On partitions with difference conditions. (Part II)

by
José Plínio O. Santos*
and
Paulo Mondek

Abstract

In this paper we present two general theorems having interesting special cases. From one of them we give a new proof for Theorems of Gordon using a bijection and from another we have a new combinatorial interpretation associated to a Theorem of Göllnitz.

1. Introduction

Many of the identities given by Slater [6] have been used in the proofs of several combinatorial results in partitions. In this work we use $34,36,48,53$ and 57 of Slater [6], listed, in this order, below

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n(n+2)}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{n=1}^{\infty} \frac{\left(1+q^{2 n-1}\right)\left(1-q^{8 n-1}\right)\left(1-q^{8 n-7}\right)\left(1-q^{8 n}\right)}{\left(1-q^{2 n}\right)} \tag{1}\\
& \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{n=1}^{\infty} \frac{\left(1+q^{2 n-1}\right)\left(1-q^{8 n-3}\right)\left(1-q^{8 n-5}\right)\left(1-q^{8 n}\right)}{\left(1-q^{2 n}\right)} \tag{2}\\
& \prod_{n=1}^{\infty}\left(1-q^{12 n-5}\right)\left(1-q^{12 n-7}\right)\left(1-q^{12 n}\right)-q \prod_{n=1}^{\infty}\left(1-q^{12 n-1}\right)\left(1-q^{12 n-11}\right)\left(1-q^{12 n}\right) \tag{3}\\
= & \prod_{n=1}^{\infty}\left(1-(-1)^{n} q^{3 n-1}\right)\left(1+(-1)^{n} q^{3 n-2}\right)\left(1-(-1)^{n} q^{3 n}\right) \\
& \sum_{n=0}^{\infty} \frac{\left(q ; q^{2}\right)_{2 n} q^{4 n^{2}}}{\left(q^{4} ; q^{4}\right)_{2 n}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{12 n-5}\right)\left(1-q^{12 n-7}\right)\left(1-q^{12 n}\right)}{\left(1-q^{4 n}\right)} \tag{4}\\
& \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{2 n+1} q^{4 n(n+1)}}{\left(q^{4} ; q^{4}\right)_{2 n+1}}=\prod_{n=1}^{\infty} \frac{\left(1+q^{12 n-1}\right)\left(1+q^{12 n-11}\right)\left(1-q^{12 n}\right)}{\left(1-q^{4 n}\right)} \tag{5}
\end{align*}
$$

[^0]to prove some results in partitions where we use the standard notation
\[

$$
\begin{aligned}
& (a ; q)_{0}=1 \\
& (a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
\end{aligned}
$$
\]

and

$$
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}, \quad|q|<1
$$

Here we proceed in a fashion similar to the one employed by Andrews [1], in the proofs of some theorems of Göllnitz.

2. The first general theorem

Theorem 1. Let $C_{k}(n)$ be the number of partitions of n in distinct parts of the form $n=a_{1}+\cdots+a_{s}$ such that $a_{s} \equiv(k+1)$ or $(k+2)(\bmod 4)$ with $a_{s} \geq k+1, a_{j} \equiv$ $(k+1)$ or $(k+2)(\bmod 4)$ if $a_{j+1} \equiv(k+2)$ or $(k+3)(\bmod 4)$, and $a_{j} \equiv k$ or $(k+3)(\bmod 4)$ if $a_{j+1} \equiv k$ or $(k+1)(\bmod 4)$. Then, for $k \geq 0$,

$$
\sum_{n=0}^{\infty} C_{k}(n) q^{n}=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right) q^{n^{2}+k n}}{\left(q^{4} ; q^{4}\right)_{n}}
$$

Proof. We define $f(s, n)$ as the number of partitions of the type enumerated by $C_{k}(n)$ with the added restriction that the number of parts is exactly s. The following identity is true for $f(s, n)$:

$$
\begin{equation*}
f(s, n)=f(s-1, n-2 s-k+1)+f(s-1, n-4 s-k+2)+f(s, n-4 s) \tag{6}
\end{equation*}
$$

To prove this we split the partitions enumerated by $f(s, n)$ into three classes: (a) those in which $k+1$ is a part, (b) those in which $k+2$ is a part and (c) those with all parts $>k+2$.

