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1 Introduction

Consider the primal continuous-time nonlinear programming problem below.
Minimize ¢(z) = [y f(t,z(t))dt,
subject to g;(t,z(t)) <0 a.e. t€0,7], (CNP)
iel={1,...,m}, ze€X.

Here X is an open, nonempty convex subset of the Banach space L7 [0,7T] of all
n-dimensional vector valued Lebesgue mesurable functions, which are essentially
bounded, defined on the compact interval [0, 7] C IR, with norm || - ||, defined by

llloo = max esssup{|a;(®)], 0 <t < T}
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where for each t € [0,7], x;(¢) is jth component of x(t) € IR", ¢ is a real valued
function defined on X, ¢(t,z(t)) = ~(x)(t) and f(¢,z(t)) = [(x)(t), where 7 is
map from X into the normed space AT'[0, 7] of all Lebesgue measurable essentially
bounded m-dimensional vector functions defined on [0, 7], with the norm || - ||;
defined by ,

Iyl = max [ fy;(0)lde,

1<j<m

and T is map from X into the normed space A{[0,T].

This class of problems was introduced in 1953 by Bellman [1] in connection with
production-inventory “botleneck processes”. He considered a type of optimization
problems, which is now known as continuous-time linear programming, formulated
its dual and provided duality relations. He also suggested some computational
procedure.

Since then, a lot of authors have extended his theory to wider classes of continuous-
time linear problems (e.g. [2], [3], [4], [5, 6], [7], [8], [9] and [10]).

On the other hand, optimality conditions in the spirit of Karush-Kuhn-Tucker
type for continuous nonlinear problems were first investigated by Hanson and Mond [11].
They considered a class of linear constrained nonlinear programming problems. As-
suming a nonlinear integrand in the cost funtion was twice differentiable, they lin-
earized the cost function and applied Levinson’s duality theory [3] to obtain the
Karush-Kuhn-Tucker optimality conditions. Also applying linearization, Farr and
Hanson [15] obtained necessary and sufficient optimality conditions for a more gen-
eral class of continuous-time nonlinear problems (both cost function and constraints
were nonlinear).

Assuming some kind of constraint qualifications and using direct methods, fur-
ther generalizations of the theory of optimality conditions for continuous-time non-
linear problems are to be found in Scott and Jefferson [12], Abraham and Buie [13],
Reiland and Hanson [14] and Zalmai [16, 17, 18, 26, 27]. However, the development
of nonsmooth necessary optimality conditions theories for problem (CNP) is not yet
satisfactory.

Our aim in this paper is to provide first-order necessary optimality conditions
in the form of Fritz-John and Karush-Kuhn-Tucker theorems for a general class of
nonsmooth continuous-time Lipschitz programming problems. This is accomplished
through generalizations of the differentiable continuous versions of Fritz-John and
Karush-Kuhn-Tucker theorems in [16] to the Lipschitz case. Sufficient conditions is
pursued in another paper [21].

Related results can be found in Craven [22]. However, his arguments are via



approximation of smooth functions rather than alternative theorems.

This work is organized as follows. In Section 2 we recall some basic properties of
Lipschitz nonsmooth analysis, support functions, Integration of multifunctions and
state the generalized Gordan’s Theorem. In Section 3 we establish the nonsmooth
geometric optimality conditions for (CNP). The nonsmooth versions of Fritz-John
and Karush-Kuhn-Tucker continuous-time optimality conditions are obtained on
Sections 4 and 5, respectively.

2 Preliminaries

In this section we summarize basic concepts and tools from nonsmooth analysis,
including supporting funtions and integration of multifunctions. Most of material
included here can be found in Clarke [23]. We also state the generalized Gordan’s
Theorem, which has been a very usuful tool in optimization theory.

In what follows, B denotes a real linear space with norm ||| and B* its topological
dual with norm given by

€]l = sup{(&,v) : v € B, [Jo]| <1},

where (-, -) is the canonic dual map between B* and B.
Let f : B — IR be Locally Lipschitz, i.e., for all z € B there is ¢ > 0 and constant
K depending on € such that

|f(z1) — fxe)| < K||z1 — x2||, V1, 22 € x + €B.

Here B denotes the open unit ball of B. We also say that f is Lipschitz of rank K
near .

