
The homotopy type of Lie semigroups in semi-simple Lie

groups

Luiz A. B. San Martin

�

Instituto de Matem�atia

Universidade Estadual de Campinas

Cx.Postal 6065

13081-970 Campinas SP, Brasil

Alexandre J. Santana

Departamento de Matem�atia

Universidade Estadual de Maring�a

87020-900 Maring�a Pr, Brasil

Abstrat

Let G be a nonompat semi-simple Lie group and S � G a Lie semigroup with nonempty

interior. We study the homotopy groups �

n

(S), n � 1, of S. Generalizing a well known fat

for G, it is proved that for a ertain ompat and onneted subgroup K (S) � G, �

n

(S) is

isomorphi to �

n

(K (S)). Furthermore, there exists a oset K (S) z ontained in intS whih

is a deformation retrat of S.
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1 Introdution

Let G be a onneted, nonompat semi-simple Lie group. It is well known that through a Cartan

deomposition G = KS or an Iwasawa deomposition G = KAN , the topology of G is redued to

that of K. In fat, S and AN are di�eomorphi to Eulidean spaes, implying that the projetions

onto K are homotopy equivalenes. In partiular, the homotopy groups of G are isomorphi to

those of K.

The purpose of this paper is to get this kind of redution to Lie semigroups with nonempty

interior in G, when G has �nite enter.

For suh a semigroup S there are no good deompositions available providing a natural ompat

spae whih is a deformation retrat of S. Instead we get the topology of S from its ation in

ompat homogeneous spaes of G. Preisely, let AN be the solvable Iwasawa omponent of G

and form the oset spae G=AN , whih is di�eomorphi to the ompat Iwasawa omponent K.

The semigroup S ats on G=AN by the restrition of the G-ation. Typially this ation of S is

not transitive. Atually, if S 6= G there are proper ompat subsets of G=AN invariant under S,

the so-alled invariant ontrol sets. Let C be an invariant ontrol set of S in G=AN . The main

result of this paper states that the homotopy groups of S are isomorphi to those of C.

Although in general it is not an easy task to obtain the invariant ontrol sets of the semigroups,

their possible homotopy types an be desribed (at least when S is generated by one-parameter

semigroups) by using a previous lassi�ation of the semigroups with nonempty interior aording

�
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to their ation on the ag manifolds of G. This lassi�ation divides the semigroups into types,

eah type being labelled either by a onjugate lass of paraboli subgroups, that is, a ag manifold

of G, or by a paraboli subgroup of the Weyl group of G (see [18℄, [20℄).

Roughly, the type of S is given by a paraboli subgroup, say P (S), or rather by the orrespond-

ing ag manifold G=P (S), in suh a way that the geometry of the S-ation on an arbitrary ag

manifold is embodied in the ation on G=P (S). This is expressed, for instane, by the fat that the

invariant ontrol set of S in the maximal ag manifold G=MAN is given by �

�1

�

C

P (S)

�

where �

is the anonial projetion onto G=P (S), and C

P (S)

is the invariant ontrol set in G=P (S). In the

speial ase when S is generated by one-parameter semigroups, C

P (S)

is ontratible. So that by

lifting �

�1

�

C

P (S)

�

one again through the anonial �bration G=AN ! G=MAN , it follows that

any invariant ontrol set C � G=AN is ontratible to the onneted omponent of P (S) =AN .

This onneted omponent is di�eomorphi to a ompat subgroup K (S) of K, namely the maxi-

mal ompat subgroup of the semi-simple Levi omponent of P (S).

In short, C an be ontinuously deformed into K (S) implying that the homotopy type of S is

the ompat groupK (S) � K. Therefore, the lassi�ation of Lie semigroups by the ag manifolds

turns out to be the lassi�ation by their homotopy types.

Our proofs are not restrited to Lie semigroups, but they work for a semigroup S whih ontains

a large Lie semigroup, in the sense of De�nition 4.7 below. This slight generalization permits to

work out the homotopy groups of some lassial semigroups whih are not in�nitesimally generated,

like e.g. the semigroup of positive matries. Also, if we onsider the interior of S instead of S, the

onlusion of the results still hold, with the further advantage that in this ase it is lear intS is

homotopi equivalent to K (S), sine these spaes are CW-omplexes.

Conerning the struture of the paper, in the next setion we establish notations and prove

some basi fats about semigroups, their ation on ag manifolds, homotopy groups, et., whih

are used in the proof of the main results. In this setion we also prove that the orbits of a Lie

semigroup in the Riemannian symmetri spae assoiated to the semi-simple group are ontratible.

This fat although not used afterwards is interesting in itself. In Setion 3 the topology of the

invariant ontrol sets in G=AN is disussed. It is shown that it redues to the topology of a

ompat subgroup. The statements and proofs of the main results are ontained in Setion 4.

Diret onsequenes of them and further omments were inluded in Setion 5. Finally, some

examples are disussed in Setion 6. First we onsider the semigroup matries in Sl (n;R) with

positive entries, whih is part of the lass of ompression semigroups of ones in R

n

. The onlusion

is that the homotopy type of these semigroups is the ompat group SO(n� 1). Another lass of

semigroups whose homotopy groups an be omputed are those ontained in real rank one groups.

In this ase there is just one type of homotopy whih is the onneted omponent of the group M

in the deomposition P = MAN of a paraboli subgroup. The other examples are illustrative of

our results, in the sense that what we get is already known from their strutural properties. These

are the semigroup of totally positive matries that is ontratible and the Ol'shanski�� semigroups,

whih have polar deompositions from where the homotopy type an be read o�.

2 Preliminaries

The purpose of this setion is to establish notations and bakground results to be used throughout

the paper.
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2.1 Flag manifolds and paraboli subgroups

Let G be any onneted nonompat Lie group with �nite enter and denote by g its Lie algebra.

The ag manifolds of G are labelled by subsets of the set of simple (restrited) roots of g. Preisely,

hoose an Iwasawa deomposition g = k � a � n. Let � be the set of roots of the pair (g; a) and

�

+

[respetively �℄ be the set of positive [respetively simple℄ roots giving rise to the nilpotent

omponent n, that is,

n =

X

�2�

+

g

�

;

where g

�

stands for the �-root spae. Let m be the entralizer of a in k and put p = m� a� n for

the orresponding minimal paraboli subalgebra. By de�nition, the maximal ag manifold B of G

is the set of subalgebras Ad (G) p, where Ad stands for the adjoint representation of G in g. There

is an identi�ation of B with G=P where P is the normalizer of p in P . Furthermore, P =MAN ,

A = exp a, N = exp n and M is the entralizer of A in K = exp k (M = fu 2 K : uh = hu for all

h 2 Ag).

Given a subset � � �, denote by p

�

the orresponding paraboli subalgebra, namely,

p

�

= n

�

(�)� p;

where n

�

(�) is the subalgebra spanned by the root spaes g

��

, � 2 h�i. Here h�i is the set of

positive roots generated by �. The set of paraboli subalgebras onjugate to p

�

identi�es with the

homogenous spae G=P

�

, where P

�

is the normalizer of p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g:

This onstrution yields the ag manifold B

�

= G=P

�

, � � �.

Let

a

+

= fH 2 a : � (H) > 0 for all � 2 �g

be the Weyl hamber assoiated to �. We say that X 2 g is split-regular in ase X = Ad (g) (H)

for some g 2 G, H 2 a

+

. Analogously, x 2 G is said to be split-regular in ase x = ghg

�1

with

h 2 A

+

= exp a

+

, that is, x = expX , with X split-regular in g.

Let n

�

=

P

�2�

g

��

be the nilpotent subalgebra opposed to n. Put N

�

= exp n

�

. Then in any

ag manifold B

�

, the orbit (alled open Bruhat ell) Ad (N

�

) p

�

is open and dense. Furthermore,

if h 2 A

+

then limh

k

y = p

�

for any y 2 Ad (N

�

) p

�

. In other words, p

�

is an attrator in B

�

for

any h 2 A

+

, having Ad (N

�

) p

�

as stable manifold. The same way, Ad (g) p

�

is the attrator �xed

point in B

�

of the split-regular g = xhx

�1

suh that Ad

�

xN

�

x

�1

�

is the open and dense stable

manifold. In the sequel we denote the attrator �xed point of g by at (g), while the orresponding

open ell, whih is the stable manifold, is denoted by st (h). Although this notation does not

speify the ag manifold under onsideration, this will beome lear from the ontext.