If in those in class (a) we drop the part $k+1$ and subtract 2 from each of the remaining parts we are left with a partition of $n-(k+1)-2(s-1)=n-2 s+1$ in exactly $s-1$ parts each $\geq k+1$ and these are the ones enumerated by $f(s-$ $1, n-2 s-k+1$). From those in class (b) we drop the part $k+2$ and subtract 4 from each of the remaining parts obtaining partitions that are enumerated by $f(s-1, n-4 s-k+2)$ and for the ones in class (c) we subtract 4 from each part obtaining the partitions enumerated by $f(s, n-4 s)$.

Defining

$$
F(z, q)=\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s, n) z^{s} q^{n}
$$

and using (6) we obtain:

$$
\begin{align*}
F(z, q)= & \sum_{n=0}^{\infty} \sum_{s=0}^{\infty}(f(s-1, n-2 s-k+1)+f(s-1, n-4 s-k+2) \\
& +f(s, n-4 s) z^{s} q^{n} \\
= & z q^{k+1} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s-1, n-2 s-k+1)\left(z q^{2}\right)^{s-1} q^{n-2 s-k+1}+ \\
& z q^{k+2} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s-1, n-4 s-k+2)\left(z q^{4}\right)^{s-1} q^{n-4 s-k+2}+ \\
& \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s, n-4 s)\left(z q^{4}\right)^{s} q^{n-4 s} \\
= & z q^{k+1} F\left(z q^{2}, q\right)+z q^{k+2} F\left(z q^{4}, q\right)+F\left(z q^{4}, q\right) . \tag{7}
\end{align*}
$$

If $F(z, q)=\sum_{n=0}^{\infty} \gamma_{n} z^{n}$ we may compare coefficients of z^{n} in (7) obtaining

$$
\gamma_{n}=\gamma_{n-1} q^{2 n+k-1}+\gamma_{n-1} q^{4 n+k-2}+\gamma_{n} q^{4 n}
$$

Therefore

$$
\begin{equation*}
\gamma_{n}=q^{2 n+k-1} \frac{\left(1+q^{2 n-1}\right)}{\left(1-q^{4 n}\right)} \gamma_{n-1} \tag{8}
\end{equation*}
$$

and observing that $\gamma_{0}=1$ we may iterate (8) to get

$$
\gamma_{n}=\frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+k n}}{\left(q^{4} ; q^{4}\right)_{n}}
$$

From this

$$
F(z, q)=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+k n} z^{n}}{\left(q^{4} ; q^{4}\right)_{n}}
$$

and therefore

$$
\begin{aligned}
\sum_{n=0}^{\infty} C_{k}(n) q^{n} & =\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} f(s, n) q^{n} \\
& =F(1, q)=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+k n}}{\left(q^{4} ; q^{4}\right)_{n}}
\end{aligned}
$$

If we consider $k=0$ in this theorem and denote $C_{0}(n)$ by $C(n)$ we have that $C(n)$ is the number of partitions of n in distinct parts of the form $n=a_{1}+a_{2}+\ldots+a_{s}$ where $a_{s} \equiv 1$ or $2(\bmod 4), a_{j} \equiv 3$ or $4(\bmod 4)$ if $a_{j+1} \equiv 1$ or $4(\bmod 4)$ and $a_{j} \equiv 1$ or $2(\bmod 4)$ if $a_{j+1} \equiv 2$ or $3(\bmod 4)$.

If we let $D(n)$ denote the number of partitions of n in parts that are distinct odd $\equiv \pm 5(\bmod 12)$ or even $\equiv \pm 4(\bmod 12)$ and let $E(n)$ denote the number of partitions of n in distinct odd $\equiv \pm 1(\bmod 12)$ or even $\equiv \pm 4(\bmod 12)$ we have the following theorem:

Theorem 2. $\quad C(n)=D(n)+E(n-1)$ for every positive integer n.
Proof.

