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Abstract

This work focuses on the mathematical aspects behind objects obtained

by the intersection of general cylinders. Emphasis is given on visual repre-

sentation, development of parameterization skills and computation of volume

and surface areas. Extensions of Archimedian results are presented, as well as

an optimization problem related to the construction of a dome tent. A pos-

sible scenario for exploiting these issues is a project-oriented Calculus course,

encompassing the use of a computer algebraic system.
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Introduction

Do the following objects belong together?

We will argue that they do bear a certain kinship, sharing the common gene of

cylindrical intersection. In fact, by the end of this paper we hope the reader will be

able to recognize several other members of this family in the world around him/her.

The intersection of cylinders is a construction present in everyday life that offers a

wealth of interesting aspects from a mathematical point of view. The construction

of visual representations of these objects presents good opportunities for exercising

parameterization skills. The volumes enclosed by these surfaces suggest problems

involving simple, double or triple integrals. Surface areas may be calculated by

surface integrals or through single variable integral, exploiting the planar nature of

cylindrical surfaces.

Lo Bello [4] looks into the shapes of famous domes that come from the upper half of

the intersection of an even number of equal right circular cylinders, calculating their

volumes and centroids. We follow this trend, focusing our attention on somewhat

more general shapes for the cylinders. The nature of mathematical issues considered

is, nevertheless, different. We explore parameterization issues, actual construction
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schemes, extensions of Archimedian results and an optimization problem related to

the construction of a dome tent.

n Cylinder Intersections

Figure 1 shows the surface of various solids obtained via intersection of cylinders.

These examples show the versatility of this simple construction: it can lead to

tents, domes, pyramids, umbrellas, etc., depending on the curves that generates the

cylinders, the number of cylinders and how they are positioned with respect to each

other. The popular dome tent of Figure 1(a) is the surface of the intersection of two

half circular (elliptical) cylinders, whose axes of symmetry are orthogonal. Various

cathedral domes resemble the one in Figure 1(b), formed by the intersection of four

elliptical half cylinders of different sizes. Beach umbrellas, like the one depicted in

Figure 1(c), also come from the intersection of three identical cylinders. The sides

of the triangular based pyramid of Figure 1(d) are embedded in the humblest kind

of cylinder: it is generated by a line.

(a) Tent
(b) Church dome

(c) Beach umbrella
(d) Pyramid

Figure 1: Intersection of half cylinders.
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The key to construct the pictures in Figure 1 is to identify the different types of

slices that make up the surface and locate their projections (isosceles triangles) on

the plane. Thus the dome tent and the umbrella are made up of identical slices.

The first has four and the second, six slices. The cathedral dome has two types

of slices, thin and thick ones, and the pyramid has three equal slices. Once the

parameterization of a slice of a certain type is determined, the others can be obtained

by the appropriate rotation. Of course there are several possible parameterizations,

each producing a different visual effect. Figures 1(a) and 2 show two possibilities:

on the first one it is possible to see contour curves that are equally spaced along the

vertical axis, whereas on the latter the projection of the contour curves are equally

spaced segments perpendicular to the x axis.

But the key to the actual construction of tents and umbrellas is the establishment of

the shapes the slices assume when they are laid on the plane. Consider, for instance,

the surface of the solid produced by the intersection of two elliptical half cylinders,

with orthogonal axes of symmetry, the x and y axes, say. Let a and b be the semi-

axes of the ellipses that generates the cylinders, see Figure 2. We will determine the

region covered by the shown slice (with nonnegative x- and z-coordinates) when it

is flattened (without stretching) onto the xy plane. In fact, for symmetry reasons,

it is sufficient to describe half this region, e.g., its intersection with the positive xy

quadrant. Points on the slice shown in Figure 2 are of the form (a cos t, y, b sin t), and

points on a neighboring slice are of the form (x, a cos t, b sin t), for 0 ≤ t ≤ π/2. The

intersection of these two surfaces is the curve (a cos t, a cos t, b sin t), for 0 ≤ t ≤ π/2,

on the x = y plane. Let A = (a cos t, 0, b sin t) and B = (a cos t, a cos t, b sin t) be

points on the same height on the slice. Then B −A = (0, a cos t, 0). When the slice

is opened, they are mapped onto PA = (a + ℓ(t), 0, 0) and PB = (a + ℓ(t), a cos t, 0),

respectively, shown on Figure 2, where ℓ(t) is the arc length of the part of the ellipse

from (a, 0, 0) to A, given by ℓ(t) =
∫ t

0

√

(a sin θ)2 + (b cos θ)2 dθ.