Given two subsets �

1

� �

2

� �, the orresponding paraboli subgroups satisfy P

�

1

� P

�

2

,

so that there is a anonial �bration G=P

�

1

! G=P

�

2

, gP

�

1

7! gP

�

2

. Alternatively, the �bration

assigns to the paraboli subalgebra q 2 B

�

1

the unique paraboli subalgebra in B

�

2

ontaining q.

In partiular, B = B

;

projets onto every ag manifold B

�

.

From the struture of the paraboli subgroup P

�

the �ber P

�

=P of B ! B

�

is obtained. We

follow losely the notation of Warner [21℄, Setion 1.2. Denote by a

�

the annihilator of � in a:

a

�

= fH 2 a : � (H) = 0 for all � 2 �g:
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Let L

�

stand for the entralizer of a

�

in G and put M

�

(K) = L

�

\K for the entralizer of a

�

in

K. The Lie algebra l

�

of L

�

is redutive and deomposes as l

�

= m

�

� a

�

with m

�

semi-simple.

Let M

0

�

for the onneted subgroup whose Lie algebra is m

�

and put M

�

= M

�

(K)M

0

�

. It

follows that the identity omponent ofM

�

is M

0

�

. The Bruhat-Moore Theorem (see [21℄, Theorem

1.2.4.8), provides the following deompositions:

1. P

�

= M

�

A

�

N

�

, where A

�

= exp a

�

and N

�

is the unipotent radial of P

�

, that is,

N

�

= exp n

�

, with n

�

the nilradial of p

�

.

2. P

�

=M

�

(K)AN .

This seond deomposition ensures that the �ber P

�

=P = M

�

(K) =M . It turns out that

M

�

(K) =M = M

�

= (M

�

\ P ), whih is the maximal ag manifold of M

�

, sine M

�

\ P is a

minimal paraboli subgroup of M

�

.

In the sequel we put K (�) for the identity omponent of M

�

(K). Sine P

�

=P is onneted

we get further that P

�

=P = K (�) = (K (�) \M). The subgroups K (�), � � �, play a deisive

role in the determination of the homotopy groups of the semigroups.

Finally we reall that an open Bruhat ell � in B

�

is di�eomorphi to an Eulidean spae. This

implies that the �ber bundle � : B ! B

�

is trivial over �, that is, �

�1

(�) � � � (P

�

=P ).

2.2 Semigroups

We reall some basi fats from the general theory of semigroups as well as from the ation of

semigroups in ag manifolds. Let G be a onneted Lie group with Lie algebra g. We say a

semigroup S � G is exp-generated provided there exists a subset U � g suh that S is generated

by the one-parameter semigroups exp (tX), X 2 U , t � 0, that is,

S = hexp

�

R

+

U

�

i:

In this ase S is said to be generated by U .

A semigroup is said to be a Lie semigroup (or in�nitesimally generated semigroup) provided it

is the losure of a exp-generated semigroup (see e.g. Hilgert and Neeb [4℄ and Neeb [12℄). Here

we hanged the terminology to emphasize that we do not ask for S to be losed. This requirement

is not relevant for our purposes. In the sequel our typial hypothesis about a semigroup is that

it ontains a large enough semigroup generated by a subset in the Lie algebra. These kind of

ondition is ful�lled by the Lie semigroups.

Atually we work with semigroups having nonempty interior. It is well known that if S is

generated by U , this ondition holds if and only if U is generating, whih means that the Lie

algebra generated by U is g. Furthermore, in ase U is generating intS is dense in S.

Now, we turn to semigroups in semi-simple groups. The following fats an be proved for any

semigroup S with intS 6= ;, provided G has �nite enter. Consider the ation of S in the ag

manifolds of G. It was proved in [20℄, Theorem 6.2, that S is not transitive in B

�

unless S = G.

Moreover, there exists just one losed invariant subset C

�

� B

�

suh that Sx is dense in C

�

for

all x 2 C

�

. This subset is alled the invariant ontrol set of S in C

�

(abbreviated S-i..s.) . Sine

S is not transitive, C

�

6= B

�

.

The fat that Sx is dense in C

�

for all x 2 C

�

implies the existene of an open subset C

0

�

� C

�

suh that for all x; y 2 C

0

�

there exists g 2 S with gx = y. Furthermore, C

0

�

is dense in C

�

. This

subset C

0

�

is alled the set of transitivity of C

�

, and is given by C

0

�

= (intS)x\ (intS)

�1

x, for all

x 2 C

�

. In ase S is exp-generated, it follows that C

0

�

= intC

�

(see [20℄, Setion 2).
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The semigroups in G are distinguished aording to the geometry of their invariant ontrol

sets. There exists � � � suh that �

�1

�

(C

�

) � B is the invariant ontrol set in the maximal ag

manifold. Among the subsets � satisfying this property there is one whih is maximal, in the

sense that it ontains the others. We denote this subset by � (S) and say that it is the type of S.

Alternatively, we denote the type of S by the orresponding ag manifold B (S) = B

�(S)

(see [20℄,

[18℄ for further disussions about the of a semigroup).

When � = �(S), the invariant ontrol set C

�(S)

has the following nie property: The set R (S)

of split-regular elements in intS is not empty. Let h 2 R (S) and let as before at (h) and st (h)

stand for its attrator and stable open ell in B

�(S)

. Then C

�(S)

� st (h) and at (h) 2 C

0

�(S)

. As

will be seen afterwards, this property ompletely desribes the topology of the invariant ontrol

set in B .

2.3 Reversibility

Reall that a subsemigroup T of a group L is right [left℄ reversible if one of the following equivalent

onditions are satis�ed

i) For all h

1

; h

2

2 H , Th

1

\ Th

2

6= ; [h

1

T \ h

2

T 6= ;℄.

ii) T

�1

T [TT

�1

℄ is a subgroup.

Clearly, T is right reversible if and only if T

�1

is left reversible. In ase L is onneted and

intT 6= ; then T is right [left℄ reversible if and only if T

�1

T [TT

�1

℄ oinides with L.

The following lemma enodes basi known properties of reversibility to be used later.

Lemma 2.1 The subsemigroup T � L is right reversible if and only if for any �nite subset

fh

1

; : : : ; h

k

g � L, k � 1, one of the following onditions holds

1. (Th

1

) \ � � � \ (Th

k

) 6= ;.

2. There exists h 2 L suh that h

i

� hT , i = 1; : : : ; k (and hene h

i

T � hT ).

Symmetri onditions are true for left reversibility.

Proof: The �rst ondition is learly suÆient. To see that it is neessary take h

1

; : : : ; h

k

2 L,

k � 3, and proeed by indution. Assume that

(Th

1

) \ � � � \ (Th

k�1

) 6= ;

and take h in this intersetion. Then Th � (Th

1

) \ � � � \ (Th

k�1

). By reversibility Th \ Th

k

6= ;,

so the lemma follows.

As to the seond ondition, right reversibility is equivalent to

�

h

1

T

�1

�

\ � � � \

�

h

k

T

�1

�

6= ;

for any �nite subset. Now h 2 L belongs to this intersetion if and only if h

i

2 hT , i = 1; : : : ; k.

Hene the equivalene of the ondition follows. 2

Another known fat about reversibility is that ompat sets an be translated inside the re-

versible semigroups (.f. [4℄, Lemma 3.37). We reprodue the proof here in order to emphasize

that the translation is done by an element of the semigroup and not of the group as stated in [4℄.

Lemma 2.2 Let T � L be an open semigroup whih is right [left℄ reversible. If K � L is ompat

then there exist g 2 T suh that gK [Kg℄ is ontained in T .
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Proof: Suppose that T is right reversible. Then L = T

�1

T so that K �

S

g2T

g

�1

T . By

ompatness there are �nite g

1

; : : : ; g

k

2 T suh that

K � g

�1

1

T [ � � � [ g

�1

k

T:

By the seond ondition in the previous lemma there exists g 2 L with g

�1

i

2 g

�1

T , i = 1; : : : ; k,

so that K � g

�1

T , that is, gK � T . Sine g

i

2 T , it follows that g 2 T . 2

2.4 Homotopy

We regard the n-th homotopy group �

n

(X; x

0

) of a spae based at x

0

2 X as the set of homotopy

lasses of pointed maps  : (S

n

; s

0

) ! (X; x

0

) where S

n

stands for the n sphere and s

0

is a base

point in S

n

, e.g., s

0

= (1; 0; : : : ; 0). The following fats about the homotopy of semigroups will be

used extensively in the sequel.

