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1 Introdu
tion

Consider the primal 
ontinuous-time nonlinear programming problem below.

Minimize �(x) =

R

T

0

f(t; x(t))dt;

subje
t to g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄;

i 2 I = f1; : : : ; mg; x 2 X:

9

>

>

>

=

>

>

>

;

(CNP )

Here X is an open, nonempty 
onvex subset of the Bana
h spa
e L

n

1

[0; T ℄ of all

n-dimensional ve
tor valued Lebesgue mesurable fun
tions, whi
h are essentially

bounded, de�ned on the 
ompa
t interval [0; T ℄ � IR; with norm k � k

1

de�ned by

kxk

1

= max

1�j�n

ess supfjx

j

(t)j; 0 � t � Tg

�
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where for ea
h t 2 [0; T ℄; x

j

(t) is jth 
omponent of x(t) 2 IR

n

; � is a real valued

fun
tion de�ned on X; g(t; x(t)) = 
(x)(t) and f(t; x(t)) = �(x)(t); where 
 is

map from X into the normed spa
e �

m

1

[0; T ℄ of all Lebesgue measurable essentially

bounded m-dimensional ve
tor fun
tions de�ned on [0; T ℄; with the norm k � k

1

de�ned by

kyk

1

= max

1�j�m

Z

T

0

jy

j

(t)jdt;

and � is map from X into the normed spa
e �

1

1

[0; T ℄:

This 
lass of problems was introdu
ed in 1953 by Bellman [1℄ in 
onne
tion with

produ
tion-inventory \botlene
k pro
esses". He 
onsidered a type of optimization

problems, whi
h is now known as 
ontinuous-time linear programming, formulated

its dual and provided duality relations. He also suggested some 
omputational

pro
edure.

Sin
e then, a lot of authors have extended his theory to wider 
lasses of 
ontinuous-

time linear problems (e.g. [2℄, [3℄, [4℄, [5, 6℄, [7℄, [8℄, [9℄ and [10℄).

On the other hand, optimality 
onditions in the spirit of Karush-Kuhn-Tu
ker

type for 
ontinuous nonlinear problems were �rst investigated by Hanson and Mond [11℄.

They 
onsidered a 
lass of linear 
onstrained nonlinear programming problems. As-

suming a nonlinear integrand in the 
ost funtion was twi
e di�erentiable, they lin-

earized the 
ost fun
tion and applied Levinson's duality theory [3℄ to obtain the

Karush-Kuhn-Tu
ker optimality 
onditions. Also applying linearization, Farr and

Hanson [15℄ obtained ne
essary and suÆ
ient optimality 
onditions for a more gen-

eral 
lass of 
ontinuous-time nonlinear problems (both 
ost fun
tion and 
onstraints

were nonlinear).

Assuming some kind of 
onstraint quali�
ations and using dire
t methods, fur-

ther generalizations of the theory of optimality 
onditions for 
ontinuous-time non-

linear problems are to be found in S
ott and Je�erson [12℄, Abraham and Buie [13℄,

Reiland and Hanson [14℄ and Zalmai [16, 17, 18, 26, 27℄. However, the development

of nonsmooth ne
essary optimality 
onditions theories for problem (CNP) is not yet

satisfa
tory.

Our aim in this paper is to provide �rst-order ne
essary optimality 
onditions

in the form of Fritz-John and Karush-Kuhn-Tu
ker theorems for a general 
lass of

nonsmooth 
ontinuous-time Lips
hitz programming problems. This is a

omplished

through generalizations of the di�erentiable 
ontinuous versions of Fritz-John and

Karush-Kuhn-Tu
ker theorems in [16℄ to the Lips
hitz 
ase. SuÆ
ient 
onditions is

pursued in another paper [21℄.

Related results 
an be found in Craven [22℄. However, his arguments are via

2



approximation of smooth fun
tions rather than alternative theorems.