$$
\begin{align*}
\sum_{n=0}^{\infty} C(n) q^{n}= & \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{4} ; q^{4}\right)_{n}} \\
= & \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{2 n} q^{4 n^{2}}}{\left(q^{4} ; q^{4}\right)_{2 n}}+q \sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{2 n+1} q^{4 n^{2}+4 n}}{\left(q^{4} ; q^{4}\right)_{2 n+1}} \\
= & \prod_{n=1}^{\infty} \frac{\left(1+q^{12 n-5}\right)\left(1+q^{12 n-7}\right)\left(1-q^{12 n}\right)}{\left(1-q^{4 n}\right)}+ \tag{9}\\
& q \prod_{n=1}^{\infty} \frac{\left(1+q^{12 n-1}\right)\left(1+q^{12 n-11}\right)\left(1-q^{12 n}\right)}{\left(1-q^{4 n}\right)} \\
= & \sum_{n=0}^{\infty} D(n) q^{n}+q \sum_{n=0}^{\infty} E(n) q^{n} .
\end{align*}
$$

where we have used identities (4) and (5) after replacing in (4) "q" by "-q" which completes the proof.

We list below the partitions of 21 enumerated by $C(21)$ and $D(21)$ and the ones of 20 enumerated by $E(20)$.

$C(21)=12$	$D(21)=5$	$E(20)=7$
21	$17+4$	20
$20+1$	$16+5$	$16+4$
$12+8+1$	$8+8+5$	$8+8+4$
$16+5$	$8+5+4+4$	$8+4+4+4$
$12+9$	$5+4+4+4+4$	$4+4+4+4+4$
$17+3+1$		$11+8+1$
$16+4+1$		$11+4+4+1$
$13+7+1$		
$13+6+2$		
$9+7+5$		
$12+5+3+1$		
$9+7+4+1$		

It is interesting to observe that

$$
\begin{equation*}
C(n)=F_{e}(n)-F_{0}(n) \tag{10}
\end{equation*}
$$

where $F_{e}(n)\left(\operatorname{resp} . F_{0}(n)\right)$ is the number of partitions of n into parts $\not \equiv 0, \pm 2(\bmod 12)$ with no repeated multiples of 3 and with an even (resp. odd) number of parts divisible by 3 .

If fact by replacing " q " by " $-q$ " in (3) we have

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1+q^{12 n-5}\right)\left(1+q^{12 n-7}\right)\left(1-q^{12 n}\right)+q \prod_{n=1}^{\infty}\left(1+q^{12 n-1}\right)\left(1+q^{12 n-11}\right)\left(1-q^{12 n}\right) \\
= & \prod_{n=1}^{\infty}\left(1+q^{3 n-1}\right)\left(1+q^{3 n-2}\right)\left(1-q^{3 n}\right)
\end{aligned}
$$

and observing that

$$
\begin{aligned}
\sum_{n=0}^{\infty} C(n) q^{n} \stackrel{(9)}{=} & \prod_{n=1}^{\infty} \frac{\left(1+q^{3 n-1}\right)\left(1+q^{3 q-2}\right)\left(1-q^{3 n}\right)}{\left(1-q^{4 n}\right)} \\
= & \frac{\prod_{\substack{n=1 \\
n \neq 0(\bmod 4)}}^{\infty}\left(1-q^{3 n}\right)}{\prod_{\substack{n=1 \\
m \equiv \pm 1, \pm 4, \pm 5(\bmod 12)}}^{\infty}\left(1-q^{n}\right)} \\
& =\sum_{n=0}^{\infty}\left(F_{e}(n)-F_{0}(n)\right) q^{n} .
\end{aligned}
$$

we have (10).
We state and prove, next, our second general result.

3. The second general theorem

Theorem 3. For $\ell \geq 0$ let $A_{\ell}(n)$ be the number of partitions of n of the form $n=a_{1}+a_{2}+\cdots+a_{2 s-1}+a_{2 s}$ such that $a_{2 s} \geq a$ where $\ell=2 a+\varepsilon(\varepsilon=0$ or 1$)$, $a_{2 i-3}-a_{2 i} \geq 3$ and $a_{2 i-1}-a_{2 i}=1$ (when $a_{2 i} \geq a+\varepsilon$) or 2. Then

$$
\sum_{n=0}^{\infty} A_{\ell}(n) q^{n}=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+\ell n}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

Proof. We define, for $\lambda=1$ or $2, g_{\lambda}(2 s, n)$ as the number of partitions of the type enumerated by $A_{\ell}(n)$ with the added restriction that the number of parts is exactly 2 s and such that $a_{2 s-1}+a_{2 s} \geq \ell+2 \lambda-1$. For $n=s=0$ we define $g_{\lambda}(2 s, n)=1$ and $g_{\lambda}(2 s, n)=0$ if $n<0$ or $s<0$ or $n=0$ and $s>0$.

