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Abstrat

Spetra of algebras of holomorphi symmetri funtions on `

p

are investi-

gated

By a symmetri funtion de�ned on `

p

we mean a funtion whih is invariant

under any reordering of the sequene in `

p

: Symmetri polynomials in �nite dimen-

sional spaes an be studied in [9℄ or [11℄; in the in�nite dimensional Hilbert spae

they already appear in [10℄. Throughout this note P

s

(`

p

) is the spae of symmetri

polynomials on a omplex spae `

p

; 1 � p <1 and H

s

(`

p

) is the spae of symmetri

holomorphi funtions on `

p

:We will use the notation H

bs

(`

p

); A

us

(B

`

p

) for the alge-

bras of symmetri holomorphi funtions whih are bounded on bounded sets of `

p

and uniformly ontinuous on the open unit ball B

`

p

of `

p

respetively. The purpose

of this paper is the desription of suh algebras and their spetra. The spetrum of

algebras of holomorphi funtions on Banah spaes was studied in [1℄,[2℄, [7℄.

1. Algebra of symmetri polynomials

Let X be a Banah spae and P

0

(X) be a subalgebra of P(X). The sequene

(G

i

)

i

of polynomials is alled an algebrai basis of P

0

(X) if for every P 2 P

0

(X)

there is q 2 P(C

n

) for some n suh that P (x) = q(G

1

(x); : : : ; G

n

(x)); in other words,

if G is the mapping x 2 C

n

; G(x) := (G

1

(x); : : : ; G

n

(x)) 2 C

n

; P = q ÆG:

Let < p > be smallest integer number that is greater than or equal to p: In [8℄

is proved that polynomials F

k

(

P

a

i

e

i

) =

P

a

k

i

for k =< p >;< p > +1; : : : form

an algebrai basis in P

s

(`

p

): So if < p

1

>=< p

2

> then P

s

(`

p

1

) = P

s

(`

p

2

): Thus,

without loss of generality we an onsider P

s

(`

p

) only for integer p: Throughout we

will assume that p is an integer number, 1 � p <1:

It is well known [9℄ XI x52 that for n < 1 any polynomial in P

s

(C

n

) is

uniquely representable as a polynomial in the elementary symmetri polynomials

(R

i

)

n

i=1

; R

i

=

P

k

1

<:::<k

i

x

k

1

: : : x

k

i

1



Lemma 1.1 Let G

1

; : : : ; G

n

be an algebrai basis of P

s

(C

n

): Then for any � =

(�

1

; : : : ; �

n

) 2 C

n

there is x = (x

1

; : : : ; x

n

) 2 C

n

suh that G

i

(x) = �

i

; i = 1; : : : ; n:

If for some y = (y

1

; : : : ; y

n

) G

i

(y) = �

i

; i = 1; : : : ; n then x = y up to a permutation.

Proof. First we suppose that G

i

= R

i

: Then aording to Vieta formulas [9℄ the

solutions of the equation

x

n

� �

1

x

n�1

+ : : : (�1)

n

�

n

= 0

satisfy the onditions R

i

(x) = �

i

so x = (x

1

; : : : ; x

n

) as required. Let now G

i

be

an arbitrary algebrai basis of P

s

(C

n

): Then R

i

(x) = v

i

(G

1

(x); : : : ; G

n

(x)) for some

polynomials v

i

2 C

n

: Setting v as the polynomial mapping x 2 C

n

; v(x) :=

(v

1

(x); : : : ; v

n

(x)) 2 C

n

; we have R = v ÆG:

As the elementary symmetri polynomials also form a basis, there is a polynomial

mapping w : C

n

! C

n

suh that G = w Æ R; hene R = (v Æ w) ÆR; so v Æ w = id:

Then v and w are inverse eah other sine w Æ v oinides with the identity on the

open set Im(w): In partiular, v is one to one.