This work is organized as follows. In Se
tion 2 we re
all some basi
 properties of

Lips
hitz nonsmooth analysis, support fun
tions, Integration of multifun
tions and

state the generalized Gordan's Theorem. In Se
tion 3 we establish the nonsmooth

geometri
 optimality 
onditions for (CNP). The nonsmooth versions of Fritz-John

and Karush-Kuhn-Tu
ker 
ontinuous-time optimality 
onditions are obtained on

Se
tions 4 and 5, respe
tively.

2 Preliminaries

In this se
tion we summarize basi
 
on
epts and tools from nonsmooth analysis,

in
luding supporting funtions and integration of multifun
tions. Most of material

in
luded here 
an be found in Clarke [23℄. We also state the generalized Gordan's

Theorem, whi
h has been a very usuful tool in optimization theory.

In what follows, B denotes a real linear spa
e with norm k�k and B

�

its topologi
al

dual with norm given by

k�k

�

= supfh�; vi : v 2 B; kvk � 1g;

where h�; �i is the 
anoni
 dual map between B

�

and B:

Let f : B ! IR be Lo
ally Lips
hitz, i.e., for all x 2 B there is � > 0 and 
onstant

K depending on � su
h that

jf(x

1

)� f(x

2

)j � Kkx

1

� x

2

k; 8x

1

; x

2

2 x + �B:

Here B denotes the open unit ball of B: We also say that f is Lips
hitz of rank K

near x:

Let v 2 B. The generalized dire
tional derivative of f at x in the dire
tion v,

denoted by f

0

(x; v), is de�ned as follows:

f

0

(x; v) = limsup

y!x

s!0

+

f(y + sv)� f(y)

s

:

Here y 2 B; s 2 (0;+1).

The generalized gradient of f at x, denoted by �f(x), is the subset of B

�

given

by

f� 2 B

�

= f

0

(x; v) � h�; vi ; 8v 2 Bg:
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For every v 2 B, one has

f

0

(x; v) = maxfh�; vi = � 2 �f(x)g:

We say that f is regular at x 2 B if

(i) 8v 2 B; the dire
tional derivative f

0

(x; v) exists;

(ii) 8v 2 B; f

0

(x; v) = f

0

(x; v):

2.1 Support Fun
tions

We re
all that the support fun
tion of a nonempty subset D of B is the fun
tion

�

D

: B ! IR [ f+1g de�ned by

�

D

(�) = supfh�; xi = x 2 Dg:

We now state some basi
 known results of support fun
tions whi
h are needed in

the sequel.

Proposition 2.1 (H�ormander [24℄). Let C;D be nonempty 
losed 
onvex subsets

of B. And let �; � be nonempty weak

�


losed 
onvex subsets of B

�

. Then,

C � D i� �

C

(�) � �

D

(�); 8� 2 B

�

;

� � � i� �

�

(x) � �

�

(x); 8x 2 B:

Proposition 2.2 (H�ormander [24℄) Let C;D be nonempty 
losed 
onvex subsets of

B; and �; � be nonempty weak

�


losed 
onvex subsets of B

�

. Let also �; � � 0 be

given s
alars. Then

��

C

(�) + ��

D

(�) = �

f�C+�Dg

(�) � 2 B

�

;

��

�

(x) + ��

�

(x) = �

f��+��g

(x) x 2 B:

2.2 Integration of Multifun
tions

Given a multifun
tion G : [0; T ℄! IR

n

; denote by S

1

([0; T ℄); the following set

S

1

([0; T ℄) = ff 2 L

n

1

[0; T ℄; f(t) 2 G(t) a.e. t 2 [0; T ℄g:

4



We de�ne the integral of G, denoted by

R

T

0

G(t)dt; as the following subset of IR

n

:

Z

T

0

G(t)dt :=

(

Z

T

0

f(t)dt : f 2 S

1

([0; T ℄)

)

:

A multifun
tion G is said to be integrably bounded if G is measurable and there

exists a integrable fun
tion z : [0; T ℄! IR

+

su
h that

kG(t)k � z(t) a.e. on [0; T ℄:

Theorem 2.3 If G is a integrably bounded multifun
tion taking values 
ompa
t sub-

sets of IR

n

; then

�

R

T

0

G(t)dt

(v) =

Z

T

0

�

G(t)

(v)dt; 8v 2 R

n

:

The proof of this theorem 
an be found, for example, in [25℄.

