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Abstract

Spectra of algebras of holomorphic symmetric functions on ¢, are investi-
gated

By a symmetric function defined on ¢, we mean a function which is invariant
under any reordering of the sequence in £,. Symmetric polynomials in finite dimen-
sional spaces can be studied in [9] or [11]; in the infinite dimensional Hilbert space
they already appear in [10]. Throughout this note P,(¢,) is the space of symmetric
polynomials on a complex space £, 1 < p < oo and H(¢,) is the space of symmetric
holomorphic functions on ¢,. We will use the notation Hy,(¢p), Aus(By,) for the alge-
bras of symmetric holomorphic functions which are bounded on bounded sets of ¢,
and uniformly continuous on the open unit ball By, of £, respectively. The purpose
of this paper is the description of such algebras and their spectra. The spectrum of
algebras of holomorphic functions on Banach spaces was studied in [1],[2], [7].

1. Algebra of symmetric polynomials

Let X be a Banach space and Py(X) be a subalgebra of P(X). The sequence
(G;); of polynomials is called an algebraic basis of Py(X) if for every P € Py(X)
there is ¢ € P(C") for some n such that P(z) = ¢(G1(z),...,Gy(x)), in other words,
if G is the mapping = € C" ~ G(z) := (G1(z),...,Gy(z)) € C", P=qoG.

Let < p > be smallest integer number that is greater than or equal to p. In [§]
is proved that polynomials Fi(3 a;e;) = S af for k =< p >, < p > +1,... form
an algebraic basis in Py(¢,). So if < p; >=< py > then Py(¢,,) = Ps({,,). Thus,
without loss of generality we can consider Ps(¢,) only for integer p. Throughout we
will assume that p is an integer number, 1 < p < oo.

It is well known [9] XI §52 that for n < oo any polynomial in Ps(C") is
uniquely representable as a polynomial in the elementary symmetric polynomials

(Ri)?zl ) Ri = Zk1<...<ki Tky - - Tk,



Lemma 1.1 Let Gy,...,G, be an algebraic basis of Ps(C"). Then for any & =
(&1,...,&) € C" there is © = (x1,...,x,) € C" such that Gi(x) =&, i=1,...,n.
If for somey = (y1,...,yn) Gi(y) =&, i=1,...,n then x = y up to a permutation.

Proof. First we suppose that G; = R;. Then according to Vieta formulas [9] the
solutions of the equation

g — a4+ (=D, =0

satisfy the conditions R;(z) = & so x = (xy,...,2,) as required. Let now G; be
an arbitrary algebraic basis of Ps(C"). Then R;(z) = v;(G1(x),...,Gp(x)) for some
polynomials v; € C". Setting v as the polynomial mapping z € C" ~ v(x) :=
(vi(z),...,v,(z)) € C", we have R =v o G.

As the elementary symmetric polynomials also form a basis, there is a polynomial
mapping w : C" — C" such that G = wo R, hence R = (vow) o R, so vow = id.
Then v and w are inverse each other since w o v coincides with the identity on the
open set I'm(w). In particular, v is one to one.

Now, the solutions x4, ..., z, of the equation

" — Ul(gl)l‘n_l +...+ (—1)”vn(§1, e 7571) =0

satisfy the conditions R;(x) = v;(§), i = 1,...,n. That is, v(§) = R(x) = v(G(x)),
hence £ = G(x). O

Corollary 1.1. Given &y, ...,&, € C" there is x € (7P~ such that
Fp(l‘) = 617 SRR Fp+nfl(l‘) = é-n

Let us say that v ~ y, x,y € £, if there is a permutation 7" of basis in ¢, such that
x =T(y). For any point x € ¢, ¢, will denote the linear multiplicative functional on
Ps(¢,) "evaluation” at x. It is clear that if x ~ y then §, = 6,,.
Theorem 1.1. Let x,y € ¢, and Fi(x) = F;(y) for every i > p. Then x ~y.

Proof. Call x = (z1,22,...), ¥ = (y1,Ya,...). Without loss of generality, we can

assume that 1 = |z1| = ... = |zg| > |z > ... and 1> |1 | > |yo| > ...
If |y1] < 1 then for many big j, |Fj(x)| will be close to k while for all big j, F;(y)
will be close to 0. Thus |y;| = 1. Suppose that 1 = |y1| = ... = |[ym| > |Yms1| > -+ -

Claim: m = k. Suppose for a contradiction, that m < k. Then, for many big j,
|F;(x)]| is close to k, while for all big j, |Fj(y)| < m +1/2 < k. This contradiction
shows that m < k is fals; similarly, £ < m is fals, and so m = k.