In what follows we prove two identities for $g_{\lambda}(2 s, n)$.
(i) $g_{1}(2 s, n)=g_{2}(2 s-2, n-2 s-\ell)+g_{1}(2 s-2, n-2 s-\ell+1)+g_{1}(2 s, n-2 s)$
(ii) $g_{2}(2 s, n)=g_{1}(2 s, n-2 s)$.

To prove the first one we split the partitions enumerated by $g_{1}(2 s, n)$ into two classes: (a) those partitions in which $\left\lfloor\frac{\ell}{2}\right\rfloor$ or $\left\lfloor\frac{\ell+1}{2}\right\rfloor$ is a part; (b) those in which neither $\left\lfloor\frac{\ell}{2}\right\rfloor$ nor $\left\lfloor\frac{\ell+1}{2}\right\rfloor$ is a part.

The ones in class (a) can have as the two smallest parts either " $\left\lfloor\frac{\ell+4}{2}\right\rfloor+$ $\left\lfloor\frac{\ell+1}{2}\right\rfloor$ " or " $\left\lfloor\frac{\ell+3}{2}\right\rfloor+\left\lfloor\frac{\ell}{2}\right\rfloor$ ". In the first case if we remove the two smallest parts and subtract 1 from each of the remaining parts we are left with a partition of $n-(\ell+2)-(2 s-2)=n-2 s-\ell$ in exactly $2 s-2$ parts where $a_{2 s-3}-a_{2 s-2} \geq \ell+3$. These are the partitions enumerated by $g_{2}(2 s-2, n-2 s-\ell)$.

From those in class (a) having " $\left\lfloor\frac{\ell+3}{2}\right\rfloor+\left\lfloor\frac{\ell}{2}\right\rfloor$ " as the two smallest parts we remove these two and subtract 1 from each of the remaining parts. We are, in this case, left with a partition of $n-(\ell+1)-(2 s-2)=n-2 s-\ell+1$ in exactly $2 s-2$ parts where $a_{2 s-3}-a_{2 s-2} \geq \ell+1$ which are enumerated by $g_{1}(2 s-2, n-2 s-\ell+1)$.

Is is important of observe that after doing these operations the restrictions on difference between parts is not changed.

Now we consider the partitions in class (b). Considering that neither $\left\lfloor\frac{\ell}{2}\right\rfloor$ nor $\left\lfloor\frac{\ell+1}{2}\right\rfloor$ is a part we can subtract 1 from each part obtaining partitions of $n-2 s$ in $2 s$ parts which are the ones enumerated by $g_{1}(2 s, n-2 s)$.

The prove of (ii) follows by the fact that if we subtract 1 from each part of a partition such that $a_{2 s-1}+a_{2 s} \geq \ell+3$ the resulting one is such that $a_{2 s-1}+a_{2 s} \geq \ell+1$.

We define, now,

$$
G_{\lambda}(z, q)=\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{\lambda}(2 s, n) z^{2 s} q^{n} .
$$

Using (i) we have

$$
\begin{align*}
G_{1}(z, q)= & \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2 s, n) g_{1}(2 s, n) z^{2 s} q^{n} \\
= & \sum_{n=0}^{\infty} \sum_{s=0}^{\infty}\left(g_{2}(2 s-2, n-2 s-\ell)\right. \\
& \left.+g_{1}(2 s-2, n-2 s-\ell+1)+g_{1}(2 s, n-2 s)\right) z^{2 s} q^{n} \\
= & z^{2} q^{\ell+2} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2 s-2, n-4 s-\ell)\left(z q^{2}\right)^{2 s-2} q^{n-4 s-\ell}+ \\
& z^{2} q^{\ell+1} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2 s-2, n-2 s-\ell+1)(z q)^{2 s-2} q^{n-2 s-\ell+1}+ \\
& \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2 s, n-2 s)(z q)^{2 s} q^{n-2 s} \\
= & z^{2} q^{\ell+2} G_{1}\left(z q^{2}, q\right)+z^{2} q^{\ell+1} G_{1}(z q, q)+G_{1}(z q, q) \tag{11}
\end{align*}
$$