2.3 The generalized Gordan Theorem

In this subse
tion, we state a transposition theorem, known as the Generalized

Gordan's Theorem (Zalmai [18℄). It is the key to move from the geometri
 optimality


ondition obtained above to the main results on �rst-order ne
essary optimality


onditions in this work.

For the next result the domain of de�nition of the elements of the the spa
es

L

n

1

[0; T ℄; L

m

1

[0; T ℄; �

m

1

[0; T ℄ are repla
ed with a nonzero Lebesgue measure set

A � [0; T ℄:

Theorem 2.4 Let A � [0; T ℄ be a set of positive Lebesgue measure and X be a

nonempty 
onvex subset of L

n

1

(A) and p

i

: V � A ! IR; i 2 I = f1; : : : ; mg be

de�ned by p

i

(t; x(t)) = �

i

(x)(t); where V is an open subset of IR

n

; � = (�

1

; : : : ; �

m

)

is a map from X to �

m

1

(A) and suppose that p

i

is 
onvex with respe
t to its argument

on V througout A: Then, exa
tly one of the following systems is 
onsistent:

(i) there is x 2 X su
h that p

i

(t; x(t)) < 0 a.e. t 2 A; i 2 I;

(ii) there is a nonzero m-ve
tor fun
tion u 2 L

m

1

(A); u

i

(t) � 0 a.e. t 2 A; i 2 I;

su
h that

Z

T

0

X

i2I

u

i

(t)p

i

(t; x(t))dt � 0

for all x 2 X:
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Proof. The proof of Theorem 2.7 follows in similar fashion as that of Theorem

3.2 in [18℄, repla
ing [0; T ℄ by A:

3 Geometri
 Cara
terization of a Minimum

We re
all problem (CNP) from the introdu
tion:

Minimize �(x) =

R

T

0

f(t; x(t))dt;

subje
t to g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄;

i 2 I = f1; : : : ; mg; x 2 X:

9

>

>

>

=

>

>

>

;

(CNP )

Let IF be the set of all feasible solutions to problem (CNP) (we suppose nonempty),

i.e.,

IF = fx 2 X : g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄; i 2 Ig:

Let V be an open subset of IR

n


ontaining the set

fx(t) 2 IR

n

: x 2 IF; t 2 [0; T ℄g:

f and g

i

; i 2 I; are real fun
tions de�ned in [0; T ℄� V: The fun
tion t! f(t; x(t))

is assumed to be Lebesgue measurable and integrable for x 2 X:

For all x 2 IF; and i 2 I; let A

i

(x) denote the set

ft 2 [0; T ℄ : g

i

(t; x(t)) = 0g:

Hereon, we assume that, given a 2 V , there exist an � > 0 and a positive number

k su
h that 8t 2 [0; T ℄; and 8x

1

; x

2

2 a + �B (B denotes the unit ball of IR

n

) we

have

jf(t; x

1

)� f(t; x

2

) � kkx

1

� x

2

k:

Similar hypothesis are assumed for g

i

; i 2 I: Then
e, f(t; �) and g

i

(t; �); i 2 I; are

Lips
hitz near every x 2 V; throughout [0; T ℄:

We suppose, the Lips
hitz 
onstant is the same for all fun
tions involved.

