EQUIHARMONIC TORI IN FLAG MANIFOLDS

XIAOHUAN MO AND CAI10 J.C. NEGREIROS

ABSTRACT. Exploring the geometry of invariant f—structures and f—holo-
morphic curves on flag manifolds, we construct equiharmonic tori on full complex
flag manifolds which are not f—holomorphic for any invariant f—structure.

§0. INTRODUCTION

Theory of harmonic maps from surfaces into (non)-symmetric flag mani-
folds turns out to be more difficult and subtle than the corresponding the-
ory for symmetric spaces, in part because of the profusion of invariant metrics
available. However, a distinguished class, the equiharmonic maps (harmonic
with respect to all invariant metrics) have been noticed by a number of au-
thors[Bl,Bu2,M,BPW Ud,Uh]. Let ¢ : M — CP™ be a full holomorphic curve
from Riemannian surface and ¢q, - -+, ¢, _1 is its harmonic sequence. The sec-
ond author has in [N] showed that ® := (¢g, -+, ¢p—_1) : M — F(n) is an
equiharmonic map into full flag manifold.

The equiharmonic maps that have arisen so far in the literature are, in fact, all
solutions to a first order Cauchy-Riemann type system—they are “f-holomorphic
with repect to a horizontal f-structure” in the sense of Black[Bl].
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Conversely, an unexpected result due to Black asserts that any equiminimal
(i.e. minimal for each invariant metric on the co-domain) map of a Riemannian
surface into a full flag manifold is f-holomorphic with respect to a horizontal
f-structure.

Notice that equiminimality is equivalent to equiharmonicity and equiconfor-
mality. This raised the question of whether or not hypothesis of equiconformal-
ity in Black’s result is essential. In §4 of this manuscript, we show that this is
tha case by constructing concrete examples and show in fact

There exist two families of equiharmonic maps from the tori to the full
complex flag manifold F(n) which are not f—holomorphic for any invariant
f—structure (Theorem 4.3 and Theorem 4.4).

We begin by show how the geometry of invariant f—structures on non-
symmetric flag manifolds is encoded in the e-matrices. As a bonus, we show
how the e-matrices can be used to derive the second author’s result mentioned
above.

§1. f-STRUCTURES ON COMPLEX FLAG MANIFOLDS

In this section, we will establish one-one correspondence between invariant
f—structures and skew-symmetric matrices valued in {—1, 0, 1}(Theorem 1.4).
Consider the complex flag manifold

U(N)
(7’1, » T'ns ) U(’I"l) X X U(’I"n)
where 7y +--- 47, = N. F(ry, -+, r,; N) is a completely reductive homoge-

neous space with reductive splitting[Bl]
u(N) = [u(ri) + -+ u(rn)] @ [Sicjmij] (1.1)

where m;; = {A = (Aw) € w(N)|, A = 01if (k,1) # (¢,7) and (7,%)} is the
isotropy representation and Ay; € gl(ry xr; C). It will be necessary to consider
the complexified version of (1.1). We have

m;cj ={A=(4n) € gl(N; C)| Ay =0 if (k,1) # (4,)) and (4,7)} = E;; ® Ej;

and
Eij :={A=(Ar) € gl(N, O)| Ay = 0if (k,1) # (4,5)}
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is U(r1) x -+ x U(ry) invariant and irreducible. For arbitrary A = (Ay;) € Ejj
we have A = (A};) + V/—1(A43,) where

. Aij s

% (kD) = (i) w1 (kD=(09)

1 _ Al .. 2 _ At .
A=91 -5 k0=0 A=) -5 k1) =09
0 otherwise 0 otherwise

so it is easy to see that A = (A},) — v—1(4%,) € Ej; and vice versa, we get
Eij = Ej;, and [®i<jmij]c = @i Eij
Definition 1.1[Y]. An f-structure on
F=F(ry, - ,rp; N)
is a section F of End(TF(ry, - ,ry; N)) such that 72 + F = 0.

Definition 1.2. An e matrix, denoted by (e;;), is an n x n skew-symmetric
matrix with values in {1, 0, —1}.

An U(N) invariant f-structure on F(ry, ---, ry; N) may be identified with
an H equivariant endomorphism,F, of ®;;m;; such that F3 4+ F = 0 where
H = U(r1) x---xU(ry). Using Schur’s Lemma [Bl, Page 15] all the U(N)-
invariant f-structures may be constructed as following: let (¢;;) be an e-matrix
and define

V=1 eigenspace of F = @, =1E;;
—v—1 eigenspace of F = ®e,,—1Eij = De,;——1Eij (1.2)
0 eigenspace of F = ®,;—0l;;

Determining the eigenspaces in this way defines an H equivariant endomorphism
F of ®;x;E;;, which is seen to be the C-linear extension of an H equivariant
endomorphism of @;<;m;; since De;;=1Li; and D¢, ;=1 F;; are conjugate and
[®€ij=1Eij] N [®€ij=_1Eij] = {0}

Definition 1.3[Bul]. The complex dimension of v/—1 eigenspace of F is the
rank of F.

