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1 Introdution

Consider the primal ontinuous-time nonlinear programming problem below.

Minimize �(x) =

R

T

0

f(t; x(t))dt;

subjet to g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄;

i 2 I = f1; : : : ; mg; x 2 X:

9

>

>

>

=

>

>

>

;

(CNP )

Here X is an open, nonempty onvex subset of the Banah spae L

n

1

[0; T ℄ of all

n-dimensional vetor valued Lebesgue mesurable funtions, whih are essentially

bounded, de�ned on the ompat interval [0; T ℄ � IR; with norm k � k

1

de�ned by

kxk

1

= max

1�j�n

ess supfjx

j

(t)j; 0 � t � Tg

�
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where for eah t 2 [0; T ℄; x

j

(t) is jth omponent of x(t) 2 IR

n

; � is a real valued

funtion de�ned on X; g(t; x(t)) = (x)(t) and f(t; x(t)) = �(x)(t); where  is

map from X into the normed spae �

m

1

[0; T ℄ of all Lebesgue measurable essentially

bounded m-dimensional vetor funtions de�ned on [0; T ℄; with the norm k � k

1

de�ned by

kyk

1

= max

1�j�m

Z

T

0

jy

j

(t)jdt;

and � is map from X into the normed spae �

1

1

[0; T ℄:

This lass of problems was introdued in 1953 by Bellman [1℄ in onnetion with

prodution-inventory \botlenek proesses". He onsidered a type of optimization

problems, whih is now known as ontinuous-time linear programming, formulated

its dual and provided duality relations. He also suggested some omputational

proedure.

Sine then, a lot of authors have extended his theory to wider lasses of ontinuous-

time linear problems (e.g. [2℄, [3℄, [4℄, [5, 6℄, [7℄, [8℄, [9℄ and [10℄).

On the other hand, optimality onditions in the spirit of Karush-Kuhn-Tuker

type for ontinuous nonlinear problems were �rst investigated by Hanson and Mond [11℄.

They onsidered a lass of linear onstrained nonlinear programming problems. As-

suming a nonlinear integrand in the ost funtion was twie di�erentiable, they lin-

earized the ost funtion and applied Levinson's duality theory [3℄ to obtain the

Karush-Kuhn-Tuker optimality onditions. Also applying linearization, Farr and

Hanson [15℄ obtained neessary and suÆient optimality onditions for a more gen-

eral lass of ontinuous-time nonlinear problems (both ost funtion and onstraints

were nonlinear).

Assuming some kind of onstraint quali�ations and using diret methods, fur-

ther generalizations of the theory of optimality onditions for ontinuous-time non-

linear problems are to be found in Sott and Je�erson [12℄, Abraham and Buie [13℄,

Reiland and Hanson [14℄ and Zalmai [16, 17, 18, 26, 27℄. However, the development

of nonsmooth neessary optimality onditions theories for problem (CNP) is not yet

satisfatory.

Our aim in this paper is to provide �rst-order neessary optimality onditions

in the form of Fritz-John and Karush-Kuhn-Tuker theorems for a general lass of

nonsmooth ontinuous-time Lipshitz programming problems. This is aomplished

through generalizations of the di�erentiable ontinuous versions of Fritz-John and

Karush-Kuhn-Tuker theorems in [16℄ to the Lipshitz ase. SuÆient onditions is

pursued in another paper [21℄.

Related results an be found in Craven [22℄. However, his arguments are via
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approximation of smooth funtions rather than alternative theorems.

This work is organized as follows. In Setion 2 we reall some basi properties of

Lipshitz nonsmooth analysis, support funtions, Integration of multifuntions and

state the generalized Gordan's Theorem. In Setion 3 we establish the nonsmooth

geometri optimality onditions for (CNP). The nonsmooth versions of Fritz-John

and Karush-Kuhn-Tuker ontinuous-time optimality onditions are obtained on

Setions 4 and 5, respetively.

2 Preliminaries

In this setion we summarize basi onepts and tools from nonsmooth analysis,

inluding supporting funtions and integration of multifuntions. Most of material

inluded here an be found in Clarke [23℄. We also state the generalized Gordan's

Theorem, whih has been a very usuful tool in optimization theory.