Let v € B. The generalized directional derivative of f at x in the direction v,
denoted by f°(x;v), is defined as follows:

fO(z;v) = limsup fly+sv) = f(y)
ot 5
Here y € B, s € (0,+00).
The generalized gradient of f at x, denoted by 0f(x), is the subset of B* given
by
{€eB" /[ f(z;v) > (§v), VveB}



For every v € B, one has
f2(w;v) = max{(¢,v) / € € Of (x)}.
We say that f is reqular at x € B if
(i) Vv € B, the directional derivative f’(z;v) exists;

(ii) Yo € B, f'(z;v) = f%(z;v).

2.1 Support Functions

We recall that the support function of a nonempty subset D of B is the function
op : B— IRU{+o0o} defined by

op(§) = sup{(¢,z) / v € D}.

We now state some basic known results of support functions which are needed in
the sequel.

Proposition 2.1 (Hirmander [24]). Let C,D be nonempty closed conver subsets
of B. And let X, A be nonempty weak”closed conver subsets of B*. Then,

CCD iff oc(§) <opl§), VEeB,
ACY iff oa(x) <og(z), Vreb.

Proposition 2.2 (Hérmander [24]) Let C, D be nonempty closed convex subsets of
B, and ¥, A be nonempty weak” closed conver subsets of B*. Let also p, X\ > 0 be
given scalars. Then

poc(§) +Aop(§) = ouciany(§) € € B
poa(z) + Aos(r) = opuaay (@) v € B.

2.2 Integration of Multifunctions

Given a multifunction G : [0,T] — IR", denote by S'([0,T]), the following set

SY[0,T)) = {f € L0, T), f(t) € G(t) ae. t €[0,T]}.



We define the integral of G, denoted by [ G(t)dt, as the following subset of IR™ :

/OTG(t)dt = {/OTf(t)dt fe 51([0,T])}_

A multifunction G is said to be integrably bounded if G’ is measurable and there
exists a integrable function z : [0,7] — IR, such that

1G]] < 2(t) ace. on [0,T].

Theorem 2.3 If G is a integrably bounded multifunction taking values compact sub-
sets of IR"™, then

T
o G(t)dt(v) = /0 ocw(v)dt, Yv € R".

The proof of this theorem can be found, for example, in [25].

2.3 The generalized Gordan Theorem

In this subsection, we state a transposition theorem, known as the Generalized
Gordan’s Theorem (Zalmai [18]). It is the key to move from the geometric optimality
condition obtained above to the main results on first-order necessary optimality
conditions in this work.

For the next result the domain of definition of the elements of the the spaces
Lm0, 7], L™[0,T], AT'[0,T] are replaced with a nonzero Lebesgue measure set
A Co,1].

Theorem 2.4 Let A C [0,T] be a set of positive Lebesque measure and X be a
nonempty convex subset of L' (A) and p; : Vx A — IR, i € I = {1,...,m} be
defined by p;(t, x(t)) = m;(x)(t), where V is an open subset of IR™, ™ = (71, ..., Tm)
is a map from X to AT*(A) and suppose that p; is convex with respect to its argument
on V througout A. Then, exactly one of the following systems is consistent:

(i) there is x € X such that p;(t,z(t)) <0 a.e. t € A, i € I,

(ii) there is a nonzero m-vector function uw € LT (A), u;i(t) >0 a.e. t € A, i € I,
such that .
| wltpt,a(t)dt > 0
0 er
for all x € X.



Proof. The proof of Theorem 2.7 follows in similar fashion as that of Theorem
3.2 in [18], replacing [0,7] by A.

3 Geometric Caracterization of a Minimum
We recall problem (CNP) from the introduction:

Minimize ¢(z) = [& f(t,z(t))dt,
subject to g;(t,z(t)) <0 ae. t€[0,7], (ONP)
iel={1,...,m}, ze€X.

Let IF" be the set of all feasible solutions to problem (CNP) (we suppose nonempty),
ie.,
F={reX:gtazt) <0ae tel0,T], icl}.

Let V' be an open subset of IR" containing the set
{z(t) e R" :x € IF, t € 0,11}

[ and g;, i € I, are real functions defined in [0, 7] x V. The function ¢t — f(¢, z(t))
is assumed to be Lebesgue measurable and integrable for x € X.
For all T € IF, and i € I, let A;(T) denote the set

{t €[0,T]: gi(t,z(t)) = 0}.