Proposition 2.3 Suppose that S is onneted and ontains an exp-generated semigroup T with

intT 6= ;. Let i : intS ! S be the inlusion map. Then the indued homomorphism i

�

: �

n

(intS)!

�

n

(S) is an isomorphism.

Proof: Sine S is path onneted we an �x a base point g

0

2 int(S). Let  : (S

n

; s

0

)! (intS; g

0

)

be suh that i

�

[℄ = [i Æ ℄ = 1 in �

n

(S). Then there exists a ontinuous map � : [0; 1℄� S

n

! S

suh that

�(0; �) = (�); �(1; �) = g

0

for all � 2 S

n

. By the assumption on T , there exists a ontinuous urve � : [0; 1℄ ! S suh that

�(0) = 1 and �(℄0; 1℄) � intT � intS (see [4℄, Theorem 3.8). De�ne 	 : I � S

n

! S by

	(t; �) = �(t; �)�(t(1 � t)):

Then 	 is a deformation of  to the onstant path in g

0

. Furthermore, im	 � intS beause intS is

a dense semigroup ideal of S and � (t (1� t)) 2 intS if t 6= 0; 1. Hene [℄ = [g

0

℄ in intS, showing

that i

�

is injetive. On the other hand, pik [℄ 2 �

n

(S) with  : (S

n

; s

0

)! (S; g

0

). Then

� : I � S

n

! S; (t; �) 7! �(t)(�)

deforms the path  into a path, based at g

0

, whih lies entirely in intS. Hene [℄ 2 im (i

�

),

implying that i

�

is surjetive. 2

Lemma 2.4 Suppose that T � S is exp-generated. Let  : X ! S be a ontinuous map, with X

a topologial spae, and take h 2 T . Then h and h are homotopi to  in S.

Proof: Sine T is exp-generated, there exists a ontinuous path h

t

2 T � S, t 2 [0; u℄, suh that

h

0

= 1 and h

u

= h. De�ne � : [0; u℄�X ! S by

� (t; x) = h

t

 (x) :

Clearly, � is ontinuous beause of the ontinuity of the produt map in G. Moreover, � (0; x) =

 (x) and � (u; x) = h (x) for all x 2 X . Sine � (t; x) 2 T � S for all (t; x) 2 [0; u℄ � X , it

follows that � is a homotopy between  and h in S. To see that h is homotopi to  just take

the homotopy  (x) h

t

. 2
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Lemma 2.5 With the same assumptions and notations as in the previous lemma, the maps �

n

(S; g)!

�

n

(S; hg), [℄ 7! [h℄ and �

n

(S; g)! �

n

(S; gh), [℄ 7! [h℄ are isomorphisms.

Proof: The left or right translation isomorphism oinide with the isomorphism given by the path

h

t

g or gh

t

, where as before h

t

is a path joining 1 to h in T (.f. the proof of Theorem 7.2.3 in

Maunder [10℄). 2

For the rest of this subsetion we digress from the main stream of the paper with the purpose of

disussing homotopy and reversibility in homogeneous spaes. It will emerge from this disussion

that the orbits of S in the (Riemannian) symmetri spae assoiated to G are ontratible. This

fat, although not used in the proof of the main result, reinfores it by showing that as happens

with G the topology of S is embodied in the ompat part of G.

Let H be a group, L � H a subgroup and T � H a subsemigroup. We say that T is reversible

modulo L in ase Tx \ Ty 6= ; for all x; y 2 H=L. Of ourse, a right reversible semigroup is in

partiular reversible modulo L = f1g. Also, T is reversible modulo L if and only if T

�1

Tx = H=L

for all x 2 H=L. Using this property and proeeding like in Lemma 2.2 it an proved { in the

topologial setting { an analogous of that lemma. Namely if we assume that T is open then for

a given ompat Q � H=L and x 2 H=L, there exists g 2 T suh that gQ � Tx. Using this fat

we an prove the following generalization of Theorem 3.38 in [4℄. Although the proof is almost the

same we reprodue it for the sake of ompleteness.

Proposition 2.6 Let H be a Lie group and T � H an exp-generated semigroup with nonempty

interior. Suppose that T is reversible modulo L, with L a losed subgroup. Take x 2 H=L and

onsider the inlusion i : Tx ! H=L. Then the indued homomorphism i

�

: �

n

(Tx) ! �

n

(H=L)

is injetive.

Proof: Fix x

0

2 Tx and let 

0

: (S

n

; s

0

) ! (Tx; x

0

) be a yle suh that i

�

[

0

℄ = 1 in �

n

(H=L).

Then there exists a homotopy based at x

0

, � : I � S

n

! H=L suh that � (0; �) = 

0

and

� (1; �) = x

0

. The image Q if � is ompat in H=L, hene there exists g 2 T suh that gQ � Tx.

The map 	 (t; s) = g� (t; s) is a homotopy based at gx

0

arrying the yle g

0

into gx

0

. Hene

[g

0



0

℄ = 1 in �

n

(Tx; gx

0

).

Now, we use the fat that T is exp-generated and proeed as in Lemma 2.5 to hek that

 7! g de�nes an isomorphism between �

n

(Tx; x

0

) and �

n

(Tx; gx

0

). Implying that [

0

℄ = 1 in

�

n

(Tx; x

0

). 2

After the following lemma proved by Furstenberg [3℄, Lemma 3.2 (and its orollary), the above

proposition implies immediately that the orbits of Lie semigroups in Riemannian symmetri spaes

are ontratible.

Lemma 2.7 Suppose that G is a nonompat semi-simple Lie group and let G=K be the or-

responding symmetri spae, where K is a maximal ompat subgroup of G. Let T � G be a

semigroup with intT 6= ;. Then T is reversible modulo K.

Corollary 2.8 With the same notations as above let S � G be an exp-generated semigroup with

intS 6= ;. Then (intS)x is ontratible for any x 2 G=K.

Proof: It follows from the previous lemma that intS is reversible modulo K. Then Proposition

2.6 implies that the inlusion i : (intS)x ! G=K is injetive. Now, G=K is di�eomorphi to an

Eulidean spae. Hene the homotopy groups (intS)x of are trivial. Being open in G=K, (intS)x

7



is a manifold and hene a CW-omplex. Therefore by the Theorem of Whitehead it follows that

(intS)x is ontratible. 2

3 Invariant ontrol sets in G=AN

The homotopy groups of the semigroup S � G will be proved to be isomorphi to the homotopy

groups of the invariant ontrol sets of S in G=AN . Before going into the homotopy groups, we

disuss in this setion the geometry of these invariant ontrol sets.

We assume here that S is onneted. Also we put � = �(S), and let C

�

stand for the unique

invariant ontrol set of S in B

�

= G=P

�

. The set of transitivity of C

�

is denoted by C

0

�

. Put

C (B ) for the unique invariant ontrol set in the maximal ag manifold G=MAN . It is given by

C (B ) = �

�1

�

(C

�

), where �

�

: B ! B

�

is the anonial �bration. Also, its set of transitivity

is C (B )

0

= �

�1

�

�

C

0

�

�

. These inverse images are atually di�eomorphi to Cartesian produts.

In fat, reall that C

�

is ontained in some open Bruhat ell, say �, of B

�

. Sine the bundle

�

�

: B ! B

�

is trivial over �, it follows that �

�1

�

(�) � � � F

�

, where F

�

is the �ber P

�

=P .

Therefore C (B ) � C

�

� F

�

and C (B )

0

� C

0

�

� F

�

.

Now, we lift the invariant ontrol set C (B ) to G=AN . Consider the �bration

�

1

: G=AN �! G=MAN:

This is a prinipal bundle whose �ber is the ompat group M �MAN=AN . The projetion �

1

is

equivariant with respet to the ations of G on the homogenous spaes G=AN and G=MAN , i.e.,

g Æ �

1

= �

1

Æ g for all g 2 G. Also, M has a natural right ation on G=AN , whih ommutes with

the left ation of G. The equivariane of �

1

implies that �

1

(C) is an S-i..s. in B if C � G=AN

is an invariant ontrol set. In other words the invariant ontrol sets of S in G=AN are ontained

in �

�1

1

(C (B )). Analogously, the set of transitivity C

0

of an invariant ontrol set is ontained in

�

�1

1

(C (B )

0

).

The assumption that S is onneted implies that its invariant ontrol sets are also onneted. In

partiular if C � G=AN is an S-i..s. then it is ontained in a onneted omponent of �

�1

1

(C (B )).