In what follows, B denotes a real linear spae with norm k�k and B

�

its topologial

dual with norm given by

k�k

�

= supfh�; vi : v 2 B; kvk � 1g;

where h�; �i is the anoni dual map between B

�

and B:

Let f : B ! IR be Loally Lipshitz, i.e., for all x 2 B there is � > 0 and onstant

K depending on � suh that

jf(x

1

)� f(x

2

)j � Kkx

1

� x

2

k; 8x

1

; x

2

2 x + �B:

Here B denotes the open unit ball of B: We also say that f is Lipshitz of rank K

near x:

Let v 2 B. The generalized diretional derivative of f at x in the diretion v,

denoted by f

0

(x; v), is de�ned as follows:

f

0

(x; v) = limsup

y!x

s!0

+

f(y + sv)� f(y)

s

:

Here y 2 B; s 2 (0;+1).

The generalized gradient of f at x, denoted by �f(x), is the subset of B

�

given

by

f� 2 B

�

= f

0

(x; v) � h�; vi ; 8v 2 Bg:
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For every v 2 B, one has

f

0

(x; v) = maxfh�; vi = � 2 �f(x)g:

We say that f is regular at x 2 B if

(i) 8v 2 B; the diretional derivative f

0

(x; v) exists;

(ii) 8v 2 B; f

0

(x; v) = f

0

(x; v):

2.1 Support Funtions

We reall that the support funtion of a nonempty subset D of B is the funtion

�

D

: B ! IR [ f+1g de�ned by

�

D

(�) = supfh�; xi = x 2 Dg:

We now state some basi known results of support funtions whih are needed in

the sequel.

Proposition 2.1 (H�ormander [24℄). Let C;D be nonempty losed onvex subsets

of B. And let �; � be nonempty weak

�

losed onvex subsets of B

�

. Then,

C � D i� �

C

(�) � �

D

(�); 8� 2 B

�

;

� � � i� �

�

(x) � �

�

(x); 8x 2 B:

Proposition 2.2 (H�ormander [24℄) Let C;D be nonempty losed onvex subsets of

B; and �; � be nonempty weak

�

losed onvex subsets of B

�

. Let also �; � � 0 be

given salars. Then

��

C

(�) + ��

D

(�) = �

f�C+�Dg

(�) � 2 B

�

;

��

�

(x) + ��

�

(x) = �

f��+��g

(x) x 2 B:

2.2 Integration of Multifuntions

Given a multifuntion G : [0; T ℄! IR

n

; denote by S

1

([0; T ℄); the following set

S

1

([0; T ℄) = ff 2 L

n

1

[0; T ℄; f(t) 2 G(t) a.e. t 2 [0; T ℄g:
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We de�ne the integral of G, denoted by

R

T

0

G(t)dt; as the following subset of IR

n

:

Z

T

0

G(t)dt :=

(

Z

T

0

f(t)dt : f 2 S

1

([0; T ℄)

)

:

A multifuntion G is said to be integrably bounded if G is measurable and there

exists a integrable funtion z : [0; T ℄! IR

+

suh that

kG(t)k � z(t) a.e. on [0; T ℄:

Theorem 2.3 If G is a integrably bounded multifuntion taking values ompat sub-

sets of IR

n

; then

�

R

T

0

G(t)dt

(v) =

Z

T

0

�

G(t)

(v)dt; 8v 2 R

n

:

The proof of this theorem an be found, for example, in [25℄.

2.3 The generalized Gordan Theorem

In this subsetion, we state a transposition theorem, known as the Generalized

Gordan's Theorem (Zalmai [18℄). It is the key to move from the geometri optimality

ondition obtained above to the main results on �rst-order neessary optimality

onditions in this work.

For the next result the domain of de�nition of the elements of the the spaes

L

n

1

[0; T ℄; L

m

1

[0; T ℄; �

m

1

[0; T ℄ are replaed with a nonzero Lebesgue measure set

A � [0; T ℄:

Theorem 2.4 Let A � [0; T ℄ be a set of positive Lebesgue measure and X be a

nonempty onvex subset of L

n

1

(A) and p

i

: V � A ! IR; i 2 I = f1; : : : ; mg be

de�ned by p

i

(t; x(t)) = �

i

(x)(t); where V is an open subset of IR

n

; � = (�

1

; : : : ; �

m

)

is a map from X to �

m

1

(A) and suppose that p

i

is onvex with respet to its argument

on V througout A: Then, exatly one of the following systems is onsistent:

(i) there is x 2 X suh that p

i

(t; x(t)) < 0 a.e. t 2 A; i 2 I;

(ii) there is a nonzero m-vetor funtion u 2 L

m

1

(A); u

i

(t) � 0 a.e. t 2 A; i 2 I;

suh that

Z

T

0

X

i2I

u

i

(t)p

i

(t; x(t))dt � 0

for all x 2 X:
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Proof. The proof of Theorem 2.7 follows in similar fashion as that of Theorem

3.2 in [18℄, replaing [0; T ℄ by A:

3 Geometri Caraterization of a Minimum

We reall problem (CNP) from the introdution:

Minimize �(x) =

R

T

0

f(t; x(t))dt;

subjet to g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄;

i 2 I = f1; : : : ; mg; x 2 X:

9

>

>

>

=

>

>

>

;

(CNP )

Let IF be the set of all feasible solutions to problem (CNP) (we suppose nonempty),

i.e.,

IF = fx 2 X : g

i

(t; x(t)) � 0 a.e. t 2 [0; T ℄; i 2 Ig:

Let V be an open subset of IR

n

ontaining the set

fx(t) 2 IR

n

: x 2 IF; t 2 [0; T ℄g:

f and g

i

; i 2 I; are real funtions de�ned in [0; T ℄� V: The funtion t! f(t; x(t))

is assumed to be Lebesgue measurable and integrable for x 2 X:

For all x 2 IF; and i 2 I; let A

i

(x) denote the set

ft 2 [0; T ℄ : g

i

(t; x(t)) = 0g:

Hereon, we assume that, given a 2 V , there exist an � > 0 and a positive number

k suh that 8t 2 [0; T ℄; and 8x

1

; x

2

2 a + �B (B denotes the unit ball of IR

n

) we

have

jf(t; x

1

)� f(t; x

2

) � kkx

1

� x

2

k:

Similar hypothesis are assumed for g

i

; i 2 I: Thene, f(t; �) and g

i

(t; �); i 2 I; are

Lipshitz near every x 2 V; throughout [0; T ℄:

We suppose, the Lipshitz onstant is the same for all funtions involved.

Now, assume x 2 X and h 2 L

n

1

[0; T ℄ are given. So, the Clarke generalized

diretional derivatives

g

0

i

(t; x(t); h(t)) := 

0

i

(x; h)(t) := limsup

y!x

�!0

+



i

(y + �h)(t)� 

i

(y)(t)

�

;
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and

f

0

(t; x(t); h(t)) := �

0

(x; h)(t) := lim sup

y!x

�!0

+

�(y + �h)(t)� �(y)(t)

�

are �nite a.e. t 2 [0; T ℄ and �

0

(x; h) is �nite.

For ease of reading and presentation, in the rest of this work, we use the notations

f

0

(t; x(t); h(t)) and g

0

i

(t; x(t); h(t)) rather than �

0

(x; h)(t) and 

i

(x; h)(t): It follows

easily from the assumptions that

t! f

0

(t; x(t)); h(t));

t! g

0

i

(t; x(t)); h(t)); i 2 I;

are Lebesgue mesurable and integrable for all x 2 X; and h 2 L

n

1

[0; T ℄:

Consider the following ones in L

n

1

[0; T ℄ with zero verties:

K(�; x) = fh 2 L

n

1

[0; T ℄ : �

0

(x; h) < 0g;

K(g

i

; x) = fh 2 L

n

1

[0; T ℄ : g

0

i

(t; x(t); h(t)) < 0 a.e. t 2 A

i

(�x)g; i 2 I:

We are now in position to provide a geometri araterization of a loal minimum

for problem (CNP).

Theorem 3.1 Let x be an optimal solution of problem (CNP). Then

\

i2I

K(g

i

; x) \ K(�; x) = ;: (1)

Proof. Suppose the intersetion of ones (1) is nonempty and take h 2 L

n

1

[0; T ℄

in this intersetion. It follows from limsup properties and ontituity of the funtions

involved that there is a real number Æ > 0 suh that, 8 0 < � < Æ; x+ �h 2 X;

g

i

(t; x(t) + �h(t)) � 0; a.e. t 2 [0; T ℄; i 2 I;

�(x+ �h) < �(x):

But, that means x + �h; 80 < � < Æ; is a feasible solution for (CNP) with obje-

tive value better than x: This ontradits the optimality of x for problem (CNP).

