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Abstra
t

Let G be a non
ompa
t semi-simple Lie group and S � G a Lie semigroup with nonempty

interior. We study the homotopy groups �

n

(S), n � 1, of S. Generalizing a well known fa
t

for G, it is proved that for a 
ertain 
ompa
t and 
onne
ted subgroup K (S) � G, �

n

(S) is

isomorphi
 to �

n

(K (S)). Furthermore, there exists a 
oset K (S) z 
ontained in intS whi
h

is a deformation retra
t of S.
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1 Introdu
tion

Let G be a 
onne
ted, non
ompa
t semi-simple Lie group. It is well known that through a Cartan

de
omposition G = KS or an Iwasawa de
omposition G = KAN , the topology of G is redu
ed to

that of K. In fa
t, S and AN are di�eomorphi
 to Eu
lidean spa
es, implying that the proje
tions

onto K are homotopy equivalen
es. In parti
ular, the homotopy groups of G are isomorphi
 to

those of K.

The purpose of this paper is to get this kind of redu
tion to Lie semigroups with nonempty

interior in G, when G has �nite 
enter.

For su
h a semigroup S there are no good de
ompositions available providing a natural 
ompa
t

spa
e whi
h is a deformation retra
t of S. Instead we get the topology of S from its a
tion in


ompa
t homogeneous spa
es of G. Pre
isely, let AN be the solvable Iwasawa 
omponent of G

and form the 
oset spa
e G=AN , whi
h is di�eomorphi
 to the 
ompa
t Iwasawa 
omponent K.

The semigroup S a
ts on G=AN by the restri
tion of the G-a
tion. Typi
ally this a
tion of S is

not transitive. A
tually, if S 6= G there are proper 
ompa
t subsets of G=AN invariant under S,

the so-
alled invariant 
ontrol sets. Let C be an invariant 
ontrol set of S in G=AN . The main

result of this paper states that the homotopy groups of S are isomorphi
 to those of C.

Although in general it is not an easy task to obtain the invariant 
ontrol sets of the semigroups,

their possible homotopy types 
an be des
ribed (at least when S is generated by one-parameter

semigroups) by using a previous 
lassi�
ation of the semigroups with nonempty interior a

ording

�
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to their a
tion on the 
ag manifolds of G. This 
lassi�
ation divides the semigroups into types,

ea
h type being labelled either by a 
onjugate 
lass of paraboli
 subgroups, that is, a 
ag manifold

of G, or by a paraboli
 subgroup of the Weyl group of G (see [18℄, [20℄).

Roughly, the type of S is given by a paraboli
 subgroup, say P (S), or rather by the 
orrespond-

ing 
ag manifold G=P (S), in su
h a way that the geometry of the S-a
tion on an arbitrary 
ag

manifold is embodied in the a
tion on G=P (S). This is expressed, for instan
e, by the fa
t that the

invariant 
ontrol set of S in the maximal 
ag manifold G=MAN is given by �

�1

�

C

P (S)

�

where �

is the 
anoni
al proje
tion onto G=P (S), and C

P (S)

is the invariant 
ontrol set in G=P (S). In the

spe
ial 
ase when S is generated by one-parameter semigroups, C

P (S)

is 
ontra
tible. So that by

lifting �

�1

�

C

P (S)

�

on
e again through the 
anoni
al �bration G=AN ! G=MAN , it follows that

any invariant 
ontrol set C � G=AN is 
ontra
tible to the 
onne
ted 
omponent of P (S) =AN .

This 
onne
ted 
omponent is di�eomorphi
 to a 
ompa
t subgroup K (S) of K, namely the maxi-

mal 
ompa
t subgroup of the semi-simple Levi 
omponent of P (S).

In short, C 
an be 
ontinuously deformed into K (S) implying that the homotopy type of S is

the 
ompa
t groupK (S) � K. Therefore, the 
lassi�
ation of Lie semigroups by the 
ag manifolds

turns out to be the 
lassi�
ation by their homotopy types.

Our proofs are not restri
ted to Lie semigroups, but they work for a semigroup S whi
h 
ontains

a large Lie semigroup, in the sense of De�nition 4.7 below. This slight generalization permits to

work out the homotopy groups of some 
lassi
al semigroups whi
h are not in�nitesimally generated,

like e.g. the semigroup of positive matri
es. Also, if we 
onsider the interior of S instead of S, the


on
lusion of the results still hold, with the further advantage that in this 
ase it is 
lear intS is

homotopi
 equivalent to K (S), sin
e these spa
es are CW-
omplexes.

Con
erning the stru
ture of the paper, in the next se
tion we establish notations and prove

some basi
 fa
ts about semigroups, their a
tion on 
ag manifolds, homotopy groups, et
., whi
h

are used in the proof of the main results. In this se
tion we also prove that the orbits of a Lie

semigroup in the Riemannian symmetri
 spa
e asso
iated to the semi-simple group are 
ontra
tible.

This fa
t although not used afterwards is interesting in itself. In Se
tion 3 the topology of the

invariant 
ontrol sets in G=AN is dis
ussed. It is shown that it redu
es to the topology of a


ompa
t subgroup. The statements and proofs of the main results are 
ontained in Se
tion 4.

Dire
t 
onsequen
es of them and further 
omments were in
luded in Se
tion 5. Finally, some

examples are dis
ussed in Se
tion 6. First we 
onsider the semigroup matri
es in Sl (n;R) with

positive entries, whi
h is part of the 
lass of 
ompression semigroups of 
ones in R

n

. The 
on
lusion

is that the homotopy type of these semigroups is the 
ompa
t group SO(n� 1). Another 
lass of

semigroups whose homotopy groups 
an be 
omputed are those 
ontained in real rank one groups.

In this 
ase there is just one type of homotopy whi
h is the 
onne
ted 
omponent of the group M

in the de
omposition P = MAN of a paraboli
 subgroup. The other examples are illustrative of

our results, in the sense that what we get is already known from their stru
tural properties. These

are the semigroup of totally positive matri
es that is 
ontra
tible and the Ol'shanski�� semigroups,

whi
h have polar de
ompositions from where the homotopy type 
an be read o�.

2 Preliminaries

The purpose of this se
tion is to establish notations and ba
kground results to be used throughout

the paper.
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2.1 Flag manifolds and paraboli
 subgroups

Let G be any 
onne
ted non
ompa
t Lie group with �nite 
enter and denote by g its Lie algebra.

The 
ag manifolds of G are labelled by subsets of the set of simple (restri
ted) roots of g. Pre
isely,


hoose an Iwasawa de
omposition g = k � a � n. Let � be the set of roots of the pair (g; a) and

�

+

[respe
tively �℄ be the set of positive [respe
tively simple℄ roots giving rise to the nilpotent


omponent n, that is,

n =

X

�2�

+

g

�

;

where g

�

stands for the �-root spa
e. Let m be the 
entralizer of a in k and put p = m� a� n for

the 
orresponding minimal paraboli
 subalgebra. By de�nition, the maximal 
ag manifold B of G

is the set of subalgebras Ad (G) p, where Ad stands for the adjoint representation of G in g. There

is an identi�
ation of B with G=P where P is the normalizer of p in P . Furthermore, P =MAN ,

A = exp a, N = exp n and M is the 
entralizer of A in K = exp k (M = fu 2 K : uh = hu for all

h 2 Ag).

Given a subset � � �, denote by p

�

the 
orresponding paraboli
 subalgebra, namely,

p

�

= n

�

(�)� p;

where n

�

(�) is the subalgebra spanned by the root spa
es g

��

, � 2 h�i. Here h�i is the set of

positive roots generated by �. The set of paraboli
 subalgebras 
onjugate to p

�

identi�es with the

homogenous spa
e G=P

�

, where P

�

is the normalizer of p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g:

This 
onstru
tion yields the 
ag manifold B

�

= G=P

�

, � � �.

Let

a

+

= fH 2 a : � (H) > 0 for all � 2 �g

be the Weyl 
hamber asso
iated to �. We say that X 2 g is split-regular in 
ase X = Ad (g) (H)

for some g 2 G, H 2 a

+

. Analogously, x 2 G is said to be split-regular in 
ase x = ghg

�1

with

h 2 A

+

= exp a

+

, that is, x = expX , with X split-regular in g.

Let n

�

=

P

�2�

g

��

be the nilpotent subalgebra opposed to n. Put N

�

= exp n

�

. Then in any


ag manifold B

�

, the orbit (
alled open Bruhat 
ell) Ad (N

�

) p

�

is open and dense. Furthermore,

if h 2 A

+

then limh

k

y = p

�

for any y 2 Ad (N

�

) p

�

. In other words, p

�

is an attra
tor in B

�

for

any h 2 A

+

, having Ad (N

�

) p

�

as stable manifold. The same way, Ad (g) p

�

is the attra
tor �xed

point in B

�

of the split-regular g = xhx

�1

su
h that Ad

�

xN

�

x

�1

�

is the open and dense stable

manifold. In the sequel we denote the attra
tor �xed point of g by at (g), while the 
orresponding

open 
ell, whi
h is the stable manifold, is denoted by st (h). Although this notation does not

spe
ify the 
ag manifold under 
onsideration, this will be
ome 
lear from the 
ontext.

