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Abstra
t

Spe
tra of algebras of holomorphi
 symmetri
 fun
tions on `

p

are investi-

gated

By a symmetri
 fun
tion de�ned on `

p

we mean a fun
tion whi
h is invariant

under any reordering of the sequen
e in `

p

: Symmetri
 polynomials in �nite dimen-

sional spa
es 
an be studied in [9℄ or [11℄; in the in�nite dimensional Hilbert spa
e

they already appear in [10℄. Throughout this note P

s

(`

p

) is the spa
e of symmetri


polynomials on a 
omplex spa
e `

p

; 1 � p <1 and H

s

(`

p

) is the spa
e of symmetri


holomorphi
 fun
tions on `

p

:We will use the notation H

bs

(`

p

); A

us

(B

`

p

) for the alge-

bras of symmetri
 holomorphi
 fun
tions whi
h are bounded on bounded sets of `

p

and uniformly 
ontinuous on the open unit ball B

`

p

of `

p

respe
tively. The purpose

of this paper is the des
ription of su
h algebras and their spe
tra. The spe
trum of

algebras of holomorphi
 fun
tions on Bana
h spa
es was studied in [1℄,[2℄, [7℄.

1. Algebra of symmetri
 polynomials

Let X be a Bana
h spa
e and P

0

(X) be a subalgebra of P(X). The sequen
e

(G

i

)

i

of polynomials is 
alled an algebrai
 basis of P

0

(X) if for every P 2 P

0

(X)

there is q 2 P(C

n

) for some n su
h that P (x) = q(G

1

(x); : : : ; G

n

(x)); in other words,

if G is the mapping x 2 C

n

; G(x) := (G

1

(x); : : : ; G

n

(x)) 2 C

n

; P = q ÆG:

Let < p > be smallest integer number that is greater than or equal to p: In [8℄

is proved that polynomials F

k

(

P

a

i

e

i

) =

P

a

k

i

for k =< p >;< p > +1; : : : form

an algebrai
 basis in P

s

(`

p

): So if < p

1

>=< p

2

> then P

s

(`

p

1

) = P

s

(`

p

2

): Thus,

without loss of generality we 
an 
onsider P

s

(`

p

) only for integer p: Throughout we

will assume that p is an integer number, 1 � p <1:

It is well known [9℄ XI x52 that for n < 1 any polynomial in P

s

(C

n

) is

uniquely representable as a polynomial in the elementary symmetri
 polynomials

(R

i

)

n

i=1

; R

i

=

P

k

1

<:::<k

i

x

k

1

: : : x

k

i

1



Lemma 1.1 Let G

1

; : : : ; G

n

be an algebrai
 basis of P

s

(C

n

): Then for any � =

(�

1

; : : : ; �

n

) 2 C

n

there is x = (x

1

; : : : ; x

n

) 2 C

n

su
h that G

i

(x) = �

i

; i = 1; : : : ; n:

If for some y = (y

1

; : : : ; y

n

) G

i

(y) = �

i

; i = 1; : : : ; n then x = y up to a permutation.

Proof. First we suppose that G

i

= R

i

: Then a

ording to Vieta formulas [9℄ the

solutions of the equation

x

n

� �

1

x

n�1

+ : : : (�1)

n

�

n

= 0

satisfy the 
onditions R

i

(x) = �

i

so x = (x

1

; : : : ; x

n

) as required. Let now G

i

be

an arbitrary algebrai
 basis of P

s

(C

n

): Then R

i

(x) = v

i

(G

1

(x); : : : ; G

n

(x)) for some

polynomials v

i

2 C

n

: Setting v as the polynomial mapping x 2 C

n

; v(x) :=

(v

1

(x); : : : ; v

n

(x)) 2 C

n

; we have R = v ÆG:

As the elementary symmetri
 polynomials also form a basis, there is a polynomial

mapping w : C

n

! C

n

su
h that G = w Æ R; hen
e R = (v Æ w) ÆR; so v Æ w = id:

Then v and w are inverse ea
h other sin
e w Æ v 
oin
ides with the identity on the

open set Im(w): In parti
ular, v is one to one.

