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Abstract

In this paper we present two general theorems having interesting special

cases. From one of them we give a new proof for Theorems of Gordon us-

ing a bijection and from another we have a new combinatorial interpretation

associated to a Theorem of G�ollnitz.

1. Introduction

Many of the identities given by Slater [6] have been used in the proofs of several

combinatorial results in partitions. In this work we use 34, 36, 48, 53 and 57 of

Slater [6], listed, in this order, below
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to prove some results in partitions where we use the standard notation

(a; q)

0

= 1
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= (1� a)(1� aq) � � � (1� aq

n�1

)

and

(a; q)

1

= lim

n!1

(a; q)

n

; jqj < 1:

Here we proceed in a fashion similar to the one employed by Andrews [1], in the

proofs of some theorems of G�ollnitz.

2. The �rst general theorem

Theorem 1. Let C

k

(n) be the number of partitions of n in distinct parts of the

form n = a

1

+ � � �+a

s

such that a

s

� (k+1) or (k+2)(mod 4) with a

s

� k+1; a

j

�

(k + 1) or (k + 2)(mod 4) if a

j+1

� (k + 2) or (k + 3)(mod 4), and a

j

� k or

(k + 3)(mod 4) if a

j+1

� k or (k + 1)(mod 4). Then, for k � 0,
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Proof. We de�ne f(s; n) as the number of partitions of the type enumerated by

C

k

(n) with the added restriction that the number of parts is exactly s. The following

identity is true for f(s; n):

f(s; n) = f(s� 1; n� 2s� k + 1) + f(s� 1; n� 4s� k + 2) + f(s; n� 4s) (6)

To prove this we split the partitions enumerated by f(s; n) into three classes:

(a) those in which k + 1 is a part, (b) those in which k + 2 is a part and (c) those

with all parts > k + 2.

If in those in class (a) we drop the part k + 1 and subtract 2 from each of the

remaining parts we are left with a partition of n� (k + 1)� 2(s� 1) = n� 2s + 1

in exactly s � 1 parts each � k + 1 and these are the ones enumerated by f(s �

1; n � 2s � k + 1). From those in class (b) we drop the part k + 2 and subtract

4 from each of the remaining parts obtaining partitions that are enumerated by

f(s� 1; n � 4s� k + 2) and for the ones in class (c) we subtract 4 from each part

obtaining the partitions enumerated by f(s; n� 4s).
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and using (6) we obtain:
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and observing that 

0

= 1 we may iterate (8) to get



n

=

(�q; q

2

)

n

q

n

2

+kn

(q

4

; q

4

)

n

:

From this

F (z; q) =

1

X

n=0

(�q; q

2

)

n

q

n

2

+kn

z

n

(q

4

; q

4

)

n

and therefore

1

X

n=0

C

k

(n)q

n

=

1

X

n=0

1

X

s=0

f(s; n)q

n

= F (1; q) =

1

X

n=0

(�q; q

2

)

n

q

n

2

+kn

(q

4

; q

4

)

n

3



If we consider k = 0 in this theorem and denote C

0

(n) by C(n) we have that

C(n) is the number of partitions of n in distinct parts of the form n = a

1

+a

2

+:::+a

s

where a

s

� 1 or 2(mod 4), a

j

� 3 or 4(mod 4) if a

j+1

� 1 or 4(mod 4) and a

j

� 1

or 2(mod 4) if a

j+1

� 2 or 3(mod 4).

If we let D(n) denote the number of partitions of n in parts that are distinct

odd � �5 (mod 12) or even � �4 (mod 12) and let E(n) denote the number of

partitions of n in distinct odd � �1 (mod 12) or even � �4 (mod 12) we have the

following theorem:

Theorem 2. C(n) = D(n) + E(n� 1) for every positive integer n.

Proof.
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where we have used identities (4) and (5) after replacing in (4) \q" by \-q" which

completes the proof.

2

We list below the partitions of 21 enumerated by C(21) and D(21) and the ones

of 20 enumerated by E(20).
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C(21) = 12 D(21) = 5 E(20) = 7

21 17 + 4 20

20 + 1 16 + 5 16 + 4

12 + 8 + 1 8 + 8 + 5 8 + 8 + 4

16 + 5 8 + 5 + 4 + 4 8 + 4 + 4 + 4

12 + 9 5 + 4 + 4 + 4 + 4 4 + 4 + 4 + 4 + 4

17 + 3 + 1 11 + 8 + 1

16 + 4 + 1 11 + 4 + 4 + 1

13 + 7 + 1

13 + 6 + 2

9 + 7 + 5

12 + 5 + 3 + 1

9 + 7 + 4 + 1

It is interesting to observe that

C(n) = F

e

(n)� F
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(n) (10)

where F

e

(n) (resp. F

0

(n)) is the number of partitions of n into parts 6� 0;�2(mod 12)

with no repeated multiples of 3 and with an even (resp. odd) number of parts

divisible by 3.
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we have (10).