Given two subsets �

1

� �

2

� �, the 
orresponding paraboli
 subgroups satisfy P

�

1

� P

�

2

,

so that there is a 
anoni
al �bration G=P

�

1

! G=P

�

2

, gP

�

1

7! gP

�

2

. Alternatively, the �bration

assigns to the paraboli
 subalgebra q 2 B

�

1

the unique paraboli
 subalgebra in B

�

2


ontaining q.

In parti
ular, B = B

;

proje
ts onto every 
ag manifold B

�

.

From the stru
ture of the paraboli
 subgroup P

�

the �ber P

�

=P of B ! B

�

is obtained. We

follow 
losely the notation of Warner [21℄, Se
tion 1.2. Denote by a

�

the annihilator of � in a:

a

�

= fH 2 a : � (H) = 0 for all � 2 �g:
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Let L

�

stand for the 
entralizer of a

�

in G and put M

�

(K) = L

�

\K for the 
entralizer of a

�

in

K. The Lie algebra l

�

of L

�

is redu
tive and de
omposes as l

�

= m

�

� a

�

with m

�

semi-simple.

Let M

0

�

for the 
onne
ted subgroup whose Lie algebra is m

�

and put M

�

= M

�

(K)M

0

�

. It

follows that the identity 
omponent ofM

�

is M

0

�

. The Bruhat-Moore Theorem (see [21℄, Theorem

1.2.4.8), provides the following de
ompositions:

1. P

�

= M

�

A

�

N

�

, where A

�

= exp a

�

and N

�

is the unipotent radi
al of P

�

, that is,

N

�

= exp n

�

, with n

�

the nilradi
al of p

�

.

2. P

�

=M

�

(K)AN .

This se
ond de
omposition ensures that the �ber P

�

=P = M

�

(K) =M . It turns out that

M

�

(K) =M = M

�

= (M

�

\ P ), whi
h is the maximal 
ag manifold of M

�

, sin
e M

�

\ P is a

minimal paraboli
 subgroup of M

�

.

In the sequel we put K (�) for the identity 
omponent of M

�

(K). Sin
e P

�

=P is 
onne
ted

we get further that P

�

=P = K (�) = (K (�) \M). The subgroups K (�), � � �, play a de
isive

role in the determination of the homotopy groups of the semigroups.

Finally we re
all that an open Bruhat 
ell � in B

�

is di�eomorphi
 to an Eu
lidean spa
e. This

implies that the �ber bundle � : B ! B

�

is trivial over �, that is, �

�1

(�) � � � (P

�

=P ).

2.2 Semigroups

We re
all some basi
 fa
ts from the general theory of semigroups as well as from the a
tion of

semigroups in 
ag manifolds. Let G be a 
onne
ted Lie group with Lie algebra g. We say a

semigroup S � G is exp-generated provided there exists a subset U � g su
h that S is generated

by the one-parameter semigroups exp (tX), X 2 U , t � 0, that is,

S = hexp

�

R

+

U

�

i:

In this 
ase S is said to be generated by U .

A semigroup is said to be a Lie semigroup (or in�nitesimally generated semigroup) provided it

is the 
losure of a exp-generated semigroup (see e.g. Hilgert and Neeb [4℄ and Neeb [12℄). Here

we 
hanged the terminology to emphasize that we do not ask for S to be 
losed. This requirement

is not relevant for our purposes. In the sequel our typi
al hypothesis about a semigroup is that

it 
ontains a large enough semigroup generated by a subset in the Lie algebra. These kind of


ondition is ful�lled by the Lie semigroups.

A
tually we work with semigroups having nonempty interior. It is well known that if S is

generated by U , this 
ondition holds if and only if U is generating, whi
h means that the Lie

algebra generated by U is g. Furthermore, in 
ase U is generating intS is dense in S.

Now, we turn to semigroups in semi-simple groups. The following fa
ts 
an be proved for any

semigroup S with intS 6= ;, provided G has �nite 
enter. Consider the a
tion of S in the 
ag

manifolds of G. It was proved in [20℄, Theorem 6.2, that S is not transitive in B

�

unless S = G.

Moreover, there exists just one 
losed invariant subset C

�

� B

�

su
h that Sx is dense in C

�

for

all x 2 C

�

. This subset is 
alled the invariant 
ontrol set of S in C

�

(abbreviated S-i.
.s.) . Sin
e

S is not transitive, C

�

6= B

�

.

The fa
t that Sx is dense in C

�

for all x 2 C

�

implies the existen
e of an open subset C

0

�

� C

�

su
h that for all x; y 2 C

0

�

there exists g 2 S with gx = y. Furthermore, C

0

�

is dense in C

�

. This

subset C

0

�

is 
alled the set of transitivity of C

�

, and is given by C

0

�

= (intS)x\ (intS)

�1

x, for all

x 2 C

�

. In 
ase S is exp-generated, it follows that C

0

�

= intC

�

(see [20℄, Se
tion 2).
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The semigroups in G are distinguished a

ording to the geometry of their invariant 
ontrol

sets. There exists � � � su
h that �

�1

�

(C

�

) � B is the invariant 
ontrol set in the maximal 
ag

manifold. Among the subsets � satisfying this property there is one whi
h is maximal, in the

sense that it 
ontains the others. We denote this subset by � (S) and say that it is the type of S.

Alternatively, we denote the type of S by the 
orresponding 
ag manifold B (S) = B

�(S)

(see [20℄,

[18℄ for further dis
ussions about the of a semigroup).

When � = �(S), the invariant 
ontrol set C

�(S)

has the following ni
e property: The set R (S)

of split-regular elements in intS is not empty. Let h 2 R (S) and let as before at (h) and st (h)

stand for its attra
tor and stable open 
ell in B

�(S)

. Then C

�(S)

� st (h) and at (h) 2 C

0

�(S)

. As

will be seen afterwards, this property 
ompletely des
ribes the topology of the invariant 
ontrol

set in B .

2.3 Reversibility

Re
all that a subsemigroup T of a group L is right [left℄ reversible if one of the following equivalent


onditions are satis�ed

i) For all h

1

; h

2

2 H , Th

1

\ Th

2

6= ; [h

1

T \ h

2

T 6= ;℄.

ii) T

�1

T [TT

�1

℄ is a subgroup.

Clearly, T is right reversible if and only if T

�1

is left reversible. In 
ase L is 
onne
ted and

intT 6= ; then T is right [left℄ reversible if and only if T

�1

T [TT

�1

℄ 
oin
ides with L.

The following lemma en
odes basi
 known properties of reversibility to be used later.

Lemma 2.1 The subsemigroup T � L is right reversible if and only if for any �nite subset

fh

1

; : : : ; h

k

g � L, k � 1, one of the following 
onditions holds

1. (Th

1

) \ � � � \ (Th

k

) 6= ;.

2. There exists h 2 L su
h that h

i

� hT , i = 1; : : : ; k (and hen
e h

i

T � hT ).

Symmetri
 
onditions are true for left reversibility.

Proof: The �rst 
ondition is 
learly suÆ
ient. To see that it is ne
essary take h

1

; : : : ; h

k

2 L,

k � 3, and pro
eed by indu
tion. Assume that

(Th

1

) \ � � � \ (Th

k�1

) 6= ;

and take h in this interse
tion. Then Th � (Th

1

) \ � � � \ (Th

k�1

). By reversibility Th \ Th

k

6= ;,

so the lemma follows.

As to the se
ond 
ondition, right reversibility is equivalent to

�

h

1

T

�1

�

\ � � � \

�

h

k

T

�1

�

6= ;

for any �nite subset. Now h 2 L belongs to this interse
tion if and only if h

i

2 hT , i = 1; : : : ; k.

Hen
e the equivalen
e of the 
ondition follows. 2

Another known fa
t about reversibility is that 
ompa
t sets 
an be translated inside the re-

versible semigroups (
.f. [4℄, Lemma 3.37). We reprodu
e the proof here in order to emphasize

that the translation is done by an element of the semigroup and not of the group as stated in [4℄.

Lemma 2.2 Let T � L be an open semigroup whi
h is right [left℄ reversible. If K � L is 
ompa
t

then there exist g 2 T su
h that gK [Kg℄ is 
ontained in T .
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Proof: Suppose that T is right reversible. Then L = T

�1

T so that K �

S

g2T

g

�1

T . By


ompa
tness there are �nite g

1

; : : : ; g

k

2 T su
h that

K � g

�1

1

T [ � � � [ g

�1

k

T:

By the se
ond 
ondition in the previous lemma there exists g 2 L with g

�1

i

2 g

�1

T , i = 1; : : : ; k,

so that K � g

�1

T , that is, gK � T . Sin
e g

i

2 T , it follows that g 2 T . 2

2.4 Homotopy

We regard the n-th homotopy group �

n

(X; x

0

) of a spa
e based at x

0

2 X as the set of homotopy


lasses of pointed maps 
 : (S

n

; s

0

) ! (X; x

0

) where S

n

stands for the n sphere and s

0

is a base

point in S

n

, e.g., s

0

= (1; 0; : : : ; 0). The following fa
ts about the homotopy of semigroups will be

used extensively in the sequel.

Proposition 2.3 Suppose that S is 
onne
ted and 
ontains an exp-generated semigroup T with

intT 6= ;. Let i : intS ! S be the in
lusion map. Then the indu
ed homomorphism i

�

: �

n

(intS)!