Now, the solutions x

1

; : : : ; x

n

of the equation

x

n

� v

1

(�

1

)x

n�1

+ : : :+ (�1)

n

v

n

(�

1

; : : : ; �

n

) = 0

satisfy the 
onditions R

i

(x) = v

i

(�); i = 1; : : : ; n: That is, v(�) = R(x) = v(G(x));

hen
e � = G(x): 2

Corollary 1.1. Given �

1

; : : : ; �

n

2 C

n

there is x 2 `

n+p�1

p

su
h that

F

p

(x) = �

1

; : : : ; F

p+n�1

(x) = �

n

:

Let us say that x � y; x; y 2 `

p

if there is a permutation T of basis in `

p

su
h that

x = T (y): For any point x 2 `

p

Æ

x

will denote the linear multipli
ative fun
tional on

P

s

(`

p

) "evaluation" at x. It is 
lear that if x � y then Æ

x

= Æ

y

:

Theorem 1.1. Let x; y 2 `

p

and F

i

(x) = F

i

(y) for every i > p. Then x � y:

Proof. Call x = (x

1

; x

2

; : : :); y = (y

1

; y

2

; : : :): Without loss of generality, we 
an

assume that 1 = jx

1

j = : : : = jx

k

j > jx

k+1

j � : : : and 1 � jy

1

j � jy

2

j � : : :

If jy

1

j < 1 then for many big j; jF

j

(x)j will be 
lose to k while for all big j; F

j

(y)

will be 
lose to 0: Thus jy

1

j = 1: Suppose that 1 = jy

1

j = : : : = jy

m

j > jy

m+1

j � : : :

Claim: m = k: Suppose for a 
ontradi
tion, that m < k: Then, for many big j;

jF

j

(x)j is 
lose to k; while for all big j; jF

j

(y)j < m + 1=2 < k: This 
ontradi
tion

shows that m < k is fals; similarly, k < m is fals, and so m = k:

2



Let ~x = (x

1

; : : : ; x

k

) and ~y = (y

1

; : : : ; y

k

): Also, let x

j

denote the point (x

j

1

; x

j

2

; : : :);

et
. We 
laim that ~x � ~y: Consider the fun
tion f : (S

1

)

2k

! C given by

f(~u; ~v) = f(u

1

; : : : ; u

k

; v

1

; : : : ; v

k

) = [u

1

+ : : :+ u

k

℄� [v

1

+ : : :+ v

k

℄:

Sin
e F

j

(x � ~x) and F

j

(y � ~y) ! 0 as j ! 1 and sin
e we are assuming that

F

j

(x) = F

j

(y) for all j � p; it follows that f(~x

j

; ~y

j

) ! 0 as j ! 1: Now, f is

obviously a 
ontinuous fun
tion, and so it follows that for any point (u; v) 2 (S

1

)

2k

whi
h is a limit point of f(~x

j

; ~y

j

) : j � pg; f(u; v) = 0:

Next, the point (1; : : : ; 1) 2 (S

1

)

2k

is a limit point of f(~x

j

; ~y

j

) : j � pg: If

(~x

j

t

; ~y

j

t

)

t

! (1; : : : ; 1); then (~x

j

t

+1

; ~y

j

t

+1

)

t

! (~x; ~y): Consequently, f(~x; ~y) = 0; or in

other words F

1

(~x) = F

1

(~y): Similarly, F

j

(~x) = F

j

(~y) for all j: From Lemma 1.1 it

follows that ~x � ~y: So F

j

(x� ~x) = F

j

(y � ~y) for every j � p i.e.

F

j

(0; : : : ; 0; x

k+1

; x

k+2

; : : :) = F

j

(0; : : : ; 0; y

k+1

; y

k+2

; : : :)

for every j � p: If jx

k+1

j = 0 and jy

k+1

j = 0 then x

i

= 0 and y

i

= 0 for i >

k: Let jx

k+1

j = a 6= 0 then we 
an repeat the above argument for ve
tors x

0

=

(x

k+1

=a; x

k+2

=a; : : :) and y

0

= (y

k+1

=a; y

k+2

=a; : : :) and by indu
tion we will see that

x � y: 2

Corollary 1.2. Let x; y 2 `

p

and for arbitrary integer m � p F

i

(x) = F

i

(y) for

ea
h i � m: Then x � y:

Proof. Sin
e m � p then x; y 2 `

m

and from Theorem 1.1 it follows that x � y in

`

m

. So x � y in `

p

. 2

Lemma 1.2. Let P

1

; : : : ; P

m

2 P

s

(`

p

) and kerP

1

\ : : : \ kerP

m

= ;: Then there is

Q

1

; : : : ; Q

m

2 P

s

(`

p

) su
h that

m

X

i=1

P

i

Q

i

� 1:

Proof. Let n = max

i

(degP

i

): Then we 
an assumed that P

i

(x) = g

i

(F

p

(x); : : : ; F

n

(x))

for some g

i

2 P(C

n�p+1

): Let us suppose that at some point � 2 C

n�p+1

; � =

(�

1

; : : : ; �

n�p+1

) g

i

(�) = 0: Then by Corollary 1.1 there is x

0

2 `

p

su
h that F

i

(x

0

) =

�

i

: So the 
ommon set of zero of all g

i

is empty. Thus by Hilbert Nullstellensatz

there is q

1

; : : : ; q

m

su
h that

P

i

g

i

q

i

� 1: Put Q

i

(x) = q

i

(F

p

(x); : : : ; F

n

(x)): 2

2. Finitely generated symmetri
 algebras

Below it will be shown that in general, the spe
trum of the algebra generated by

symmetri
 polynomials is not exhausted by point evaluation fun
tionals. Now we


onsider a spe
ial 
ase, where they 
oin
ide.
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Let us denote by P

n

s

(`

p

); n � p the subalgebra of P

s

(`

p

); generated by fF

p

; : : : ; F

n

g;

one easily realizes, by appealing to Corollary 1.1, that P

n

s

(`

p

)\P(

k

`

p

); is a sup-norm


losed subspa
e of P(

k

`

p

) for every k 2 N :

Let A

n

us

(B

`

p

) and H

n

bs

(`

p

) be the 
losed subalgebras of A

us

(B

`

p

) and H

bs

(`

p

)

generated by fF

p

; : : : ; F

n

g; that is the 
losure of P

n

s

(`

p

) in ea
h of the 
orresponding

algebras. Note that for any f 2 H

n

bs

(`

p

) with f =

P

P

k

; the Taylor series expansion

of f at 0; we have P

k

2 P

n

s

(`

p

): Indeed, if f 2 P

n

s

(`

p

); is immediate that P

k

2

P

n

s

(`

p

) \ P(

k

`

p

) for all k: Then the same holds for any f 2 H

n

bs

(`

p

) by re
alling

the 
ontinuity of the map whi
h assigns to a holomorphi
 fun
tion its k

th

Taylor

polynomial.

By [6℄ III. 1.4, we may, and we do, identify the spe
trum of A

n

us

(B

`

p

) with the

joint spe
trum of fF

p

; : : : ; F

n

g ; �(F

p

; : : : ; F

n

):

Let us denote by F

n

p

a mapping from `

p

to C

n�p+1

su
h thatF

n

p

: x 7! (F

p

(x); : : : ; F

n

(x)):

Then D

n

p

:= F

n

p

(B

`

p

) is a subset of the unit disk D of C

n�p+1

:

Let K be a bounded set in C

n

. Re
all that a point x belongs to the polynomial


onvex hull of K; [K℄; if for every polynomial f ; jf(x)j � sup

z2K

jf(z)j: A set is

polynomially 
onvex if it 
oin
ides with its polynomial 
onvex hull. Re
all that the

sup norm on K of a polynomial 
oin
ides with the sup norm on [K℄: It is well known

(see f.e. [6℄) that the spe
trum of the uniform Bana
h algebra P (K) generated by

polynomials on the 
ompa
t set K 
oin
ides with the polynomially 
onvex hull of

this set. Let [D

n

p

℄ be the polynomial 
onvex hull of D

n

p

: We denote as usual P ([D

n

p

℄)

for the algebra of 
ontinuous fun
tions in [D

n

p

℄ whi
h are uniformly approximable

by polynomials.

Theorem 2.1.