Let & = (@1, ...,2%) and § = (1, . .., yx). Also, let 27 denote the point (z, 23, ...),
etc. We claim that & ~ 7. Consider the function f : (S')%** — C given by

f(@,0) = flur, ... up,v1, .o 08) = [ug + .o Fug] — [vr + ..o 4 )

Since Fj(z — ) and F;(y — ) — 0 as j — oo and since we are assuming that
Fj(z) = Fj(y) for all j > p, it follows that f(i/,3’) — 0 as j — oo. Now, f is
obviously a continuous function, and so it follows that for any point (u,v) € (S)%
which is a limit point of {(#7,¢7) : 7 > p}, f(u,v) = 0.

Next, the point (1,...,1) € (SY)? is a limit point of {(z/,9’) : j > p}. If
(@7, 57%) — (1,...,1), then (27T g9+, — (Z, 7). Consequently, f(Z,7) = 0, or in
other words Fy(Z) = Fy(§). Similarly, F;(Z) = Fj(y) for all j. From Lemma 1.1 it
follows that & ~ §. So Fj(x — &) = Fj(y — §) for every j > pi.e.

F}(Oa"-aoaxk-l-l:xk-i-%"') = Fj(oa---;ank—i—l;yk—i—%---)

for every j > p. If |zg11] = 0 and |yx41| = O then z; = 0 and y; = 0 for i >
k. Let |zp+1| = a # 0 then we can repeat the above argument for vectors z’' =
(Tgs1/a, Tpso/a, . ..) and y' = (yYg41/a, Yk+2/a, . ..) and by induction we will see that
T~y U

Corollary 1.2. Let z,y € £, and for arbitrary integer m > p F;(v) = F(y) for
each v > m. Then x ~ y.

Proof. Since m > p then x,y € ¢, and from Theorem 1.1 it follows that x ~ y in
lp. SOz ~yin £, O

Lemma 1.2. Let Py,..., P, € Ps({,) and ker P, N ...Nker P,, = (. Then there is
Q1. Qm € Ps({,) such that

Y PQ;=1.
im1

Proof. Let n = max;(deg P;). Then we can assumed that P;(x) = ¢;(Fy(z), ..., F,(z))
for some g; € P(C"P™). Let us suppose that at some point £ € C" P ¢ =
(&1, .. &n—p+1) 9i(€) = 0. Then by Corollary 1.1 there is zy € ¢, such that F(zy) =
&. So the common set of zero of all g; is empty. Thus by Hilbert Nullstellensatz
there is ¢y, . .., ¢y such that Y2, g;¢; = 1. Put Q;(x) = ¢;(F,(x),..., F,(x)). O

2. Finitely generated symmetric algebras

Below it will be shown that in general, the spectrum of the algebra generated by
symmetric polynomials is not exhausted by point evaluation functionals. Now we
consider a special case, where they coincide.
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Let us denote by P (¢,), n > p the subalgebra of P;(¢,), generated by {F,, ..., F,};
one easily realizes, by appealing to Corollary 1.1, that P”(£,)NP(*¢,), is a sup-norm
closed subspace of P(¥¢,) for every k € N.

Let A} (B,,) and Hp,(¢,) be the closed subalgebras of A,,(By,) and Hy(¢,)
generated by {F,, ..., F,}, that is the closure of P}'({,) in each of the corresponding
algebras. Note that for any f € H},(¢,) with f =Y Py, the Taylor series expansion
of f at 0, we have P, € P’({,). Indeed, if f € PI({,), is immediate that P, €
Pr(L,) N P(¥¢,) for all k. Then the same holds for any f € M} (¢,) by recalling
the continuity of the map which assigns to a holomorphic function its & Taylor
polynomial.

By [6] I1I. 1.4, we may, and we do, identify the spectrum of A7 (B,,) with the
joint spectrum of {F,,..., F,}, o(Fp, ..., F,).

Let us denote by F} a mapping from £, to C" ?*! such that Fyix= (Fp(n), ..., Fy(x)).
Then D7 := F'(B,,) is a subset of the unit disk D of C" 7!,

Let K be a bounded set in C". Recall that a point = belongs to the polynomial
convezr hull of K, [K], if for every polynomial f , |f(z)| < sup,cx |f(2)]. A set is
polynomially convex if it coincides with its polynomial convex hull. Recall that the
sup norm on K of a polynomial coincides with the sup norm on [K]. It is well known
(see f.e. [6]) that the spectrum of the uniform Banach algebra P(K) generated by
polynomials on the compact set K coincides with the polynomially convex hull of
this set. Let [D}] be the polynomial convex hull of D}. We denote as usual P([D}])
for the algebra of continuous functions in [D] which are uniformly approximable
by polynomials.