Therefore, the intersetion (1) is empty.

7



4 The Fritz-John Otimality Conditions

In this setion we derive a new ontinuous-time analogue of the Fritz-John neessary

optimality onditions translating the geometri optimality onditions into algebrai

statements. This is made possible through the use of the Generalized Gordan The-

orem. We also point out that the new Fritz-John neessary onditions generalizes

the smooth ase treated by Zalmai ([16℄, Thm.3.3).

Theorem 4.1 Let x 2 IF: Let f(t; �) and g(t; �) be Lipshitz near x(t): If x is a loal

optimal solution of (CNP), then there exist u

0

2 IR; u

i

2 L

m

1

[0; T ℄; i 2 I; suh that

0 2

R

T

0

fu

0

�

x

f(t; x(t)) +

P

i2I

u

i

(t)�

x

g

i

(t; x(t))gdt; (2)

u

0

� 0; u(t) � 0 a.e. t 2 [0; T ℄; (3)

(u

0

; u(t)) = (u

0

; u

1

(t); � � � ; u

m

(t)) 6� 0 a.e t 2 [0; T ℄; (4)

u

i

(t)g

i

(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (5)

Proof. We shall proeed under the Interim Hypothesis: (CNP) has only one

ontraint

g(t; x(t)) � 0 a.e. in [0; T ℄:

The removal of this interim hypothesis will be done at the end of the proof.

We denote

A(�x) = ft 2 [0; T ℄ : g(t; �x(t)) = 0g;

K(g; �x) = fh 2 L

n

1

[0; T ℄ : g

0

(t; �x(t); h(t) < 0; t 2 A(�x)g:

Lemma 4.2 Let x 2 IF: Let f(t; �); g(t; �) be Lipshitz near x(t) throughout [0; T ℄:

If x is a loal optimal solution of (CNP), then there exist �u

0

2 IR; �u 2 L

1

[0; T ℄;

suh that

0 �

R

T

0

f�u

0

f

0

(t; x(t); h(t)) + �u(t)g

0

(t; x(t); h(t))gdt; 8h 2 L

n

1

[0; T ℄; (6)

�u

0

� 0; �u(t) � 0 a.e. t 2 [0; T ℄; (7)

(�u

0

; �u(t)) 6� 0 a.e. t 2 [0; 1℄; (8)

�u(t)g(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (9)

Proof. If x be a loal optimal solution to problem (CNP), then by Theorem 3.1

K(g; x) \ K(�; x) = ;:

8



Hene, there is no h 2 L

n

1

[0; T ℄ suh that

�

0

(x; h) < 0;

g

0

(t; x(t); h(t)) < 0; a.e. t 2 A(�x):

We an onlude, by making use of Theorem 2.4, that there are u

0

; u 2 L

1

[0; T ℄;

with u

0

(t) � 0; u(t) � 0 a.e. in [0; T ℄; not all identially zero suh that

0 �

Z

A(�x)

fu

0

(t)�

0

(x; h) + u(t)g

0

(t; x(t); h(t))gdt 8h 2 L

n

1

[0; T ℄:

Setting �u

0

=

R

A(�x)

u

0

(t)dt and �u(t) = u(t) if t 2 A(�x) and �u(t) = 0 otherwise, we

obtain

0 � �u

0

�

0

(x; h) +

Z

T

0

�u(t)g

0

(t; x(t); h(t))dt

�

Z

T

0

fu

0

f

0

(t; �x(t); h(t)) + �u(t)g

0

(t; x(t); h(t))gdt

for all h 2 L

n

1

[0; T ℄: (Fatou's lemma is used in the last inequality.) Thus (6) is

proved. The remaining assertions of the Lemma 4.2 follow immediately.

Let �x be an optimal solution to (CNP). It follows from Lemma 4.2 that there

exist u

0

2 IR and u 2 L

1

[0; T ℄; satisfying (6)-(9).