(i) The 
omposition operator C

F

n

p

: H

b

(C

n+1�p

)!H

n

bs

(`

p

) given by C

F

n

p

(g) = g ÆF

n

p

is a topologi
al isomorphism.

(i

0

) The 
omposition operator C

F

n

p

: P ([D

n

p

℄)! A

n

us

(B

`

p

) given by C

F

n

p

(g) = g Æ F

n

p

is a topologi
al isomorphism.

(ii) M(H

n

bs

(`

p

)) = C

n+1�p

:

(ii

0

) M(A

n

us

(B

`

p

)) = [D

n

p

℄:

Proof. Clearly the 
omposition operators are well de�ned and one to one, so it

remains to prove that they are onto.

In (i); let f 2 H

n

bs

(`

p

) and f =

P

P

k

be the Taylor series expansion of f at 0:

Sin
e P

k

2 P

n

s

(`

p

); there is a homogeneous polynomial g

k

2 P(C

n+1�p

) su
h that

P

k

(x) = g

k

(F

p

(x); : : : ; F

n

(x)): Put g(�

1

; : : : ; �

n�p+1

) =

P

1

k=1

g

k

(�

1

; : : : ; �

n�p+1

); sin
e

g is a 
onvergent power series in ea
h variable, it is separately holomorphi
, hen
e

holomorphi
. Note that f = g Æ F

n

p

:

4



In (i

0

); observe that for any g 2 P ([D

n

p

℄) ; jjC

F

n

p

(g)jj = sup

x2B

`

p

jg Æ F

n

p

(x)j =

jjgjj

D

n

p

= jjgjj

[D

n

p

℄

: Thus C

F

n

p

is an open mapping, hen
e its range is a 
losed subspa
e,

whi
h moreover 
ontains P

n

s

(`

p

); therefore C

F

n

p

is onto A

n

us

(B

`

p

):

(ii) and (ii

0

) it follow from (i), (i

0

) and the theory of entir fun
tions of several

variables [?℄ and the theory of uniform algebras [6℄. 2

Lemma 2.1. If (�

0

1

; : : : ; �

0

m

) 2 [D

m

p

℄ and n < m then (�

0

1

; : : : ; �

0

n

) 2 [D

n

p

℄:

Proof. If (�

0

1

; : : : ; �

0

n

) =2 [D

n

p

℄; there is a polynomial of n variables su
h that

jq(�

0

1

; : : : ; �

0

n

)j > sup

(�

1

;:::;�

n

)2D

n

p

jq(�

1

; : : : ; �

n

)j:

Consider a polynomial ~q of m variables su
h that ~q(�

1

; : : : ; �

m

) = q(�

1

; : : : ; �

n

);

i.e., the 
omposition of q and the proje
tion onto the �rst n variables. Then,

sup

(�

1

;:::;�

m

)2D

m

p

j~q(�

1

; : : : ; �

m

)j = sup

x2B

`

p

j~q(F

p

(x); : : : ; F

p+m�1

(x))j =

sup

x2B

`

p

jq(F

p

(x); : : : ; F

p+n�1

(x))j < jq(�

0

1

; : : : ; �

0

n

)j = j~q(�

0

1

; : : : ; �

0

m

)j:

But this means (�

0

1

; : : : ; �

0

m

) =2 [D

m

p

℄; a 
ontradi
tion. 2

3. Spe
trum of A

us

(B

`

p

)

For studying the spe
trum of A

us

(B

`

p

) the most de
isive feature is that the

polynomials fF

n

p

g

1

n=p

generate a dense subalgebra. A
tually for every f 2 A

us

(B

`

p

)

its Taylor polynomials are easily seen to be symmetri
 by a uniqueness argument.

First we will show that the spe
trum of the uniform algebra of symmetri
 holo-

morphi
 fun
tions on B

`

p

does not 
oin
ide with the point evaluation fun
tionals.

