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Abstract

Let G be a noncompact semi-simple Lie group and S C G a Lie semigroup with nonempty
interior. We study the homotopy groups m, (S), n > 1, of S. Generalizing a well known fact
for G, it is proved that for a certain compact and connected subgroup K (S) C G, wy, (S) is
isomorphic to m, (K (S)). Furthermore, there exists a coset K (S) z contained in intS which
is a deformation retract of S.
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1 Introduction

Let G be a connected, noncompact semi-simple Lie group. It is well known that through a Cartan
decomposition G = K S or an Iwasawa decomposition G = K AN, the topology of G is reduced to
that of K. In fact, S and AN are diffeomorphic to Euclidean spaces, implying that the projections
onto K are homotopy equivalences. In particular, the homotopy groups of G are isomorphic to
those of K.

The purpose of this paper is to get this kind of reduction to Lie semigroups with nonempty
interior in GG, when G has finite center.

For such a semigroup S there are no good decompositions available providing a natural compact
space which is a deformation retract of S. Instead we get the topology of S from its action in
compact homogeneous spaces of G. Precisely, let AN be the solvable Iwasawa component of G
and form the coset space G/AN, which is diffeomorphic to the compact Iwasawa component K.
The semigroup S acts on G/AN by the restriction of the G-action. Typically this action of S is
not transitive. Actually, if S # G there are proper compact subsets of G/AN invariant under S,
the so-called invariant control sets. Let C be an invariant control set of S in G/AN. The main
result of this paper states that the homotopy groups of S are isomorphic to those of C'.

Although in general it is not an easy task to obtain the invariant control sets of the semigroups,
their possible homotopy types can be described (at least when S is generated by one-parameter
semigroups) by using a previous classification of the semigroups with nonempty interior according
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to their action on the flag manifolds of G. This classification divides the semigroups into types,
each type being labelled either by a conjugate class of parabolic subgroups, that is, a flag manifold
of G, or by a parabolic subgroup of the Weyl group of G (see [18], [20]).

Roughly, the type of S is given by a parabolic subgroup, say P (S), or rather by the correspond-
ing flag manifold G/P (S), in such a way that the geometry of the S-action on an arbitrary flag
manifold is embodied in the action on G/P (S). This is expressed, for instance, by the fact that the
invariant control set of S in the maximal flag manifold G/M AN is given by 7! (Cp(s)) where 7
is the canonical projection onto G/ P (S), and Cp(g) is the invariant control set in G/ P (S). In the
special case when S is generated by one-parameter semigroups, Cp(s) is contractible. So that by
lifting 7= (Cp(s)) once again through the canonical fibration G/AN — G/M AN, it follows that
any invariant control set C C G/AN 1is contractible to the connected component of P (S) /AN.
This connected component is diffeomorphic to a compact subgroup K (S) of K, namely the maxi-
mal compact subgroup of the semi-simple Levi component of P (S).

In short, C can be continuously deformed into K (S) implying that the homotopy type of S is
the compact group K (S) C K. Therefore, the classification of Lie semigroups by the flag manifolds
turns out to be the classification by their homotopy types.

Our proofs are not restricted to Lie semigroups, but they work for a semigroup S which contains
a large Lie semigroup, in the sense of Definition 4.7 below. This slight generalization permits to
work out the homotopy groups of some classical semigroups which are not infinitesimally generated,
like e.g. the semigroup of positive matrices. Also, if we consider the interior of S instead of S, the
conclusion of the results still hold, with the further advantage that in this case it is clear int.S is
homotopic equivalent to K (5), since these spaces are CW-complexes.

Concerning the structure of the paper, in the next section we establish notations and prove
some basic facts about semigroups, their action on flag manifolds, homotopy groups, etc., which
are used in the proof of the main results. In this section we also prove that the orbits of a Lie
semigroup in the Riemannian symmetric space associated to the semi-simple group are contractible.
This fact although not used afterwards is interesting in itself. In Section 3 the topology of the
invariant control sets in G/AN is discussed. It is shown that it reduces to the topology of a
compact subgroup. The statements and proofs of the main results are contained in Section 4.
Direct consequences of them and further comments were included in Section 5. Finally, some
examples are discussed in Section 6. First we consider the semigroup matrices in Sl (n,R) with
positive entries, which is part of the class of compression semigroups of cones in R™. The conclusion
is that the homotopy type of these semigroups is the compact group SO (n — 1). Another class of
semigroups whose homotopy groups can be computed are those contained in real rank one groups.
In this case there is just one type of homotopy which is the connected component of the group M
in the decomposition P = M AN of a parabolic subgroup. The other examples are illustrative of
our results, in the sense that what we get is already known from their structural properties. These
are the semigroup of totally positive matrices that is contractible and the Ol’shanskii semigroups,
which have polar decompositions from where the homotopy type can be read off.

2 Preliminaries

The purpose of this section is to establish notations and background results to be used throughout
the paper.



2.1 Flag manifolds and parabolic subgroups

Let G be any connected noncompact Lie group with finite center and denote by g its Lie algebra.
The flag manifolds of G are labelled by subsets of the set of simple (restricted) roots of g. Precisely,
choose an Iwasawa decomposition g = €@ a @ n. Let II be the set of roots of the pair (g, a) and
II* [respectively Y] be the set of positive [respectively simple] roots giving rise to the nilpotent
component n, that is,

n= Z Ga;

aellt

where g, stands for the a-root space. Let m be the centralizer of a in £ and put p=m® a® n for
the corresponding minimal parabolic subalgebra. By definition, the maximal flag manifold B of G
is the set of subalgebras Ad (G) p, where Ad stands for the adjoint representation of G in g. There
is an identification of B with G/P where P is the normalizer of p in P. Furthermore, P = M AN,
A =expa, N =expn and M is the centralizer of A in K =expt (M = {u € K : uh = hu for all
h e A}).

Given a subset © C X, denote by pe the corresponding parabolic subalgebra, namely,

pe =n" (©) dp,

where n~ (©) is the subalgebra spanned by the root spaces g_,, a € (). Here (0) is the set of
positive roots generated by ©. The set of parabolic subalgebras conjugate to pe identifies with the
homogenous space G/ Pg, where Pg is the normalizer of pg in G:

Po Z{QEGZAd(g)pgzp@}.

This construction yields the flag manifold Bg = G/Pg, © C X.
Let
ot ={He€a:a(H)>0foralacX}

be the Weyl chamber associated to ¥. We say that X € g is split-regular in case X = Ad (g) (H)
for some g € G, H € at. Analogously, ¢ € G is said to be split-regular in case x = ghg~' with
he AT =expa™, that is, x = exp X, with X split-regular in g.

Let n~ =) c;1 8-« be the nilpotent subalgebra opposed to n. Put N~ = expn~. Then in any
flag manifold Be, the orbit (called open Bruhat cell) Ad (N ™) pe is open and dense. Furthermore,
if h € At then lim h*Fy = pg for any y € Ad (N ™) pe. In other words, pe is an attractor in Bg for
any h € AT, having Ad (N~) pe as stable manifold. The same way, Ad (g) pe is the attractor fixed
point in Be of the split-regular g = zha~* such that Ad (N2 ~!) is the open and dense stable
manifold. In the sequel we denote the attractor fixed point of g by at (g), while the corresponding
open cell, which is the stable manifold, is denoted by st (h). Although this notation does not
specify the flag manifold under consideration, this will become clear from the context.

Given two subsets @1 C O2 C X, the corresponding parabolic subgroups satisfy Po, C Fo,,
so that there is a canonical fibration G/Pe, — G/Pe,, gPs, — gPe,. Alternatively, the fibration
assigns to the parabolic subalgebra q € Be, the unique parabolic subalgebra in Bg, containing g.
In particular, B = By projects onto every flag manifold Bg.