where, on the third sum, we used (ii).
Now, comparing the coefficients of $z^{2 n}$ in (11) after making the substitution

$$
G_{1}(z, q)=\sum_{n=0}^{\infty} \gamma_{n} z^{2 n}
$$

we have

$$
\gamma_{n}=q^{4 n+\ell-2} \gamma_{n-1}+q^{2 n+\ell-1} \gamma_{n-1}+q^{2 n} \gamma_{n}
$$

Therefore

$$
\begin{equation*}
\gamma_{n}=q^{2 n+\ell-1} \frac{\left(1+q^{2 n-1}\right)}{\left(1-q^{2 n}\right)} \cdot \gamma_{n-1} \tag{12}
\end{equation*}
$$

and, observing that $\gamma_{0}=1$, we may iterate this $n-1$ times to get:

$$
\gamma_{n}=\frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+\ell n}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

Then

$$
G_{1}(z, q)=\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+\ell n}}{\left(q^{2} ; q^{2}\right)_{n}} z^{2 n}
$$

and the theorem follows since

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{\ell}(n) q^{n} & =\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} g_{1}(2 s, n) q^{n}=G_{1}(1, q) \\
& =\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+\ell n}}{\left(q^{2} ; q^{2}\right)_{n}}
\end{aligned}
$$

Particular cases of Theorem 3.

If we take $\ell=0$ in Theorem 3 we have the following result:
Theorem 4. The number of partitions of n in an even number of parts, $2 s$, such that $a_{2 j-1}-a_{2 j}=1$ or 2 and $a_{2 s} \geq 0$ is equal to the number of partitions of n in parts $\equiv \pm 1,4(\bmod 8)$.

Proof. By Theorem 3 we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{0}(n) q^{n} & =\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}} \\
& \stackrel{(2)}{=} \prod_{n=1}^{\infty} \frac{1}{\left(1-q^{8 n-1}\right)\left(1-q^{8 n-4}\right)\left(1-q^{8 n-7}\right)}
\end{aligned}
$$

For $\ell=1$ we have:

Theorem 5. $A_{1}(n)$ is equal to the number of partitions of n in parts $\equiv 1,5,6(\bmod 8)$.
Proof. By Theorem 3 and corollary 2.7, p. 21 of Andrews [2] with q replaced by q^{2} and $a=-q$ we have:

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{1}(n) q^{n} & =\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n(n+1)}}{\left(q^{2} ; q^{2}\right)_{n}} \\
& =\left(-q^{3} ; q^{4}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty} \\
& =\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{8 n-2}\right)\left(1-q^{8 n-3}\right)\left(1-q^{8 n-7}\right)}
\end{aligned}
$$

In [4] Santos and Mondek gave a family of partitions including as special case the following theorem of Göllnitz.
"Let $G_{1}(n)$ denote the number of partitions of n into parts, where each part is congruent to one of 1,5 or $6(\bmod 8)$. Let $H_{1}(n)$ denote the number of partitions of n of the form $b_{1}+b_{2}+\cdots+b_{j}$, where $b_{i} \geq b_{i+1}+2$ and strict inequality holds if b_{i} is odd. Then for each $n, G_{1}(n)=H_{1}(n)$."

It is clear that by our Theorem 5 we have a new combinatorial interpretation for partitions enumerated by $H_{1}(n)$.

For $\ell=2$ we get the following result:

Theorem 6. The number of partitions of n in an even number of parts, $2 s$, such that $a_{2 j-1}-a_{2 j}=1$ or 2 , and $a_{2 s} \geq 1$, is equal to the number of partitions of n in parts $\equiv \pm 3,4(\bmod 8)$.

Proof. By Theorem 3 and equation (1) we have:

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{2}(n) q^{n} & =\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+2 n}}{\left(q^{2} ; q^{2}\right)_{n}} \\
& =\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{8 n-3}\right)\left(1-q^{8 n-4}\right)\left(1-q^{8 n-5}\right)}
\end{aligned}
$$

4. A Bijection

We now describe a transformation between the partitions defined by $A_{2}(n)$ and partitions of n in s parts.