Now, assume x 2 X and h 2 L

n

1

[0; T ℄ are given. So, the Clarke generalized

dire
tional derivatives

g

0

i

(t; x(t); h(t)) := 


0

i

(x; h)(t) := limsup

y!x

�!0

+




i

(y + �h)(t)� 


i

(y)(t)

�

;

6



and

f

0

(t; x(t); h(t)) := �

0

(x; h)(t) := lim sup

y!x

�!0

+

�(y + �h)(t)� �(y)(t)

�

are �nite a.e. t 2 [0; T ℄ and �

0

(x; h) is �nite.

For ease of reading and presentation, in the rest of this work, we use the notations

f

0

(t; x(t); h(t)) and g

0

i

(t; x(t); h(t)) rather than �

0

(x; h)(t) and 


i

(x; h)(t): It follows

easily from the assumptions that

t! f

0

(t; x(t)); h(t));

t! g

0

i

(t; x(t)); h(t)); i 2 I;

are Lebesgue mesurable and integrable for all x 2 X; and h 2 L

n

1

[0; T ℄:

Consider the following 
ones in L

n

1

[0; T ℄ with zero verti
es:

K(�; x) = fh 2 L

n

1

[0; T ℄ : �

0

(x; h) < 0g;

K(g

i

; x) = fh 2 L

n

1

[0; T ℄ : g

0

i

(t; x(t); h(t)) < 0 a.e. t 2 A

i

(�x)g; i 2 I:

We are now in position to provide a geometri
 
ara
terization of a lo
al minimum

for problem (CNP).

Theorem 3.1 Let x be an optimal solution of problem (CNP). Then

\

i2I

K(g

i

; x) \ K(�; x) = ;: (1)

Proof. Suppose the interse
tion of 
ones (1) is nonempty and take h 2 L

n

1

[0; T ℄

in this interse
tion. It follows from limsup properties and 
ontituity of the fun
tions

involved that there is a real number Æ > 0 su
h that, 8 0 < � < Æ; x+ �h 2 X;

g

i

(t; x(t) + �h(t)) � 0; a.e. t 2 [0; T ℄; i 2 I;

�(x+ �h) < �(x):

But, that means x + �h; 80 < � < Æ; is a feasible solution for (CNP) with obje
-

tive value better than x: This 
ontradi
ts the optimality of x for problem (CNP).

Therefore, the interse
tion (1) is empty.
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4 The Fritz-John Otimality Conditions

In this se
tion we derive a new 
ontinuous-time analogue of the Fritz-John ne
essary

optimality 
onditions translating the geometri
 optimality 
onditions into algebrai


statements. This is made possible through the use of the Generalized Gordan The-

orem. We also point out that the new Fritz-John ne
essary 
onditions generalizes

the smooth 
ase treated by Zalmai ([16℄, Thm.3.3).

Theorem 4.1 Let x 2 IF: Let f(t; �) and g(t; �) be Lips
hitz near x(t): If x is a lo
al

optimal solution of (CNP), then there exist u

0

2 IR; u

i

2 L

m

1

[0; T ℄; i 2 I; su
h that

0 2

R

T

0

fu

0

�

x

f(t; x(t)) +

P

i2I

u

i

(t)�

x

g

i

(t; x(t))gdt; (2)

u

0

� 0; u(t) � 0 a.e. t 2 [0; T ℄; (3)

(u

0

; u(t)) = (u

0

; u

1

(t); � � � ; u

m

(t)) 6� 0 a.e t 2 [0; T ℄; (4)

u

i

(t)g

i

(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (5)

Proof. We shall pro
eed under the Interim Hypothesis: (CNP) has only one


ontraint

g(t; x(t)) � 0 a.e. in [0; T ℄:

The removal of this interim hypothesis will be done at the end of the proof.