From the structure of the parabolic subgroup Pg the fiber Pg/P of B — Bg is obtained. We
follow closely the notation of Warner [21], Section 1.2. Denote by ag the annihilator of © in a:

ao ={H €a:a(H)=0forall a € 0}



Let Lo stand for the centralizer of ag in G and put Mg (K) = Lg N K for the centralizer of ag in
K. The Lie algebra [g of Le is reductive and decomposes as [ = mg ® apg with mg semi-simple.
Let Mg for the connected subgroup whose Lie algebra is me and put Mg = Mg (K) M3. It
follows that the identity component of Mg is MJ. The Bruhat-Moore Theorem (see [21], Theorem
1.2.4.8), provides the following decompositions:

1. Po = MgAoNg, where Ag = expae and Ng is the unipotent radical of Pg, that is,
No = expng, with ng the nilradical of pe.

2. Po = Mo (K) AN.

This second decomposition ensures that the fiber Po/P = Mg (K) /M. It turns out that
Mo (K) /M = Mg/ (Mo N P), which is the maximal flag manifold of Mg, since Mg N P is a
minimal parabolic subgroup of Mg.

In the sequel we put K (©) for the identity component of Mg (K). Since Pg/P is connected
we get further that Po/P = K (0) /(K (©) N M). The subgroups K (0), © C X, play a decisive
role in the determination of the homotopy groups of the semigroups.

Finally we recall that an open Bruhat cell £ in Bg is diffeomorphic to an Euclidean space. This
implies that the fiber bundle 7 : B — Bg is trivial over 3, that is, 7! (8) ~ 3 x (Po/P).

2.2 Semigroups

We recall some basic facts from the general theory of semigroups as well as from the action of
semigroups in flag manifolds. Let G be a connected Lie group with Lie algebra g. We say a
semigroup S C G is exp-generated provided there exists a subset U C g such that S is generated
by the one-parameter semigroups exp (tX), X € U, t > 0, that is,

S = (exp (RTU)).

In this case S is said to be generated by U.

A semigroup is said to be a Lie semigroup (or infinitesimally generated semigroup) provided it
is the closure of a exp-generated semigroup (see e.g. Hilgert and Neeb [4] and Neeb [12]). Here
we changed the terminology to emphasize that we do not ask for S to be closed. This requirement
is not relevant for our purposes. In the sequel our typical hypothesis about a semigroup is that
it contains a large enough semigroup generated by a subset in the Lie algebra. These kind of
condition is fulfilled by the Lie semigroups.

Actually we work with semigroups having nonempty interior. It is well known that if S is
generated by U, this condition holds if and only if U is generating, which means that the Lie
algebra generated by U is g. Furthermore, in case U is generating intS is dense in S.

Now, we turn to semigroups in semi-simple groups. The following facts can be proved for any
semigroup S with intS # (), provided G has finite center. Consider the action of S in the flag
manifolds of G. It was proved in [20], Theorem 6.2, that S is not transitive in Bg unless S = G.
Moreover, there exists just one closed invariant subset C'g C Bg such that Sz is dense in Cg for
all z € Cg. This subset is called the invariant control set of S in Cg (abbreviated S-i.c.s.) . Since
S is not transitive, Co # Be.

The fact that Sz is dense in Cg for all x € Cg implies the existence of an open subset Cg) c Ceo
such that for all z,y € CQ there exists g € S with go = y. Furthermore, C is dense in Co. This
subset 9 is called the set of transitivity of Ce, and is given by C3 = (intS) z N (intS) ™" z, for all
z € Co. In case S is exp-generated, it follows that CQ = intCe (see [20], Section 2).



The semigroups in G are distinguished according to the geometry of their invariant control
sets. There exists © C ¥ such that 75" (Co) C B is the invariant control set in the maximal flag
manifold. Among the subsets © satisfying this property there is one which is maximal, in the
sense that it contains the others. We denote this subset by © (S) and say that it is the type of S.
Alternatively, we denote the type of S by the corresponding flag manifold B (S) = Be(s) (see [20],
[18] for further discussions about the of a semigroup).

When © = O (), the invariant control set Cg(s) has the following nice property: The set R (S)
of split-regular elements in intS is not empty. Let h € R(S) and let as before at (h) and st (h)
stand for its attractor and stable open cell in Bg(g). Then Cg(s) C st (h) and at (h) € C%(S)' As
will be seen afterwards, this property completely describes the topology of the invariant control
set in B.

2.3 Reversibility

Recall that a subsemigroup T of a group L is right [left] reversible if one of the following equivalent
conditions are satisfied

i) For all hl,hg S H, Thl N Thz ;é 0 [th N hzT ;é @]
ii) 71T [TT] is a subgroup.

Clearly, T is right reversible if and only if T~ is left reversible. In case L is connected and
int7' # () then 7" is right [left] reversible if and only if 77T [T'T~!] coincides with L.
The following lemma encodes basic known properties of reversibility to be used later.

Lemma 2.1 The subsemigroup T C L is right reversible if and only if for any finite subset
{hi,...,ht} C L, k > 1, one of the following conditions holds

1. (Thy)N---N(Thy) # 0.
2. There exists h € L such that h; C hT,i=1,...,k (and hence h;T C hT).
Symmetric conditions are true for left reversibility.

Proof: The first condition is clearly sufficient. To see that it is necessary take hy,...,hgy € L,
k > 3, and proceed by induction. Assume that

(Thy)N---N(Thg_1) #0

and take h in this intersection. Then Th C (Thy) N --- N (Thy_1). By reversibility Th N Thy, # 0,
so the lemma follows.

As to the second condition, right reversibility is equivalent to (th’l) N---N (hkal) £ 0
for any finite subset. Now h € L belongs to this intersection if and only if h; € hT, i =1,... k.
Hence the equivalence of the condition follows. O

Another known fact about reversibility is that compact sets can be translated inside the re-
versible semigroups (c.f. [4], Lemma 3.37). We reproduce the proof here in order to emphasize
that the translation is done by an element of the semigroup and not of the group as stated in [4].

Lemma 2.2 Let T C L be an open semigroup which is right [left] reversible. If K C L is compact
then there exist g € T such that gK [Kg] is contained in T.



Proof: Suppose that 7' is right reversible. Then L = T7'T so that K C U,cr97'7. By
compactness there are finite ¢;,...,gx € T such that

Kcg'Tu---ug,'T.

By the second condition in the previous lemma there exists g € L with gi_1 €g'T,i=1,...,k,
so that K C ¢~ 'T, that is, gK C T. Since g; € T, it follows that g € T O

2.4 Homotopy

We regard the n-th homotopy group m, (X, zo) of a space based at zp € X as the set of homotopy
classes of pointed maps v : (S”,s9) — (X, zp) where S™ stands for the n sphere and s is a base
point in S™, e.g., so = (1,0,...,0). The following facts about the homotopy of semigroups will be
used extensively in the sequel.

Proposition 2.3 Suppose that S is connected and contains an exp-generated semigroup T with
intT # 0. Leti: intS — S be the inclusion map. Then the induced homomorphism i, : m,(intS) —
mn(S) is an isomorphism.

Proof: Since S is path connected we can fix a base point gg € int(S). Let v : (S™,s9) — (intS, go)
be such that i.[y] = [i o] =1 in 7,(S). Then there exists a continuous map ® : [0,1] x S* = S
such that

‘P(O:T) = 7(7.)7 ‘P(LT) = 9o
for all 7 € S™ By the assumption on 7', there exists a continuous curve f : [0,1] — S such that
£(0) =1 and £(]0,1]) C intT C intS (see [4], Theorem 3.8). Define ¥ : I x S™ — S by

U(t,7) = ®(t,7)B(t(1 —1)).

