{2j}$, $b_j - b_{j+1} \ge 2$ and $b_j - b_{j+1} \ge 3$ if b_{j+1} is even with the restriction $b_s \ge 3$.

This operation can be easily reversed in the following way:

if b_j is even we write it as $a_{2j-1} + a_{2j}$ where $a_{2j-1} = \frac{b_j}{2} + 1$ and $a_{2j} = \frac{b_j}{2} - 1$, if b_j is odd we write it as $a_{2j-1} + a_{2j}$ where $a_{2j-1} = \frac{b_j + 1}{2}$ and $a_{2j} = \frac{b_j - 1}{2}$.

With this transformation we get the original one

$$a_1 + a_2 + \dots + a_{2s}$$

with exactly the same restrictions, i.e., $a_{2j-1} - a_{2j} = 1$ or 2 and $a_{2s} \ge 1$.

To illustrate this we list the partitions of 16 as described in Theorem 6 and the ones obtained by the transformation given above.

16	\longleftrightarrow	9 + 7
13 + 3	\longleftrightarrow	7 + 6 + 2 + 1
12 + 4	\longleftrightarrow	7 + 5 + 3 + 1
11 + 5	\longleftrightarrow	6 + 5 + 3 + 2
10 + 6	\longleftrightarrow	6 + 4 + 4 + 2
9 + 7	\longleftrightarrow	5 + 4 + 4 + 3
8 + 5 + 3	\longleftrightarrow	5+3+3+2+2+1

Theorem 7 below follows from this transformation.

Theorem 7. The number of partitions of n of the form $n = b_1 + b_2 + \cdots + b_s$, where $b_j - b_{j+1} \ge 2, b_s \ge 3$ and $b_j - b_{j+1} \ge 3$ if b_{j+1} is even is equal to the number of partitions of n into parts $\equiv \pm 3, 4 \pmod{8}$.

This Theorem was proved by Gordon in [3] (Theorem 3, page 741). Also by Theorem 4 and the bijection described we have the following theorem:

Theorem 8. The number of partitions of any positive integer n into parts $\equiv 1,4$ or 7 (mod 8) is equal to the number of partitions of the form $n = n_1 + n_2 + ... + n_k$, where $n_i \geq n_{i+1} + 2$, and $n_i \geq n_{i+1} + 3$ if n_i is even $(1 \leq i \leq k - 1)$.

This result has been proved by Gordon in [3].

References

- Andrews, G. E. (1974). Applications of basic hypergeometric functions, SIAM Rev. 16, 441-484.
- [2] _____. (1976). The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, vol.2, Addison-Wesley, Reading, Mass.; reissued by Cambridge University Press, Cambridge, 1985.
- [3] Gordon, B. (1965). Some continued fractions of the Rogers-Ramanujan type, Duke Math. Journal 32, 741-748.
- [4] Santos, J. P. O. and Mondek, P. (1998). Extending Theorems of Göllnitz, A New Family of Partition Identities. (to appear).
- [5] Slater, L.J.(1951). A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc(2)53, 460-475.
- [6] _____. (1952). Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc.(2) 54, 147-167.

IMECC-UNICAMP Cx.P. 6065 13081-970 - Campinas - SP - Brasil email:josepli@ime.unicamp.br

CCET - UFMS Cx.P. 549 79070-900 - Campo Grande - MS - Brasil email:mondek@hilbert.dmt.ufms.br