Now, the solutions x

1

; : : : ; x

n

of the equation

x

n

� v

1

(�

1

)x

n�1

+ : : :+ (�1)

n

v

n

(�

1

; : : : ; �

n

) = 0

satisfy the onditions R

i

(x) = v

i

(�); i = 1; : : : ; n: That is, v(�) = R(x) = v(G(x));

hene � = G(x): 2

Corollary 1.1. Given �

1

; : : : ; �

n

2 C

n

there is x 2 `

n+p�1

p

suh that

F

p

(x) = �

1

; : : : ; F

p+n�1

(x) = �

n

:

Let us say that x � y; x; y 2 `

p

if there is a permutation T of basis in `

p

suh that

x = T (y): For any point x 2 `

p

Æ

x

will denote the linear multipliative funtional on

P

s

(`

p

) "evaluation" at x. It is lear that if x � y then Æ

x

= Æ

y

:

Theorem 1.1. Let x; y 2 `

p

and F

i

(x) = F

i

(y) for every i > p. Then x � y:

Proof. Call x = (x

1

; x

2

; : : :); y = (y

1

; y

2

; : : :): Without loss of generality, we an

assume that 1 = jx

1

j = : : : = jx

k

j > jx

k+1

j � : : : and 1 � jy

1

j � jy

2

j � : : :

If jy

1

j < 1 then for many big j; jF

j

(x)j will be lose to k while for all big j; F

j

(y)

will be lose to 0: Thus jy

1

j = 1: Suppose that 1 = jy

1

j = : : : = jy

m

j > jy

m+1

j � : : :

Claim: m = k: Suppose for a ontradition, that m < k: Then, for many big j;

jF

j

(x)j is lose to k; while for all big j; jF

j

(y)j < m + 1=2 < k: This ontradition

shows that m < k is fals; similarly, k < m is fals, and so m = k:

2



Let ~x = (x

1

; : : : ; x

k

) and ~y = (y

1

; : : : ; y

k

): Also, let x

j

denote the point (x

j

1

; x

j

2

; : : :);

et. We laim that ~x � ~y: Consider the funtion f : (S

1

)

2k

! C given by

f(~u; ~v) = f(u

1

; : : : ; u

k

; v

1

; : : : ; v

k

) = [u

1

+ : : :+ u

k

℄� [v

1

+ : : :+ v

k

℄:

Sine F

j

(x � ~x) and F

j

(y � ~y) ! 0 as j ! 1 and sine we are assuming that

F

j

(x) = F

j

(y) for all j � p; it follows that f(~x

j

; ~y

j

) ! 0 as j ! 1: Now, f is

obviously a ontinuous funtion, and so it follows that for any point (u; v) 2 (S

1

)

2k

whih is a limit point of f(~x

j

; ~y

j

) : j � pg; f(u; v) = 0:

Next, the point (1; : : : ; 1) 2 (S

1

)

2k

is a limit point of f(~x

j

; ~y

j

) : j � pg: If

(~x

j

t

; ~y

j

t

)

t

! (1; : : : ; 1); then (~x

j

t

+1

; ~y

j

t

+1

)

t

! (~x; ~y): Consequently, f(~x; ~y) = 0; or in

other words F

1

(~x) = F

1

(~y): Similarly, F

j

(~x) = F

j

(~y) for all j: From Lemma 1.1 it

follows that ~x � ~y: So F

j

(x� ~x) = F

j

(y � ~y) for every j � p i.e.

F

j

(0; : : : ; 0; x

k+1

; x

k+2

; : : :) = F

j

(0; : : : ; 0; y

k+1

; y

k+2

; : : :)

for every j � p: If jx

k+1

j = 0 and jy

k+1

j = 0 then x

i

= 0 and y

i

= 0 for i >

k: Let jx

k+1

j = a 6= 0 then we an repeat the above argument for vetors x

0

=

(x

k+1

=a; x

k+2

=a; : : :) and y

0

= (y

k+1

=a; y

k+2

=a; : : :) and by indution we will see that

x � y: 2

Corollary 1.2. Let x; y 2 `

p

and for arbitrary integer m � p F

i

(x) = F

i

(y) for

eah i � m: Then x � y:

Proof. Sine m � p then x; y 2 `

m

and from Theorem 1.1 it follows that x � y in

`

m

. So x � y in `

p

. 2

Lemma 1.2. Let P

1

; : : : ; P

m

2 P

s

(`

p

) and kerP

1

\ : : : \ kerP

m

= ;: Then there is

Q

1

; : : : ; Q

m

2 P

s

(`

p

) suh that

m

X

i=1

P

i

Q

i

� 1:

Proof. Let n = max

i

(degP

i

): Then we an assumed that P

i

(x) = g

i

(F

p

(x); : : : ; F

n

(x))

for some g

i

2 P(C

n�p+1

): Let us suppose that at some point � 2 C

n�p+1

; � =

(�

1

; : : : ; �

n�p+1

) g

i

(�) = 0: Then by Corollary 1.1 there is x

0

2 `

p

suh that F

i

(x

0

) =

�

i

: So the ommon set of zero of all g

i

is empty. Thus by Hilbert Nullstellensatz

there is q

1

; : : : ; q

m

suh that

P

i

g

i

q

i

� 1: Put Q

i

(x) = q

i

(F

p

(x); : : : ; F

n

(x)): 2

2. Finitely generated symmetri algebras

Below it will be shown that in general, the spetrum of the algebra generated by

symmetri polynomials is not exhausted by point evaluation funtionals. Now we

onsider a speial ase, where they oinide.
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Let us denote by P

n

s

(`

p

); n � p the subalgebra of P

s

(`

p

); generated by fF

p

; : : : ; F

n

g;

one easily realizes, by appealing to Corollary 1.1, that P

n

s

(`

p

)\P(

k

`

p

); is a sup-norm

losed subspae of P(

k

`

p

) for every k 2 N :

Let A

n

us

(B

`

p

) and H

n

bs

(`

p

) be the losed subalgebras of A

us

(B

`

p

) and H

bs

(`

p

)

generated by fF

p

; : : : ; F

n

g; that is the losure of P

n

s

(`

p

) in eah of the orresponding

algebras. Note that for any f 2 H

n

bs

(`

p

) with f =

P

P

k

; the Taylor series expansion

of f at 0; we have P

k

2 P

n

s

(`

p

): Indeed, if f 2 P

n

s

(`

p

); is immediate that P

k

2

P

n

s

(`

p

) \ P(

k

`

p

) for all k: Then the same holds for any f 2 H

n

bs

(`

p

) by realling

the ontinuity of the map whih assigns to a holomorphi funtion its k

th

Taylor

polynomial.

By [6℄ III. 1.4, we may, and we do, identify the spetrum of A

n

us

(B

`

p

) with the

joint spetrum of fF

p

; : : : ; F

n

g ; �(F

p

; : : : ; F

n

):

Let us denote by F

n

p

a mapping from `

p

to C

n�p+1

suh thatF

n

p

: x 7! (F

p

(x); : : : ; F

n

(x)):

Then D

n

p

:= F

n

p

(B

`

p

) is a subset of the unit disk D of C

n�p+1

:

Let K be a bounded set in C

n

. Reall that a point x belongs to the polynomial

onvex hull of K; [K℄; if for every polynomial f ; jf(x)j � sup

z2K

jf(z)j: A set is

polynomially onvex if it oinides with its polynomial onvex hull. Reall that the

sup norm on K of a polynomial oinides with the sup norm on [K℄: It is well known

(see f.e. [6℄) that the spetrum of the uniform Banah algebra P (K) generated by

polynomials on the ompat set K oinides with the polynomially onvex hull of

this set. Let [D

n

p

℄ be the polynomial onvex hull of D

n

p

: We denote as usual P ([D

n

p

℄)

for the algebra of ontinuous funtions in [D

n

p

℄ whih are uniformly approximable

by polynomials.

Theorem 2.1.