Then ¥ is a deformation of v to the constant path in gg. Furthermore, im¥ C int.S because intS is
a dense semigroup ideal of S and 3 (¢ (1 —t)) € intS if ¢ # 0,1. Hence [y] = [go] in intS, showing
that 4, is injective. On the other hand, pick [y] € m,(S) with v : (S™, s0) = (S, g0). Then

®:IxS"— S, (1)~ B(t)y(r)

deforms the path 7 into a path, based at gy, which lies entirely in intS. Hence [y] € im (i.),
implying that 7. is surjective. O

Lemma 2.4 Suppose that T C S is exp-generated. Let v : X — S be a continuous map, with X
a topological space, and take h € T. Then hy and vh are homotopic to vy in S.

Proof: Since T is exp-generated, there exists a continuous path hy € T C S, ¢t € [0, u], such that
ho =1 and hy, = h. Define @ : [0,u] x X — S by

O (t,x) = hyy () .

Clearly, ® is continuous because of the continuity of the product map in G. Moreover, ® (0,z) =
v(z) and @ (u,x) = hy(z) for all z € X. Since ® (t,z) € T C S for all (¢t,z) € [0,u] x X, it
follows that ® is a homotopy between v and Ay in S. To see that A is homotopic to 7 just take
the homotopy v () h. O



Lemma 2.5 With the same assumptions and notations as in the previous lemma, the maps m, (S, g) —
7 (S, hg), [7] = [hy] and m, (S, g) = 7, (S, gh), [7] = [yh] are isomorphisms.

Proof: The left or right translation isomorphism coincide with the isomorphism given by the path
htg or gh, where as before h; is a path joining 1 to h in T' (c.f. the proof of Theorem 7.2.3 in
Maunder [10]). i

For the rest of this subsection we digress from the main stream of the paper with the purpose of
discussing homotopy and reversibility in homogeneous spaces. It will emerge from this discussion
that the orbits of S in the (Riemannian) symmetric space associated to G are contractible. This
fact, although not used in the proof of the main result, reinforces it by showing that as happens
with G the topology of S is embodied in the compact part of G.

Let H be a group, L C H a subgroup and 7' C H a subsemigroup. We say that 7" is reversible
modulo L in case Te NTy # @ for all z,y € H/L. Of course, a right reversible semigroup is in
particular reversible modulo L = {1}. Also, T is reversible modulo L if and only if T='Tx = H/L
for all x € H/L. Using this property and proceeding like in Lemma 2.2 it can proved — in the
topological setting — an analogous of that lemma. Namely if we assume that T is open then for
a given compact Q C H/L and =z € H/L, there exists g € T such that g@Q C Tz. Using this fact
we can prove the following generalization of Theorem 3.38 in [4]. Although the proof is almost the
same we reproduce it for the sake of completeness.

Proposition 2.6 Let H be a Lie group and T C H an exp-generated semigroup with nonempty
interior. Suppose that T is reversible modulo L, with L a closed subgroup. Take x € H/L and
consider the inclusion i : Tx — H/L. Then the induced homomorphism i, : m,, (T'z) — m, (H/L)
18 1njective.

Proof: Fix z¢ € Tz and let o : (S™,s9) = (T'x,x0) be a cycle such that i.[y] =1 in m, (H/L).
Then there exists a homotopy based at zp, ® : I x S® — H/L such that ®(0,-) = v and
® (1,-) = xo. The image @ if ® is compact in H/L, hence there exists g € T such that g@Q) C Tx.
The map ¥ (t,s) = g® (¢,s) is a homotopy based at gzy carrying the cycle gy into gzo. Hence
[g070] = 1 in 7, (T'z, gx0).

Now, we use the fact that 7" is exp-generated and proceed as in Lemma 2.5 to check that
v + g7 defines an isomorphism between 7, (T'z, zo) and m, (Tx, gxo). Implying that [y] = 1 in
7 (Tx, x0). O

After the following lemma proved by Furstenberg [3], Lemma 3.2 (and its corollary), the above
proposition implies immediately that the orbits of Lie semigroups in Riemannian symmetric spaces
are contractible.

Lemma 2.7 Suppose that G is a noncompact semi-simple Lie group and let G/K be the cor-
responding symmetric space, where K is a maximal compact subgroup of G. Let T C G be a
semigroup with intT #£ (. Then T is reversible modulo K.

Corollary 2.8 With the same notations as above let S C G be an exp-generated semigroup with
intS # 0. Then (intS) z is contractible for any v € G/K.

Proof: It follows from the previous lemma that intS is reversible modulo K. Then Proposition
2.6 implies that the inclusion i : (intS)x — G/K is injective. Now, G/K is diffeomorphic to an
Euclidean space. Hence the homotopy groups (intS) = of are trivial. Being open in G/K, (intS)



is a manifold and hence a CW-complex. Therefore by the Theorem of Whitehead it follows that
(intS) z is contractible. O

3 Invariant control sets in G/AN

The homotopy groups of the semigroup S C G will be proved to be isomorphic to the homotopy
groups of the invariant control sets of S in G/AN. Before going into the homotopy groups, we
discuss in this section the geometry of these invariant control sets.

We assume here that S is connected. Also we put © = 0 (S), and let Co stand for the unique
invariant control set of S in Bg = G/Ps. The set of transitivity of Ce is denoted by Cg). Put
C (B) for the unique invariant control set in the maximal flag manifold G/MAN. It is given by
C(B) = 75" (Co), where mg : B — Bg is the canonical fibration. Also, its set of transitivity
is C (B), = 7r(51 (C%). These inverse images are actually diffeomorphic to Cartesian products.
In fact, recall that Cg is contained in some open Bruhat cell, say o, of Bg. Since the bundle
me : B — Be is trivial over o, it follows that 7@1 (o) =~ o x Fg, where Fg is the fiber Pg/P.
Therefore C (B) ~ Co x Fg and C (B), ~ C3 x Fo.

Now, we lift the invariant control set C' (B) to G/AN. Consider the fibration

m : GJAN — G/MAN.

This is a principal bundle whose fiber is the compact group M ~ M AN/AN. The projection 7 is
equivariant with respect to the actions of G on the homogenous spaces G/AN and G/M AN, i.e.,
gom =m og forall g € G. Also, M has a natural right action on G/AN, which commutes with
the left action of G. The equivariance of m; implies that m; (C) is an S-i.c.s. in B if C C G/AN
is an invariant control set. In other words the invariant control sets of S in G/AN are contained
in 7,1 (C(B)). Analogously, the set of transitivity Cp of an invariant control set is contained in
1 (C(B),).

The assumption that S is connected implies that its invariant control sets are also connected. In
particular if C C G/AN is an S-i.c.s. then it is contained in a connected component of 77 (C (B)).
Its set of transitivity Cp is also connected and hence contained in a component of =~ (C' (B),).
Actually we have

Lemma 3.1 S acts transitively on any connected component of 77 (C (B),).

Proof: Consider the restriction of the principal bundle m : G/AN — G/MAN to the open set
C (B),. Its structural group is compact, and S acts on it as a semigroup of automorphisms of the
bundle. Also, S acts transitively on the basis C'(B),. Hence the lemma follows from Proposition
3.9 in [2], which asserts that a semigroup acting on a connected principal bundle with compact
fiber is transitive provided it is transitive on the base space. O

From this lemma we get the following characterization of the invariant control sets of S in
G/MAN.

Proposition 3.2 Keep assuming that S is connected. Denote as before by CQ the set of transitivity
of the S-i.c.s. in G/Pg, where © = © (S). Putw: G/AN — G/Po for the canonical fibration. Let
C C G/AN be an S-i.c.s. Then C is a connected component of 7=' (Co) and Cy is a connected
component of T ! (C’g). Conversely, the closure in G/AN of a connected component of w—* (C’g)
is an S-i.c.s. in GJ/AN.



