On partitions with difference conditions.
(Part IT)

by
José Plinio O. Santos*

and

Paulo Mondek

Abstract
In this paper we present two general theorems having interesting special
cases. From one of them we give a new proof for Theorems of Gordon us-

ing a bijection and from another we have a new combinatorial interpretation
associated to a Theorem of Gollnitz.

1. Introduction

Many of the identities given by Slater [6] have been used in the proofs of several
combinatorial results in partitions. In this work we use 34, 36, 48, 53 and 57 of
Slater [6], listed, in this order, below
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to prove some results in partitions where we use the standard notation

(a;q)0 = 1
(a;¢9)n, = (1—a)(1—aq)---(1—aqg"™")

and
(65 ¢)oo = lim (a;q)n, g <1.

Here we proceed in a fashion similar to the one employed by Andrews [1], in the
proofs of some theorems of Gollnitz.

2. The first general theorem

Theorem 1. Let Cix(n) be the number of partitions of n in distinct parts of the
form n = a; +- - - +a, such that a; = (k+1) or (k+2)(mod 4) with ay, > k+1,a; =
(k+1) or (k+ 2)(mod 4) if aj1, = (k+2) or (k+ 3)(mod 4), and a; = k or
(k+3)(mod 4) if aj41 =k or (k+ 1)(mod 4). Then, for k > 0,
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Proof. We define f(s,n) as the number of partitions of the type enumerated by
Ck(n) with the added restriction that the number of parts is exactly s. The following
identity is true for f(s,n):

fls,n)=f(s—1,n—2s—k+1)+ f(s—1,n—4s—k+2)+ f(s,n—4s) (6)

To prove this we split the partitions enumerated by f(s,n) into three classes:
(a) those in which k£ 4 1 is a part, (b) those in which k£ + 2 is a part and (c) those
with all parts > k + 2.

If in those in class (a) we drop the part k£ + 1 and subtract 2 from each of the
remaining parts we are left with a partition of n — (k+1) = 2(s —1) =n—2s+ 1
in exactly s — 1 parts each > k + 1 and these are the ones enumerated by f(s —
1,n —2s — k+ 1). From those in class (b) we drop the part k£ + 2 and subtract
4 from each of the remaining parts obtaining partitions that are enumerated by
f(s —1,n —4s — k + 2) and for the ones in class (c¢) we subtract 4 from each part
obtaining the partitions enumerated by f(s,n — 4s).

Defining

F(z,q) =33 f(s,n)2°¢"

n=0 s=0
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and using (6) we obtain:

F(z,q) = ii(f(s—l,n—2s—k+1)+f(s—1,n—4s—k‘+2)

n=0 s=0

+f(s,n—4s)2°¢"
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qu+2 Z Zf(s _ l,n 45—k + 2)(zq4)571qn7457k+2 +
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n=0 s=0
= 2¢" F(2¢°,q) + 24" F (2¢", ) + F(2¢", q). (7)

If F(z,q9) = X020 72" we may compare coefficients of 2™ in (7) obtaining

Yo = 7n71q2n+k_1 + 7n71q4n+k—2 + ,anéln
Therefore ( 1)
nak-1 L+ g™
Yn = q2 i (1 _ q4n) Yn—1 (8)

and observing that vy = 1 we may iterate (8) to get
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From this

and therefore

iock(n)q” = ioi]f(s,n)q”




If we consider & = 0 in this theorem and denote Cy(n) by C(n) we have that
C'(n) is the number of partitions of n in distinct parts of the form n = a;+ay+...+a
where a; = 1 or 2(mod 4), a; = 3 or 4(mod 4) if aj4; =1 or 4(mod 4) and ¢; = 1
or 2(mod 4) if a;41 = 2 or 3(mod 4).

If we let D(n) denote the number of partitions of n in parts that are distinct
odd = £5 (mod 12) or even = +4 (mod 12) and let E(n) denote the number of
partitions of n in distinct odd = 41 (mod 12) or even = +4 (mod 12) we have the
following theorem:

Theorem 2. C(n) = D(n) + E(n — 1) for every positive integer n.