Hereon, we assume that, given a € V, there exist an € > 0 and a positive number
k such that Vt € [0,T], and Vx,, 3 € a + €B (B denotes the unit ball of IR") we
have
|f(t, 1) = f(t, m2) < kllwy — 22|

Similar hypothesis are assumed for g;, ¢ € I. Thence, f(¢,-) and ¢;(¢,), i € I, are
Lipschitz near every T € V, throughout [0, 7).

We suppose, the Lipschitz constant is the same for all functions involved.

Now, assume T € X and h € L% [0,7] are given. So, the Clarke generalized
directional derivatives

97 (1,7 (1); h(1)) = 77 (F; 1) (¢) = limsup %y + Ah) (f\) —uH)(1)

A—o0t



and

PO (0 h(1)) = TG WD) 2= limsup LA = EOI0

A—=0T

are finite a.e. ¢ € [0,77] and ¢°(z; h) is finite.

For ease of reading and presentation, in the rest of this work, we use the notations
fO>t, T(t); h(t)) and g2 (¢,x(t); h(t)) rather than T°(T; h)(t) and ;(T; h)(t). It follows
easily from the assumptions that

t— fO(t,Z(t)); h(2)),
t— g (t,Z(1)); h(t)), i €1,

are Lebesgue mesurable and integrable for all T € X, and h € L% [0, 7.
Consider the following cones in L% [0, 7] with zero vertices:

K(6:7) = {h € LL[0,T] : ¢"(%; 1) < 0},

K(g;;7) ={h € L"[0,T): g0 (t,T(t); h(t)) <0 ae. t € A;(T)}, i € I.
We are now in position to provide a geometric caracterization of a local minimum

for problem (CNP).

Theorem 3.1 Let T be an optimal solution of problem (CNP). Then

ﬂngz, NK(¢;T) = 0. (1)

el

Proof. Suppose the intersection of cones (1) is nonempty and take h € L2 [0, 7]
in this intersection. It follows from limsup properties and contituity of the functions
involved that there is a real number § > 0 such that, VO < A <4, T+ Ah € X,

gi(t,Z(t) + Ah(t)) <0, ae. t €[0,T], i €1,
O(T + Ah) < o(T).

But, that means T 4+ Ah, V0 < A < 4, is a feasible solution for (CNP) with objec-
tive value better than T. This contradicts the optimality of T for problem (CNP).
Therefore, the intersection (1) is empty. .



4 The Fritz-John Otimality Conditions

In this section we derive a new continuous-time analogue of the Fritz-John necessary
optimality conditions translating the geometric optimality conditions into algebraic
statements. This is made possible through the use of the Generalized Gordan The-
orem. We also point out that the new Fritz-John necessary conditions generalizes
the smooth case treated by Zalmai ([16], Thm.3.3).

Theorem 4.1 LetT € IF. Let f(t,-) and g(t,-) be Lipschitz near T(t). If T is a local
optimal solution of (CNP), then there exist uy € IR, u; € L[0,T], i € I, such that

0 € 7 {m0af(t.3(8) + X T()sg:(t,7(8) )
Uy >0, u(t) >0 a.e. t€]0,7T); (3)

(o, u(t)) = (Wo, Ur(t), -+, Um(t)) # 0 a.e t € [0, T7; (4)
wi(t)gi(t,z(t)) =0 a.e. t € [0,T], i € I. (5)

Proof. We shall proceed under the Interim Hypothesis: (CNP) has only one
contraint
g(t,z(t)) <0 a.e. in [0,T].

The removal of this interim hypothesis will be done at the end of the proof.
We denote

A(@) ={t €[0,T]: g(¢t,z(t)) = 0};
K(g,7) = {h € L"[0,T] : ¢(t,2(t); h(t) < 0, te€ A(z)}).