Proof: By the choice of G/Ps it follows that C (B), = mg' (C3) where 7o is the projection
G/P — G/Po. Also there exists an open Bruhat cell ¢ C G/Pg such that Co C o. The
restriction of 7 to o defines a trivial bundle. Since Cg is connected and contained in o, it follows
that the connected components of 77! (Cg) are contained in the connected components of 7! (7).
Analogously, the connected components of 7! (C’g) are contained in the components of 7! (o).
This together with the fact that C2 is dense in Ceo implies that the closure of a component of
71 (Cy) is a component of 7~ (Ce), so that the closures of two different components of 7! (C3)
are disjoint.
Now, m decomposes as
G/AN = G/MAN — G/Pe.

Since the fiber of G/M AN is connected, it follows that the connected components of 7= (C3)
are the components over C (B), in the fibration G/AN — G /M AN. Hence, the previous lemma
ensures that a connected component of 7=! (Cg) is an invariant control set of S. Furthermore,
this implies that any invariant control set is such a component, because their union is 7! (Co).
O

Note that the triviality of the bundle G/AN — G/Po over Cg means that 7= (Cg) is dif-
feomorphic to Ce x F where F' = Pg/AN is the fiber. Clearly, a connected component of the
fiber is PJ/AN where P is the identity component of Pg. The other components are obtained
similarly from the components of Pg. These components are diffeomorphic to each other, since
they are interchanged by the right action of M as follows by Lemma 1.2.4.5 in [21], which ensures
that Po = M P§. Therefore the previous proposition together with the fact that Cg is connected
implies the

Corollary 3.3 With the assumption that S is connected, any invariant control set C C G/AN is
diffeomorphic to Co x P§/AN. Moreover, Cy = C x P§/AN.

In order to complete the picture we recall that Po = Mg (K) AN, where Mg (K) is the
centralizer of ag in K (see [21], Theorem 1.2.4.8). We denote by K (©) the identity component of
Mg (K). Then P = K (0) AN, so that the fiber P§/AN is diffeomorphic to K (©). Therefore
there is following version of the above corollary which we state for later reference.

Corollary 3.4 With the assumption that S is connected, any invariant control set C C G/AN is
diffeomorphic to Co x K (©). Moreover, Cy ~ CQ x K (©). Here © = O (S).

4 Isomorphism

As before S stands for a semigroup with nonempty interior in G. Let C' be an invariant control
set of S in G/AN and Cj its set of transitivity. The purpose of this section is to prove that the
homotopy groups of S and Cj are isomorphic. For the full proof it will be required that S is an
exp-generated semigroup (actually the weaker assumption that S admits a large exp-generated
semigroup is enough, see theorems 4.8 and 4.13 below). However, many proofs work in more
generality, so that we do not specify in advance the conditions required for S, apart from having
nonempty interior.

The isomorphism will be realized by the evaluation map. Fix ¢ € Cy and denote by e, (or
simply by e) the map e : S — Cy given by e(g) = gz. It will be proved that the induced
homomorphisms e, between the homotopy groups are isomorphisms.



4.1 Surjectivity

In view of Corollary 3.3, Cj is diffeomorphic to Cg x Fy where Fy = P3/AN. For the semigroups
considered here CQ is shown to be contractible, so that any cycle in Cy is homotopic to one in Fy.
The surjectivity e, will be proved by showing the existence of a cross section o : F' — intS for the
evaluation map.

In order to get such a cross section some preliminary results are required. We start with the
following general statement.

Proposition 4.1 Let R C L be a closed normal subgroup of the Lie group L such that L is the
semi-direct product L = B x4 R. Take an open subsemigroup T' C L and suppose that T/R = L/R
and T N R is left reversible. Then it is possible to lift any compact subset Q C H/R inside T, that
is, there exists z € T N R such that Q x {z} CT.

Proof: Since T/R = L/R and T is open, there exists, for every z € @, a neighborhood U, of x
in L/R and z, € R such that U, x {z,} C T. There is a freedom in the choice of z,. In fact, if
w €T NR then (U, X {z;})w C T and

(Up x {22}) w =Up x {zzw},

so that we can choose any element in z, (T'N R) instead of z,.

Choose 1, ...,z, € Q such that {Uy;}i=1.....n is a covering of ). Since U, x {2z, (T N R)} is
contained in 7', in order to conclude the proof it is enough to check that there are wy, ..., w, € TNR
such that z,, w1 = -+ = z,,wy,. Note that this is equivalent to

zey TOR)N - Nz, (TNR) # 0,

which by Lemma 2.1 is equivalent to left reversibility of 7'N R. |

Now we apply this proposition to lift the fiber F' inside intS. Fix ¢ € Cy and put y = 7 ().
We can assume without loss of generality that AN is the isotropy subgroup at x and Pg is the
isotropy of y. These assumptions imply that intS meets AN and Pg. Take a decomposition
Py = MeAeNe of Pg (see [21], Theorem 1.2.4.8). The subgroup AeNe is closed and normal and
Py becomes the semi-direct product of Mg by AegNe.

Let P3 be the connected component of the identity of Po. Then Py = MJ Ae No where M is
the identity component of Mg. Since Pg has a finite number of components and intS N Pe # 0, it
follows that intS meets Pg as well.

Now, P§ is the semi-direct product of Mg and AeNe, hence the previous proposition can be
applied to L = P§, R = AgNe and T = (intS) N P3, as soon as we check that

1. T/A@N@ = P(%/A@N@, and
2. TN AgNe = (intS) N A Ne is left reversible.

The first of these equalities were proved in [20]. Here is a sketch of the proof: Since 75" (Co) is
the invariant control set in G/M AN, it follows that T is transitive on the fiber 75" (y). However,
AeNe fixes every point of this fiber, so that the projection pr(T) of T into MY is transitive
on mg' (y). However this fiber is the maximal flag manifold of the connected semi-simple group
M. So that the transitivity of pr(7') on the fiber implies that pr (7) = MJ. This means that
T/A@N@ = P@/A%N@, showing that (1) holds.
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For the second point observe that 7'N Ag Ng is an open subsemigroup of Ag Ng, which is not
empty because 1" projects onto P3/AeNe. Now we use the following lemma proved by Ruppert
[15], Lemma 4.6:

Lemma 4.2 Suppose that R is a solvable Lie group and that U C R is an open semigroup that
contains an element exp X such that ReX > 0 for all eigenvalues A of ad (X). Then U is left
reversible.

The semigroup T'N AgNg fulfills the requirements of this lemma. To check this recall that
through the exponential map Ag Ng is diffeomorphic to ag + ng. Take h € T'N Ag No and write
h=exp(H+Y), H €ap, Y € ng. Since T'N Ag Ne is open, we can assume that H is regular in
ae, in the sense that the no root in ¥\ () annihilates in H. Then it is well known (see e.g. [21,
Prop. 1.2.4.10]) that the map

Xr—exp(ad(X))H-H

is a diffeomorphism of ng into itself. This implies that there exists n € Ng such that Ad (n) H =
H +Y. Fixing this n let us change our base point x by nx, which is still in Cy, because Cy contains
the fiber 7r(51 (y). Then we get a new decomposition of Pg such that the corresponding vector
group contains h = exp (H +Y). In other words, we can assume without loss of generality that
there exists h € T'N Ag, h = exp H with H regular in ag. Now we can check that the eigenvalues
of ad (H) in ng are > 0. These eigenvalues are 0 and o (H) with « ¢ (). In case a(H) < 0 for
some «, there exists a small enough Y € ng such that exp (ad (tH)) Y — oo when ¢t — +oo. This
implies that h* exp (Y) y accumulates outside Ngy. However y € CQ so that exp (Y)y € CQ if Y
is small enough, contradicting the fact that @ = © (5), i.e., that Cg is a compact subset of the
open Bruhat cell Ngy.