�

n

(S) is an isomorphism.

Proof: Sin
e S is path 
onne
ted we 
an �x a base point g

0

2 int(S). Let 
 : (S

n

; s

0

)! (intS; g

0

)

be su
h that i

�

[
℄ = [i Æ 
℄ = 1 in �

n

(S). Then there exists a 
ontinuous map � : [0; 1℄� S

n

! S

su
h that

�(0; �) = 
(�); �(1; �) = g

0

for all � 2 S

n

. By the assumption on T , there exists a 
ontinuous 
urve � : [0; 1℄ ! S su
h that

�(0) = 1 and �(℄0; 1℄) � intT � intS (see [4℄, Theorem 3.8). De�ne 	 : I � S

n

! S by

	(t; �) = �(t; �)�(t(1 � t)):

Then 	 is a deformation of 
 to the 
onstant path in g

0

. Furthermore, im	 � intS be
ause intS is

a dense semigroup ideal of S and � (t (1� t)) 2 intS if t 6= 0; 1. Hen
e [
℄ = [g

0

℄ in intS, showing

that i

�

is inje
tive. On the other hand, pi
k [
℄ 2 �

n

(S) with 
 : (S

n

; s

0

)! (S; g

0

). Then

� : I � S

n

! S; (t; �) 7! �(t)
(�)

deforms the path 
 into a path, based at g

0

, whi
h lies entirely in intS. Hen
e [
℄ 2 im (i

�

),

implying that i

�

is surje
tive. 2

Lemma 2.4 Suppose that T � S is exp-generated. Let 
 : X ! S be a 
ontinuous map, with X

a topologi
al spa
e, and take h 2 T . Then h
 and 
h are homotopi
 to 
 in S.

Proof: Sin
e T is exp-generated, there exists a 
ontinuous path h

t

2 T � S, t 2 [0; u℄, su
h that

h

0

= 1 and h

u

= h. De�ne � : [0; u℄�X ! S by

� (t; x) = h

t


 (x) :

Clearly, � is 
ontinuous be
ause of the 
ontinuity of the produ
t map in G. Moreover, � (0; x) =


 (x) and � (u; x) = h
 (x) for all x 2 X . Sin
e � (t; x) 2 T � S for all (t; x) 2 [0; u℄ � X , it

follows that � is a homotopy between 
 and h
 in S. To see that 
h is homotopi
 to 
 just take

the homotopy 
 (x) h

t

. 2
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Lemma 2.5 With the same assumptions and notations as in the previous lemma, the maps �

n

(S; g)!

�

n

(S; hg), [
℄ 7! [h
℄ and �

n

(S; g)! �

n

(S; gh), [
℄ 7! [
h℄ are isomorphisms.

Proof: The left or right translation isomorphism 
oin
ide with the isomorphism given by the path

h

t

g or gh

t

, where as before h

t

is a path joining 1 to h in T (
.f. the proof of Theorem 7.2.3 in

Maunder [10℄). 2

For the rest of this subse
tion we digress from the main stream of the paper with the purpose of

dis
ussing homotopy and reversibility in homogeneous spa
es. It will emerge from this dis
ussion

that the orbits of S in the (Riemannian) symmetri
 spa
e asso
iated to G are 
ontra
tible. This

fa
t, although not used in the proof of the main result, reinfor
es it by showing that as happens

with G the topology of S is embodied in the 
ompa
t part of G.

Let H be a group, L � H a subgroup and T � H a subsemigroup. We say that T is reversible

modulo L in 
ase Tx \ Ty 6= ; for all x; y 2 H=L. Of 
ourse, a right reversible semigroup is in

parti
ular reversible modulo L = f1g. Also, T is reversible modulo L if and only if T

�1

Tx = H=L

for all x 2 H=L. Using this property and pro
eeding like in Lemma 2.2 it 
an proved { in the

topologi
al setting { an analogous of that lemma. Namely if we assume that T is open then for

a given 
ompa
t Q � H=L and x 2 H=L, there exists g 2 T su
h that gQ � Tx. Using this fa
t

we 
an prove the following generalization of Theorem 3.38 in [4℄. Although the proof is almost the

same we reprodu
e it for the sake of 
ompleteness.

Proposition 2.6 Let H be a Lie group and T � H an exp-generated semigroup with nonempty

interior. Suppose that T is reversible modulo L, with L a 
losed subgroup. Take x 2 H=L and


onsider the in
lusion i : Tx ! H=L. Then the indu
ed homomorphism i

�

: �

n

(Tx) ! �

n

(H=L)

is inje
tive.

Proof: Fix x

0

2 Tx and let 


0

: (S

n

; s

0

) ! (Tx; x

0

) be a 
y
le su
h that i

�

[


0

℄ = 1 in �

n

(H=L).

Then there exists a homotopy based at x

0

, � : I � S

n

! H=L su
h that � (0; �) = 


0

and

� (1; �) = x

0

. The image Q if � is 
ompa
t in H=L, hen
e there exists g 2 T su
h that gQ � Tx.

The map 	 (t; s) = g� (t; s) is a homotopy based at gx

0


arrying the 
y
le g


0

into gx

0

. Hen
e

[g

0




0

℄ = 1 in �

n

(Tx; gx

0

).

Now, we use the fa
t that T is exp-generated and pro
eed as in Lemma 2.5 to 
he
k that


 7! g
 de�nes an isomorphism between �

n

(Tx; x

0

) and �

n

(Tx; gx

0

). Implying that [


0

℄ = 1 in

�

n

(Tx; x

0

). 2

After the following lemma proved by Furstenberg [3℄, Lemma 3.2 (and its 
orollary), the above

proposition implies immediately that the orbits of Lie semigroups in Riemannian symmetri
 spa
es

are 
ontra
tible.

Lemma 2.7 Suppose that G is a non
ompa
t semi-simple Lie group and let G=K be the 
or-

responding symmetri
 spa
e, where K is a maximal 
ompa
t subgroup of G. Let T � G be a

semigroup with intT 6= ;. Then T is reversible modulo K.

Corollary 2.8 With the same notations as above let S � G be an exp-generated semigroup with

intS 6= ;. Then (intS)x is 
ontra
tible for any x 2 G=K.

Proof: It follows from the previous lemma that intS is reversible modulo K. Then Proposition

2.6 implies that the in
lusion i : (intS)x ! G=K is inje
tive. Now, G=K is di�eomorphi
 to an

Eu
lidean spa
e. Hen
e the homotopy groups (intS)x of are trivial. Being open in G=K, (intS)x

7



is a manifold and hen
e a CW-
omplex. Therefore by the Theorem of Whitehead it follows that

(intS)x is 
ontra
tible. 2

3 Invariant 
ontrol sets in G=AN

The homotopy groups of the semigroup S � G will be proved to be isomorphi
 to the homotopy

groups of the invariant 
ontrol sets of S in G=AN . Before going into the homotopy groups, we

dis
uss in this se
tion the geometry of these invariant 
ontrol sets.

We assume here that S is 
onne
ted. Also we put � = �(S), and let C

�

stand for the unique

invariant 
ontrol set of S in B

�

= G=P

�

. The set of transitivity of C

�

is denoted by C

0

�

. Put

C (B ) for the unique invariant 
ontrol set in the maximal 
ag manifold G=MAN . It is given by

C (B ) = �

�1

�

(C

�

), where �

�

: B ! B

�

is the 
anoni
al �bration. Also, its set of transitivity

is C (B )

0

= �

�1

�

�

C

0

�

�

. These inverse images are a
tually di�eomorphi
 to Cartesian produ
ts.

In fa
t, re
all that C

�

is 
ontained in some open Bruhat 
ell, say �, of B

�

. Sin
e the bundle

�

�

: B ! B

�

is trivial over �, it follows that �

�1

�

(�) � � � F

�

, where F

�

is the �ber P

�

=P .

Therefore C (B ) � C

�

� F

�

and C (B )

0

� C

0

�

� F

�

.

Now, we lift the invariant 
ontrol set C (B ) to G=AN . Consider the �bration

�

1

: G=AN �! G=MAN:

This is a prin
ipal bundle whose �ber is the 
ompa
t group M �MAN=AN . The proje
tion �

1

is

equivariant with respe
t to the a
tions of G on the homogenous spa
es G=AN and G=MAN , i.e.,

g Æ �

1

= �

1

Æ g for all g 2 G. Also, M has a natural right a
tion on G=AN , whi
h 
ommutes with

the left a
tion of G. The equivarian
e of �

1

implies that �

1

(C) is an S-i.
.s. in B if C � G=AN

is an invariant 
ontrol set. In other words the invariant 
ontrol sets of S in G=AN are 
ontained

in �

�1

1

(C (B )). Analogously, the set of transitivity C

0

of an invariant 
ontrol set is 
ontained in

�

�1

1

(C (B )

0

).

The assumption that S is 
onne
ted implies that its invariant 
ontrol sets are also 
onne
ted. In

parti
ular if C � G=AN is an S-i.
.s. then it is 
ontained in a 
onne
ted 
omponent of �

�1

1

(C (B )).

Its set of transitivity C

0

is also 
onne
ted and hen
e 
ontained in a 
omponent of �

�1

(C (B )

0

).