Suppose that f-structure F is defined by €(F) = (F;;) then
rankF : = dimc[v—1 eigenspace of F|

= dim¢ O F,;=1 Eij
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In particular, if 2 rankF = dimF(r1, -+ ,rp; N), Le. 285, ,—yrirj = N?> —rf —
- — 12 = B;z;mrj. It follows that 0 eigenspace = {0}, so F is an almost
complex structure. And vice versa. This leads to

Theorem 1.4. There is a 1 : 1 correspondence between U(N) invariant f-
structure F on F(ry,--- ,ry; N) and e-matrices e(F) = (F;;) such that

1
rank F = Z}-ijzlrirj = E]:ij:_l’l“i’l“j = 52]:“#07“,'7"3'

and F 1s almost complex structure if and only if F;; # 0 for any 1 # j.

We can now generalize to our case the result in[BH] concerning invariant
almost complex structures.

Corollary 1.5. There are S(Q)U(N)—invariant f-structures on a complex flag
manifold F(ry,--- ,rp; N) obtained by choosing €;; for each (i < j).

§2. €-MATRICES AND f-HOLOMORPHIC CURVES

In this section we will characterize f-holomorphicity of a smooth map from
a Riemannian surface to a complex flag manifold in terms of e-matrices.

Let M be a Riemannian surface. We shall consider the trivial vector bundle
C" over M whose fibre CV continues to be endowed with the standard Her-
mition inner product. Consider a collection (&;)1<i<pn of mutually orthogonal
subbundles of C% with fibres C"¢ such that 7 ,r; = N. Hence CV = @7 ,&;
and we have simply defined a map ¢ : M — F(ry,--- ,7,;N) into a flag man-
ifold. We shall call the collection (&;) of subbundles describing ¢ a moving
flag[BS]. Set A;j =T7jo % o m; where 7; denotes orthogonal projection onto &;.
For 7 # j these quantities constitute the second fundamental forms of the &;.

Remark. The notations of the second fundamental forms are adopted here differ
from those of Burstall and Salamon[BS], where A;; defines a homomorphism
from gj to &;.

Definition 2.1. A map ¢ : M — F(ry,---,r,; N) is said to be subordinate to
an e-matrix (e;;) if €;; # l,and ¢ # j = Agj =0.

The following result generalize slightly Proposition 2 in [BS].
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Proposition 2.2. A map ¢ : M — F(ry,--- ,rn; N) is f-holomorphic relative
to an invariant f-structure F on F if and only if it is subordinate to €(F).

Proof. A map ¢ : M — F(ry,--+,rp; N) is f-holomorphic if and only if d¢
interwines the f-structures, i,e,

dpoJ = Fodg (2.1)

where J is the standard complex structure on Riemann surface. It is easy to see
that (2.1) holds if and only if d¢(Z) € v/—I1—eigenspace of F[R,p.90]. Notice
that the Maurer-Cartan form gives the familiar isomorphism

¢_1TF(T1, e T N)C = @i;éjg_igj = @,’7&]'1’10111(5,', SJ)

Furthermore under this isomorphism the component of d¢(:&) in Hom(&;, ;)
is Aj;[BS]. By the conjugation it is clear to see that the subspace E;; (see
§1) corresponds to &&; = Hom(&;, £;), which combine with (1.2) we have
vV—1 eigenspace of F = @z, ,—1Hom(E;, &;) where (Fij) = €(F). It follows
that ¢ is f— holomorphic related to F if and only if Fj; # 1,i # j = Aj; =0

We say that an invariant f-structure JF is horizontal if it satisfies [F4, F_] C
h where Fiy = @, ;—+18;; and h = u(ry)+---+u(r,). Notice that maps which
are f-holomorphic with respect to a horizontal f-structure are equiharmonic
(i,e, harmonic for all invariant metrics) and equiharmonicity is preserved by
homogeneous projections[Bl|[Bu2]. Combine with Proposition 2.2 we have

Corollary 2.3. Suppose that ¢ : M?> — F(ry, -+ ,m; N) is subordinate to an
e—matriz associated to a horizontal f-structure. Then ¢ = (¢1,--- ,¢p) is an
equiharmonic map and each ¢; : M? - Gy;,N 18 a harmonic map into complex
Grassmannian for j =1, 2,--- ,n.