Its set of transitivity C

0

is also onneted and hene ontained in a omponent of �

�1

(C (B )

0

).

Atually we have

Lemma 3.1 S ats transitively on any onneted omponent of �

�1

1

(C (B )

0

).

Proof: Consider the restrition of the prinipal bundle �

1

: G=AN ! G=MAN to the open set

C (B )

0

. Its strutural group is ompat, and S ats on it as a semigroup of automorphisms of the

bundle. Also, S ats transitively on the basis C (B )

0

. Hene the lemma follows from Proposition

3.9 in [2℄, whih asserts that a semigroup ating on a onneted prinipal bundle with ompat

�ber is transitive provided it is transitive on the base spae. 2

From this lemma we get the following haraterization of the invariant ontrol sets of S in

G=MAN .

Proposition 3.2 Keep assuming that S is onneted. Denote as before by C

0

�

the set of transitivity

of the S-i..s. in G=P

�

, where � = �(S). Put � : G=AN ! G=P

�

for the anonial �bration. Let

C � G=AN be an S-i..s. Then C is a onneted omponent of �

�1

(C

�

) and C

0

is a onneted

omponent of �

�1

�

C

0

�

�

. Conversely, the losure in G=AN of a onneted omponent of �

�1

�

C

0

�

�

is an S-i..s. in G=AN .

8



Proof: By the hoie of G=P

�

it follows that C (B )

0

= �

�1

�

�

C

0

�

�

where �

�

is the projetion

G=P ! G=P

�

. Also there exists an open Bruhat ell � � G=P

�

suh that C

�

� �. The

restrition of � to � de�nes a trivial bundle. Sine C

�

is onneted and ontained in �, it follows

that the onneted omponents of �

�1

(C

�

) are ontained in the onneted omponents of �

�1

(�).

Analogously, the onneted omponents of �

�1

�

C

0

�

�

are ontained in the omponents of �

�1

(�).

This together with the fat that C

0

�

is dense in C

�

implies that the losure of a omponent of

�

�1

(C

0

) is a omponent of �

�1

(C

�

), so that the losures of two di�erent omponents of �

�1

�

C

0

�

�

are disjoint.

Now, � deomposes as

G=AN ! G=MAN ! G=P

�

:

Sine the �ber of G=MAN is onneted, it follows that the onneted omponents of �

�1

�

C

0

�

�

are the omponents over C (B )

0

in the �bration G=AN ! G=MAN . Hene, the previous lemma

ensures that a onneted omponent of �

�1

(C

�

) is an invariant ontrol set of S. Furthermore,

this implies that any invariant ontrol set is suh a omponent, beause their union is �

�1

(C

�

).

2

Note that the triviality of the bundle G=AN ! G=P

�

over C

�

means that �

�1

(C

�

) is dif-

feomorphi to C

�

� F where F = P

�

=AN is the �ber. Clearly, a onneted omponent of the

�ber is P

0

�

=AN where P

0

�

is the identity omponent of P

�

. The other omponents are obtained

similarly from the omponents of P

�

. These omponents are di�eomorphi to eah other, sine

they are interhanged by the right ation of M as follows by Lemma 1.2.4.5 in [21℄, whih ensures

that P

�

= MP

0

�

. Therefore the previous proposition together with the fat that C

�

is onneted

implies the

Corollary 3.3 With the assumption that S is onneted, any invariant ontrol set C � G=AN is

di�eomorphi to C

�

� P

0

�

=AN . Moreover, C

0

� C

0

�

� P

0

�

=AN .

In order to omplete the piture we reall that P

�

= M

�

(K)AN , where M

�

(K) is the

entralizer of a

�

in K (see [21℄, Theorem 1.2.4.8). We denote by K (�) the identity omponent of

M

�

(K). Then P

0

�

= K (�)AN , so that the �ber P

0

�

=AN is di�eomorphi to K (�). Therefore

there is following version of the above orollary whih we state for later referene.

Corollary 3.4 With the assumption that S is onneted, any invariant ontrol set C � G=AN is

di�eomorphi to C

�

�K (�). Moreover, C

0

� C

0

�

�K (�). Here � = �(S).

4 Isomorphism

As before S stands for a semigroup with nonempty interior in G. Let C be an invariant ontrol

set of S in G=AN and C

0

its set of transitivity. The purpose of this setion is to prove that the

homotopy groups of S and C

0

are isomorphi. For the full proof it will be required that S is an

exp-generated semigroup (atually the weaker assumption that S admits a large exp-generated

semigroup is enough, see theorems 4.8 and 4.13 below). However, many proofs work in more

generality, so that we do not speify in advane the onditions required for S, apart from having

nonempty interior.

The isomorphism will be realized by the evaluation map. Fix x 2 C

0

and denote by e

x

(or

simply by e) the map e : S ! C

0

given by e (g) = gx. It will be proved that the indued

homomorphisms e

�

between the homotopy groups are isomorphisms.
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4.1 Surjetivity

In view of Corollary 3.3, C

0

is di�eomorphi to C

0

�

� F

0

where F

0

= P

0

�

=AN . For the semigroups

onsidered here C

0

�

is shown to be ontratible, so that any yle in C

0

is homotopi to one in F

0

.

The surjetivity e

�

will be proved by showing the existene of a ross setion � : F ! intS for the

evaluation map.

In order to get suh a ross setion some preliminary results are required. We start with the

following general statement.

Proposition 4.1 Let R � L be a losed normal subgroup of the Lie group L suh that L is the

semi-diret produt L = B�

s

R. Take an open subsemigroup T � L and suppose that T=R = L=R

and T \R is left reversible. Then it is possible to lift any ompat subset Q � H=R inside T , that

is, there exists z 2 T \ R suh that Q� fzg � T .

Proof: Sine T=R = L=R and T is open, there exists, for every x 2 Q, a neighborhood U

x

of x

in L=R and z

x

2 R suh that U

x

� fz

x

g � T . There is a freedom in the hoie of z

x

. In fat, if

w 2 T \ R then (U

x

� fz

x

g)w � T and

(U

x

� fz

x

g)w = U

x

� fz

x

wg;

so that we an hoose any element in z

x

(T \ R) instead of z

x

.

Choose x

1

; : : : ; x

n

2 Q suh that fU

x

i

g

i=1;:::;n

is a overing of Q. Sine U

x

� fz

x

(T \ R)g is

ontained in T , in order to onlude the proof it is enough to hek that there are w

1

; : : : ; w

n

2 T\R

suh that z

x

1

w

1

= � � � = z

x

n

w

n

. Note that this is equivalent to

z

x

1

(T \R) \ � � � \ z

x

n

(T \R) 6= ;;

whih by Lemma 2.1 is equivalent to left reversibility of T \ R. 2

Now we apply this proposition to lift the �ber F inside intS. Fix x 2 C

0

and put y = � (x).

We an assume without loss of generality that AN is the isotropy subgroup at x and P

�

is the

isotropy of y. These assumptions imply that intS meets AN and P

�

. Take a deomposition

P

�

=M

�

A

�

N

�

of P

�

(see [21℄, Theorem 1.2.4.8). The subgroup A

�

N

�

is losed and normal and

P

�

beomes the semi-diret produt of M

�

by A

�

N

�

.

Let P

0

�

be the onneted omponent of the identity of P

�

. Then P

0

�

=M

0

�

A

�

N

�

where M

0

�

is

the identity omponent of M

�

. Sine P

�

has a �nite number of omponents and intS \P

�

6= ;, it

follows that intS meets P

0

�

as well.

Now, P

0

�

is the semi-diret produt of M

0

�

and A

�

N

�

, hene the previous proposition an be

applied to L = P

0

�

, R = A

�

N

�

and T = (intS) \ P

0

�

, as soon as we hek that

1. T=A

�

N

�

= P

0

�

=A

�

N

�

, and

2. T \ A

�

N

�

= (intS) \ A

�

N

�

is left reversible.

The �rst of these equalities were proved in [20℄. Here is a sketh of the proof: Sine �

�1

�

(C

�

) is

the invariant ontrol set in G=MAN , it follows that T is transitive on the �ber �

�1

�

(y). However,

A

�

N

�

�xes every point of this �ber, so that the projetion pr (T ) of T into M

0

�

is transitive

on �

�1

�

(y). However this �ber is the maximal ag manifold of the onneted semi-simple group

M

0

�

. So that the transitivity of pr (T ) on the �ber implies that pr (T ) = M

0

�

. This means that

T=A

�

N

�

= P

�

=A

0

�

N

�

, showing that (1) holds.
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For the seond point observe that T \A

�

N

�

is an open subsemigroup of A

�

N

�

, whih is not

empty beause T projets onto P

0

�

=A

�

N

�

. Now we use the following lemma proved by Ruppert

[15℄, Lemma 4.6:

Lemma 4.2 Suppose that R is a solvable Lie group and that U � R is an open semigroup that

ontains an element expX suh that Re� � 0 for all eigenvalues � of ad (X). Then U is left

reversible.