A
tually we have

Lemma 3.1 S a
ts transitively on any 
onne
ted 
omponent of �

�1

1

(C (B )

0

).

Proof: Consider the restri
tion of the prin
ipal bundle �

1

: G=AN ! G=MAN to the open set

C (B )

0

. Its stru
tural group is 
ompa
t, and S a
ts on it as a semigroup of automorphisms of the

bundle. Also, S a
ts transitively on the basis C (B )

0

. Hen
e the lemma follows from Proposition

3.9 in [2℄, whi
h asserts that a semigroup a
ting on a 
onne
ted prin
ipal bundle with 
ompa
t

�ber is transitive provided it is transitive on the base spa
e. 2

From this lemma we get the following 
hara
terization of the invariant 
ontrol sets of S in

G=MAN .

Proposition 3.2 Keep assuming that S is 
onne
ted. Denote as before by C

0

�

the set of transitivity

of the S-i.
.s. in G=P

�

, where � = �(S). Put � : G=AN ! G=P

�

for the 
anoni
al �bration. Let

C � G=AN be an S-i.
.s. Then C is a 
onne
ted 
omponent of �

�1

(C

�

) and C

0

is a 
onne
ted


omponent of �

�1

�

C

0

�

�

. Conversely, the 
losure in G=AN of a 
onne
ted 
omponent of �

�1

�

C

0

�

�

is an S-i.
.s. in G=AN .
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Proof: By the 
hoi
e of G=P

�

it follows that C (B )

0

= �

�1

�

�

C

0

�

�

where �

�

is the proje
tion

G=P ! G=P

�

. Also there exists an open Bruhat 
ell � � G=P

�

su
h that C

�

� �. The

restri
tion of � to � de�nes a trivial bundle. Sin
e C

�

is 
onne
ted and 
ontained in �, it follows

that the 
onne
ted 
omponents of �

�1

(C

�

) are 
ontained in the 
onne
ted 
omponents of �

�1

(�).

Analogously, the 
onne
ted 
omponents of �

�1

�

C

0

�

�

are 
ontained in the 
omponents of �

�1

(�).

This together with the fa
t that C

0

�

is dense in C

�

implies that the 
losure of a 
omponent of

�

�1

(C

0

) is a 
omponent of �

�1

(C

�

), so that the 
losures of two di�erent 
omponents of �

�1

�

C

0

�

�

are disjoint.

Now, � de
omposes as

G=AN ! G=MAN ! G=P

�

:

Sin
e the �ber of G=MAN is 
onne
ted, it follows that the 
onne
ted 
omponents of �

�1

�

C

0

�

�

are the 
omponents over C (B )

0

in the �bration G=AN ! G=MAN . Hen
e, the previous lemma

ensures that a 
onne
ted 
omponent of �

�1

(C

�

) is an invariant 
ontrol set of S. Furthermore,

this implies that any invariant 
ontrol set is su
h a 
omponent, be
ause their union is �

�1

(C

�

).

2

Note that the triviality of the bundle G=AN ! G=P

�

over C

�

means that �

�1

(C

�

) is dif-

feomorphi
 to C

�

� F where F = P

�

=AN is the �ber. Clearly, a 
onne
ted 
omponent of the

�ber is P

0

�

=AN where P

0

�

is the identity 
omponent of P

�

. The other 
omponents are obtained

similarly from the 
omponents of P

�

. These 
omponents are di�eomorphi
 to ea
h other, sin
e

they are inter
hanged by the right a
tion of M as follows by Lemma 1.2.4.5 in [21℄, whi
h ensures

that P

�

= MP

0

�

. Therefore the previous proposition together with the fa
t that C

�

is 
onne
ted

implies the

Corollary 3.3 With the assumption that S is 
onne
ted, any invariant 
ontrol set C � G=AN is

di�eomorphi
 to C

�

� P

0

�

=AN . Moreover, C

0

� C

0

�

� P

0

�

=AN .

In order to 
omplete the pi
ture we re
all that P

�

= M

�

(K)AN , where M

�

(K) is the


entralizer of a

�

in K (see [21℄, Theorem 1.2.4.8). We denote by K (�) the identity 
omponent of

M

�

(K). Then P

0

�

= K (�)AN , so that the �ber P

0

�

=AN is di�eomorphi
 to K (�). Therefore

there is following version of the above 
orollary whi
h we state for later referen
e.

Corollary 3.4 With the assumption that S is 
onne
ted, any invariant 
ontrol set C � G=AN is

di�eomorphi
 to C

�

�K (�). Moreover, C

0

� C

0

�

�K (�). Here � = �(S).

4 Isomorphism

As before S stands for a semigroup with nonempty interior in G. Let C be an invariant 
ontrol

set of S in G=AN and C

0

its set of transitivity. The purpose of this se
tion is to prove that the

homotopy groups of S and C

0

are isomorphi
. For the full proof it will be required that S is an

exp-generated semigroup (a
tually the weaker assumption that S admits a large exp-generated

semigroup is enough, see theorems 4.8 and 4.13 below). However, many proofs work in more

generality, so that we do not spe
ify in advan
e the 
onditions required for S, apart from having

nonempty interior.

The isomorphism will be realized by the evaluation map. Fix x 2 C

0

and denote by e

x

(or

simply by e) the map e : S ! C

0

given by e (g) = gx. It will be proved that the indu
ed

homomorphisms e

�

between the homotopy groups are isomorphisms.
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4.1 Surje
tivity

In view of Corollary 3.3, C

0

is di�eomorphi
 to C

0

�

� F

0

where F

0

= P

0

�

=AN . For the semigroups


onsidered here C

0

�

is shown to be 
ontra
tible, so that any 
y
le in C

0

is homotopi
 to one in F

0

.

The surje
tivity e

�

will be proved by showing the existen
e of a 
ross se
tion � : F ! intS for the

evaluation map.

In order to get su
h a 
ross se
tion some preliminary results are required. We start with the

following general statement.

Proposition 4.1 Let R � L be a 
losed normal subgroup of the Lie group L su
h that L is the

semi-dire
t produ
t L = B�

s

R. Take an open subsemigroup T � L and suppose that T=R = L=R

and T \R is left reversible. Then it is possible to lift any 
ompa
t subset Q � H=R inside T , that

is, there exists z 2 T \ R su
h that Q� fzg � T .

Proof: Sin
e T=R = L=R and T is open, there exists, for every x 2 Q, a neighborhood U

x

of x

in L=R and z

x

2 R su
h that U

x

� fz

x

g � T . There is a freedom in the 
hoi
e of z

x

. In fa
t, if

w 2 T \ R then (U

x

� fz

x

g)w � T and

(U

x

� fz

x

g)w = U

x

� fz

x

wg;

so that we 
an 
hoose any element in z

x

(T \ R) instead of z

x

.

Choose x

1

; : : : ; x

n

2 Q su
h that fU

x

i

g

i=1;:::;n

is a 
overing of Q. Sin
e U

x

� fz

x

(T \ R)g is


ontained in T , in order to 
on
lude the proof it is enough to 
he
k that there are w

1

; : : : ; w

n

2 T\R

su
h that z

x

1

w

1

= � � � = z

x

n

w

n

. Note that this is equivalent to

z

x

1

(T \R) \ � � � \ z

x

n

(T \R) 6= ;;

whi
h by Lemma 2.1 is equivalent to left reversibility of T \ R. 2

Now we apply this proposition to lift the �ber F inside intS. Fix x 2 C

0

and put y = � (x).

We 
an assume without loss of generality that AN is the isotropy subgroup at x and P

�

is the

isotropy of y. These assumptions imply that intS meets AN and P

�

. Take a de
omposition

P

�

=M

�

A

�

N

�

of P

�

(see [21℄, Theorem 1.2.4.8). The subgroup A

�

N

�

is 
losed and normal and

P

�

be
omes the semi-dire
t produ
t of M

�

by A

�

N

�

.

Let P

0

�

be the 
onne
ted 
omponent of the identity of P

�

. Then P

0

�

=M

0

�

A

�

N

�

where M

0

�

is

the identity 
omponent of M

�

. Sin
e P

�

has a �nite number of 
omponents and intS \P

�

6= ;, it

follows that intS meets P

0

�

as well.

Now, P

0

�

is the semi-dire
t produ
t of M

0

�

and A

�

N

�

, hen
e the previous proposition 
an be

applied to L = P

0

�

, R = A

�

N

�

and T = (intS) \ P

0

�

, as soon as we 
he
k that

1. T=A

�

N

�

= P

0

�

=A

�

N

�

, and

2. T \ A

�

N

�

= (intS) \ A

�

N

�

is left reversible.

The �rst of these equalities were proved in [20℄. Here is a sket
h of the proof: Sin
e �

�1

�

(C

�

) is

the invariant 
ontrol set in G=MAN , it follows that T is transitive on the �ber �

�1

�

(y). However,

A

�

N

�

�xes every point of this �ber, so that the proje
tion pr (T ) of T into M

0

�

is transitive

on �

�1

�

(y). However this �ber is the maximal 
ag manifold of the 
onne
ted semi-simple group

M

0

�

. So that the transitivity of pr (T ) on the �ber implies that pr (T ) = M

0

�

. This means that

T=A

�

N

�

= P

�

=A

0

�

N

�

, showing that (1) holds.
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For the se
ond point observe that T \A

�

N

�

is an open subsemigroup of A

�

N

�

, whi
h is not

empty be
ause T proje
ts onto P

0

�

=A

�

N

�

. Now we use the following lemma proved by Ruppert

[15℄, Lemma 4.6:

Lemma 4.2 Suppose that R is a solvable Lie group and that U � R is an open semigroup that


ontains an element expX su
h that Re� � 0 for all eigenvalues � of ad (X). Then U is left

reversible.