The partitions of n with an even number of parts $2 s$ where $a_{2 j-1}-a_{2 j}=1$ or $2, a_{2 s} \geq 1$ can be transformed into partitions of n in s parts just by adding the parts $a_{2 j-1}+a_{2 j}$, i.e., the partition

$$
a_{1}+a_{2}+\cdots+a_{2 j-1}+a_{2 j}+a_{2 j+1}+\cdots+a_{2 s}
$$

is transformed in

$$
b_{1}+b_{2}+\cdots+b_{j}+\cdots+b_{s}
$$

where $b_{j}=a_{2 j-1}+a_{2 j}, b_{j}-b_{j+1} \geq 2$ and $b_{j}-b_{j+1} \geq 3$ if b_{j+1} is even with the restriction $b_{s} \geq 3$.

This operation can be easily reversed in the following way:
if b_{j} is even we write it as $a_{2 j-1}+a_{2 j}$ where $a_{2 j-1}=\frac{b_{j}}{2}+1$ and $a_{2 j}=\frac{b_{j}}{2}-1$, if b_{j} is odd we write it as $a_{2 j-1}+a_{2 j}$ where $a_{2 j-1}=\frac{b_{j}+1}{2}$ and $a_{2 j}=\frac{b_{j}-1}{2}$.

With this transformation we get the original one

$$
a_{1}+a_{2}+\cdots+a_{2 s}
$$

with exactly the same restrictions, i.e., $a_{2 j-1}-a_{2 j}=1$ or 2 and $a_{2 s} \geq 1$.
To illustrate this we list the partitions of 16 as described in Theorem 6 and the ones obtained by the transformation given above.

16	\longleftrightarrow	$9+7$
$13+3$	\longleftrightarrow	$7+6+2+1$
$12+4$	\longleftrightarrow	$7+5+3+1$
$11+5$	\longleftrightarrow	$6+5+3+2$
$10+6$	\longleftrightarrow	$6+4+4+2$
$9+7$	\longleftrightarrow	$5+4+4+3$
$8+5+3$	\longleftrightarrow	$5+3+3+2+2+1$

Theorem 7 below follows from this transformation.

Theorem 7. The number of partitions of n of the form $n=b_{1}+b_{2}+\cdots+b_{s}$, where $b_{j}-b_{j+1} \geq 2, b_{s} \geq 3$ and $b_{j}-b_{j+1} \geq 3$ if b_{j+1} is even is equal to the number of partitions of n into parts $\equiv \pm 3,4(\bmod 8)$.

This Theorem was proved by Gordon in [3] (Theorem 3, page 741).
Also by Theorem 4 and the bijection described we have the following theorem:

Theorem 8. The number of partitions of any positive integer n into parts $\equiv 1,4$ or $7(\bmod 8)$ is equal to the number of partitions of the form $n=n_{1}+n_{2}+\ldots+n_{k}$, where $n_{i} \geq n_{i+1}+2$, and $n_{i} \geq n_{i+1}+3$ if n_{i} is even $(1 \leq i \leq k-1)$.

This result has been proved by Gordon in [3].

References

[1] Andrews, G. E. (1974). Applications of basic hypergeometric functions, SIAM Rev. 16, 441-484.
[2] . (1976). The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, vol.2, Addison-Wesley, Reading, Mass.; reissued by Cambridge University Press, Cambridge, 1985.
[3] Gordon, B. (1965). Some continued fractions of the Rogers-Ramanujan type, Duke Math. Journal 32, 741-748.
[4] Santos, J. P. O. and Mondek, P. (1998). Extending Theorems of Göllnitz, A New Family of Partition Identities. (to appear).
[5] Slater, L.J.(1951). A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc(2)53, 460-475.
[6] . (1952). Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc.(2) 54, 147-167.

IMECC-UNICAMP Cx.P. 6065
13081-970 - Campinas - SP - Brasil
email:josepli@ime.unicamp.br

CCET - UFMS Cx.P. 549
79070-900 - Campo Grande - MS - Brasil
email:mondek@hilbert.dmt.ufms.br

[^0]: * Partially supported by FAPESP.