Therefore we have proved that S N Pg satisfies the conditions of Proposition 4.1, proving the
following statement which holds for arbitrary S with intS # @) and © = © (S).

Proposition 4.3 Any compact subset Q C Mg can be lifted to (intS) N Po, that is, there exists
z € SN AgNg such that Qz C (intS) N Pe.

We have also the decomposition Po = Mg AN, so that Pg/AN identifies with Me. From this
fact and the previous proposition it becomes easy to get a cross section of the evaluation map.

Theorem 4.4 Suppose that intS # 0 and put © = © (S). Let C be one of its invariant control
sets in G/AN, fix x € Cy and consider the evaluation map e : S — Cy, e(g) = gx. Denote by F
the fiber 7=t (7 (z)), where m : GJAN — G/Pg is the canonical projection. Then there exists a
continuous cross section o : F' — intS N Po, satisfying ec = 1p.

Proof: Assume without loss of generality that AN is the isotropy subgroup at . For any xz; € F
there exists k € Mg (K) such that kz = z;. The assignment £ : z; — k settles a diffeomorphism
between F' and Mg (K), because F = Pg /AN ~ Me (K). Now, Mg (K) is a compact subset of
Mg. Hence by the above proposition there exists z € AN such that Mg (K)z C (intS) N Po.
Then o (z1) =& (x1) z is a well defined map F — (intS) N Po. It is a section of e. In fact

e(o(x1)) =& (x1) 2 = a1

because zz = z and £ (z1) ¢ = x1, by definition of &. |

In particular, this theorem ensures the lifting of any connected component Fy of F. In case S
is connected Cy ~ C x Fp, so that we get the following consequence.
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Corollary 4.5 Suppose that CQ is contractible. Then the homomorphisms e, between the homo-
topy groups induced by e : S — Cy and e : intS — Cy are onto.

Proof: Since Cp = Cg x F, any cycle in Cy is homotopic to a cycle in F. By using the section o
we see that any cycle in F' is in the image of e, showing that e, is onto. O

For an exp-generated semigroup its invariant control set on the right flag manifold is contractible
to a point as shows the following lemma proved by Mittenhuber [11], Lemma 2.11. Since the
statement of [11] is restricted to rank one groups we outline the proof here.

Lemma 4.6 Suppose that T is an exp-generated semigroup with intT # (. Put © = O (T') and let
Co be its invariant control set in G/Po and Cg its interior. Then Cg and Cg are contractible.

Proof: There exists a split-regular h € intT such that its attractor, say « € G/Pg, belongs to
Co, and C is contained in the stable manifold st (h) of h. This implies that h*y — z for all
y € Co. By compactness of Cg, for any neighborhood U of x there exists ko such that h*Ce C U
if £ > kp. In particular, we can choose U contractible to z, that is, there exists a continuous
map ® : [0,1] x U — U such that ®(0,-) = 1y, ®(1,-) = . On the other hand since T is
exp-generated, there exists a continuous curve g, € T, t € [0,u], with go = 1 and g, = h*¥. Then
the map @ : [0,u] x Co — Co, ®; (t,y) = g:y contracts Ce into U. Joining together these maps,
we get a contraction of Cg to x. O

Therefore for exp-generated semigroups the evaluation map induces surjective maps between
the homotopy groups. Finally we note that for many examples of compression semigroups S itself
may not be generated by a subset of the Lie algebra, but its invariant control set Cg is also the
invariant control set of an exp-generated semigroup so Corollary 4.5 applies to .S, ensuring that e,
is onto. Having these examples in mind we introduce the following

Definition 4.7 Let Ty C T be semigroups with nonempty interior. Given a flag manifold Bg =
G/ Ps, we say that Ty is O-large (or Be -large) in Ty provided the invariant control set for both Ty
and Ty on Bg coincide. Also, Ty is large in Ty in case Ty is ©-large for every ©.

Since the invariant control sets of a semigroup are obtained by projecting the invariant control
set on the maximal flag manifold B (see [20]), it follows that T is large in T% if and only if it is
B-large in T». Also T is large in T in case O (11) = © (IT3) = © and 7 is ©-large in T5. In
fact in this case the invariant control set on B for both semigroups is the inverse image, under the
projection B — Bg, of the common invariant control set on Bg.

Now, suppose that S; C S are connected semigroups with intS; # () and S; large in S. Then
the invariant control sets in G/AN for both semigroups are the connected components of 7—* (Co)
where Cg is the i.c.s. on G/Pe. So in G/AN the invariant control sets also coincide. Therefore
taking into account the existence of the section ¢ in Theorem 4.4, we get

Theorem 4.8 Suppose that S is connected and contains an exp-generated semigroup T which is
large in S. Let C be an invariant control set in G/AN. Then the homomorphism e, : m, (S) —
7 (Co) induced by the evaluation map e : S — Cy, e(g9) = gz, x € Cy, is surjective. The same
statement holds with the map e : intS — Cy.
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4.2 Injectivity

For the proof of the injectivity of the evaluation map we assume that S is connected and contains
a O-large exp-generated semigroup 7', where © = © (S).

The proof goes as follows: Fix basic points x € Cy and gy € intS such that goz = z. If
v : (S™, 50) — (S, go) satisfies e.[y] = [e o] = 1, we wish to prove that [y] = 1, that is, there is a
homotopy, based at gg, carrying v into go. We do not construct such homotopy directly. Instead,
we build homotopies inside S carrying v successively into smaller groups until we reach AgNe.
Using reversibility properties of SN AgNg, it follows then that there exists a (unbased) homotopy
® :[0,1] x S™ — S between v and a constant cycle g;. Then a standard argument shows that
[v] = 1. In fact, from ® we have the path, say «, given by the restriction of ® to [0,1] x {so}.
This path settles an isomorphism . : 7, (S,g90) — 7 (S,91), where g1 = ® (1, s0), such that
ax[y] = [91] =1 (see e.g. [10], Theorem 7.2.3). This shows the triviality of kere..

We start with the following lemma, which is used in the final step of the proof. It is patterned
after Proposition 2.6. Here, however, we can not assume that the semigroup is exp-generated,
because the lemma will be applied to S N AgNe. Hence we do not get injectivity of the homo-
morphism induced by inclusion but only that any trivial cycle in the group can be translated into
a cycle which is trivial inside the semigroup.

Lemma 4.9 Let L be a connected group and T C L an open and connected subsemigroup. Let
v 1 (S™s0) = (T, 90) be a cycle in T such that i.[y] = 1, where i : T — L is the inclusion.
Suppose that T is right [respectively left] reversible. Then there exists g € T such that the cycle g~y
[respectively. ~vg] is contractible in T'.

Proof: Consider the case where T is right reversible. By assumption there exists a homotopy
®:[0,1] x S™ — L such that

‘P(O:T) :’}/(T), ‘P(LT) = 9o

for all 7 € S™. Clearly, ®([0, 1] xS™) is a compact subset of L. Hence, the right reversibility of 7" im-
plies that there exists g € T such that g®([0,1] xS™) C T'. Therefore g® is a homotopy carrying g~y
into ggo as claimed. The proof in the left reversible case follows by taking the inverse semigroup. O

We prove next in different steps that any cycle v in S is homotopic within S to a cycle in
SN AegNe.

Lemma 4.10 Suppose that S contains a ©-large exp-generated semigroup T with intT # (), where
0 =0(S). Fizy € C and assume without loss of generality that Pe is the isotropy at y. Then
any cycle v : (S™,s0) = (S, go) with goy =y is (unbased) homotopic to a cycle B : S™ — Pg.

Proof: By assumption there exists a split regular h € intT" which fixes y, so that h*Cg contracts
to y as k — +o0o. This implies that for any neighborhood U of y there exists k& > 0 such that
hkCe C U. Since v(S")y C Co and hF~y is homotopic to v (by Lemma 2.4), we can assume
without loss of generality that v (S™)y C U.