We denote

A(�x) = ft 2 [0; T ℄ : g(t; �x(t)) = 0g;

K(g; �x) = fh 2 L

n

1

[0; T ℄ : g

0

(t; �x(t); h(t) < 0; t 2 A(�x)g:

Lemma 4.2 Let x 2 IF: Let f(t; �); g(t; �) be Lips
hitz near x(t) throughout [0; T ℄:

If x is a lo
al optimal solution of (CNP), then there exist �u

0

2 IR; �u 2 L

1

[0; T ℄;

su
h that

0 �

R

T

0

f�u

0

f

0

(t; x(t); h(t)) + �u(t)g

0

(t; x(t); h(t))gdt; 8h 2 L

n

1

[0; T ℄; (6)

�u

0

� 0; �u(t) � 0 a.e. t 2 [0; T ℄; (7)

(�u

0

; �u(t)) 6� 0 a.e. t 2 [0; 1℄; (8)

�u(t)g(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (9)

Proof. If x be a lo
al optimal solution to problem (CNP), then by Theorem 3.1

K(g; x) \ K(�; x) = ;:

8



Hen
e, there is no h 2 L

n

1

[0; T ℄ su
h that

�

0

(x; h) < 0;

g

0

(t; x(t); h(t)) < 0; a.e. t 2 A(�x):

We 
an 
on
lude, by making use of Theorem 2.4, that there are u

0

; u 2 L

1

[0; T ℄;

with u

0

(t) � 0; u(t) � 0 a.e. in [0; T ℄; not all identi
ally zero su
h that

0 �

Z

A(�x)

fu

0

(t)�

0

(x; h) + u(t)g

0

(t; x(t); h(t))gdt 8h 2 L

n

1

[0; T ℄:

Setting �u

0

=

R

A(�x)

u

0

(t)dt and �u(t) = u(t) if t 2 A(�x) and �u(t) = 0 otherwise, we

obtain

0 � �u

0

�

0

(x; h) +

Z

T

0

�u(t)g

0

(t; x(t); h(t))dt

�

Z

T

0

fu

0

f

0

(t; �x(t); h(t)) + �u(t)g

0

(t; x(t); h(t))gdt

for all h 2 L

n

1

[0; T ℄: (Fatou's lemma is used in the last inequality.) Thus (6) is

proved. The remaining assertions of the Lemma 4.2 follow immediately.

Let �x be an optimal solution to (CNP). It follows from Lemma 4.2 that there

exist u

0

2 IR and u 2 L

1

[0; T ℄; satisfying (6)-(9).

It remains to prove assertion (2) to 
on
lude the proof of the theorem. Statement

(6) 
an be rewritten as follows:

0 �

Z

T

0

f�u

0

�

�

x

f(t;x(t))

(h(t)) + �u(t)�

�

x

g(t;x(t))

(h(t))gdt;

=

Z

T

0

[�

f�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))g

(h(t))℄dt;

8h 2 L

n

1

[0; T ℄ (The equality above follows from Proposition 2.5). Sin
e the above

inequality holds for all h 2 L

n

1

[0; T ℄; it holds, in parti
ular, for 
onstant fun
tions

h(t) = v 2 IR

n

; 8t 2 [0; T ℄:

It 
an be easily veri�ed that the multifun
tion

t! �u

0

�

x

f(t; x(t)) + �u(t)�

x

g(t; x(t))

is integrably bounded and takes values 
ompa
t subsets of IR

n

: By Theorem

~

2.6 we

have

0 �

Z

T

0

[�

f�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))g

(v)℄dt

= �

R

T

0

[�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))℄dt

(v):

9



But, by Proposition 2.4, this is equivalent to

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + �u(t)�

x

g(t; x(t))℄dt;

whi
h �nishes the proof of the theorem under the interim hypothesis.