Theorem 2.1.

(i) The composition operator Crp : Hy(C7P) — Hy (€,) given by Crp(g) = go Fy
15 a topological tsomorphism.

(¢') The composition operator Cry : P([Dp]) — Ays(By,) given by Cru(g) = go F)
15 a topological tsomorphism.

(i) M(H3(6,)) = 17,

(i) M(AL(By,)) = (D3],

Proof. Clearly the composition operators are well defined and one to one, so it
remains to prove that they are onto.

In (2), let f € H}.(¢,) and f = Y Py be the Taylor series expansion of f at 0.
Since P, € P*({,), there is a homogeneous polynomial g, € P(C""'?) such that
Py(x) = gp(Fp(2), ..., Fu(x)). Put g(&, ..., &npi1) = 2oy 9(&rs - - - Enpy1); since
g is a convergent power series in each variable, it is separately holomorphic, hence
holomorphic. Note that f = go F'.



In (i), observe that for any g € P([D,]) , [|Cx:(9)|| = SUPgep, lgo FJ(z)| =
gl |D; = ||g]| |[D;;]. Thus Crx is an open mapping, hence its range is a closed subspace,
which moreover contains Py ({,), therefore Crn is onto Aj (By,).

(77) and (ii") it follow from (7), (') and the theory of entir functions of several
variables [?] and the theory of uniform algebras [6]. O

Lemma 2.1. If (£,...,£),) € [DJ] and n. < m then (£),...,&)) € [D}].
Proof. If (&7,...,€)) ¢ [Dy], there is a polynomial of n variables such that

|q(€?77§2)| > sup |q(€177€n)|

(51,---,§n)€D;}

Consider a polynomial ¢ of m variables such that G(&i,...,&n) = q(&,..., &),
i.e., the composition of ¢ and the projection onto the first n variables. Then,

sup —[q(&r, -+, &m)| = sup [G(Fp(2), . ., Fpym—(2))] =

(€15es€m)EDR! z€By,
Sup [g(Fp(x), - Fpena(7))] < (&1, &)l = 1a(&ds - - &)l
TEBy,
But this means (&7,...,&),) ¢ [D}'], a contradiction. O

3. Spectrum of A,,(By,)

For studying the spectrum of Aus(ng) the most decisive feature is that the
polynomials {F}'}7°  generate a dense subalgebra. Actually for every f € Ays(By,)
its Taylor polynomials are easily seen to be symmetric by a uniqueness argument.

First we will show that the spectrum of the uniform algebra of symmetric holo-
morphic functions on B, does not coincide with the point evaluation functionals.

Example 3.1. For every n put v, = #(61, ...,€,) € By,. Then 0, (F,) = 1 and
Oy, (F}) — 0 as n — 0 for every j > p. By compactness of the M(A,,(By,)) there
is an accumulation point ¢ of the sequence {J,,}. Then ¢(F,) =1 and ¢(F;) =0
for all j > p. From Corollary 1.2 it follows that there is no point z in £, such that

5, = ¢.
Let us denote by X, 1= {(a;)2, € lw : (@)}, € [D}]}. As a consequence

of Lemma 2.1, X, is the limit of the inverse sequence ([5] 2.5) of {[D}], 7", N}
where 7" is the projection onto the first n coordinates. When X, is endowed with
the product topology, that is, the coordinatewise convergence, it is a non-empty

compact Hausdorff space by [5] 3.2.13. X, is a weak-star compact subset of the



closed unit ball /., since the weak star topology and the pointwise convergence
topology coincide on the closed unit ball of /.
Now we describe the spectrum of A,,(By,).

Theorem 3.1. ¥, is homeomorphic to the spectrum of A,s(By,).

Proof. First of all observe that any ¥ € M(A,,(By,)), is completely determined
by the sequence of values {W¥(F,)} since VU is determined by its behaviour on P,(¢,),
the algebra generated by {F,}, which in turn is dense in Ay (B, ).