Now, take g € intT~! such that gy = y. We can choose U to be diffeomorphic to an open
ball in Euclidean space and such that if we write the bundle G — G/Pg locally as U x Pg
then g € U x W C intT !, for some open W C Pg. Under this identification U’ = {g} x U is an
Euclidean ball contained in int7 —*. Then there exits a continuous contraction ¢ : I xU’" — U’ such
that ¢ (0,1) = (g,1) and ¢ (1,1) = (g,9), for all [ € U'. Define in U’ the cycle ¢ (z) = (9,7 () y).
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For (t,z) € I x S™ put
®(t,2) = ¢(t,0(2) 7 (2).
Note that @ is a continuous map defined in [0, 1] x S™ assuming its values in S because U’ C S~!
and v(z) € S. Furthermore & (0,2) = 0 (2) "7 (z) and & (1,2) = g~ 'v(2), so that the cycles
§(2) "y (2) and g v (z) are homotopic in S. Since g~ € T and T is exp-generated, it follows
by Lemma 2.4, that g~ v (z) and ~ (z) are homotopic in S. Now, 6 (z) "~ (z)y = y from the
definition of & (z). Therefore § (z) ™" v (z) is contained in Pe concluding the proof of the lemma. O

Corollary 4.11 Let v and 8 be as in the above lemma and suppose that e.[y] = 1. Then e (8) is
homotopic to a point in Cy.

Proof: In fact, applying e to the homotopy between v and  we get a homotopy between e ()
and e (3). Since e () is homotopic to a point, this holds with e (8) as well. O

Lemma 4.12 Let v : S™ — SN PY be a cycle with v (so) = g1 € AeNe. Assume that e.[y] = 1.
Then ~v is homotopic in S to a cycle  contained in AgNeg.

Proof: Recall that P§ = M3 AeNe and the action of P on the fiber 75 (y) is equivalent to
the action on PJ/AN = K (©) = M3/A(O) N (O©). Therefore to say that e.[y] = 1 means that
the projection of v in K (©) is homotopic to a point in K (0). Now, M3 = K (0) A(©) N (0)
is an Iwasawa decomposition of the semi-simple group MJ. Since A (0)N (0©) is diffeomorphic
to an Euclidean space, it follows that the projection of v into M3, through the decomposition
P§ = M3 AgNe is homotopic to a point. Denote by ¢ the projected cycle. Then 6 (sp) = 1, and
§(r)~" is also homotopic to 1. Let ® : I x S™ — Mg be a homotopy such that ® (0,7) = ¢ (n)~"
and ® (1,7) =1, for all 7 € S™ The subset ® (I x S™) is compact in MJ. Hence by Proposition
4.3, there exists z € S N Ag Ne such that ® (I x S™)z C SN PY. Put

L, 7)=~(1)®(t,7)=.

Then I'(t,7) € SN P, and is a homotopy between v (7)d~! (1) z and 7 (1) z. Since v (1) z is
homotopic to v () and vy (7) §~ (1) z € Ae N S, for all 7, the lemma, follows. |

We can now prove the injectivity of the evaluation map.

Theorem 4.13 Assume that S is connected and contains a large exp-generated semigroup T with
nonempty interior. As before let C be an S-i.c.s. in G/AN and Cy its interior. Then the homo-
morphism e, : m, (S) = 7, (Co) induced by a evaluation map e : S — Cy, e(g) = gz, x € Co, is
injective. The same statement is true with e defined in intS instead of S.

Proof: Observe first that since 7' is large in S, we can assume without loss of generality that
(intT) N AgNo # (0. Now, by the Lemma 4.12 any cycle in S projecting to a contractible cycle
in Cy is homotopic within S to a cycle v in (intS) N Ag No. By Lemma 4.2 (and the discussion
preceding it), (int7') N AgNe is left reversible in AgNe. Hence by Lemma 4.9 above, it follows
that there exists g € int7" such that g is homotopic to a point within 7" and hence inside S. Using
Lemma 2.4, we conclude that v and g are homotopic in S.

We have showed that any cycle 8 in S such that e (8) is contractible in Cy is (unbased) ho-
motopic to a point in S. Therefore, if we reproduce the standard argument mentioned at the
beginning of this subsection we conclude that [5] = 1, showing that e, is injective. O
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4.3 Homotopy equivalence

So far we have proved that the evaluation maps e : S — Cy and e : intS — Cj induce isomorphisms
between the homotopy groups in case S contains a © (S)-large exp-generated semigroup. This
implies that the homotopy groups of S and intS are isomorphic to the homotopy groups of the
compact group K (0 (S)) ~ Fp. In other words, e is a weak homotopy equivalence.

Now, intS is an open submanifold of G, and hence a CW-complex. Analogously, Cy is a CW-
complex, so that e is in fact a homotopy equivalence, which means that there exists f : Cp — intS
such that both ef and fe are homotopic to the identity maps, that is f is a homotopy inverse of e.

We continue to assume that S admits a ©-large, © = O (5), exp-generated semigroup. Under
this assumption we show next that a homotopy inverse of e : intS — Cj is furnished by the cross
section o : Fy — intS constructed in Theorem 4.4. Recall that Cyp = Cg x Fp and that CQ is
contractible to a point. Denote by p the projection Cy onto Fjp.

Lemma 4.14 op: Cy — intS is a homotopy inverse of e.

Proof: Let f be a homotopy inverse of e : intS — Cp. We claim that f is homotopic to op.
Note that since Cg is contractible to a point, there exists a homotopy ® : I x Cy — Cj such that
® (0,z) =z and ® (1,z) = p(z), that is, p is homotopic to the identity map ¢ of Cy. Denote by
[X, Y] the set of homotopy classes of maps X — Y. Then the induced map

[ [Co,intS] — [00,00]

is injective (see [10], Corollary 7.5.3). Now, e.[f] = [ef] = [i] and e.[op] = [eop] = [p]. Since
[i] = [p], it follows that [op] = [f], that is, f ~ op, as claimed. Therefore op is a homotopy inverse
of e as well. |

From this homotopy inverse of e, it becomes easy to get K (©) (or rather a coset of it) as a
deformation retract of intS. In fact, recall the construction of the cross section ¢ in Theorem 4.4:
Let £ : Fy — K (©) be the diffeomorphism given by the requirement & (z) = kxo, where zg is the
base point. Then ¢ is given by o () = £ (x) z where z € Pg is such that the coset K (0)z C intS.
In particular, we have that o (gz¢) = g for any g € K (0©) z. This means that ope : intS — K (0) z
satisfies ope (g) = g for all g € K (O) z, that is, ope is a retract of intS. Since ope is homotopic
to the identity map, we actually get that K (©) z is a deformation retract of intS. Note that in
this construction we can take the section o taking values in any coset K (©) z contained in intS.
Therefore we have

Theorem 4.15 Under the assumption that S admits a large exp-generated semigroup with nonempty
interior, there exists z € intS N Po such that K (©)z C intS. Furthermore for any z satisfying
this condition, K (©) z is a deformation retract of intS.

5 Remarks

5.1 Deformation retract of S

The discussion leading to Theorem 4.15 was restricted to intS in order to use the fact that it is an
open submanifold and hence a CW-complex. Despite that the deformation retract property for S
still holds. To see this let 7' C S be a large exp-generated semigroup with nonempty interior. Take
g € intT and let g € T be a curve such that ggo = 1 and g; = g. Then Sg C intS and S is deformed
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into Sg by g:. By Theorem 4.15, there is a deformation retract r = ope of intS into the coset
K (0©) zg, where z is such that K (©) z C intS. Therefore if we compose r with the left translation
L, we get a map rL, of S into K (©) zg, which is not a retract. However it maps y € K (©) z into
yg, because r (yg) = yg. It follows that r' = L,~1rL, maps S into K (©) z and satisfies 7' (y) =y
for all y € K (0©) z, that is, ' is a retract of S into K (0) z. Clearly L,-1 deforms K (©) zg into
K (©) z within intS, so that 7' is indeed a deformation retract of S into K (0) z.