Proof.
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where we have used identities (4) and (5) after replacing in (4) “q” by “-q” which
completes the proof.
|

We list below the partitions of 21 enumerated by C'(21) and D(21) and the ones
of 20 enumerated by E(20).



C(21) =12 D(21)=5 |E(0)=7

21 17 + 4 20

20+ 1 16 + 5 16 + 4
124841 8+8+5 8+8+4

16 +5 8+5+4+4 |8+444+4
12 +9 b+A+4+4+4|4+44+44+444
17+34+1 11+8+1
16 +441 11+4+4+1
13+74+1

13+ 6 +2

9+7+5

124+5+3+1

O+ 7+4+1

It is interesting to observe that

C(n) = Fe(n) — Fo(n) (10)

where F,(n) (resp. Fy(n)) is the number of partitions of n into parts # 0, +2(mod 12)
with no repeated multiples of 3 and with an even (resp. odd) number of parts
divisible by 3.

If fact by replacing “¢” by “—¢” in (3) we have
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we have (10).
We state and prove, next, our second general result.

3. The second general theorem

Theorem 3. For ¢ > 0 let Ay(n) be the number of partitions of n of the form
n = ay +as + -+ ags_1 + ass such that ass > a where £ = 2a+¢ (¢ = 0 or 1),
agi3 — ag; > 3 and ay; 1 — ay; = 1 (when ay; > a+¢€) or 2. Then
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Proof. We define, for A =1 or 2, gx(2s,n) as the number of partitions of the type
enumerated by A,(n) with the added restriction that the number of parts is exactly
2s and such that ass 1 + agss > ¢+ 2X — 1. For n = s = 0 we define ¢,(2s,n) =1
and ¢x(2s,n) =0ifn<0ors<0orn=0ands>0.

In what follows we prove two identities for g,(2s,n).

(i) 91(2s,n) = g2(2s —2,n — 25 = 0) + ¢1(25s — 2,n — 25 — L+ 1) + ¢1(2s,n — 25)
(ii) g2(2s,n) = g1(2s,n — 2s).

To prove the first one we split the partitions enumerated by g¢;(2s,n) into two

14 (+1
classes: (a) those partitions in which E| or {%J is a part; (b) those in which
14 +1
neither | = | nor tte is a part.
2 2
. : L+4
The ones in class (a) can have as the two smallest parts either “ —5

+1 (43 l
{%| 7 or ¢ {%J + b| 7. In the first case if we remove the two smallest parts

and subtract 1 from each of the remaining parts we are left with a partition of
n—(+2)—(2s—2) = n—2s—{ in exactly 2s — 2 parts where ags_3 —ag5_o > {+ 3.
These are the partitions enumerated by go(2s — 2,n — 2s — /).

2 2
remove these two and subtract 1 from each of the remaining parts. We are, in this

case, left with a partition of n — ((+1) — (2s —2) =n —2s — {4+ 1 in exactly 2s — 2
parts where ays 3 —ags 9 > ¢+ 1 which are enumerated by ¢; (25 —2,n—2s —(+1).

(43 14
From those in class (a) having “ {i + {—J” as the two smallest parts we



Is is important of observe that after doing these operations the restrictions on
difference between parts is not changed.

14
Now we consider the partitions in class (b). Considering that neither EJ nor

(41 . . o .
{—J is a part we can subtract 1 from each part obtaining partitions of n — 2s in

2s parts which are the ones enumerated by g;(2s,n — 2s).
The prove of (ii) follows by the fact that if we subtract 1 from each part of a
partition such that ass_1+ass > ¢+3 the resulting one is such that ass_1+ass > ¢+1.
We define, now,
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where, on the third sum, we used (ii).
Now, comparing the coefficients of 2** in (11) after making the substitution
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Therefore

Tn =

2n+6—1 (1 + q2n_1)

e .