We construct an embedding

(a2, € Xy~ & € M(Aus(By,)),

and prove that it is a homeomorphism. Given (a;)2, € X, a homomorphism
jlai)2,] == @ on Ays(Byg,) is defined in the following way: Every polynomial
P € P,({,) may be written as g o F)' for some n € N, thus we may define, and
we do, ®(P) = g(ay, .. .,ay). Certainly ®(P) is well defined since if P = ho F" for
some other polynomial A, and, say, m > n, then by Corollary 1.1, h = g, where g has
the same meaning as in Lemma 2.1. Hence g(a,,...,a,) = §(ap, ..., 0n, ..., 0p) =
h(ap, ..., Qn,-..,any). It is easy now to see that @ is linear and multiplicative on the
subalgebra of symmetric polynomials. Also |®(P)| = |g(ay,...,a.)| < |[g]lpy =
|lg[|pz < [|P]|, therefore @ is uniformly continuous on P(¢,), hence it has a contin-
uous linear and multiplicative extension to the closure of Py(¢,) that is, to Ays(By,).
We still denote this extension by .

Obviously, j is one to one. Moreover j is also an onto mapping: Indeed, for any
¥ € M(Ayus(Be,)), the sequence {¥(F,)} € X, because {¥(F,);Z'} is an element
of the joint spectrum of M(A7(By,)) (obtained just by taking the restriction of
V¥ to A} (By,)) which we know to be [D}']; of course, j[{¥(F})}] = ¥ since they
coincide on each F;,.

This embedding is continuous since the M(A,s(By,)) is an equicontinuous subset
of the dual space (A.s(By,))*, so the weak-star topology coincides on it with the
topology 7 of pointwise convergence on the elements of the dense set of all symmetric
polynomials, hence on the generating system {Fn}ffzp.

Finally ;7 is a homeomorphism as a bijection between two compact Hausdorff
spaces. O

We can view X, as "the joint spectrum” of the sequence {F,} since ®(F,) =

an. Note that F,(By,) C .

Remark 3.1. The set D, = F,(B,,) C By, pointwise coincides with the set of
point evaluation multiplicative functionals on A,,(By,) -

0.9}
n:p7



It is clear that D C [D7] C D but we do not know whether this embeddings
are proper. This is related to a corona type theorem for A, (By,) since D, is dense
in X, if Db = [Dy] Vn € N.

Note that if ¢ > p (where ¢ and p are not necessarily integer) then D, C D, and
the inclusion is strict. Indeed, let x € By, so that x € ¢,,. If F,(y) = F,(x) for some
y €, then x ~ y in £, so in £,,.

Proposition 3.1.- ¥, is the polynomial convex hull of D, C ({, 7).

Proof. Let (a;)i2, € ls such that |P((a;))| < ||P]]s, for all polynomials P € P({y).

i=p
For any n > p and any g € P(C""'"P), the mapping @ given by ()2, € loo ~
g(xp, ..., x,) is a polynomial in ¢, hence
l9(ap, .. an)| = [Q(a:)] < |Qlz, < llgllipy-
Therefore (ay,...,a,) € [Dy], as we want and %, is polynomially convex. So to

finish, it is enough to check that X, is contained in the polynomial convex hull of
D,. To do this, let now (a;)72, € ¥, and P € P(({x,7,)). As P is 7, continu-
ous, it depends on a finite number of variables, say x,,...,z,, thus the mapping ¢
given by (zp,...,2,) ~ P(zp,...,Tn,0,...,0,...) is a polynomial in C""'"” and as

(ap, - - -, an) € [D]],
[P((ai))| = [Plap, ..., an,0,....0,.. )| = |q(ap, ..., an)| < lallipy) = llallog < 11Plp,,

it follows that (a;)$2, belongs to the polynomially convex hull of D,. O

Theorem 3.2. There is an algebraic and topological isomorphism between A,s(By,)
and a uniform Banach algebra generated by w*({u, l1) continuous functionals on
.

Proof. For every f € Ay (By,) and ¢ € M(A,(By,)) denote by f(®) = &(f) the
Gelfand transform which is known to be an algebraic isometry into C'(X,). Recall
that the range of the Gelfand transform is a closed subalgebra which, as we are going
to see, will coincide with A, the uniform Banach subalgebra of C'(¥,) generated by
the coordinate functionals {7 };2,.

Since Fk(f) = & for £ = (&); € X, it follows that the Gelfand transform of
Fk is the k" coordinate functional on f. As AuS(ng) is the closure of the algebra
generated by {F}, : k > p}, it follows that f € A, for every f Aus(Be,). Therefore
A is precisely the range of the Gelfand transform. O

We do not know what is closure of A, in weak-star topology. But it is easy to
see that if M(A,(By,)) D By, then M(Ay(By,)) = By, -
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Qu

estions.
1. What is polynomially convex hull of D}?
2. What is spectrum of H,,(By,)?
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