The same procedure can be applied to more general objects. The formula above is

easily extended to the case of a surface obtained by the intersection of n cylinders.

Consider the right cylinder generated by the trace curve (f(t), 0, g(t)), for 0 ≤ t ≤ t
¯
,

that is, the cylinder formed as a straight line parallel to the y axis travels along the

trace curve. We assume that this trace curve lies on the half space x ≥ 0 and is

symmetric with respect to the z axis. The y axis is what we call the spine of the

cylinder. Suppose n copies of the solid delimited by this cylinder and the xy plane

are placed so that their spines are distributed at equal angles around the origin.
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Figure 2: Flattening of a dome tent slice.

The upper surface of the intersection solid has 2n slices. The projections of these

slices are isosceles triangles sharing a common vertex, the origin. Consider the slice

whose projection is the triangle with vertices (0, 0, 0), (f(0), f(0) tan(π/2n), 0) and

(f(0),−f(0) tan(π/2n), 0). The intersection curve (f(t), f(t) tan(π/2n), g(t)), bor-

der of such slice, is mapped onto the curve (f(0) + ℓ(t), f(t) tan(π/2n), 0), where

ℓ(t) =
∫ t
0

√

f ′(θ)2 + g′(θ)2 dθ, the length of the trace curve from (f(0), 0, 0) to

(f(t), 0, g(t)). This procedure was applied to produce Figure 3 below, which depicts

a possible pattern for cutting the six slices of the beach umbrella of Figure 1(c).

Figure 3: Beach umbrella pattern.

5



An Archimedian Ratio

Archimedes requested that a picture depicting a sphere circumscribed in a right

circular cylinder of same height as its diameter be carved on his tombstone, cf. [1],

see Figure 4. This picture spells out the relationship he established, namely that

the ratio of the volume (resp. surface area) of the sphere to the volume (resp.,

surface area) of the cylinder is 2:3. Inspired by [3], we extend this result to a similar

relationship involving objects obtained by the intersection of several cylinders and

prisms that circumscribe these objects.

Figure 4: Picture carved on Archimedes tombstone.

Consider the object formed by the intersection of n right circular cylinders of radius

r, whose axes of symmetry are distributed at equal angles around a point on a

common plane. The intersection of this object with this plane is a 2n sided regular

polygon. How could we obtain similar shaped solids such that the corresponding

polygon has an odd number of sides? Instead of obtaining the solid by cylinder

intersections, we’ll construct it by putting blocks together. Starting with an n sided

regular polygon with apothem r, put the origin O of our coordinate system on the

center of the polygon. The polygon can be decomposed into n isosceles triangles,

with one vertex on the origin and the other two on adjacent vertices of the polygon.

The part of the object whose projection is a given isosceles triangle, say OAB, is

the circular right cylinder with axis of symmetry parallel to AB and containing O,

6



and radius r. This is one of the blocks that make up our solid, others are obtained

in a similar fashion or simply by rotating the first block, around the normal to the

polygon, by angles of 2πj/n, for j = 1, . . . , n−1. Notice that the solid just described

encompasses the one obtained by cylinder intersections. When n equals four, the

upper half part of the solid is a dome, like the one on Figure 1(a). We call an n

sided object, the union of n blocks, an n-double dome.

Figure 5: Five-double dome and circumscribing prism.

The n-double dome is circumscribed by an n right prism, whose basis is a translation

of the n sided regular polygon with apothem r, see Figure 5. The volumes of the n

double dome and the circumscribing prism are given by

VolDDome =
4

3
nr3 tan

(

π

n

)

and

VolPri = 2nr3 tan
(

π

n

)

,

and the surface areas by

AreaDDome = 4nr2 tan
(

π

n

)

and

AreaPri = 6nr2 tan
(

π

n

)

.
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Thus the ratio 2:3 between volumes (resp., surface areas) is also valid for these

objects.

Moreover, the n double dome tends to a sphere of radius r as n tends to infin-

ity, whereas the corresponding prism tends to this sphere’s circumscribing cylinder.