Removal of the InterimHypothesis. Suppose (CNP) hasm 
onstraints g

i

(t; x(t)) �

0 a.e. in [0; T ℄; and �x as a lo
al optimal solution. Redu
e the m 
onstraints of

(CNP) to just one by de�ning g(t; x(t)) = max

1�m

g

i

(t; x(t)) a.e. in [0; T ℄: The

point �x is also an optimal solution of the modi�ed problem. Let I(t; x) := fi 2

I : g

i

(t; x(t)) = g(t; x(t)): From what has been proved under the interim hypothesis

there exist u

0

2 IR; u 2 L

1

[0; T ℄; satisfying

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + u(t)�

x

g(t; x(t))℄dt (10)

and (7)-(9). It 
an be dedu
ed from (10) and the de�nition of integration of multi-

fun
tions that there exists a measurable fun
tion e(t) 2 �

x

g(t; x(t)) a.e. su
h that

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + u(t)e(t)℄dt: (11)

We have the following lemma.

Lemma 4.3 There exists v 2 L

m

1

[0; T ℄; v � 0 a.e., satisfying

1. v

i

(t) = 0 whenever g

i

(t; �x(t)) 6= g(t; �x(t)); i = 1; : : : ; m;

2.

m

P

i=1

v

i

(t) = 1 a.e.;

3. e(t) �

m

P

i=1

v

i

(t)�

x

g

i

(t; x(t)) a.e.

Proof. For ea
h t where �

x

g(t; x(t)) is well de�ned it follows from [23℄ that

�

x

g(t; x(t)) � 
of�

x

g

i

(t; x(t)) : i 2 I(t; �x)g:

Sin
e e(t) 2 �

x

g(t; x(t)) a.e. we obtain

e(t) 2 
of�

x

g

i

(t; x(t)) : i 2 I(t; �x)g:

10



De�ne

V (t) := f(v

1

; : : : ; v

m

) 2 IR

m

:

m

X

i

v

i

= 1; v

i

� 0;

v = 0 if g

i

(t; �x(t)) < g(t; �x(t));

e(t) 2

m

X

i=1

v

i

�

x

g

i

(t; x(t))g

The set V (t) is obviously nonmepty and 
losed a.e., and V is a mesurable set-

valued fun
tion de�ned a.e. on [0; T ℄. It follows from standard measurable sele
tion

theorems (see e.g., [23℄) that we 
an 
hoose measurable fun
tions v

1

(t); : : : ; v

m

(t)

de�ned on [0; T ℄ su
h that (v

1

(t); : : : ; v

m

(t)) 2 V (t) a.e. in [0; T ℄. The proof of the

lemma follows immediately.

Now de�ng �u

i

(t) := u(t)v

i

(t) it follows easily from Lemma 4.3 and (11) that

assertions (2)-(5) of Theorem 4.1 are valid.

In Theorem 4.1 if f(t; �) and g(t; �) are Clarke regular, then the 
ondition (2) 
an

be 
hanged by

0 2 �

x

L(x; u

0

; u);

where,

L(x; u

0

; u) :=

Z

T

0

fu

0

f(t; x(t)) +

m

X

j=1

u

i

(t)g

i

(t)gdt:

5 Karush-Kuhn-Tu
ker Optimality Conditions

In the ne
essary 
onditions, proved in the previous se
tion, there is no garantee that

the Lagrange multiplier asso
iated with the obje
tive fun
tion will be nonzero. It is

usual to assume some kind of regularity 
ondition on the restri
tions of problem to

make sure that multiplier is in fa
t nonzero. These regularity 
onditions are usually

refered to as 
onstraint quali�
ations. We assume the following natural 
onstraint

quali�
ation:

\

i2I

K(g

i

; x) 6= ;: (12)

We now state and prove the following Karush-Kuhn-Tu
ker type theorem.