Lemma 4.2 Let T € IF. Let f(t,-), g(t,-) be Lipschitz near T(t) throughout [0,T].
If T is a local optimal solution of (CNP), then there exist ug € IR, u € L*[0,T],
such that

0 < Jo {aof*(t,T(t); h(1)) + a(t)g"(t.T(1); h(t)}dt, Vhe LL[0,T);  (6)
g >0, u(t) >0 ae te[0,T]; (7)
(ag,u(t)) Z0 a.e. te[Ol] (8)

u(t)g(t,z(t)) =0 a.e. t € [0, 7], i € I. 9)

Proof. If T be a local optimal solution to problem (CNP), then by Theorem 3.1
K(g;7) N K(¢;7) =

8



Hence, there is no h € L [0, 7] such that
¢°(; h) <0,
g°(t,x(t); h(t)) <0, a.e. t € A(x).
We can conclude, by making use of Theorem 2.4, that there are ug, u € L*|[0,T],
with ug(t) > 0, u(t) > 0 a.e. in [0,7], not all identically zero such that

0 < A(,){uo(t)aﬁ“(f;h)+u(t)g°(t,f(t);h(t))}dt Vh e L™ [0, T].

Setting g = [,z uo(t)dt and u(t) = u(t) if t € A(z) and u(t) = 0 otherwise, we
obtain

0 < wd' @)+ [ a9 (0 b))

< [ (e, 203 h(0) + )" 3(0); o)

for all h € L2 [0,T]. (Fatou’s lemma is used in the last inequality.) Thus (6) is
proved. The remaining assertions of the Lemma 4.2 follow immediately.

Let T be an optimal solution to (CNP). It follows from Lemma 4.2 that there
exist Ty € IR and w € L*®[0, T, satisfying (6)-(9).

It remains to prove assertion (2) to conclude the proof of the theorem. Statement
(6) can be rewritten as follows:

0 < /OT{anazf(t,E(t))(h(t))+U’( )0, gtz (R(t)) }dt,

T
= /0 [0 (@00, f(t2(0) +a(t)os 9tz (e))} (R(2))]dE,

Vh € L% ]0,T] (The equality above follows from Proposition 2.5). Since the above
inequality holds for all A € L [0,T7, it holds, in particular, for constant functions
h(t) =v e IR", Yt € [0,T].

It can be easily verified that the multifunction

t = w0 f(,T(t)) + a(t)Deg(t,7(1))

is integrably bounded and takes values compact subsets of IR". By Theorem2.6 we
have

T
0 < /0[U{aoaxf(t@(t))m(t)axg(t@(t))}(U)]dt
T 7 00, £t 0)+a(000a(t 00 (V)

9



But, by Proposition 2.4, this is equivalent to

T
0€ [ [0, f(t (1)) + a(t) g 8, (2) I,
which finishes the proof of the theorem under the interim hypothesis.

Removal of the Interim Hypothesis. Suppose (CNP) has m constraints g;(t, z(t)) <
0 a.e. in [0,7], and Z as a local optimal solution. Reduce the m constraints of
(CNP) to just one by defining g(¢,z(t)) = maxi<,, gi(t,(t)) a.e. in [0,7]. The
point Z is also an optimal solution of the modified problem. Let I(t,z) := {i €
I:gi(t,z(t)) = g(t,z(t)). From what has been proved under the interim hypothesis
there exist gy € IR, u € L0, 7], satisfying

oe [ 00 f (£, 2(1)) + u(t)Dug (b, ()] dt (10)

and (7)-(9). It can be deduced from (10) and the definition of integration of multi-
functions that there exists a measurable function e(t) € 0,¢(t,(t)) a.e. such that

T
0e /0 (G0 f (£, T(2)) + u(t)e(t)]dt. (11)
We have the following lemma.

Lemma 4.3 There ezists v € L[0,T], v > 0 a.e., satisfying

1. vi(t) = 0 whenever g;(t,z(t)) # g(t,z(t)), i =1,...,m;

2. % vi(t) =1 a.e.;
i=1

8. elt) € 3 w01, 7(1) ae.
Proof. For each t where 0,¢(t,Z(t)) is well defined it follows from [23] that
0:9(t,T(t)) C co{0,9:(t,T(t)) : 1 € I(t,T)}.
Since e(t) € 0,9(t,T(t)) a.e. we obtain

e(t) € co{0,9:(t,x(t)) :i € I(t,T)}.

10



Define

V() = {(vi,...,vn) € R™: ivi =1, v; >0,
v=0if gi(t,2(t)) < g(t,2(1)),

e(t) € 3 uidogs(t, F(1))

1=1

The set V(t) is obviously nonmepty and closed a.e., and V' is a mesurable set-
valued function defined a.e. on [0, 7. It follows from standard measurable selection
theorems (see e.g., [23]) that we can choose measurable functions vy (t),..., v, (1)
defined on [0, 7] such that (vy(t),...,v,(t)) € V(t) a.e. in [0,7]. The proof of the
lemma follows immediately. :

Now defing u;(t) := u(t)v;(t) it follows easily from Lemma 4.3 and (11) that
assertions (2)-(5) of Theorem 4.1 are valid. .