The semigroup T \ A

�

N

�

ful�lls the requirements of this lemma. To 
he
k this re
all that

through the exponential map A

�

N

�

is di�eomorphi
 to a

�

+ n

�

. Take h 2 T \ A

�

N

�

and write

h = exp (H + Y ), H 2 a

�

, Y 2 n

�

. Sin
e T \ A

�

N

�

is open, we 
an assume that H is regular in

a

�

, in the sense that the no root in � n h�i annihilates in H . Then it is well known (see e.g. [21,

Prop. 1.2.4.10℄) that the map

X 7! exp (ad (X))H �H

is a di�eomorphism of n

�

into itself. This implies that there exists n 2 N

�

su
h that Ad (n)H =

H+Y . Fixing this n let us 
hange our base point x by nx, whi
h is still in C

0

, be
ause C

0


ontains

the �ber �

�1

�

(y). Then we get a new de
omposition of P

�

su
h that the 
orresponding ve
tor

group 
ontains h = exp (H + Y ). In other words, we 
an assume without loss of generality that

there exists h 2 T \A

�

, h = expH with H regular in a

�

. Now we 
an 
he
k that the eigenvalues

of ad (H) in n

�

are � 0. These eigenvalues are 0 and � (H) with � =2 h�i. In 
ase � (H) < 0 for

some �, there exists a small enough Y 2 n

�

�

su
h that exp (ad (tH))Y !1 when t! +1. This

implies that h

k

exp (Y ) y a

umulates outside N

�

�

y. However y 2 C

0

�

so that exp (Y ) y 2 C

0

�

if Y

is small enough, 
ontradi
ting the fa
t that � = �(S), i.e., that C

�

is a 
ompa
t subset of the

open Bruhat 
ell N

�

�

y.

Therefore we have proved that S \ P

�

satis�es the 
onditions of Proposition 4.1, proving the

following statement whi
h holds for arbitrary S with intS 6= ; and � = �(S).

Proposition 4.3 Any 
ompa
t subset Q � M

�


an be lifted to (intS) \ P

�

, that is, there exists

z 2 S \ A

�

N

�

su
h that Qz � (intS) \ P

�

.

We have also the de
omposition P

�

=M

�

AN , so that P

�

=AN identi�es with M

�

. From this

fa
t and the previous proposition it be
omes easy to get a 
ross se
tion of the evaluation map.

Theorem 4.4 Suppose that intS 6= ; and put � = �(S). Let C be one of its invariant 
ontrol

sets in G=AN , �x x 2 C

0

and 
onsider the evaluation map e : S ! C

0

, e (g) = gx. Denote by F

the �ber �

�1

(� (x)), where � : G=AN ! G=P

�

is the 
anoni
al proje
tion. Then there exists a


ontinuous 
ross se
tion � : F ! intS \ P

�

, satisfying e� = 1

F

.

Proof: Assume without loss of generality that AN is the isotropy subgroup at x. For any x

1

2 F

there exists k 2 M

�

(K) su
h that kx = x

1

. The assignment � : x

1

7! k settles a di�eomorphism

between F and M

�

(K), be
ause F = P

�

=AN � M

�

(K). Now, M

�

(K) is a 
ompa
t subset of

M

�

. Hen
e by the above proposition there exists z 2 AN su
h that M

�

(K) z � (intS) \ P

�

.

Then � (x

1

) = � (x

1

) z is a well de�ned map F ! (intS) \ P

�

. It is a se
tion of e. In fa
t

e (� (x

1

)) = � (x

1

) zx = x

1

be
ause zx = x and � (x

1

)x = x

1

, by de�nition of �. 2

In parti
ular, this theorem ensures the lifting of any 
onne
ted 
omponent F

0

of F . In 
ase S

is 
onne
ted C

0

� C

0

�

� F

0

, so that we get the following 
onsequen
e.
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Corollary 4.5 Suppose that C

0

�

is 
ontra
tible. Then the homomorphisms e

�

between the homo-

topy groups indu
ed by e : S ! C

0

and e : intS ! C

0

are onto.

Proof: Sin
e C

0

� C

0

�

� F , any 
y
le in C

0

is homotopi
 to a 
y
le in F . By using the se
tion �

we see that any 
y
le in F is in the image of e, showing that e

�

is onto. 2

For an exp-generated semigroup its invariant 
ontrol set on the right 
ag manifold is 
ontra
tible

to a point as shows the following lemma proved by Mittenhuber [11℄, Lemma 2.11. Sin
e the

statement of [11℄ is restri
ted to rank one groups we outline the proof here.

Lemma 4.6 Suppose that T is an exp-generated semigroup with intT 6= ;. Put � = �(T ) and let

C

�

be its invariant 
ontrol set in G=P

�

and C

0

�

its interior. Then C

�

and C

0

�

are 
ontra
tible.

Proof: There exists a split-regular h 2 intT su
h that its attra
tor, say x 2 G=P

�

, belongs to

C

0

, and C is 
ontained in the stable manifold st (h) of h. This implies that h

k

y ! x for all

y 2 C

�

. By 
ompa
tness of C

�

, for any neighborhood U of x there exists k

0

su
h that h

k

C

�

� U

if k � k

0

. In parti
ular, we 
an 
hoose U 
ontra
tible to x, that is, there exists a 
ontinuous

map � : [0; 1℄ � U ! U su
h that � (0; �) = 1

U

, � (1; �) = x. On the other hand sin
e T is

exp-generated, there exists a 
ontinuous 
urve g

t

2 T , t 2 [0; u℄, with g

0

= 1 and g

u

= h

k

. Then

the map �

1

: [0; u℄�C

�

! C

�

, �

1

(t; y) = g

t

y 
ontra
ts C

�

into U . Joining together these maps,

we get a 
ontra
tion of C

�

to x. 2

Therefore for exp-generated semigroups the evaluation map indu
es surje
tive maps between

the homotopy groups. Finally we note that for many examples of 
ompression semigroups S itself

may not be generated by a subset of the Lie algebra, but its invariant 
ontrol set C

�

is also the

invariant 
ontrol set of an exp-generated semigroup so Corollary 4.5 applies to S, ensuring that e

�

is onto. Having these examples in mind we introdu
e the following

De�nition 4.7 Let T

1

� T

2

be semigroups with nonempty interior. Given a 
ag manifold B

�

=

G=P

�

, we say that T

1

is �-large (or B

�

-large) in T

2

provided the invariant 
ontrol set for both T

1

and T

2

on B

�


oin
ide. Also, T

1

is large in T

2

in 
ase T

1

is �-large for every �.

Sin
e the invariant 
ontrol sets of a semigroup are obtained by proje
ting the invariant 
ontrol

set on the maximal 
ag manifold B (see [20℄), it follows that T

1

is large in T

2

if and only if it is

B -large in T

2

. Also T

1

is large in T

2

in 
ase � (T

1

) = � (T

2

) = � and T

1

is �-large in T

2

. In

fa
t in this 
ase the invariant 
ontrol set on B for both semigroups is the inverse image, under the

proje
tion B ! B

�

, of the 
ommon invariant 
ontrol set on B

�

.

Now, suppose that S

1

� S are 
onne
ted semigroups with intS

1

6= ; and S

1

large in S. Then

the invariant 
ontrol sets in G=AN for both semigroups are the 
onne
ted 
omponents of �

�1

(C

�

)

where C

�

is the i.
.s. on G=P

�

. So in G=AN the invariant 
ontrol sets also 
oin
ide. Therefore

taking into a

ount the existen
e of the se
tion � in Theorem 4.4, we get

Theorem 4.8 Suppose that S is 
onne
ted and 
ontains an exp-generated semigroup T whi
h is

large in S. Let C be an invariant 
ontrol set in G=AN . Then the homomorphism e

�

: �

n

(S) !

�

n

(C

0

) indu
ed by the evaluation map e : S ! C

0

, e (g) = gx, x 2 C

0

, is surje
tive. The same

statement holds with the map e : intS ! C

0

.
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4.2 Inje
tivity

For the proof of the inje
tivity of the evaluation map we assume that S is 
onne
ted and 
ontains

a �-large exp-generated semigroup T , where � = �(S).

The proof goes as follows: Fix basi
 points x 2 C

0

and g

0

2 intS su
h that g

0

x = x. If


 : (S

n

; s

0

) ! (S; g

0

) satis�es e

�

[
℄ = [e Æ 
℄ = 1, we wish to prove that [
℄ = 1, that is, there is a

homotopy, based at g

0

, 
arrying 
 into g

0

. We do not 
onstru
t su
h homotopy dire
tly. Instead,

we build homotopies inside S 
arrying 
 su

essively into smaller groups until we rea
h A

�

N

�

.