Theorem 5.1 (Karush-Kuhn-Tu
ker) Let x 2 IF and suppose the 
onstraint quali-

�
ation (12) is satis�ed for fun
tions g

i

; i 2 I: If x is a lo
al minimum of problem

11



(CNP), then there exist ~u

i

2 L

1

[0; T ℄; i 2 I; su
h that

0 2

R

T

0

[�

x

f(t; x(t)) +

P

i2I

~u

i

(t)�

x

g

i

(t; x(t))gdt; (13)

~u(t) � 0 a.e. t 2 [0; T ℄; i 2 I; (14)

~u

i

(t)g

i

(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (15)

Proof. We �rst prove Theorem 5.1 under the interim hypothesis: (CNP) has

only one 
onstraint g(t; x(t)) � 0 a.e. in [0; T ℄:

If x is a lo
al optimal solution to problem (CNP), then by Lemma 4.2, there

exist �u

0

2 IR; �u(t) 2 L

1

[0; T ℄; su
h that (6)-(9) hold true. If �u

0

= 0 then (6) would

redu
e to

0 �

Z

T

0

u(t)g

0

(t; x(t); h(t))dt; 8h 2 L

n

1

[0; T ℄:

Hen
e, by the Generalized Gordan's Lemma, there is no h 2 X su
h that

g

0

(t; x(t); h(t)) < 0 a.e. in [0; T ℄;


ontradi
ting the 
onstraint quali�
ation (12). So, �u

0

6= 0: Set

~u

0

=

�u

0

�u

0

; ~u(t) =

�u(t)

�u

0

:

and the theorem follows from inequality

0 �

Z

T

0

ff

0

(t; x(t); h(t)) + ~u(t)g

0

(t; x(t); h(t))gdt; 8h 2 L

n

1

[0; T ℄;

by using similar arguments to those in the proof of 
ondition (2) of Theorem4.1.

Romoval of the Interim Hypothesis. Let g(t; x(t)) := maxfg

i

(t; x(t)) : i 2

Ig: We need the following te
hni
al result.

Lemma 5.2 The 
onstraint quali�
ation (10) for m 
onstraints implies K(g; �x) 6=

;:

Proof. It follows from the measurable sele
tion theorem [23℄, by using standard

arguments, that there exists � 2 L

n

1

[0; T ℄ su
h that �(t) 2 �

x

g(t; �x(t)) and

g

0

(t; �x(t); h(t)) =

n

X

i=1

�

i

(t)h

i

(t) a.e. in [0; T ℄; 8h 2 L

n

1

[0; T ℄:

12



Let h 2 L

n

1

[0; T ℄ be given but arbitrary. An appli
ation of Lemma 4.3 and Propo-

sition

~

2.4 implies that there exists an essentially bounded fun
tion u(t) 2 V (t) a:e:

(V as de�ned in the proof of Lemma 4.3) su
h that

�(t) 2

P

i2I

u

i

(t)�

x

g

i

(t; �x(t));

g

0

(t; �x(t); h(t)) � �

P

i2I

u

i

(t)�

x

g

i

(t;�x(t))

(h(t))

a.e. in [0; T ℄: It follows from the above inequality and Proposition 2.5 that

g

0

(t; �x(t); h(t)) �

X

i2I

u

i

(t)�

�

x

g

i

(t;�x(t))

(h(t)) a.e. in [0; T ℄;

=

X

i2I

u

i

(t)g

0

i

(t; �x(t); h(t)) a.e. in [0; T ℄:

Therefore,

\

i2I

K(g

i

; �x) 6= ; ) K(g; �x) 6= ;:

Now, if �x is optimal for (CNP) with m 
onstraints then it is also optimal for

(CNP) with the 
onstraint g(t; x(t)) � 0 a.e. 2 [0; T ℄: It follows from Lemma 5.2

and the theorem in question as proved so far, that there exists u 2 L

1

[0; T ℄; u � 0

su
h that

(i) u(t)g(t; �x(t)) = 0 a.e. in [0; T ℄;

(ii) 0 2

R

T

0

�

x

f(t; �x(t))dt+

R

T

0

u(t)�

x

g(t; �x(t))dt:

Arguments similar to those in the proof of Theorem 4.2 yields the desired result.
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