It remains to prove assertion (2) to onlude the proof of the theorem. Statement

(6) an be rewritten as follows:

0 �

Z

T

0

f�u

0

�

�

x

f(t;x(t))

(h(t)) + �u(t)�

�

x

g(t;x(t))

(h(t))gdt;

=

Z

T

0

[�

f�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))g

(h(t))℄dt;

8h 2 L

n

1

[0; T ℄ (The equality above follows from Proposition 2.5). Sine the above

inequality holds for all h 2 L

n

1

[0; T ℄; it holds, in partiular, for onstant funtions

h(t) = v 2 IR

n

; 8t 2 [0; T ℄:

It an be easily veri�ed that the multifuntion

t! �u

0

�

x

f(t; x(t)) + �u(t)�

x

g(t; x(t))

is integrably bounded and takes values ompat subsets of IR

n

: By Theorem

~

2.6 we

have

0 �

Z

T

0

[�

f�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))g

(v)℄dt

= �

R

T

0

[�u

0

�

x

f(t;x(t))+�u(t)�

x

g(t;x(t))℄dt

(v):

9



But, by Proposition 2.4, this is equivalent to

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + �u(t)�

x

g(t; x(t))℄dt;

whih �nishes the proof of the theorem under the interim hypothesis.

Removal of the InterimHypothesis. Suppose (CNP) hasm onstraints g

i

(t; x(t)) �

0 a.e. in [0; T ℄; and �x as a loal optimal solution. Redue the m onstraints of

(CNP) to just one by de�ning g(t; x(t)) = max

1�m

g

i

(t; x(t)) a.e. in [0; T ℄: The

point �x is also an optimal solution of the modi�ed problem. Let I(t; x) := fi 2

I : g

i

(t; x(t)) = g(t; x(t)): From what has been proved under the interim hypothesis

there exist u

0

2 IR; u 2 L

1

[0; T ℄; satisfying

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + u(t)�

x

g(t; x(t))℄dt (10)

and (7)-(9). It an be dedued from (10) and the de�nition of integration of multi-

funtions that there exists a measurable funtion e(t) 2 �

x

g(t; x(t)) a.e. suh that

0 2

Z

T

0

[�u

0

�

x

f(t; x(t)) + u(t)e(t)℄dt: (11)

We have the following lemma.

Lemma 4.3 There exists v 2 L

m

1

[0; T ℄; v � 0 a.e., satisfying

1. v

i

(t) = 0 whenever g

i

(t; �x(t)) 6= g(t; �x(t)); i = 1; : : : ; m;

2.

m

P

i=1

v

i

(t) = 1 a.e.;

3. e(t) �

m

P

i=1

v

i

(t)�

x

g

i

(t; x(t)) a.e.

Proof. For eah t where �

x

g(t; x(t)) is well de�ned it follows from [23℄ that

�

x

g(t; x(t)) � of�

x

g

i

(t; x(t)) : i 2 I(t; �x)g:

Sine e(t) 2 �

x

g(t; x(t)) a.e. we obtain

e(t) 2 of�

x

g

i

(t; x(t)) : i 2 I(t; �x)g:

10



De�ne

V (t) := f(v

1

; : : : ; v

m

) 2 IR

m

:

m

X

i

v

i

= 1; v

i

� 0;

v = 0 if g

i

(t; �x(t)) < g(t; �x(t));

e(t) 2

m

X

i=1

v

i

�

x

g

i

(t; x(t))g

The set V (t) is obviously nonmepty and losed a.e., and V is a mesurable set-

valued funtion de�ned a.e. on [0; T ℄. It follows from standard measurable seletion

theorems (see e.g., [23℄) that we an hoose measurable funtions v

1

(t); : : : ; v

m

(t)

de�ned on [0; T ℄ suh that (v

1

(t); : : : ; v

m

(t)) 2 V (t) a.e. in [0; T ℄. The proof of the

lemma follows immediately.

Now de�ng �u

i

(t) := u(t)v

i

(t) it follows easily from Lemma 4.3 and (11) that

assertions (2)-(5) of Theorem 4.1 are valid.

In Theorem 4.1 if f(t; �) and g(t; �) are Clarke regular, then the ondition (2) an

be hanged by

0 2 �

x

L(x; u

0

; u);

where,

L(x; u

0

; u) :=

Z

T

0

fu

0

f(t; x(t)) +

m

X

j=1

u

i

(t)g

i

(t)gdt:

5 Karush-Kuhn-Tuker Optimality Conditions

In the neessary onditions, proved in the previous setion, there is no garantee that

the Lagrange multiplier assoiated with the objetive funtion will be nonzero. It is

usual to assume some kind of regularity ondition on the restritions of problem to

make sure that multiplier is in fat nonzero. These regularity onditions are usually

refered to as onstraint quali�ations. We assume the following natural onstraint

quali�ation:

\

i2I

K(g

i

; x) 6= ;: (12)

We now state and prove the following Karush-Kuhn-Tuker type theorem.