The semigroup T \ A

�

N

�

ful�lls the requirements of this lemma. To hek this reall that

through the exponential map A

�

N

�

is di�eomorphi to a

�

+ n

�

. Take h 2 T \ A

�

N

�

and write

h = exp (H + Y ), H 2 a

�

, Y 2 n

�

. Sine T \ A

�

N

�

is open, we an assume that H is regular in

a

�

, in the sense that the no root in � n h�i annihilates in H . Then it is well known (see e.g. [21,

Prop. 1.2.4.10℄) that the map

X 7! exp (ad (X))H �H

is a di�eomorphism of n

�

into itself. This implies that there exists n 2 N

�

suh that Ad (n)H =

H+Y . Fixing this n let us hange our base point x by nx, whih is still in C

0

, beause C

0

ontains

the �ber �

�1

�

(y). Then we get a new deomposition of P

�

suh that the orresponding vetor

group ontains h = exp (H + Y ). In other words, we an assume without loss of generality that

there exists h 2 T \A

�

, h = expH with H regular in a

�

. Now we an hek that the eigenvalues

of ad (H) in n

�

are � 0. These eigenvalues are 0 and � (H) with � =2 h�i. In ase � (H) < 0 for

some �, there exists a small enough Y 2 n

�

�

suh that exp (ad (tH))Y !1 when t! +1. This

implies that h

k

exp (Y ) y aumulates outside N

�

�

y. However y 2 C

0

�

so that exp (Y ) y 2 C

0

�

if Y

is small enough, ontraditing the fat that � = �(S), i.e., that C

�

is a ompat subset of the

open Bruhat ell N

�

�

y.

Therefore we have proved that S \ P

�

satis�es the onditions of Proposition 4.1, proving the

following statement whih holds for arbitrary S with intS 6= ; and � = �(S).

Proposition 4.3 Any ompat subset Q � M

�

an be lifted to (intS) \ P

�

, that is, there exists

z 2 S \ A

�

N

�

suh that Qz � (intS) \ P

�

.

We have also the deomposition P

�

=M

�

AN , so that P

�

=AN identi�es with M

�

. From this

fat and the previous proposition it beomes easy to get a ross setion of the evaluation map.

Theorem 4.4 Suppose that intS 6= ; and put � = �(S). Let C be one of its invariant ontrol

sets in G=AN , �x x 2 C

0

and onsider the evaluation map e : S ! C

0

, e (g) = gx. Denote by F

the �ber �

�1

(� (x)), where � : G=AN ! G=P

�

is the anonial projetion. Then there exists a

ontinuous ross setion � : F ! intS \ P

�

, satisfying e� = 1

F

.

Proof: Assume without loss of generality that AN is the isotropy subgroup at x. For any x

1

2 F

there exists k 2 M

�

(K) suh that kx = x

1

. The assignment � : x

1

7! k settles a di�eomorphism

between F and M

�

(K), beause F = P

�

=AN � M

�

(K). Now, M

�

(K) is a ompat subset of

M

�

. Hene by the above proposition there exists z 2 AN suh that M

�

(K) z � (intS) \ P

�

.

Then � (x

1

) = � (x

1

) z is a well de�ned map F ! (intS) \ P

�

. It is a setion of e. In fat

e (� (x

1

)) = � (x

1

) zx = x

1

beause zx = x and � (x

1

)x = x

1

, by de�nition of �. 2

In partiular, this theorem ensures the lifting of any onneted omponent F

0

of F . In ase S

is onneted C

0

� C

0

�

� F

0

, so that we get the following onsequene.
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Corollary 4.5 Suppose that C

0

�

is ontratible. Then the homomorphisms e

�

between the homo-

topy groups indued by e : S ! C

0

and e : intS ! C

0

are onto.

Proof: Sine C

0

� C

0

�

� F , any yle in C

0

is homotopi to a yle in F . By using the setion �

we see that any yle in F is in the image of e, showing that e

�

is onto. 2

For an exp-generated semigroup its invariant ontrol set on the right ag manifold is ontratible

to a point as shows the following lemma proved by Mittenhuber [11℄, Lemma 2.11. Sine the

statement of [11℄ is restrited to rank one groups we outline the proof here.

Lemma 4.6 Suppose that T is an exp-generated semigroup with intT 6= ;. Put � = �(T ) and let

C

�

be its invariant ontrol set in G=P

�

and C

0

�

its interior. Then C

�

and C

0

�

are ontratible.

Proof: There exists a split-regular h 2 intT suh that its attrator, say x 2 G=P

�

, belongs to

C

0

, and C is ontained in the stable manifold st (h) of h. This implies that h

k

y ! x for all

y 2 C

�

. By ompatness of C

�

, for any neighborhood U of x there exists k

0

suh that h

k

C

�

� U

if k � k

0

. In partiular, we an hoose U ontratible to x, that is, there exists a ontinuous

map � : [0; 1℄ � U ! U suh that � (0; �) = 1

U

, � (1; �) = x. On the other hand sine T is

exp-generated, there exists a ontinuous urve g

t

2 T , t 2 [0; u℄, with g

0

= 1 and g

u

= h

k

. Then

the map �

1

: [0; u℄�C

�

! C

�

, �

1

(t; y) = g

t

y ontrats C

�

into U . Joining together these maps,

we get a ontration of C

�

to x. 2

Therefore for exp-generated semigroups the evaluation map indues surjetive maps between

the homotopy groups. Finally we note that for many examples of ompression semigroups S itself

may not be generated by a subset of the Lie algebra, but its invariant ontrol set C

�

is also the

invariant ontrol set of an exp-generated semigroup so Corollary 4.5 applies to S, ensuring that e

�

is onto. Having these examples in mind we introdue the following

De�nition 4.7 Let T

1

� T

2

be semigroups with nonempty interior. Given a ag manifold B

�

=

G=P

�

, we say that T

1

is �-large (or B

�

-large) in T

2

provided the invariant ontrol set for both T

1

and T

2

on B

�

oinide. Also, T

1

is large in T

2

in ase T

1

is �-large for every �.

Sine the invariant ontrol sets of a semigroup are obtained by projeting the invariant ontrol

set on the maximal ag manifold B (see [20℄), it follows that T

1

is large in T

2

if and only if it is

B -large in T

2

. Also T

1

is large in T

2

in ase � (T

1

) = � (T

2

) = � and T

1

is �-large in T

2

. In

fat in this ase the invariant ontrol set on B for both semigroups is the inverse image, under the

projetion B ! B

�

, of the ommon invariant ontrol set on B

�

.

Now, suppose that S

1

� S are onneted semigroups with intS

1

6= ; and S

1

large in S. Then

the invariant ontrol sets in G=AN for both semigroups are the onneted omponents of �

�1

(C

�

)

where C

�

is the i..s. on G=P

�

. So in G=AN the invariant ontrol sets also oinide. Therefore

taking into aount the existene of the setion � in Theorem 4.4, we get

Theorem 4.8 Suppose that S is onneted and ontains an exp-generated semigroup T whih is

large in S. Let C be an invariant ontrol set in G=AN . Then the homomorphism e

�

: �

n

(S) !

�

n

(C

0

) indued by the evaluation map e : S ! C

0

, e (g) = gx, x 2 C

0

, is surjetive. The same

statement holds with the map e : intS ! C

0

.
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4.2 Injetivity

For the proof of the injetivity of the evaluation map we assume that S is onneted and ontains

a �-large exp-generated semigroup T , where � = �(S).

The proof goes as follows: Fix basi points x 2 C

0

and g

0

2 intS suh that g

0

x = x. If

 : (S

n

; s

0

) ! (S; g

0

) satis�es e

�

[℄ = [e Æ ℄ = 1, we wish to prove that [℄ = 1, that is, there is a

homotopy, based at g

0

, arrying  into g

0

. We do not onstrut suh homotopy diretly. Instead,

we build homotopies inside S arrying  suessively into smaller groups until we reah A

�

N

�

.