These limit processes furnish alternative methods for computing the sphere’s volume

and surface area that generalize the calculus of the area of the circle as a limit of

the areas of circumscribed polygons.

Optimal Tent Problem

The Calculus textbook by Edwards and Penney [2] presents exercises on the con-

struction of an optimal tent that provided inspiration for our model problem. In

exercises 53–55 of section 3.6, p. 162, the student is asked to choose the optimal

(maximum volume) design for a square base pyramidal tent, that is to be cut from

a square piece of canvas.

We consider a similar optimization problem, with a dome tent instead. The deter-

mination of the pattern that should be cut from the canvas in order to construct the

tent was indicated in Figure 2. Summarizing, the problem is to choose the lengths

of the semi-axes a and b of the ellipses that generate the dome tent that maximize

its volume, assuming that the tent pattern has to be cut from a 20 foot wide square

piece of canvas. It is quite obvious that the best arrangement for such a pattern

is achieved when the square that will constitute the floor of the tent has its sides

aligned with the diagonals of the piece of canvas and that the pattern should extend

to the boundary of the material, as illustrated in Figure 6.

The optimization problem may then be formally stated as

maximize vol(a, b)

subject to 2a + ℓ(a, b) = 20
√

2

a, b ≥ 0

where vol(a, b) = 8a2b/3 is the volume of the tent, 2a is the width of the tent’s floor,

b is the tent’s height and ℓ(a, b) is half the arc length of the ellipse with semi-axes a

and b.

Since an elliptical integral appears in the constraint, Mathematica’s Solve command
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Figure 6: Tent pattern.

fails to find a solution for the Lagrangian system associated with the optimization

problem. A numerical method for solving the system is needed, and a good initial

estimate comes in handy. This estimate may be graphically obtained by drawing

together the level curves of vol(a, b) and the graph of the equation h(a, b) = 2a +

ℓ(a, b) = 20
√

2. Figure 7 shows the result of a zoom around the candidate solution

in the mentioned drawing. The optimal point is located on the dot, the graph of the

equation is the lighter curve passing through the dot and the level curve associated

with the optimal value is the darker one. This takes care of the a, b components of

the system, but we also need an estimate for the Lagrange multiplier. Using the

graphical estimation (a, b) of the optimal point as initial guesses for a and b, and

letting, for instance,

λ =
∂h
∂a

+ ∂h
∂b

∂vol
∂a

+ ∂vol
∂b

∣

∣

∣

∣

∣

∣

(a,b)=(a,b)

be an initial guess for the Lagrange multiplier.

The actual figures for the given problem are a∗ = 5.337452773754006 and b∗ =

5.866765258813976. Investigation of second order conditions is deemed unnecessary

due to the information given by the level curve map. The context may inspire

several other problems such as maximizing volume subject to fixed height of tent

and available canvas, maximizing volume subject to fixed surface area (supposing

canvas not used for the tent may be applied to the manufacture of other products—

purses?), minimize surface area subject to fixed volume, minimize total cost subject

9



4 4.5 5 5.5 6
4

4.5

5

5.5

6

6.5

a

b

Figure 7: Level curves and equation graph.

to fixed volume (in this case we may assign different materials and thus costs for

the floor and sides), etc.

Final Remarks

In this work we have focused on the mathematical aspects behind objects obtained

by the intersection of general cylinders. Emphasis is given on visual representation,

development of parameterization skills and computation of volume and surface areas.

A possible scenario for exploiting these issues is a project-oriented Calculus course.

The problem described in the last section has all the qualities we look for when

selecting optimization problems for a Calculus course from the enlarged realm of

“solvable” problems made possible by the availability of a Computer Algebraic Sys-

tem such as Mathematica. It is a down to earth problem, involving an object most

people have seen and can relate to, the objective is quite straightforward, it is not

overly simplified, so as to render its solution useless, the mathematics involved is

not trivial but also not beyond the scope of a regular course, assuming, of course,

students have access to a package that may do the dirty work (calculating, plotting

and solving systems involving elliptical integrals) for them. In fact, this kind of

problem, as opposed to the usual pen-and-paper textbook problem, is an absolute
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requirement, if students are to feel that the investment in learning how to use such

a sophisticated software is a sound one.
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