Theorem 5.1 (Karush-Kuhn-Tuker) Let x 2 IF and suppose the onstraint quali-

�ation (12) is satis�ed for funtions g

i

; i 2 I: If x is a loal minimum of problem

11



(CNP), then there exist ~u

i

2 L

1

[0; T ℄; i 2 I; suh that

0 2

R

T

0

[�

x

f(t; x(t)) +

P

i2I

~u

i

(t)�

x

g

i

(t; x(t))gdt; (13)

~u(t) � 0 a.e. t 2 [0; T ℄; i 2 I; (14)

~u

i

(t)g

i

(t; x(t)) = 0 a.e. t 2 [0; T ℄; i 2 I: (15)

Proof. We �rst prove Theorem 5.1 under the interim hypothesis: (CNP) has

only one onstraint g(t; x(t)) � 0 a.e. in [0; T ℄:

If x is a loal optimal solution to problem (CNP), then by Lemma 4.2, there

exist �u

0

2 IR; �u(t) 2 L

1

[0; T ℄; suh that (6)-(9) hold true. If �u

0

= 0 then (6) would

redue to

0 �

Z

T

0

u(t)g

0

(t; x(t); h(t))dt; 8h 2 L

n

1

[0; T ℄:

Hene, by the Generalized Gordan's Lemma, there is no h 2 X suh that

g

0

(t; x(t); h(t)) < 0 a.e. in [0; T ℄;

ontraditing the onstraint quali�ation (12). So, �u

0

6= 0: Set

~u

0

=

�u

0

�u

0

; ~u(t) =

�u(t)

�u

0

:

and the theorem follows from inequality

0 �

Z

T

0

ff

0

(t; x(t); h(t)) + ~u(t)g

0

(t; x(t); h(t))gdt; 8h 2 L

n

1

[0; T ℄;

by using similar arguments to those in the proof of ondition (2) of Theorem4.1.

Romoval of the Interim Hypothesis. Let g(t; x(t)) := maxfg

i

(t; x(t)) : i 2

Ig: We need the following tehnial result.

Lemma 5.2 The onstraint quali�ation (10) for m onstraints implies K(g; �x) 6=

;:

Proof. It follows from the measurable seletion theorem [23℄, by using standard

arguments, that there exists � 2 L

n

1

[0; T ℄ suh that �(t) 2 �

x

g(t; �x(t)) and

g

0

(t; �x(t); h(t)) =

n

X

i=1

�

i

(t)h

i

(t) a.e. in [0; T ℄; 8h 2 L

n

1

[0; T ℄:

12



Let h 2 L

n

1

[0; T ℄ be given but arbitrary. An appliation of Lemma 4.3 and Propo-

sition

~

2.4 implies that there exists an essentially bounded funtion u(t) 2 V (t) a:e:

(V as de�ned in the proof of Lemma 4.3) suh that

�(t) 2

P

i2I

u

i

(t)�

x

g

i

(t; �x(t));

g

0

(t; �x(t); h(t)) � �

P

i2I

u

i

(t)�

x

g

i

(t;�x(t))

(h(t))

a.e. in [0; T ℄: It follows from the above inequality and Proposition 2.5 that

g

0

(t; �x(t); h(t)) �

X

i2I

u

i

(t)�

�

x

g

i

(t;�x(t))

(h(t)) a.e. in [0; T ℄;

=

X

i2I

u

i

(t)g

0

i

(t; �x(t); h(t)) a.e. in [0; T ℄:

Therefore,

\

i2I

K(g

i

; �x) 6= ; ) K(g; �x) 6= ;:

Now, if �x is optimal for (CNP) with m onstraints then it is also optimal for

(CNP) with the onstraint g(t; x(t)) � 0 a.e. 2 [0; T ℄: It follows from Lemma 5.2

and the theorem in question as proved so far, that there exists u 2 L

1

[0; T ℄; u � 0

suh that

(i) u(t)g(t; �x(t)) = 0 a.e. in [0; T ℄;

(ii) 0 2

R

T

0

�

x

f(t; �x(t))dt+

R

T

0

u(t)�

x

g(t; �x(t))dt:

Arguments similar to those in the proof of Theorem 4.2 yields the desired result.
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