Using reversibility properties of S \A

�

N

�

, it follows then that there exists a (unbased) homotopy

� : [0; 1℄ � S

n

! S between  and a onstant yle g

1

. Then a standard argument shows that

[℄ = 1. In fat, from � we have the path, say �, given by the restrition of � to [0; 1℄ � fs

0

g.

This path settles an isomorphism �

�

: �

n

(S; g

0

) ! �

n

(S; g

1

), where g

1

= �(1; s

0

), suh that

�

�

[℄ = [g

1

℄ = 1 (see e.g. [10℄, Theorem 7.2.3). This shows the triviality of ker e

�

.

We start with the following lemma, whih is used in the �nal step of the proof. It is patterned

after Proposition 2.6. Here, however, we an not assume that the semigroup is exp-generated,

beause the lemma will be applied to S \ A

�

N

�

. Hene we do not get injetivity of the homo-

morphism indued by inlusion but only that any trivial yle in the group an be translated into

a yle whih is trivial inside the semigroup.

Lemma 4.9 Let L be a onneted group and T � L an open and onneted subsemigroup. Let

 : (S

n

; s

0

) ! (T; g

0

) be a yle in T suh that i

�

[℄ = 1, where i : T ,! L is the inlusion.

Suppose that T is right [respetively left℄ reversible. Then there exists g 2 T suh that the yle g

[respetively. g℄ is ontratible in T .

Proof: Consider the ase where T is right reversible. By assumption there exists a homotopy

� : [0; 1℄� S

n

! L suh that

�(0; �) = (�); �(1; �) = g

0

for all � 2 S

n

. Clearly, �([0; 1℄�S

n

) is a ompat subset of L. Hene, the right reversibility of T im-

plies that there exists g 2 T suh that g�([0; 1℄�S

n

) � T . Therefore g� is a homotopy arrying g

into gg

0

as laimed. The proof in the left reversible ase follows by taking the inverse semigroup. 2

We prove next in di�erent steps that any yle  in S is homotopi within S to a yle in

S \ A

�

N

�

.

Lemma 4.10 Suppose that S ontains a �-large exp-generated semigroup T with intT 6= ;, where

� = �(S). Fix y 2 C

0

�

and assume without loss of generality that P

�

is the isotropy at y. Then

any yle  : (S

n

; s

0

)! (S; g

0

) with g

0

y = y is (unbased) homotopi to a yle � : S

n

! P

�

.

Proof: By assumption there exists a split regular h 2 intT whih �xes y, so that h

k

C

�

ontrats

to y as k ! +1. This implies that for any neighborhood U of y there exists k > 0 suh that

h

k

C

�

� U . Sine  (S

n

) y � C

�

and h

k

 is homotopi to  (by Lemma 2.4), we an assume

without loss of generality that  (S

n

) y � U .

Now, take g 2 intT

�1

suh that gy = y. We an hoose U to be di�eomorphi to an open

ball in Eulidean spae and suh that if we write the bundle G ! G=P

�

loally as U � P

�

then g 2 U �W � intT

�1

, for some open W � P

�

. Under this identi�ation U

0

= fgg � U is an

Eulidean ball ontained in intT

�1

. Then there exits a ontinuous ontration � : I�U

0

! U

0

suh

that � (0; l) = (g; l) and � (1; l) = (g; g), for all l 2 U

0

. De�ne in U

0

the yle Æ (z) = (g;  (z) y).
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For (t; z) 2 I � S

n

put

� (t; z) = � (t; Æ (z))

�1

 (z) :

Note that � is a ontinuous map de�ned in [0; 1℄� S

n

assuming its values in S beause U

0

� S

�1

and  (z) 2 S. Furthermore � (0; z) = Æ (z)

�1

 (z) and � (1; z) = g

�1

 (z), so that the yles

Æ (z)

�1

 (z) and g

�1

 (z) are homotopi in S. Sine g

�1

2 T and T is exp-generated, it follows

by Lemma 2.4, that g

�1

 (z) and  (z) are homotopi in S. Now, Æ (z)

�1

 (z) y = y from the

de�nition of Æ (z). Therefore Æ (z)

�1

 (z) is ontained in P

�

onluding the proof of the lemma. 2

Corollary 4.11 Let  and � be as in the above lemma and suppose that e

�

[℄ = 1. Then e (�) is

homotopi to a point in C

0

.

Proof: In fat, applying e to the homotopy between  and � we get a homotopy between e ()

and e (�). Sine e () is homotopi to a point, this holds with e (�) as well. 2

Lemma 4.12 Let  : S

n

! S \ P

0

�

be a yle with  (s

0

) = g

1

2 A

�

N

�

. Assume that e

�

[℄ = 1.

Then  is homotopi in S to a yle � ontained in A

�

N

�

.

Proof: Reall that P

0

�

= M

0

�

A

�

N

�

and the ation of P

0

�

on the �ber �

�1

�

(y) is equivalent to

the ation on P

0

�

=AN = K (�) = M

0

�

=A (�)N (�). Therefore to say that e

�

[℄ = 1 means that

the projetion of  in K (�) is homotopi to a point in K (�). Now, M

0

�

= K (�)A (�)N (�)

is an Iwasawa deomposition of the semi-simple group M

0

�

. Sine A (�)N (�) is di�eomorphi

to an Eulidean spae, it follows that the projetion of  into M

0

�

, through the deomposition

P

0

�

= M

0

�

A

�

N

�

is homotopi to a point. Denote by Æ the projeted yle. Then Æ (s

0

) = 1, and

Æ (�)

�1

is also homotopi to 1. Let � : I � S

n

! M

0

�

be a homotopy suh that � (0; �) = Æ (�)

�1

and � (1; �) = 1, for all � 2 S

n

. The subset � (I � S

n

) is ompat in M

0

�

. Hene by Proposition

4.3, there exists z 2 S \A

�

N

�

suh that � (I � S

n

) z � S \ P

0

�

. Put

� (t; �) =  (�) � (t; �) z:

Then � (t; �) 2 S \ P

0

�

, and is a homotopy between  (�) Æ

�1

(�) z and  (�) z. Sine  (�) z is

homotopi to  (�) and  (�) Æ

�1

(�) z 2 A

�

\ S, for all � , the lemma follows. 2

We an now prove the injetivity of the evaluation map.

Theorem 4.13 Assume that S is onneted and ontains a large exp-generated semigroup T with

nonempty interior. As before let C be an S-i..s. in G=AN and C

0

its interior. Then the homo-

morphism e

�

: �

n

(S) ! �

n

(C

0

) indued by a evaluation map e : S ! C

0

, e (g) = gx, x 2 C

0

, is

injetive. The same statement is true with e de�ned in intS instead of S.

Proof: Observe �rst that sine T is large in S, we an assume without loss of generality that

(intT ) \ A

�

N

�

6= ;. Now, by the Lemma 4.12 any yle in S projeting to a ontratible yle

in C

0

is homotopi within S to a yle  in (intS) \ A

�

N

�

. By Lemma 4.2 (and the disussion

preeding it), (intT ) \ A

�

N

�

is left reversible in A

�

N

�

. Hene by Lemma 4.9 above, it follows

that there exists g 2 intT suh that g is homotopi to a point within T and hene inside S. Using

Lemma 2.4, we onlude that  and g are homotopi in S.

We have showed that any yle � in S suh that e (�) is ontratible in C

0

is (unbased) ho-

motopi to a point in S. Therefore, if we reprodue the standard argument mentioned at the

beginning of this subsetion we onlude that [�℄ = 1, showing that e

�

is injetive. 2
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4.3 Homotopy equivalene

So far we have proved that the evaluation maps e : S ! C

0

and e : intS ! C

0

indue isomorphisms

between the homotopy groups in ase S ontains a � (S)-large exp-generated semigroup. This

implies that the homotopy groups of S and intS are isomorphi to the homotopy groups of the

ompat group K (� (S)) � F

0

. In other words, e is a weak homotopy equivalene.

Now, intS is an open submanifold of G, and hene a CW-omplex. Analogously, C

0

is a CW-

omplex, so that e is in fat a homotopy equivalene, whih means that there exists f : C

0

! intS

suh that both ef and fe are homotopi to the identity maps, that is f is a homotopy inverse of e.

We ontinue to assume that S admits a �-large, � = � (S), exp-generated semigroup. Under

this assumption we show next that a homotopy inverse of e : intS ! C

0

is furnished by the ross

setion � : F

0

! intS onstruted in Theorem 4.4. Reall that C

0

= C

0

�

� F

0

and that C

0

�

is

ontratible to a point. Denote by p the projetion C

0

onto F

0

.