TYn—1

and, observing that vy = 1, we may iterate this n — 1 times to get:

Then
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and the theorem follows since

io Ap(n)g"

(—q; ¢®)ng™ Tt

(4% ¢*)n

Tn =

n2+4n
2n

D=3 (=4;4*)ng

= (%5

Z 291(237 n)qn = G1(17 q)
n=0 s=0
(—¢;¢*)ng

(4% ¢*)n

9] n2+4n

2

n=0

Particular cases of Theorem 3.

If we take ¢ = 0 in Theorem 3

we have the following result:

Theorem 4. The number of partitions of n in an even number of parts, 2s, such

that Qoj—1 — Q25 = 1or 2 and
parts = +1,4(mod 8).

ass > 0 is equal to the number of partitions of n in

Proof. By Theorem 3 we have
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For ¢ = 1 we have:
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Theorem 5. A;(n) is equal to the number of partitions of n in parts = 1, 5, 6(mod 8).

Proof. By Theorem 3 and corollary 2.7, p. 21 of Andrews [2] with ¢ replaced by
¢? and a = —¢ we have:

00 00 (_q; q2)nqn(n+1)
A (n)g" =
nE::O nE::O (q25 q2)n
= (0 w(—0% %)
ad 1
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In [4] Santos and Mondek gave a family of partitions including as special case the
following theorem of Gollnitz.

“Let G1(n) denote the number of partitions of n into parts, where each part is
congruent to one of 1, 5 or 6 (mod 8). Let Hy(n) denote the number of partitions
of n of the form by + by + -+ -+ b;, where b; > biy1 + 2 and strict inequality holds if
b; is odd. Then for each n,Gy(n) = Hy(n).”

It is clear that by our Theorem 5 we have a new combinatorial interpretation
for partitions enumerated by H;(n).

For ¢ = 2 we get the following result:

Theorem 6. The number of partitions of n in an even number of parts, 2s, such
that azj 1 — az; = 1 or 2, and ays > 1, is equal to the number of partitions of n in
parts = +3,4(mod 8).

Proof. By Theorem 3 and equation (1) we have:
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4. A Bijection

We now describe a transformation between the partitions defined by As(n) and
partitions of n in s parts.

The partitions of n with an even number of parts 2s where ay; 1 —ag; = 1 or
2, ass > 1 can be transformed into partitions of n in s parts just by adding the parts
agj—1 + asj, i.e., the partition

a1+a2+---+a2j_1+a2j+a2j+1+'--+a25

is transformed in
by +by+---+bj+---+ by
where b; = ag; 1 + ag;, bj —bj11 > 2 and b; — bjy1 > 3 if bjy, is even with the

restriction by > 3.
This operation can be easily reversed in the following way:

b. .

if b; is even we write it as ayj_1 + ag; where ay; 1 = 5] + 1 and ay; = 53 -1,
b +1 bj — 1
2 2

if b; is odd we write it as asj_1 + ag; where as;_1 = and ay; =
With this transformation we get the original one
ay + ag + - - -+ Qg

with exactly the same restrictions, i.e., azj—; — az; = 1 or 2 and ag, > 1.

To illustrate this we list the partitions of 16 as described in Theorem 6 and the
ones obtained by the transformation given above.

16 — 9+7

13+ 3 — T+6+2+1
1244 — 7T4+5+3+1
1145 — 64+5+34+2
1046 — 64+44+442

947 — 0+4+4+3
8+5+3 — H+3+3+2+2+1

Theorem 7 below follows from this transformation.
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Theorem 7. The number of partitions of n of the form n = by + by + -+ - + by,
where b; — b1 > 2,by > 3 and b; — bj1 > 3 if b4 is even is equal to the number
of partitions of n into parts = +3,4(mod8).

This Theorem was proved by Gordon in [3] (Theorem 3, page 741).
Also by Theorem 4 and the bijection described we have the following theorem:

Theorem 8. The number of partitions of any positive integer n into parts = 1,4
or 7 (mod 8) is equal to the number of partitions of the form n = ny + ny + ... + ng,
where n; > n;1 + 2, and n; > ngyg + 3 if n;iseven (1 <i<k—1).

This result has been proved by Gordon in [3].
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