Using reversibility properties of S \A

�

N

�

, it follows then that there exists a (unbased) homotopy

� : [0; 1℄ � S

n

! S between 
 and a 
onstant 
y
le g

1

. Then a standard argument shows that

[
℄ = 1. In fa
t, from � we have the path, say �, given by the restri
tion of � to [0; 1℄ � fs

0

g.

This path settles an isomorphism �

�

: �

n

(S; g

0

) ! �

n

(S; g

1

), where g

1

= �(1; s

0

), su
h that

�

�

[
℄ = [g

1

℄ = 1 (see e.g. [10℄, Theorem 7.2.3). This shows the triviality of ker e

�

.

We start with the following lemma, whi
h is used in the �nal step of the proof. It is patterned

after Proposition 2.6. Here, however, we 
an not assume that the semigroup is exp-generated,

be
ause the lemma will be applied to S \ A

�

N

�

. Hen
e we do not get inje
tivity of the homo-

morphism indu
ed by in
lusion but only that any trivial 
y
le in the group 
an be translated into

a 
y
le whi
h is trivial inside the semigroup.

Lemma 4.9 Let L be a 
onne
ted group and T � L an open and 
onne
ted subsemigroup. Let


 : (S

n

; s

0

) ! (T; g

0

) be a 
y
le in T su
h that i

�

[
℄ = 1, where i : T ,! L is the in
lusion.

Suppose that T is right [respe
tively left℄ reversible. Then there exists g 2 T su
h that the 
y
le g


[respe
tively. 
g℄ is 
ontra
tible in T .

Proof: Consider the 
ase where T is right reversible. By assumption there exists a homotopy

� : [0; 1℄� S

n

! L su
h that

�(0; �) = 
(�); �(1; �) = g

0

for all � 2 S

n

. Clearly, �([0; 1℄�S

n

) is a 
ompa
t subset of L. Hen
e, the right reversibility of T im-

plies that there exists g 2 T su
h that g�([0; 1℄�S

n

) � T . Therefore g� is a homotopy 
arrying g


into gg

0

as 
laimed. The proof in the left reversible 
ase follows by taking the inverse semigroup. 2

We prove next in di�erent steps that any 
y
le 
 in S is homotopi
 within S to a 
y
le in

S \ A

�

N

�

.

Lemma 4.10 Suppose that S 
ontains a �-large exp-generated semigroup T with intT 6= ;, where

� = �(S). Fix y 2 C

0

�

and assume without loss of generality that P

�

is the isotropy at y. Then

any 
y
le 
 : (S

n

; s

0

)! (S; g

0

) with g

0

y = y is (unbased) homotopi
 to a 
y
le � : S

n

! P

�

.

Proof: By assumption there exists a split regular h 2 intT whi
h �xes y, so that h

k

C

�


ontra
ts

to y as k ! +1. This implies that for any neighborhood U of y there exists k > 0 su
h that

h

k

C

�

� U . Sin
e 
 (S

n

) y � C

�

and h

k


 is homotopi
 to 
 (by Lemma 2.4), we 
an assume

without loss of generality that 
 (S

n

) y � U .

Now, take g 2 intT

�1

su
h that gy = y. We 
an 
hoose U to be di�eomorphi
 to an open

ball in Eu
lidean spa
e and su
h that if we write the bundle G ! G=P

�

lo
ally as U � P

�

then g 2 U �W � intT

�1

, for some open W � P

�

. Under this identi�
ation U

0

= fgg � U is an

Eu
lidean ball 
ontained in intT

�1

. Then there exits a 
ontinuous 
ontra
tion � : I�U

0

! U

0

su
h

that � (0; l) = (g; l) and � (1; l) = (g; g), for all l 2 U

0

. De�ne in U

0

the 
y
le Æ (z) = (g; 
 (z) y).
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For (t; z) 2 I � S

n

put

� (t; z) = � (t; Æ (z))

�1


 (z) :

Note that � is a 
ontinuous map de�ned in [0; 1℄� S

n

assuming its values in S be
ause U

0

� S

�1

and 
 (z) 2 S. Furthermore � (0; z) = Æ (z)

�1


 (z) and � (1; z) = g

�1


 (z), so that the 
y
les

Æ (z)

�1


 (z) and g

�1


 (z) are homotopi
 in S. Sin
e g

�1

2 T and T is exp-generated, it follows

by Lemma 2.4, that g

�1


 (z) and 
 (z) are homotopi
 in S. Now, Æ (z)

�1


 (z) y = y from the

de�nition of Æ (z). Therefore Æ (z)

�1


 (z) is 
ontained in P

�


on
luding the proof of the lemma. 2

Corollary 4.11 Let 
 and � be as in the above lemma and suppose that e

�

[
℄ = 1. Then e (�) is

homotopi
 to a point in C

0

.

Proof: In fa
t, applying e to the homotopy between 
 and � we get a homotopy between e (
)

and e (�). Sin
e e (
) is homotopi
 to a point, this holds with e (�) as well. 2

Lemma 4.12 Let 
 : S

n

! S \ P

0

�

be a 
y
le with 
 (s

0

) = g

1

2 A

�

N

�

. Assume that e

�

[
℄ = 1.

Then 
 is homotopi
 in S to a 
y
le � 
ontained in A

�

N

�

.

Proof: Re
all that P

0

�

= M

0

�

A

�

N

�

and the a
tion of P

0

�

on the �ber �

�1

�

(y) is equivalent to

the a
tion on P

0

�

=AN = K (�) = M

0

�

=A (�)N (�). Therefore to say that e

�

[
℄ = 1 means that

the proje
tion of 
 in K (�) is homotopi
 to a point in K (�). Now, M

0

�

= K (�)A (�)N (�)

is an Iwasawa de
omposition of the semi-simple group M

0

�

. Sin
e A (�)N (�) is di�eomorphi


to an Eu
lidean spa
e, it follows that the proje
tion of 
 into M

0

�

, through the de
omposition

P

0

�

= M

0

�

A

�

N

�

is homotopi
 to a point. Denote by Æ the proje
ted 
y
le. Then Æ (s

0

) = 1, and

Æ (�)

�1

is also homotopi
 to 1. Let � : I � S

n

! M

0

�

be a homotopy su
h that � (0; �) = Æ (�)

�1

and � (1; �) = 1, for all � 2 S

n

. The subset � (I � S

n

) is 
ompa
t in M

0

�

. Hen
e by Proposition

4.3, there exists z 2 S \A

�

N

�

su
h that � (I � S

n

) z � S \ P

0

�

. Put

� (t; �) = 
 (�) � (t; �) z:

Then � (t; �) 2 S \ P

0

�

, and is a homotopy between 
 (�) Æ

�1

(�) z and 
 (�) z. Sin
e 
 (�) z is

homotopi
 to 
 (�) and 
 (�) Æ

�1

(�) z 2 A

�

\ S, for all � , the lemma follows. 2

We 
an now prove the inje
tivity of the evaluation map.

Theorem 4.13 Assume that S is 
onne
ted and 
ontains a large exp-generated semigroup T with

nonempty interior. As before let C be an S-i.
.s. in G=AN and C

0

its interior. Then the homo-

morphism e

�

: �

n

(S) ! �

n

(C

0

) indu
ed by a evaluation map e : S ! C

0

, e (g) = gx, x 2 C

0

, is

inje
tive. The same statement is true with e de�ned in intS instead of S.

Proof: Observe �rst that sin
e T is large in S, we 
an assume without loss of generality that

(intT ) \ A

�

N

�

6= ;. Now, by the Lemma 4.12 any 
y
le in S proje
ting to a 
ontra
tible 
y
le

in C

0

is homotopi
 within S to a 
y
le 
 in (intS) \ A

�

N

�

. By Lemma 4.2 (and the dis
ussion

pre
eding it), (intT ) \ A

�

N

�

is left reversible in A

�

N

�

. Hen
e by Lemma 4.9 above, it follows

that there exists g 2 intT su
h that 
g is homotopi
 to a point within T and hen
e inside S. Using

Lemma 2.4, we 
on
lude that 
 and 
g are homotopi
 in S.

We have showed that any 
y
le � in S su
h that e (�) is 
ontra
tible in C

0

is (unbased) ho-

motopi
 to a point in S. Therefore, if we reprodu
e the standard argument mentioned at the

beginning of this subse
tion we 
on
lude that [�℄ = 1, showing that e

�

is inje
tive. 2
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4.3 Homotopy equivalen
e

So far we have proved that the evaluation maps e : S ! C

0

and e : intS ! C

0

indu
e isomorphisms

between the homotopy groups in 
ase S 
ontains a � (S)-large exp-generated semigroup. This

implies that the homotopy groups of S and intS are isomorphi
 to the homotopy groups of the


ompa
t group K (� (S)) � F

0

. In other words, e is a weak homotopy equivalen
e.

Now, intS is an open submanifold of G, and hen
e a CW-
omplex. Analogously, C

0

is a CW-


omplex, so that e is in fa
t a homotopy equivalen
e, whi
h means that there exists f : C

0

! intS

su
h that both ef and fe are homotopi
 to the identity maps, that is f is a homotopy inverse of e.