We state and prove, next, our second general result.

3. The second general theorem

Theorem 3. For ` � 0 let A

`

(n) be the number of partitions of n of the form
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Is is important of observe that after doing these operations the restrictions on

di�erence between parts is not changed.

Now we consider the partitions in class (b). Considering that neither
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Particular cases of Theorem 3.

If we take ` = 0 in Theorem 3 we have the following result:
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Theorem 5. A

1

(n) is equal to the number of partitions of n in parts� 1; 5; 6(mod 8).

Proof. By Theorem 3 and corollary 2.7, p. 21 of Andrews [2] with q replaced by
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following theorem of G�ollnitz.

\Let G

1

(n) denote the number of partitions of n into parts, where each part is

congruent to one of 1, 5 or 6 (mod 8). Let H
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j
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� b

i+1

+ 2 and strict inequality holds if
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i

is odd. Then for each n;G
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(n) = H

1

(n)."

It is clear that by our Theorem 5 we have a new combinatorial interpretation

for partitions enumerated by H

1

(n).

For ` = 2 we get the following result:

Theorem 6. The number of partitions of n in an even number of parts, 2s, such

that a

2j�1

� a

2j

= 1 or 2, and a
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� 1, is equal to the number of partitions of n in

parts � �3; 4(mod 8).

Proof. By Theorem 3 and equation (1) we have:
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4. A Bijection

We now describe a transformation between the partitions de�ned by A

2

(n) and

partitions of n in s parts.

The partitions of n with an even number of parts 2s where a

2j�1

� a

2j

= 1 or

2; a

2s

� 1 can be transformed into partitions of n in s parts just by adding the parts

a

2j�1

+ a

2j

, i.e., the partition

a

1

+ a

2

+ � � �+ a

2j�1

+ a

2j

+ a

2j+1

+ � � �+ a

2s

is transformed in

b

1

+ b

2

+ � � �+ b

j

+ � � �+ b

s

where b

j

= a

2j�1

+ a

2j

; b

j

� b

j+1

� 2 and b

j

� b

j+1

� 3 if b

j+1

is even with the

restriction b

s

� 3.

This operation can be easily reversed in the following way:

if b

j

is even we write it as a

2j�1

+ a

2j

where a

2j�1

=

b

j

2

+ 1 and a

2j

=

b

j

2

� 1,

if b

j

is odd we write it as a

2j�1

+ a

2j

where a

2j�1

=

b

j

+ 1

2

and a

2j

=

b

j

� 1

2

.

With this transformation we get the original one

a

1

+ a

2

+ � � �+ a

2s

with exactly the same restrictions, i.e., a

2j�1

� a

2j

= 1 or 2 and a

2s

� 1.

To illustrate this we list the partitions of 16 as described in Theorem 6 and the

ones obtained by the transformation given above.

16  ! 9 + 7

13 + 3  ! 7 + 6 + 2 + 1

12 + 4  ! 7 + 5 + 3 + 1

11 + 5  ! 6 + 5 + 3 + 2

10 + 6  ! 6 + 4 + 4 + 2

9 + 7  ! 5 + 4 + 4 + 3

8 + 5 + 3  ! 5 + 3 + 3 + 2 + 2 + 1

Theorem 7 below follows from this transformation.
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Theorem 7. The number of partitions of n of the form n = b

1

+ b

2

+ � � � + b

s

;

where b

j

� b

j+1

� 2; b

s

� 3 and b

j

� b

j+1

� 3 if b

j+1

is even is equal to the number

of partitions of n into parts � �3; 4(mod8).

This Theorem was proved by Gordon in [3] (Theorem 3, page 741).

Also by Theorem 4 and the bijection described we have the following theorem:

Theorem 8. The number of partitions of any positive integer n into parts � 1,4

or 7 (mod 8) is equal to the number of partitions of the form n = n

1

+ n

2

+ :::+ n

k

,

where n

i

� n

i+1

+ 2, and n

i

� n

i+1

+ 3 if n

i

is even (1 � i � k � 1).

This result has been proved by Gordon in [3].
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