5.2 Image under the inclusion map

As showed in [12] (see also [4], Chapter 3), the knowledge of the image of the fundamental group
of S under the inclusion map S < G tells when S can be embedded in a given covering group of
G. As a consequence of Theorem 4.15 this image is described by the inclusion of the subgroup
K (0) in G. In fact the following statement holds for all the homotopy groups.

Proposition 5.1 Let the assumptions and notations be as in Theorem 4.15. Then the image
iy (S) in m, (G) coincides with the image jomy, (K (©)) where j : K (©) = G is the inclusion.

Proof: By Proposition 2.3, the homomorphism induced by the inclusion intS — S is an iso-
morphism. Hence it is enough to prove the claim with intS in place of S. Since K (0)z is a
deformation retract of intS, it follows that the inclusion K (0) z < intS induces an isomorphism.
Hence i,m, (S) is the image of the homomorphism induced by K (0) z < G. By right translation
this image coincides with j.m, (K (9)). |

5.3 Relative homotopy

From the identification of the homotopy groups of S with those of K (0) it follows also an identi-
fication of the relative homotopy groups. To see this, consider the following diagram

e T (K2, K (0)2) 2 1, (K(©)2) —o (K 2) —o 10 (K2, K(0)2) > - -

L
- — 1 (G, 9) 5 7, (S) m(G) —m(G,S)

involving the two exact homotopy sequences of the pairs (Kz, K(0)z) and (G, S). Here § stand for
the inclusion maps and z € int.S is such that K (0) z C intS. This ladder is a commutative diagram
(see e.g. [10], Theorem 7.2.18). Joining this with the fact that m,(K(0)z) ~ m,(S) for all n, it
follows by a standard diagram chasing that 0. : 7, (Kz, K (0) z) = m,(G,S) is an isomorphism.
Clearly 7, (Kz, K (©) z) is isomorphic to 7, (K, K (0)) under right translation. Hence we have

Proposition 5.2 The relative homotopy groups m, (G, S) are isomorphic to m, (K, K (©)).

5.4 Deforming two semigroups

Two semigroups S; and Sy of the same type ©(S;) = ©(S2) = O have the same homotopy groups.
Actually they can be deformed one into another in G. In fact, there exists z; € intS; N Po such
that K(©)z; is a deformation retract of intS;. Analogous K (0)z2 is deformation retract of intS,
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for some zy € intSs N Po. Clearly K(©)z; can be deformed into K (©) 22 in G. Composing these
deformations one get a deformation of int.S; into intS,.

6 Examples

6.1 Positive matrices

Let S = SI™ (n,R) be the semigroup of determinant one matrices having nonnegative entries. This
is the compression semigroup of the positive orthant R" in R":

]Rr-ll— :{(mla"';mn):mi ZO}

It turns out that the type of SI™ (n, R) is the projective space P"~!, and the invariant control in
P! is the set [R} ] of lines contained in R’ In our previous notation, Ce = [R7.].

The semigroup SIT (n, R) is closed but not a Lie semigroup. This can be easily seen by the fact
that its unit group H (S) = SN S~ is not connected. In fact, H (S) is the semi-direct product
P x D where P [respectively D] is the group of determinant one permutation matrices [respectively
diagonal matrices with positive entries]. However, it is well known that the unit group of a Lie
semigroup is connected (see Neeb [13], Proposition II1.2). On the other hand, put

L(S)={X €sl(n,R) : exp (tX) € SI" (n,.R) for all t > 0}

for the Lie wedge of SI™ (n,R). One checks easily that £ (S) = {X = (zi;) : 7;; > 0,i # j}. Put
Sint = (exp £ (S)) for the corresponding exp-generated semigroup. Since £ (S) generates sl (n, R),
Sint has nonempty interior in Sl (n,R). Furthermore, the invariant control set of Si¢ in P*~! is
also Cg. This can be seen by considering matrices of the form

H = diag{n—-1,-1,...,—1}

with respect to a basis {f1,..., fn} such that fi € R} and span{fs,...,f,} "R} = 0. It can
be shown that H € L£(S) (see [16]), so that any « € Cg is the attractor of some element of Siyf,
implying that Cg is the invariant control set of Siu¢, as well. In case f € int (R} ), H € int (£ (5)),
so that Cg = int (Ce).

Therefore, S = SI™ (n, R) contains a © (S)-large exp-generated semigroup. Now, it was proved
in [16] that S is connected. Hence the isomorphism theorem holds for SI* (n,R). The subgroup
Py can be taken here to be the group of matrices of the form

A%
(5 4)
with A € R, @ an (n — 1) x (n — 1) matrix and Adet Q = 1. For the identity component P3 one
must take A, det @Q > 0. The corresponding choice of AN is the group of upper triangular matrices
with positive entries on the diagonal. Hence, P3/AN is diffeomorphic to SO (n —1). It follows
that the homotopy groups of SI* (n, R) are isomorphic to the homotopy groups of SO (n — 1).

These facts extend to the compression semigroup of a cone in R”. Let W C R be a pointed
and generating cone and form the semigroup

Sw ={g9€Sl(n,R) : gW C W}.

It was proved in [16] that Sy is connected. Again the type of Sy is the projective space, and
similar to the proof for SIT (n,R), the semigroup generated by £ (Sy ) is large in Sy,. Hence the
homotopy type of Sw is also SO (n — 1).
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6.2 Totally positive matrices

Let T C Sl(n,R) be the semigroup of totally positive matrices, that is, of matrices such that all
its minors are nonnegative. It is well known that 7 is a Lie semigroup (see Ando [1], Theorem
3.5 and Corollary 3.6). The type of 7 is the maximal flag manifold. This can be seen by different
ways. First by [1], Theorem 6.2, any g € int7 has real and different eigenvalues. Hence by [20],
Corollary 4.4, the type of T is the empty set, that is the maximal flag manifold. Alternatively one
can consider the semigroups 7 of matrices having nonnegative k-minors. The type of Ty is the
Grassmannian Gry (n) of k-dimensional subspaces (see [18]). Clearly 7 = 71 N---NT,_1. Arguing
with the parabolic subgroups the Weyl group associated to the type of the semigroups we get easily
the type of T.

It follows that the homotopy type of T is the connected component of M AN/AN. Since M is
discrete, the homotopy groups of 7 are trivial, that is, 7 is contractible.

There exists a generalization of the semigroup of totally positive matrices to semi-simple groups
whose Lie algebras are normal real forms of the complex simple Lie algebras (see Lusztig [9], and
references therein). Again the type of any such a semigroup is the maximal flag manifold, implying
the triviality of their homotopy groups, a fact already proved by Lusztig by another means (see
[9], Section 3).

6.3 Rank one groups

In case G has real rank one there exists just one class of parabolic subgroups and hence just
one flag manifold G/MAN. The proper semigroups with nonempty interior in G have all the
same type, namely @ = (). The subgroup K (0) is the identity component of M AN/AN, that is,
K (©) = My so that every semigroup S in G admitting a large exp-generated semigroup have the
same homotopy groups, and they are isomorphic to the homotopy groups of My. Moreover, intS
can be continuously deformed into M.

The subgroup Mj is well known for each of the rank one groups. For instance if G = Sl (2, R)
then My = {1} hence the homotopy groups of S are trivial, and intS is contractible. On the
other hand let G = SO (1,p),, the identity component of a real hyperbolic group. In this case
My = SO (p), so that this is the homotopy type of the Lie semigroups in SO (1, p).