(i) The omposition operator C

F

n

p

: H

b

(C

n+1�p

)!H

n

bs

(`

p

) given by C

F

n

p

(g) = g ÆF

n

p

is a topologial isomorphism.

(i

0

) The omposition operator C

F

n

p

: P ([D

n

p

℄)! A

n

us

(B

`

p

) given by C

F

n

p

(g) = g Æ F

n

p

is a topologial isomorphism.

(ii) M(H

n

bs

(`

p

)) = C

n+1�p

:

(ii

0

) M(A

n

us

(B

`

p

)) = [D

n

p

℄:

Proof. Clearly the omposition operators are well de�ned and one to one, so it

remains to prove that they are onto.

In (i); let f 2 H

n

bs

(`

p

) and f =

P

P

k

be the Taylor series expansion of f at 0:

Sine P

k

2 P

n

s

(`

p

); there is a homogeneous polynomial g

k

2 P(C

n+1�p

) suh that

P

k

(x) = g

k

(F

p

(x); : : : ; F

n

(x)): Put g(�

1

; : : : ; �

n�p+1

) =

P

1

k=1

g

k

(�

1

; : : : ; �

n�p+1

); sine

g is a onvergent power series in eah variable, it is separately holomorphi, hene

holomorphi. Note that f = g Æ F

n

p

:

4



In (i

0

); observe that for any g 2 P ([D

n

p

℄) ; jjC

F

n

p

(g)jj = sup

x2B

`

p

jg Æ F

n

p

(x)j =

jjgjj

D

n

p

= jjgjj

[D

n

p

℄

: Thus C

F

n

p

is an open mapping, hene its range is a losed subspae,

whih moreover ontains P

n

s

(`

p

); therefore C

F

n

p

is onto A

n

us

(B

`

p

):

(ii) and (ii

0

) it follow from (i), (i

0

) and the theory of entir funtions of several

variables [?℄ and the theory of uniform algebras [6℄. 2

Lemma 2.1. If (�

0

1

; : : : ; �

0

m

) 2 [D

m

p

℄ and n < m then (�

0

1

; : : : ; �

0

n

) 2 [D

n

p

℄:

Proof. If (�

0

1

; : : : ; �

0

n

) =2 [D

n

p

℄; there is a polynomial of n variables suh that

jq(�

0

1

; : : : ; �

0

n

)j > sup

(�

1

;:::;�

n

)2D

n

p

jq(�

1

; : : : ; �

n

)j:

Consider a polynomial ~q of m variables suh that ~q(�

1

; : : : ; �

m

) = q(�

1

; : : : ; �

n

);

i.e., the omposition of q and the projetion onto the �rst n variables. Then,

sup

(�

1

;:::;�

m

)2D

m

p

j~q(�

1

; : : : ; �

m

)j = sup

x2B

`

p

j~q(F

p

(x); : : : ; F

p+m�1

(x))j =

sup

x2B

`

p

jq(F

p

(x); : : : ; F

p+n�1

(x))j < jq(�

0

1

; : : : ; �

0

n

)j = j~q(�

0

1

; : : : ; �

0

m

)j:

But this means (�

0

1

; : : : ; �

0

m

) =2 [D

m

p

℄; a ontradition. 2

3. Spetrum of A

us

(B

`

p

)

For studying the spetrum of A

us

(B

`

p

) the most deisive feature is that the

polynomials fF

n

p

g

1

n=p

generate a dense subalgebra. Atually for every f 2 A

us

(B

`

p

)

its Taylor polynomials are easily seen to be symmetri by a uniqueness argument.

First we will show that the spetrum of the uniform algebra of symmetri holo-

morphi funtions on B

`

p

does not oinide with the point evaluation funtionals.