In Theorem 4.1 if f(¢,-) and ¢(t, -) are Clarke regular, then the condition (2) can
be changed by

0 € 0, L(T, up, u),

where,

L o) = | {uaf (1 x(®) + 30 w(D)gu(t) et

Jj=1

5 Karush-Kuhn-Tucker Optimality Conditions

In the necessary conditions, proved in the previous section, there is no garantee that
the Lagrange multiplier associated with the objective function will be nonzero. It is
usual to assume some kind of regularity condition on the restrictions of problem to
make sure that multiplier is in fact nonzero. These regularity conditions are usually
refered to as constraint qualifications. We assume the following natural constraint
qualification:

N K(g:,T) # 0. (12)

iel

We now state and prove the following Karush-Kuhn-Tucker type theorem.

Theorem 5.1 (Karush-Kuhn-Tucker) Let T € IF and suppose the constraint quali-
fication (12) is satisfied for functions g;, i € I. If T is a local minimum of problem

11



(CNP), then there exist u; € L*°[0,T], i € I, such that

0€ fy [0.f(t.T(1) + X wi(t) O gi(t, (1)) Yot (13)
a(t) >0 ae t€[0,1], i€l (14)
0;(t)gi(t,T(t)) =0 a.e. t € [0,T], i € I. (15)

Proof. We first prove Theorem 5.1 under the interim hypothesis: (CNP) has
only one constraint ¢(t,z(t)) <0 a.e. in [0, 7.

If T is a local optimal solution to problem (CNP), then by Lemma 4.2, there
exist 49 € IR, u(t) € L*[0,T], such that (6)-(9) hold true. If @y = 0 then (6) would
reduce to

T
0< [ ult)g(t,7(0); h(e)dt, Vh € LL[0,T]
0
Hence, by the Generalized Gordan’s Lemma, there is no h € X such that
g°(t,Z(t); h(t)) < 0 a.e. in [0, 7],

contradicting the constraint qualification (12). So, @y # 0. Set

and the theorem follows from inequality
T
0< [ W70 h() + a(t)g" (L, T(W); h(e) )b, Vh € LL[0,T)
0

by using similar arguments to those in the proof of condition (2) of Theorem4.1.
Romoval of the Interim Hypothesis. Let g(¢,x(t)) := max{g;(t,z(t)) : i€
I'}. We need the following technical result.

Lemma 5.2 The constraint qualification (10) for m constraints implies K (g, ) #
0.

Proof. 1t follows from the measurable selection theorem [23], by using standard
arguments, that there exists & € L2 [0, 7] such that £(t) € 0,¢9(t, z(t)) and

n

Q(t,2(1); h(t) = S &(t)hi(t) ae. in [0,T], Vh e L]0, T].

=1

12



Let h € L, [0, 7] be given but arbitrary. An application of Lemma 4.3 and Propo-
sition2.4 implies that there exists an essentially bounded function u(t) € V(¢) a.e
(V' as defined in the proof of Lemma 4.3) such that

§(t) € X ui(t)0ugi(t, T(1));

el

90(75: 575(75)§ h(t)) < o ui(t)axgi(t,.’f(t))(h(t))

i€l
a.e. in [0, 7). It follows from the above inequality and Proposition 2.5 that

¢, z); (@) < D wi(t)os, g (h(t) ae. in[0,T];

el

= > u(t)g (¢, z(t); h(t)) a.e. in [0, 7.

el

Therefore,
M K(gi7) # 0 = K(g,7) # 0.

el

Now, if Z is optimal for (CNP) with m constraints then it is also optimal for
(CNP) with the constraint g(¢,z(¢)) < 0 a.e. € [0,7]. It follows from Lemma 5.2
and the theorem in question as proved so far, that there exists u € L>[0,7], u >0
such that

(i) u(t)g(t,z(t)) =0 a.e. in [0,T7;
() 0 € 2 0uf(t, #(1))dt + 7 u(t)Duglt, 2(1)) .

Arguments similar to those in the proof of Theorem 4.2 yields the desired result. .
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