6.4 Ol’shanskii semigroups

The isomorphism theorem holds trivially for the group G itself. In this case © (G) = ¥ and the
flag manifold G/ Pg (i) degenerates to a point as Pg(g) = G. The subgroup K (0) is the whole K,
which by means of the Iwasawa decomposition G = K AN, is a deformation retract of G.

In this example we discuss the class of Ol’'shanskii semigroups where such polar decomposition
is also available, so that the homotopy groups can be read off directly from the decomposition,
illustrating the isomorphism theorem. We refer to Lawson [8] for detailed discussions about these
semigroups and their decompositions.

Let (g,7) be a simple symmetric Lie algebra, where 7 is an involutive automorphism of g. put
g+ [respectively g_] for the subalgebra [respectively subspace] of fixed points of 7 [respectively
—1 eigenvectors]. There is the direct sum g = g4 @ g— and the bracket relations [g., gs] = ges,
€,0 = £. Assume that there is wedge W C g_

l.g-=W-W,

2. W is invariant under the adjoint representation of g4 and
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3. ad (X) has real spectrum for all X € W.

Let G be a Lie group with Lie algebra g and denote by H the connected subgroup with Lie
algebra g4. Then H is closed and the subset S = (exp W) H is a closed semigroup in G having
nonempty interior. Furthermore, the map W x H — S, (X,h) — (exp X) h is a diffeomorphism
and S is a Lie semigroup (see [8], Theorem 3.4).

Clearly, W is contractible, so that H becomes a deformation retract of S.

In order to recognize the topology of H in terms of parabolic subgroups of G choose a 7-
invariant Cartan decomposition g = € ®s so that g+ = (gL N€) ® (g+ Ns) = £+ D sy. The algebra
g+ is reductive and gy = €, @ sy is a Cartan decomposition. The Lie algebra of K (H) = HN K
is ¢, and H = K (H)exp (s4) is a global Cartan decomposition of H. Since H is assumed to
be connected, K (H) is connected. Also, K and K (H) is compact if G has finite center. From
the global Cartan decomposition of H it follows that H, and hence S, is homotopy equivalent to

Now, the existence of the invariant cone W C g_ implies that the symmetric Lie algebra is
of the regular type. This means that the centralizer 3 (I) of the subalgebra [ = £, ® s_ meets
W N s_ nontrivially. The assumption that g is simple implies furthermore that ¢ = 3 (I) Ns_ is
one-dimensional and [ turns out to be the centralizer of ¢ in g (see Hilgert and Neeb [5] Theorem
V.I and Neeb [14], Theorem 1.20(3) and Proposition IV.1). Since dim ¢ = 1 there exists a maximal
abelian a C s such that ¢ C a. We can choose a Weyl chamber at containing W N ¢ in its closure.
Denote by ¥ the simple system of roots defined by a* and let © (¢) C ¥ be the set of simple roots
annihilating on ¢. Using again that dimc¢ = 1, it follows that © (c¢) is maximal in X, that is, its
complementary is a singleton. Hence Py, is a maximal parabolic subgroup, i.e., Bg(,) is minimal.

It was proved in [19] that © (S) = ©(c). We outline the proof with an approach slightly
different from [19]: Note that [ is the reductive component of the parabolic subalgebra pg.). Since
the Lie algebra of both K (H) and K (O (c)) are &y, it follows that these subgroups coincide, so
that K (O (c)) is contained in S. Now, the orbit O = H Pg)/Pe(:) of Po(c) in Bg(. is open and
its closure is S-invariant. Hence Cg () = clO. It is known that clO is contained in the open Bruhat
cell defined by a*. Furthermore, S is transitive on the fiber over the base point Po() € Bo(o)
because K (O (c)) C S. Hence 7! (Cgy)) is the invariant control set in the maximal flag manifold
B, ensuring that the type of S is O (c).

In particular let S C Sl(n,R) be the connected component of the identity semigroup of expan-
sions of a nondegenerate quadratic form in R" (see [8] for a detailed discussion of this semigroup).
If the matrix of the quadratic form is

sk 0
J =
< 0 —1<n—k>x<n—k>>

then S = {g € Sl(n,R) : g¢Jg — J > 0}, where X > 0 means that the matrix X is positive
semi-definite. It follows that if W is the cone composed of the symmetric matrices X > 0 then
S =S50 (k,n—k)yexpW. Here H = SO (k,n — k), is the identity component of the subgroup of
isometries of J. Its maximal compact subgroup is K (H) = SO (k) xSO (n — k). On the other hand,
the type of S is the Grassmannian Gry (n) of k-dimensional subspaces in R”. This is not hard to
check after the remark that the invariant control set of S in Gry (n) is the set of V' € Gry (n) such
that the restriction of J to V is positive semi-definite. Of course, the subgroup K (©) associated
to Gry (n) is SO (k) x SO (n — k), which is homotopy equivalent to S.

19



References

[1]
2]

[3]

[4]

[10]
[11]
[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]

T. Ando, Totally positive matrices. Linear Algebra and its Applications 90 (1987), 165-219.

C.J. Braga Barros and L.A.B. San Martin, On the action of semigroups in fiber bundles. Mat.
Contemp. 13 (1997), 1-19.

H. Furstenberg, A Poisson formula for semi-simple Lie groups. Ann. of Math. 77 (1963),
335-386.

J. Hilgert and K.-H. Neeb, Lie semigroups and their applications. Lecture Notes in Math.
1552. Springer-Verlag 1993.

J. Hilgert and K.-H. Neeb, Maximality of compression semigroups. Semigroup Forum 50
(1995), 205-222.

J. Hilgert and K.-H. Neeb, Compression semigroups of open orbits on real flag manifolds.
Monatsh. Math. 119, (1995), 187-214.

J.D. Lawson, Semigroups of Ol’'shanskii type. In Semigroups in Algebra, Geometry and Anal-
ysis (Eds. K.H. Hofmann, J.D. Lawson and E.B. Vinberg), De Gruyter Expositions in Math-
ematics 20 (1995), 121-157.

J.D. Lawson, Polar and Ol’shanskii decompositions. J. reine angew. Math. 448 (1994), 191-
219.

G. Lusztig, Introduction to total positivity. In Positivity in Lie Theory: Open Problems
(Eds. J. Hilgert, J.D. Lawson, K.-H. Neeb and E.B. Vinberg). De Gruyter Expositions in
Mathematics 26 (1998), 133-145.

C.R.F. Maunder, Algebraic Topology. Van Nostrand 1970.
D. Mittenhuber, On maximal Lie semigroups in real hyperbolic geometry.

K.-H. Neeb, On the fundamental group of a Lie semigroup. Glasgow Math. J. 34 (1992),
379-394.

K.-H. Neeb, On the foundations of Lie semigroups. J. reine angew. Math. 431 (1992), 165-189.

K.-H. Neeb, A convexity theorem for semisimple symmetric spaces. Pac. J. Math. 162 (1994),
305-349.

W.A.F. Ruppert, On open subsemigroups of connected groups. Semigroup Forum 39 (1989),
347-362.

J. Ribeiro G. and L.A.B. San Martin, The compression semigroup of a cone is connected.

L.A.B. San Martin, Invariant control sets on flag manifolds. Mathematics of Control, Signals,
and Systems 6 (1993), 41-61.

L.A.B. San Martin, Maximal semigroups in semi-simple Lie groups. Submitted.
L.A.B. San Martin, Nonexistence of invariant semigroups in affine symmetric spaces. Submit-

ted

20



[20] L.A.B. San Martin and P.A. Tonelli, Semigroup actions on homogeneous spaces. Semigroup
Forum 50 (1995), 59-88.

[21] G. Warner, Harmonic analysis on semi-simple Lie groups I. Springer-Verlag 1972.

21