We 
ontinue to assume that S admits a �-large, � = � (S), exp-generated semigroup. Under

this assumption we show next that a homotopy inverse of e : intS ! C

0

is furnished by the 
ross

se
tion � : F

0

! intS 
onstru
ted in Theorem 4.4. Re
all that C

0

= C

0

�

� F

0

and that C

0

�

is


ontra
tible to a point. Denote by p the proje
tion C

0

onto F

0

.

Lemma 4.14 �p : C

0

! intS is a homotopy inverse of e.

Proof: Let f be a homotopy inverse of e : intS ! C

0

. We 
laim that f is homotopi
 to �p.

Note that sin
e C

0

�

is 
ontra
tible to a point, there exists a homotopy � : I � C

0

! C

0

su
h that

� (0; x) = x and � (1; x) = p (x), that is, p is homotopi
 to the identity map i of C

0

. Denote by

[X;Y ℄ the set of homotopy 
lasses of maps X ! Y . Then the indu
ed map

e

�

: [C

0

; intS℄ �! [C

0

; C

0

℄

is inje
tive (see [10℄, Corollary 7.5.3). Now, e

�

[f ℄ = [ef ℄ = [i℄ and e

�

[�p℄ = [e�p℄ = [p℄. Sin
e

[i℄ = [p℄, it follows that [�p℄ = [f ℄, that is, f ' �p, as 
laimed. Therefore �p is a homotopy inverse

of e as well. 2

From this homotopy inverse of e, it be
omes easy to get K (�) (or rather a 
oset of it) as a

deformation retra
t of intS. In fa
t, re
all the 
onstru
tion of the 
ross se
tion � in Theorem 4.4:

Let � : F

0

! K (�) be the di�eomorphism given by the requirement � (x) = kx

0

, where x

0

is the

base point. Then � is given by � (x) = � (x) z where z 2 P

�

is su
h that the 
oset K (�) z � intS.

In parti
ular, we have that � (gx

0

) = g for any g 2 K (�) z. This means that �pe : intS ! K (�) z

satis�es �pe (g) = g for all g 2 K (�) z, that is, �pe is a retra
t of intS. Sin
e �pe is homotopi


to the identity map, we a
tually get that K (�) z is a deformation retra
t of intS. Note that in

this 
onstru
tion we 
an take the se
tion � taking values in any 
oset K (�) z 
ontained in intS.

Therefore we have

Theorem 4.15 Under the assumption that S admits a large exp-generated semigroup with nonempty

interior, there exists z 2 intS \ P

�

su
h that K (�) z � intS. Furthermore for any z satisfying

this 
ondition, K (�) z is a deformation retra
t of intS.

5 Remarks

5.1 Deformation retra
t of S

The dis
ussion leading to Theorem 4.15 was restri
ted to intS in order to use the fa
t that it is an

open submanifold and hen
e a CW-
omplex. Despite that the deformation retra
t property for S

still holds. To see this let T � S be a large exp-generated semigroup with nonempty interior. Take

g 2 intT and let g

t

2 T be a 
urve su
h that g

0

= 1 and g

1

= g. Then Sg � intS and S is deformed
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into Sg by g

t

. By Theorem 4.15, there is a deformation retra
t r = �pe of intS into the 
oset

K (�) zg, where z is su
h that K (�) z � intS. Therefore if we 
ompose r with the left translation

L

g

we get a map rL

g

of S into K (�) zg, whi
h is not a retra
t. However it maps y 2 K (�) z into

yg, be
ause r (yg) = yg. It follows that r

0

= L

g

�1
rL

g

maps S into K (�) z and satis�es r

0

(y) = y

for all y 2 K (�) z, that is, r

0

is a retra
t of S into K (�) z. Clearly L

g

�1

t

deforms K (�) zg into

K (�) z within intS, so that r

0

is indeed a deformation retra
t of S into K (�) z.

5.2 Image under the in
lusion map

As showed in [12℄ (see also [4℄, Chapter 3), the knowledge of the image of the fundamental group

of S under the in
lusion map S ,! G tells when S 
an be embedded in a given 
overing group of

G. As a 
onsequen
e of Theorem 4.15 this image is des
ribed by the in
lusion of the subgroup

K (�) in G. In fa
t the following statement holds for all the homotopy groups.

Proposition 5.1 Let the assumptions and notations be as in Theorem 4.15. Then the image

i

�

�

n

(S) in �

n

(G) 
oin
ides with the image j

�

�

n

(K (�)) where j : K (�)! G is the in
lusion.

Proof: By Proposition 2.3, the homomorphism indu
ed by the in
lusion intS ,! S is an iso-

morphism. Hen
e it is enough to prove the 
laim with intS in pla
e of S. Sin
e K (�) z is a

deformation retra
t of intS, it follows that the in
lusion K (�) z ,! intS indu
es an isomorphism.

Hen
e i

�

�

n

(S) is the image of the homomorphism indu
ed by K (�) z ,! G. By right translation

this image 
oin
ides with j

�

�

n

(K (�)). 2

5.3 Relative homotopy

From the identi�
ation of the homotopy groups of S with those of K (�) it follows also an identi-

�
ation of the relative homotopy groups. To see this, 
onsider the following diagram

� � �

-

�

n+1

(Kz;K(�)z)

-

�

�

�

n

(K(�)z)

-

�

n

(Kz)

-

�

n

(Kz;K(�)z)

-

� � �

� � �

-

�

n+1

(G;S)

-

�

�

�

n

(S)

-

�

n

(G)

-

�

n

(G;S)

-

� � �

?

Æ

�

?

Æ

�

?

Æ

�

?

involving the two exa
t homotopy sequen
es of the pairs (Kz;K(�)z) and (G;S). Here Æ stand for

the in
lusion maps and z 2 intS is su
h thatK (�) z � intS. This ladder is a 
ommutative diagram

(see e.g. [10℄, Theorem 7.2.18). Joining this with the fa
t that �

n

(K(�)z) � �

n

(S) for all n, it

follows by a standard diagram 
hasing that Æ

�

: �

n

(Kz;K (�) z) ! �

n

(G;S) is an isomorphism.

Clearly �

n

(Kz;K (�) z) is isomorphi
 to �

n

(K;K (�)) under right translation. Hen
e we have

Proposition 5.2 The relative homotopy groups �

n

(G;S) are isomorphi
 to �

n

(K;K (�)).

5.4 Deforming two semigroups

Two semigroups S

1

and S

2

of the same type �(S

1

) = �(S

2

) = � have the same homotopy groups.

A
tually they 
an be deformed one into another in G. In fa
t, there exists z

1

2 intS

1

\ P

�

su
h

that K(�)z

1

is a deformation retra
t of intS

1

. Analogous K(�)z

2

is deformation retra
t of intS

2
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for some z

2

2 intS

2

\ P

�

. Clearly K(�)z

1


an be deformed into K (�) z

2

in G. Composing these

deformations one get a deformation of intS

1

into intS

2

.

6 Examples

6.1 Positive matri
es

Let S = Sl

+

(n;R) be the semigroup of determinant one matri
es having nonnegative entries. This

is the 
ompression semigroup of the positive orthant R

n

+

in R

n

:

R

n

+

= f(x

1

; : : : ; x

n

) : x

i

� 0g:

It turns out that the type of Sl

+

(n;R) is the proje
tive spa
e P

n�1

, and the invariant 
ontrol in

P

n�1

is the set [R

n

+

℄ of lines 
ontained in R

n

+

. In our previous notation, C

�

= [R

n

+

℄.

The semigroup Sl

+

(n;R) is 
losed but not a Lie semigroup. This 
an be easily seen by the fa
t

that its unit group H (S) = S \ S

�1

is not 
onne
ted. In fa
t, H (S) is the semi-dire
t produ
t

P �D where P [respe
tively D℄ is the group of determinant one permutation matri
es [respe
tively

diagonal matri
es with positive entries℄. However, it is well known that the unit group of a Lie

semigroup is 
onne
ted (see Neeb [13℄, Proposition III.2). On the other hand, put

L (S) = fX 2 sl (n;R) : exp (tX) 2 Sl

+

(n; :R) for all t � 0g

for the Lie wedge of Sl

+

(n;R). One 
he
ks easily that L (S) = fX = (x

ij

) : x

ij

� 0; i 6= jg. Put

S

inf

= hexpL (S)i for the 
orresponding exp-generated semigroup. Sin
e L (S) generates sl (n;R),

S

inf

has nonempty interior in Sl (n;R). Furthermore, the invariant 
ontrol set of S

inf

in P

n�1

is

also C

�

. This 
an be seen by 
onsidering matri
es of the form

H = diagfn� 1;�1; : : : ;�1g

with respe
t to a basis ff

1

; : : : ; f

n

g su
h that f

1

2 R

n

+

and spanff

2

; : : : ; f

n

g \ R

n

+

= 0. It 
an

be shown that H 2 L (S) (see [16℄), so that any x 2 C

�

is the attra
tor of some element of S

inf

,

implying that C

�

is the invariant 
ontrol set of S

inf

, as well. In 
ase f

1

2 int

�

R

n

+

�

, H 2 int (L (S)),

so that C

0

�

= int (C

�

).