Lemma 4.14 �p : C

0

! intS is a homotopy inverse of e.

Proof: Let f be a homotopy inverse of e : intS ! C

0

. We laim that f is homotopi to �p.

Note that sine C

0

�

is ontratible to a point, there exists a homotopy � : I � C

0

! C

0

suh that

� (0; x) = x and � (1; x) = p (x), that is, p is homotopi to the identity map i of C

0

. Denote by

[X;Y ℄ the set of homotopy lasses of maps X ! Y . Then the indued map

e

�

: [C

0

; intS℄ �! [C

0

; C

0

℄

is injetive (see [10℄, Corollary 7.5.3). Now, e

�

[f ℄ = [ef ℄ = [i℄ and e

�

[�p℄ = [e�p℄ = [p℄. Sine

[i℄ = [p℄, it follows that [�p℄ = [f ℄, that is, f ' �p, as laimed. Therefore �p is a homotopy inverse

of e as well. 2

From this homotopy inverse of e, it beomes easy to get K (�) (or rather a oset of it) as a

deformation retrat of intS. In fat, reall the onstrution of the ross setion � in Theorem 4.4:

Let � : F

0

! K (�) be the di�eomorphism given by the requirement � (x) = kx

0

, where x

0

is the

base point. Then � is given by � (x) = � (x) z where z 2 P

�

is suh that the oset K (�) z � intS.

In partiular, we have that � (gx

0

) = g for any g 2 K (�) z. This means that �pe : intS ! K (�) z

satis�es �pe (g) = g for all g 2 K (�) z, that is, �pe is a retrat of intS. Sine �pe is homotopi

to the identity map, we atually get that K (�) z is a deformation retrat of intS. Note that in

this onstrution we an take the setion � taking values in any oset K (�) z ontained in intS.

Therefore we have

Theorem 4.15 Under the assumption that S admits a large exp-generated semigroup with nonempty

interior, there exists z 2 intS \ P

�

suh that K (�) z � intS. Furthermore for any z satisfying

this ondition, K (�) z is a deformation retrat of intS.

5 Remarks

5.1 Deformation retrat of S

The disussion leading to Theorem 4.15 was restrited to intS in order to use the fat that it is an

open submanifold and hene a CW-omplex. Despite that the deformation retrat property for S

still holds. To see this let T � S be a large exp-generated semigroup with nonempty interior. Take

g 2 intT and let g

t

2 T be a urve suh that g

0

= 1 and g

1

= g. Then Sg � intS and S is deformed
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into Sg by g

t

. By Theorem 4.15, there is a deformation retrat r = �pe of intS into the oset

K (�) zg, where z is suh that K (�) z � intS. Therefore if we ompose r with the left translation

L

g

we get a map rL

g

of S into K (�) zg, whih is not a retrat. However it maps y 2 K (�) z into

yg, beause r (yg) = yg. It follows that r

0

= L

g

�1
rL

g

maps S into K (�) z and satis�es r

0

(y) = y

for all y 2 K (�) z, that is, r

0

is a retrat of S into K (�) z. Clearly L

g

�1

t

deforms K (�) zg into

K (�) z within intS, so that r

0

is indeed a deformation retrat of S into K (�) z.

5.2 Image under the inlusion map

As showed in [12℄ (see also [4℄, Chapter 3), the knowledge of the image of the fundamental group

of S under the inlusion map S ,! G tells when S an be embedded in a given overing group of

G. As a onsequene of Theorem 4.15 this image is desribed by the inlusion of the subgroup

K (�) in G. In fat the following statement holds for all the homotopy groups.

Proposition 5.1 Let the assumptions and notations be as in Theorem 4.15. Then the image

i

�

�

n

(S) in �

n

(G) oinides with the image j

�

�

n

(K (�)) where j : K (�)! G is the inlusion.

Proof: By Proposition 2.3, the homomorphism indued by the inlusion intS ,! S is an iso-

morphism. Hene it is enough to prove the laim with intS in plae of S. Sine K (�) z is a

deformation retrat of intS, it follows that the inlusion K (�) z ,! intS indues an isomorphism.

Hene i

�

�

n

(S) is the image of the homomorphism indued by K (�) z ,! G. By right translation

this image oinides with j

�

�

n

(K (�)). 2

5.3 Relative homotopy

From the identi�ation of the homotopy groups of S with those of K (�) it follows also an identi-

�ation of the relative homotopy groups. To see this, onsider the following diagram

� � �

-

�

n+1

(Kz;K(�)z)

-

�

�

�

n

(K(�)z)

-

�

n

(Kz)

-

�

n

(Kz;K(�)z)

-

� � �

� � �

-

�

n+1

(G;S)

-

�

�

�

n

(S)

-

�

n

(G)

-

�

n

(G;S)

-

� � �

?

Æ

�

?

Æ

�

?

Æ

�

?

involving the two exat homotopy sequenes of the pairs (Kz;K(�)z) and (G;S). Here Æ stand for

the inlusion maps and z 2 intS is suh thatK (�) z � intS. This ladder is a ommutative diagram

(see e.g. [10℄, Theorem 7.2.18). Joining this with the fat that �

n

(K(�)z) � �

n

(S) for all n, it

follows by a standard diagram hasing that Æ

�

: �

n

(Kz;K (�) z) ! �

n

(G;S) is an isomorphism.

Clearly �

n

(Kz;K (�) z) is isomorphi to �

n

(K;K (�)) under right translation. Hene we have

Proposition 5.2 The relative homotopy groups �

n

(G;S) are isomorphi to �

n

(K;K (�)).

5.4 Deforming two semigroups

Two semigroups S

1

and S

2

of the same type �(S

1

) = �(S

2

) = � have the same homotopy groups.

Atually they an be deformed one into another in G. In fat, there exists z

1

2 intS

1

\ P

�

suh

that K(�)z

1

is a deformation retrat of intS

1

. Analogous K(�)z

2

is deformation retrat of intS

2
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for some z

2

2 intS

2

\ P

�

. Clearly K(�)z

1

an be deformed into K (�) z

2

in G. Composing these

deformations one get a deformation of intS

1

into intS

2

.

6 Examples

6.1 Positive matries

Let S = Sl

+

(n;R) be the semigroup of determinant one matries having nonnegative entries. This

is the ompression semigroup of the positive orthant R

n

+

in R

n

:

R

n

+

= f(x

1

; : : : ; x

n

) : x

i

� 0g:

It turns out that the type of Sl

+

(n;R) is the projetive spae P

n�1

, and the invariant ontrol in

P

n�1

is the set [R

n

+

℄ of lines ontained in R

n

+

. In our previous notation, C

�

= [R

n

+

℄.

The semigroup Sl

+

(n;R) is losed but not a Lie semigroup. This an be easily seen by the fat

that its unit group H (S) = S \ S

�1

is not onneted. In fat, H (S) is the semi-diret produt

P �D where P [respetively D℄ is the group of determinant one permutation matries [respetively

diagonal matries with positive entries℄. However, it is well known that the unit group of a Lie

semigroup is onneted (see Neeb [13℄, Proposition III.2). On the other hand, put

L (S) = fX 2 sl (n;R) : exp (tX) 2 Sl

+

(n; :R) for all t � 0g

for the Lie wedge of Sl

+

(n;R). One heks easily that L (S) = fX = (x

ij

) : x

ij

� 0; i 6= jg. Put

S

inf

= hexpL (S)i for the orresponding exp-generated semigroup. Sine L (S) generates sl (n;R),

S

inf

has nonempty interior in Sl (n;R). Furthermore, the invariant ontrol set of S

inf

in P

n�1

is

also C

�

. This an be seen by onsidering matries of the form

H = diagfn� 1;�1; : : : ;�1g

with respet to a basis ff

1

; : : : ; f

n

g suh that f

1

2 R

n

+

and spanff

2

; : : : ; f

n

g \ R

n

+

= 0. It an

be shown that H 2 L (S) (see [16℄), so that any x 2 C

�

is the attrator of some element of S

inf

,

implying that C

�

is the invariant ontrol set of S

inf

, as well. In ase f

1

2 int

�

R

n

+

�

, H 2 int (L (S)),

so that C

0

�

= int (C

�

).