Example 3.1. For every n put v

n

=

1

n

1=p

(e

1

; : : : ; e

n

) 2 B

`

p

: Then Æ

v

n

(F

p

) = 1 and

Æ

v

n

(F

j

) ! 0 as n ! 0 for every j � p: By ompatness of the M(A

us

(B

`

p

)) there

is an aumulation point � of the sequene fÆ

v

n

g: Then �(F

p

) = 1 and �(F

j

) = 0

for all j > p: From Corollary 1.2 it follows that there is no point z in `

p

suh that

Æ

z

= �:

Let us denote by �

p

:= f(a

i

)

1

i=p

2 `

1

: (a

i

)

n

i=p

2 [D

n

p

℄g: As a onsequene

of Lemma 2.1, �

p

is the limit of the inverse sequene ([5℄ 2.5) of f[D

n

p

℄; �

m

n

;Ng

where �

m

n

is the projetion onto the �rst n oordinates. When �

p

is endowed with

the produt topology, that is, the oordinatewise onvergene, it is a non-empty

ompat Hausdor� spae by [5℄ 3.2.13. �

p

is a weak-star ompat subset of the

5



losed unit ball `

1

sine the weak star topology and the pointwise onvergene

topology oinide on the losed unit ball of `

1

:

Now we desribe the spetrum of A

us

(B

`

p

):

Theorem 3.1. �

p

is homeomorphi to the spetrum of A

us

(B

`

p

):

Proof. First of all observe that any 	 2 M(A

us

(B

`

p

)); is ompletely determined

by the sequene of values f	(F

n

)g sine 	 is determined by its behaviour on P

s

(`

p

);

the algebra generated by fF

n

g; whih in turn is dense in A

us

(B

`

p

):

We onstrut an embedding

j : (a

i

)

1

i=p

2 �

p

; � 2 M(A

us

(B

`

p

));

and prove that it is a homeomorphism. Given (a

i

)

1

i=p

2 �

p

a homomorphism

j[(a

i

)

1

i=p

℄ := � on A

us

(B

`

p

) is de�ned in the following way: Every polynomial

P 2 P

s

(`

p

) may be written as g Æ F

n

p

for some n 2 N ; thus we may de�ne, and

we do, �(P ) = g(a

p

; : : : ; a

n

): Certainly �(P ) is well de�ned sine if P = h Æ F

m

p

for

some other polynomial h; and, say, m > n; then by Corollary 1.1, h = ~g; where ~g has

the same meaning as in Lemma 2.1. Hene g(a

p

; : : : ; a

n

) = ~g(a

p

; : : : ; a

n

; : : : ; a

m

) =

h(a

p

; : : : ; a

n

; : : : ; a

m

): It is easy now to see that � is linear and multipliative on the

subalgebra of symmetri polynomials. Also j�(P )j = jg(a

p

; : : : ; a

n

)j � jjgjj

[D

n

p

℄

=

jjgjj

D

n

p

� jjP jj; therefore � is uniformly ontinuous on P

s

(`

p

); hene it has a ontin-

uous linear and multipliative extension to the losure of P

s

(`

p

) that is, to A

us

(B

`

p

):

We still denote this extension by �:

Obviously, j is one to one. Moreover j is also an onto mapping: Indeed, for any

	 2 M(A

us

(B

`

p

)); the sequene f	(F

n

)g 2 �

p

beause f	(F

n

)

n=m

n=p

g is an element

of the joint spetrum of M(A

m

us

(B

`

p

)) (obtained just by taking the restrition of

	 to A

n

us

(B

`

p

)) whih we know to be [D

m

p

℄; of ourse, j[f	(F

n

)g℄ = 	 sine they

oinide on eah F

n

:

This embedding is ontinuous sine theM(A

us

(B

`

p

)) is an equiontinuous subset

of the dual spae (A

us

(B

`

p

))

�

; so the weak-star topology oinides on it with the

topology � of pointwise onvergene on the elements of the dense set of all symmetri

polynomials, hene on the generating system fF

n

g

1

n=p

:

Finally j is a homeomorphism as a bijetion between two ompat Hausdor�

spaes. 2

We an view �

p

as "the joint spetrum" of the sequene fF

n

g

1

n=p

; sine �(F

n

) =

a

n

: Note that F

p

(B

`

p

) � �

p

:

Remark 3.1. The set D

p

= F

p

(B

`

p

) � B

`

1

pointwise oinides with the set of

point evaluation multipliative funtionals on A

us

(B

`

p

) .
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It is lear that D

n

p

� [D

n

p

℄ � D but we do not know whether this embeddings

are proper. This is related to a orona type theorem for A

us

(B

`

p

) sine D

p

is dense

in �

p

if D

n

p

= [D

n

p

℄ 8n 2 N :

Note that if q > p (where q and p are not neessarily integer) then D

p

� D

q

and

the inlusion is strit. Indeed, let x 2 B

`

q

so that x 62 `

p

: If F

q

(y) = F

p

(x) for some

y 2 `

q

then x � y in `

q

so in `

p

:

Proposition 3.1.- �

p

is the polynomial onvex hull of D

p

� (`

1

; �

p

):

Proof. Let (a

i

)

1

i=p

2 `

1

suh that jP ((a

i

))j � jjP jj

�

p

for all polynomials P 2 P(`

1

):

For any n � p and any g 2 P(C

n+1�p

); the mapping Q given by (x

i

)

1

i=p

2 `

1

;

g(x

p

; : : : ; x

n

) is a polynomial in `

1

; hene

jg(a

p

; : : : ; a

n

)j = jQ((a

i

))j � jjQjj

�

p

� jjgjj

[D

n

p

℄

:

Therefore (a

p

; : : : ; a

n

) 2 [D

n

p

℄; as we want and �

p

is polynomially onvex. So to

�nish, it is enough to hek that �

p

is ontained in the polynomial onvex hull of

D

p

: To do this, let now (a

i

)

1

i=p

2 �

p

and P 2 P((`

1

; �

p

)): As P is �

p

ontinu-

ous, it depends on a �nite number of variables, say x

p

; : : : ; x

n

; thus the mapping q

given by (x

p

; : : : ; x

n

); P (x

p

; : : : ; x

n

; 0; : : : ; 0; : : :) is a polynomial in C

n+1�p

and as

(a

p

; : : : ; a

n

) 2 [D

n

p

℄;

jP ((a

i

))j = jP (a

p

; : : : ; a

n

; 0; : : : ; 0; : : :)j = jq(a

p

; : : : ; a

n

)j � jjqjj

[D

n

p

℄

= jjqjj

D

n

p

� jjP jj

D

p

;

it follows that (a

i

)

1

i=p

belongs to the polynomially onvex hull of D

p

: 2

Theorem 3.2. There is an algebrai and topologial isomorphism between A

us

(B

`

p

)

and a uniform Banah algebra generated by w

�

(`

1

; `

1

) ontinuous funtionals on

�

p

:

Proof. For every f 2 A

us

(B

`

p

) and � 2 M(A

us

(B

`

p

)) denote by

^

f(�) = �(f) the

Gelfand transform whih is known to be an algebrai isometry into C(�

p

): Reall

that the range of the Gelfand transform is a losed subalgebra whih, as we are going

to see, will oinide with A; the uniform Banah subalgebra of C(�

p

) generated by

the oordinate funtionals f�

k

g

1

k=p

:

Sine

^

F

k

(�) = �

k

for � = (�

i

)

i

2 �

p

; it follows that the Gelfand transform of

^

F

k

is the k

th

oordinate funtional on `

1

: As A

us

(B

`

p

) is the losure of the algebra

generated by fF

k

: k � pg; it follows that

^

f 2 A; for every f 2 A

us

(B

`

p

): Therefore

A is preisely the range of the Gelfand transform. 2

We do not know what is losure of �

p

in weak-star topology. But it is easy to

see that ifM(A

us

(B

`

p

)) � B

`

1

then M(A

us

(B

`

p

)) = B

`

1

:
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Questions.

1. What is polynomially onvex hull of D

n

p

?

2. What is spetrum of H

bs

(B

`

p

)?
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