Therefore, S = Sl

+

(n;R) 
ontains a � (S)-large exp-generated semigroup. Now, it was proved

in [16℄ that S is 
onne
ted. Hen
e the isomorphism theorem holds for Sl

+

(n;R). The subgroup

P

�


an be taken here to be the group of matri
es of the form

�

� �

0 Q

�

with � 2 R, Q an (n� 1) � (n� 1) matrix and � detQ = 1. For the identity 
omponent P

0

�

one

must take �; detQ > 0. The 
orresponding 
hoi
e of AN is the group of upper triangular matri
es

with positive entries on the diagonal. Hen
e, P

0

�

=AN is di�eomorphi
 to SO (n� 1). It follows

that the homotopy groups of Sl

+

(n;R) are isomorphi
 to the homotopy groups of SO (n� 1).

These fa
ts extend to the 
ompression semigroup of a 
one in R

n

. Let W � R be a pointed

and generating 
one and form the semigroup

S

W

= fg 2 Sl (n;R) : gW �Wg:

It was proved in [16℄ that S

W

is 
onne
ted. Again the type of S

W

is the proje
tive spa
e, and

similar to the proof for Sl

+

(n;R), the semigroup generated by L (S

W

) is large in S

W

. Hen
e the

homotopy type of S

W

is also SO (n� 1).
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6.2 Totally positive matri
es

Let T � Sl (n;R) be the semigroup of totally positive matri
es, that is, of matri
es su
h that all

its minors are nonnegative. It is well known that T is a Lie semigroup (see Ando [1℄, Theorem

3.5 and Corollary 3.6). The type of T is the maximal 
ag manifold. This 
an be seen by di�erent

ways. First by [1℄, Theorem 6.2, any g 2 intT has real and di�erent eigenvalues. Hen
e by [20℄,

Corollary 4.4, the type of T is the empty set, that is the maximal 
ag manifold. Alternatively one


an 
onsider the semigroups T

k

of matri
es having nonnegative k-minors. The type of T

k

is the

Grassmannian Gr

k

(n) of k-dimensional subspa
es (see [18℄). Clearly T = T

1

\ � � � \T

n�1

. Arguing

with the paraboli
 subgroups the Weyl group asso
iated to the type of the semigroups we get easily

the type of T .

It follows that the homotopy type of T is the 
onne
ted 
omponent of MAN=AN . Sin
e M is

dis
rete, the homotopy groups of T are trivial, that is, T is 
ontra
tible.

There exists a generalization of the semigroup of totally positive matri
es to semi-simple groups

whose Lie algebras are normal real forms of the 
omplex simple Lie algebras (see Lusztig [9℄, and

referen
es therein). Again the type of any su
h a semigroup is the maximal 
ag manifold, implying

the triviality of their homotopy groups, a fa
t already proved by Lusztig by another means (see

[9℄, Se
tion 3).

6.3 Rank one groups

In 
ase G has real rank one there exists just one 
lass of paraboli
 subgroups and hen
e just

one 
ag manifold G=MAN . The proper semigroups with nonempty interior in G have all the

same type, namely � = ;. The subgroup K (�) is the identity 
omponent of MAN=AN , that is,

K (�) =M

0

so that every semigroup S in G admitting a large exp-generated semigroup have the

same homotopy groups, and they are isomorphi
 to the homotopy groups of M

0

. Moreover, intS


an be 
ontinuously deformed into M

0

.

The subgroup M

0

is well known for ea
h of the rank one groups. For instan
e if G = Sl (2;R)

then M

0

= f1g hen
e the homotopy groups of S are trivial, and intS is 
ontra
tible. On the

other hand let G = SO (1; p)

0

, the identity 
omponent of a real hyperboli
 group. In this 
ase

M

0

= SO(p), so that this is the homotopy type of the Lie semigroups in SO (1; p).

6.4 Ol'shanski�� semigroups

The isomorphism theorem holds trivially for the group G itself. In this 
ase � (G) = � and the


ag manifold G=P

�(G)

degenerates to a point as P

�(G)

= G. The subgroup K (�) is the whole K,

whi
h by means of the Iwasawa de
omposition G = KAN , is a deformation retra
t of G.

In this example we dis
uss the 
lass of Ol'shanski�� semigroups where su
h polar de
omposition

is also available, so that the homotopy groups 
an be read o� dire
tly from the de
omposition,

illustrating the isomorphism theorem. We refer to Lawson [8℄ for detailed dis
ussions about these

semigroups and their de
ompositions.

Let (g; �) be a simple symmetri
 Lie algebra, where � is an involutive automorphism of g. put

g

+

[respe
tively g

�

℄ for the subalgebra [respe
tively subspa
e℄ of �xed points of � [respe
tively

�1 eigenve
tors℄. There is the dire
t sum g = g

+

� g

�

and the bra
ket relations [g

"

; g

Æ

℄ = g

"Æ

,

"; Æ = �. Assume that there is wedge W � g

�

1. g

�

=W �W ,

2. W is invariant under the adjoint representation of g

+

and

18



3. ad (X) has real spe
trum for all X 2W .

Let G be a Lie group with Lie algebra g and denote by H the 
onne
ted subgroup with Lie

algebra g

+

. Then H is 
losed and the subset S = (expW )H is a 
losed semigroup in G having

nonempty interior. Furthermore, the map W �H ! S, (X;h) 7! (expX)h is a di�eomorphism

and S is a Lie semigroup (see [8℄, Theorem 3.4).

Clearly, W is 
ontra
tible, so that H be
omes a deformation retra
t of S.

In order to re
ognize the topology of H in terms of paraboli
 subgroups of G 
hoose a � -

invariant Cartan de
omposition g = k� s so that g

�

= (g

�

\ k)� (g

�

\ s) = k

�

� s

�

. The algebra

g

+

is redu
tive and g

+

= k

+

� s

+

is a Cartan de
omposition. The Lie algebra of K (H) = H \K

is k

+

and H = K (H) exp (s

+

) is a global Cartan de
omposition of H . Sin
e H is assumed to

be 
onne
ted, K (H) is 
onne
ted. Also, K and K (H) is 
ompa
t if G has �nite 
enter. From

the global Cartan de
omposition of H it follows that H , and hen
e S, is homotopy equivalent to

K (H).

Now, the existen
e of the invariant 
one W � g

�

implies that the symmetri
 Lie algebra is

of the regular type. This means that the 
entralizer z (l) of the subalgebra l = k

+

� s

�

meets

W \ s

�

nontrivially. The assumption that g is simple implies furthermore that 
 = z (l) \ s

�

is

one-dimensional and l turns out to be the 
entralizer of 
 in g (see Hilgert and Neeb [5℄ Theorem

V.I and Neeb [14℄, Theorem I.20(3) and Proposition IV.1). Sin
e dim 
 = 1 there exists a maximal

abelian a � s su
h that 
 � a. We 
an 
hoose a Weyl 
hamber a

+


ontaining W \ 
 in its 
losure.

Denote by � the simple system of roots de�ned by a

+

and let � (
) � � be the set of simple roots

annihilating on 
. Using again that dim 
 = 1, it follows that � (
) is maximal in �, that is, its


omplementary is a singleton. Hen
e P

�(
)

is a maximal paraboli
 subgroup, i.e., B

�(
)

is minimal.

It was proved in [19℄ that � (S) = � (
). We outline the proof with an approa
h slightly

di�erent from [19℄: Note that l is the redu
tive 
omponent of the paraboli
 subalgebra p

�(
)

. Sin
e

the Lie algebra of both K (H) and K (� (
)) are k

+

, it follows that these subgroups 
oin
ide, so

that K (� (
)) is 
ontained in S. Now, the orbit O = HP

�(
)

=P

�(
)

of P

�(
)

in B

�(
)

is open and

its 
losure is S-invariant. Hen
e C

�(
)

= 
lO. It is known that 
lO is 
ontained in the open Bruhat


ell de�ned by a

+

. Furthermore, S is transitive on the �ber over the base point P

�(
)

2 B

�(
)

be
ause K (� (
)) � S. Hen
e �

�1

�

C

�(
)

�

is the invariant 
ontrol set in the maximal 
ag manifold

B , ensuring that the type of S is � (
).

In parti
ular let S � Sl (n;R) be the 
onne
ted 
omponent of the identity semigroup of expan-

sions of a nondegenerate quadrati
 form in R

n

(see [8℄ for a detailed dis
ussion of this semigroup).

If the matrix of the quadrati
 form is

J =

�

1

k�k

0

0 �1

(n�k)�(n�k)

�

then S = fg 2 Sl (n;R) : g

t

Jg � J � 0g, where X � 0 means that the matrix X is positive

semi-de�nite. It follows that if W is the 
one 
omposed of the symmetri
 matri
es X � 0 then

S = SO (k; n� k)

0

expW . Here H = SO(k; n� k)

0

is the identity 
omponent of the subgroup of

isometries of J . Its maximal 
ompa
t subgroup isK (H) = SO (k)�SO(n� k). On the other hand,

the type of S is the Grassmannian Gr

k

(n) of k-dimensional subspa
es in R

n

. This is not hard to


he
k after the remark that the invariant 
ontrol set of S in Gr

k

(n) is the set of V 2 Gr

k

(n) su
h

that the restri
tion of J to V is positive semi-de�nite. Of 
ourse, the subgroup K (�) asso
iated

to Gr

k

(n) is SO (k)� SO (n� k), whi
h is homotopy equivalent to S.
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