Therefore, S = Sl

+

(n;R) ontains a � (S)-large exp-generated semigroup. Now, it was proved

in [16℄ that S is onneted. Hene the isomorphism theorem holds for Sl

+

(n;R). The subgroup

P

�

an be taken here to be the group of matries of the form

�

� �

0 Q

�

with � 2 R, Q an (n� 1) � (n� 1) matrix and � detQ = 1. For the identity omponent P

0

�

one

must take �; detQ > 0. The orresponding hoie of AN is the group of upper triangular matries

with positive entries on the diagonal. Hene, P

0

�

=AN is di�eomorphi to SO (n� 1). It follows

that the homotopy groups of Sl

+

(n;R) are isomorphi to the homotopy groups of SO (n� 1).

These fats extend to the ompression semigroup of a one in R

n

. Let W � R be a pointed

and generating one and form the semigroup

S

W

= fg 2 Sl (n;R) : gW �Wg:

It was proved in [16℄ that S

W

is onneted. Again the type of S

W

is the projetive spae, and

similar to the proof for Sl

+

(n;R), the semigroup generated by L (S

W

) is large in S

W

. Hene the

homotopy type of S

W

is also SO (n� 1).
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6.2 Totally positive matries

Let T � Sl (n;R) be the semigroup of totally positive matries, that is, of matries suh that all

its minors are nonnegative. It is well known that T is a Lie semigroup (see Ando [1℄, Theorem

3.5 and Corollary 3.6). The type of T is the maximal ag manifold. This an be seen by di�erent

ways. First by [1℄, Theorem 6.2, any g 2 intT has real and di�erent eigenvalues. Hene by [20℄,

Corollary 4.4, the type of T is the empty set, that is the maximal ag manifold. Alternatively one

an onsider the semigroups T

k

of matries having nonnegative k-minors. The type of T

k

is the

Grassmannian Gr

k

(n) of k-dimensional subspaes (see [18℄). Clearly T = T

1

\ � � � \T

n�1

. Arguing

with the paraboli subgroups the Weyl group assoiated to the type of the semigroups we get easily

the type of T .

It follows that the homotopy type of T is the onneted omponent of MAN=AN . Sine M is

disrete, the homotopy groups of T are trivial, that is, T is ontratible.

There exists a generalization of the semigroup of totally positive matries to semi-simple groups

whose Lie algebras are normal real forms of the omplex simple Lie algebras (see Lusztig [9℄, and

referenes therein). Again the type of any suh a semigroup is the maximal ag manifold, implying

the triviality of their homotopy groups, a fat already proved by Lusztig by another means (see

[9℄, Setion 3).

6.3 Rank one groups

In ase G has real rank one there exists just one lass of paraboli subgroups and hene just

one ag manifold G=MAN . The proper semigroups with nonempty interior in G have all the

same type, namely � = ;. The subgroup K (�) is the identity omponent of MAN=AN , that is,

K (�) =M

0

so that every semigroup S in G admitting a large exp-generated semigroup have the

same homotopy groups, and they are isomorphi to the homotopy groups of M

0

. Moreover, intS

an be ontinuously deformed into M

0

.

The subgroup M

0

is well known for eah of the rank one groups. For instane if G = Sl (2;R)

then M

0

= f1g hene the homotopy groups of S are trivial, and intS is ontratible. On the

other hand let G = SO (1; p)

0

, the identity omponent of a real hyperboli group. In this ase

M

0

= SO(p), so that this is the homotopy type of the Lie semigroups in SO (1; p).

6.4 Ol'shanski�� semigroups

The isomorphism theorem holds trivially for the group G itself. In this ase � (G) = � and the

ag manifold G=P

�(G)

degenerates to a point as P

�(G)

= G. The subgroup K (�) is the whole K,

whih by means of the Iwasawa deomposition G = KAN , is a deformation retrat of G.

In this example we disuss the lass of Ol'shanski�� semigroups where suh polar deomposition

is also available, so that the homotopy groups an be read o� diretly from the deomposition,

illustrating the isomorphism theorem. We refer to Lawson [8℄ for detailed disussions about these

semigroups and their deompositions.

Let (g; �) be a simple symmetri Lie algebra, where � is an involutive automorphism of g. put

g

+

[respetively g

�

℄ for the subalgebra [respetively subspae℄ of �xed points of � [respetively

�1 eigenvetors℄. There is the diret sum g = g

+

� g

�

and the braket relations [g

"

; g

Æ

℄ = g

"Æ

,

"; Æ = �. Assume that there is wedge W � g

�

1. g

�

=W �W ,

2. W is invariant under the adjoint representation of g

+

and
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3. ad (X) has real spetrum for all X 2W .

Let G be a Lie group with Lie algebra g and denote by H the onneted subgroup with Lie

algebra g

+

. Then H is losed and the subset S = (expW )H is a losed semigroup in G having

nonempty interior. Furthermore, the map W �H ! S, (X;h) 7! (expX)h is a di�eomorphism

and S is a Lie semigroup (see [8℄, Theorem 3.4).

Clearly, W is ontratible, so that H beomes a deformation retrat of S.

In order to reognize the topology of H in terms of paraboli subgroups of G hoose a � -

invariant Cartan deomposition g = k� s so that g

�

= (g

�

\ k)� (g

�

\ s) = k

�

� s

�

. The algebra

g

+

is redutive and g

+

= k

+

� s

+

is a Cartan deomposition. The Lie algebra of K (H) = H \K

is k

+

and H = K (H) exp (s

+

) is a global Cartan deomposition of H . Sine H is assumed to

be onneted, K (H) is onneted. Also, K and K (H) is ompat if G has �nite enter. From

the global Cartan deomposition of H it follows that H , and hene S, is homotopy equivalent to

K (H).

Now, the existene of the invariant one W � g

�

implies that the symmetri Lie algebra is

of the regular type. This means that the entralizer z (l) of the subalgebra l = k

+

� s

�

meets

W \ s

�

nontrivially. The assumption that g is simple implies furthermore that  = z (l) \ s

�

is

one-dimensional and l turns out to be the entralizer of  in g (see Hilgert and Neeb [5℄ Theorem

V.I and Neeb [14℄, Theorem I.20(3) and Proposition IV.1). Sine dim  = 1 there exists a maximal

abelian a � s suh that  � a. We an hoose a Weyl hamber a

+

ontaining W \  in its losure.

Denote by � the simple system of roots de�ned by a

+

and let � () � � be the set of simple roots

annihilating on . Using again that dim  = 1, it follows that � () is maximal in �, that is, its

omplementary is a singleton. Hene P

�()

is a maximal paraboli subgroup, i.e., B

�()

is minimal.

It was proved in [19℄ that � (S) = � (). We outline the proof with an approah slightly

di�erent from [19℄: Note that l is the redutive omponent of the paraboli subalgebra p

�()

. Sine

the Lie algebra of both K (H) and K (� ()) are k

+

, it follows that these subgroups oinide, so

that K (� ()) is ontained in S. Now, the orbit O = HP

�()

=P

�()

of P

�()

in B

�()

is open and

its losure is S-invariant. Hene C

�()

= lO. It is known that lO is ontained in the open Bruhat

ell de�ned by a

+

. Furthermore, S is transitive on the �ber over the base point P

�()

2 B

�()

beause K (� ()) � S. Hene �

�1

�

C

�()

�

is the invariant ontrol set in the maximal ag manifold

B , ensuring that the type of S is � ().

In partiular let S � Sl (n;R) be the onneted omponent of the identity semigroup of expan-

sions of a nondegenerate quadrati form in R

n

(see [8℄ for a detailed disussion of this semigroup).

If the matrix of the quadrati form is

J =

�

1

k�k

0

0 �1

(n�k)�(n�k)

�

then S = fg 2 Sl (n;R) : g

t

Jg � J � 0g, where X � 0 means that the matrix X is positive

semi-de�nite. It follows that if W is the one omposed of the symmetri matries X � 0 then

S = SO (k; n� k)

0

expW . Here H = SO(k; n� k)

0

is the identity omponent of the subgroup of

isometries of J . Its maximal ompat subgroup isK (H) = SO (k)�SO(n� k). On the other hand,

the type of S is the Grassmannian Gr

k

(n) of k-dimensional subspaes in R

n

. This is not hard to

hek after the remark that the invariant ontrol set of S in Gr

k

(n) is the set of V 2 Gr

k

(n) suh

that the restrition of J to V is positive semi-de�nite. Of ourse, the subgroup K (�) assoiated

to Gr

k

(n) is SO (k)� SO (n� k), whih is homotopy equivalent to S.
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