Example 3.1. For every n put v

n

=

1

n

1=p

(e

1

; : : : ; e

n

) 2 B

`

p

: Then Æ

v

n

(F

p

) = 1 and

Æ

v

n

(F

j

) ! 0 as n ! 0 for every j � p: By 
ompa
tness of the M(A

us

(B

`

p

)) there

is an a

umulation point � of the sequen
e fÆ

v

n

g: Then �(F

p

) = 1 and �(F

j

) = 0

for all j > p: From Corollary 1.2 it follows that there is no point z in `

p

su
h that

Æ

z

= �:

Let us denote by �

p

:= f(a

i

)

1

i=p

2 `

1

: (a

i

)

n

i=p

2 [D

n

p

℄g: As a 
onsequen
e

of Lemma 2.1, �

p

is the limit of the inverse sequen
e ([5℄ 2.5) of f[D

n

p

℄; �

m

n

;Ng

where �

m

n

is the proje
tion onto the �rst n 
oordinates. When �

p

is endowed with

the produ
t topology, that is, the 
oordinatewise 
onvergen
e, it is a non-empty


ompa
t Hausdor� spa
e by [5℄ 3.2.13. �

p

is a weak-star 
ompa
t subset of the
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losed unit ball `

1

sin
e the weak star topology and the pointwise 
onvergen
e

topology 
oin
ide on the 
losed unit ball of `

1

:

Now we des
ribe the spe
trum of A

us

(B

`

p

):

Theorem 3.1. �

p

is homeomorphi
 to the spe
trum of A

us

(B

`

p

):

Proof. First of all observe that any 	 2 M(A

us

(B

`

p

)); is 
ompletely determined

by the sequen
e of values f	(F

n

)g sin
e 	 is determined by its behaviour on P

s

(`

p

);

the algebra generated by fF

n

g; whi
h in turn is dense in A

us

(B

`

p

):

We 
onstru
t an embedding

j : (a

i

)

1

i=p

2 �

p

; � 2 M(A

us

(B

`

p

));

and prove that it is a homeomorphism. Given (a

i

)

1

i=p

2 �

p

a homomorphism

j[(a

i

)

1

i=p

℄ := � on A

us

(B

`

p

) is de�ned in the following way: Every polynomial

P 2 P

s

(`

p

) may be written as g Æ F

n

p

for some n 2 N ; thus we may de�ne, and

we do, �(P ) = g(a

p

; : : : ; a

n

): Certainly �(P ) is well de�ned sin
e if P = h Æ F

m

p

for

some other polynomial h; and, say, m > n; then by Corollary 1.1, h = ~g; where ~g has

the same meaning as in Lemma 2.1. Hen
e g(a

p

; : : : ; a

n

) = ~g(a

p

; : : : ; a

n

; : : : ; a

m

) =

h(a

p

; : : : ; a

n

; : : : ; a

m

): It is easy now to see that � is linear and multipli
ative on the

subalgebra of symmetri
 polynomials. Also j�(P )j = jg(a

p

; : : : ; a

n

)j � jjgjj

[D

n

p

℄

=

jjgjj

D

n

p

� jjP jj; therefore � is uniformly 
ontinuous on P

s

(`

p

); hen
e it has a 
ontin-

uous linear and multipli
ative extension to the 
losure of P

s

(`

p

) that is, to A

us

(B

`

p

):

We still denote this extension by �:

Obviously, j is one to one. Moreover j is also an onto mapping: Indeed, for any

	 2 M(A

us

(B

`

p

)); the sequen
e f	(F

n

)g 2 �

p

be
ause f	(F

n

)

n=m

n=p

g is an element

of the joint spe
trum of M(A

m

us

(B

`

p

)) (obtained just by taking the restri
tion of

	 to A

n

us

(B

`

p

)) whi
h we know to be [D

m

p

℄; of 
ourse, j[f	(F

n

)g℄ = 	 sin
e they


oin
ide on ea
h F

n

:

This embedding is 
ontinuous sin
e theM(A

us

(B

`

p

)) is an equi
ontinuous subset

of the dual spa
e (A

us

(B

`

p

))

�

; so the weak-star topology 
oin
ides on it with the

topology � of pointwise 
onvergen
e on the elements of the dense set of all symmetri


polynomials, hen
e on the generating system fF

n

g

1

n=p

:

Finally j is a homeomorphism as a bije
tion between two 
ompa
t Hausdor�

spa
es. 2

We 
an view �

p

as "the joint spe
trum" of the sequen
e fF

n

g

1

n=p

; sin
e �(F

n

) =

a

n

: Note that F

p

(B

`

p

) � �

p

:

Remark 3.1. The set D

p

= F

p

(B

`

p

) � B

`

1

pointwise 
oin
ides with the set of

point evaluation multipli
ative fun
tionals on A

us

(B

`

p

) .
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It is 
lear that D

n

p

� [D

n

p

℄ � D but we do not know whether this embeddings

are proper. This is related to a 
orona type theorem for A

us

(B

`

p

) sin
e D

p

is dense

in �

p

if D

n

p

= [D

n

p

℄ 8n 2 N :

Note that if q > p (where q and p are not ne
essarily integer) then D

p

� D

q

and

the in
lusion is stri
t. Indeed, let x 2 B

`

q

so that x 62 `

p

: If F

q

(y) = F

p

(x) for some

y 2 `

q

then x � y in `

q

so in `

p

:

Proposition 3.1.- �

p

is the polynomial 
onvex hull of D

p

� (`

1

; �

p

):

Proof. Let (a

i

)

1

i=p

2 `

1

su
h that jP ((a

i

))j � jjP jj

�

p

for all polynomials P 2 P(`

1

):

For any n � p and any g 2 P(C

n+1�p

); the mapping Q given by (x

i

)

1

i=p

2 `

1

;

g(x

p

; : : : ; x

n

) is a polynomial in `

1

; hen
e

jg(a

p

; : : : ; a

n

)j = jQ((a

i

))j � jjQjj

�

p

� jjgjj

[D

n

p

℄

:

Therefore (a

p

; : : : ; a

n

) 2 [D

n

p

℄; as we want and �

p

is polynomially 
onvex. So to

�nish, it is enough to 
he
k that �

p

is 
ontained in the polynomial 
onvex hull of

D

p

: To do this, let now (a

i

)

1

i=p

2 �

p

and P 2 P((`

1

; �

p

)): As P is �

p


ontinu-

ous, it depends on a �nite number of variables, say x

p

; : : : ; x

n

; thus the mapping q

given by (x

p

; : : : ; x

n

); P (x

p

; : : : ; x

n

; 0; : : : ; 0; : : :) is a polynomial in C

n+1�p

and as

(a

p

; : : : ; a

n

) 2 [D

n

p

℄;

jP ((a

i

))j = jP (a

p

; : : : ; a

n

; 0; : : : ; 0; : : :)j = jq(a

p

; : : : ; a

n

)j � jjqjj

[D

n

p

℄

= jjqjj

D

n

p

� jjP jj

D

p

;

it follows that (a

i

)

1

i=p

belongs to the polynomially 
onvex hull of D

p

: 2

Theorem 3.2. There is an algebrai
 and topologi
al isomorphism between A

us

(B

`

p

)

and a uniform Bana
h algebra generated by w

�

(`

1

; `

1

) 
ontinuous fun
tionals on

�

p

:

Proof. For every f 2 A

us

(B

`

p

) and � 2 M(A

us

(B

`

p

)) denote by

^

f(�) = �(f) the

Gelfand transform whi
h is known to be an algebrai
 isometry into C(�

p

): Re
all

that the range of the Gelfand transform is a 
losed subalgebra whi
h, as we are going

to see, will 
oin
ide with A; the uniform Bana
h subalgebra of C(�

p

) generated by

the 
oordinate fun
tionals f�

k

g

1

k=p

:

Sin
e

^

F

k

(�) = �

k

for � = (�

i

)

i

2 �

p

; it follows that the Gelfand transform of

^

F

k

is the k

th


oordinate fun
tional on `

1

: As A

us

(B

`

p

) is the 
losure of the algebra

generated by fF

k

: k � pg; it follows that

^

f 2 A; for every f 2 A

us

(B

`

p

): Therefore

A is pre
isely the range of the Gelfand transform. 2

We do not know what is 
losure of �

p

in weak-star topology. But it is easy to

see that ifM(A

us

(B

`

p

)) � B

`

1

then M(A

us

(B

`

p

)) = B

`

1

:
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Questions.

1. What is polynomially 
onvex hull of D

n

p

?

2. What is spe
trum of H

bs

(B

`

p

)?
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