Let f : M? — CP"~! be a full holomorphic curve. A famous theorem due to
Eells-Wood tells us that ¢ = ¢, =: f£ | N £, is a full harmonic map into C P!

for any r € {0, 1, --- , n — 1} where fq : M?> = G441, is a-th associate curve
of f and z is the local complex coordinate on M?2. ¢, ¢o, ¢1, ---, ¢pn_1 and
¢ = (¢, ¢1, -+, Gn_1) are called the isotropic map, the harmonic sequence

and the Fells-Wood map respectively.

Corollary 2.4[N]. The Eells-Wood maps: ® : M? — F(n) are equiharmonic.
Proof. Let @ := (¢, ¢1, -+, ¢ppn_1)M? — F(n) be an Eells-Wood map. Then
we have diagram [BW]:

.
7

®o ?1 bn—1

~
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Hence @ is subordinate to the e— matrix

0 1 0 0
-1 0 1 0 0
O -1 0 1 O 0
_ (2.2)
0 0 1
0 0 -1 0

On the other hand using a direct calculation ones get

0 if 2,7, k,l aredistinct or j #I
[Eij, Bl = § Ea if j=ki#Il
E;;i — Ejj if j=k,1=1

It follows that (2.2) is associated to a horizontal f-structure, and @ is equihar-
monic from Corollary 2.3.

§3. HARMONIC EQUATIONS OF CLOSED
SURFACES ON FULL COMPLEX FLAG MANIFOLDS

JFrom this section, we restrict ourselves to full complex flag manifolds i.e.
F(n):=F(1,---,1;n). Let ¢ : M — F(n) be a smooth map from a Riemannian
~——

n

surface M with moving flag (&) and ¢ : M — U(n) its lift map, i.e. ¢ = 7w o ¢

where 7 : U(n) — F(n) is the natural projection. Let ey, - - , e, be the standard
basis in C*, i.e. e; = (0,---,0,1,0---,0)* We denote II; : M — gl(n, C) the
matrix of the orthogonal projection onto E; with respect to ey, --- , e, (ref. §2).

/

Then II; %, denoted by A%, are the matrices of second fundamental forms A i

l.e.

A;’i(el) T aen) = (617 T aen)AZj (31)

For V e I' (¢*TF(n)), we set ¢ = ¢*B(V) where ¢*5 : ¢*F(n) - M X u(n) is
the pull-back of Maurer-Cartan form. Define the variation of ¢ by

#i(c) = (exp(~tg)$) (3.2)

Denote associate objects by I1;(t), A% (t) etc. Then we have



aq]:[

Lemma 3.1. 1).%|t:011j(t) = [Hj,Q]; 2)-%|t:014?(t) = [Aij, q] — zaz

Proof. 1). From (3.1) we have
II; = ¢E;¢" (3.3)

where F; will denote the matrix which has 1 in the (j,j)-position and zero else-
where. Together with (3.2) one gets II;(¢) = e "IL;e’d. Hence 2 |—oIl;(t) =
—qll;j + ;g = [}, q].

2).1t is easy to show that Z[Il;, q] = (2L 5., q] + [11;, 8—q] Combine with 1)
we have

0\ ij olL;(t)
g =0AY (8) = |to[H() pya

e 5 [0
(9 e (2
<8t|t_0 (t)) 5. T ig, (é?t't 0 m)

= [, g 52 + 102, o) = (47, 6] - 21T,
where notice that II;II; = 0 whenever ¢ # j. Q.E.D.
The inner product on gl(n, C) is defined by
< A, B >:=1tr(AB") VA, B € gl(n, C) (3.4)
It is easy to check that
<A B>=<B,A>, <A, [B,C]>=<[B* 4], C > (3.5)
In particular we have
<A, B>+<B,A>=2Re< A, B > (3.6)

Furthermore, the inner products are preserved under correspondence (3.1). Let
ds3 = Z)\”w”w be an invariant metric on F'(n) where w = (w;5) is the
Maurer-Cartan form on U(n) and

NN {>0 if Q4]
T =0 if i=
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 JFrom now we suppose that M is a closed Riemannian surface and g its Rie-
mannian metric. Then with respect to ds%, the energy of ¢, is defined by

Bo) = [ AT O, (3.7
where v, = v/—1dz AdZz. jFrom (3.6)(3.7) and Lemma 3.1 we have

d P
GhoB@) = [ 3N ol AT O,

9 N
—9R N < AL Al
e [ S <Y Sleat¥) > v,

L dq
= 2R€/M Z)\” < A?, [AZZJ, q] — H»L&H] > Vg
so we get %%h:oE(Qf?t) = I+ 1] where
I= Re/ Yij < A9 [AY ] q] > v, (3.8)
M

and [I = —Re [,, S N\ij < AY, 11,3211 > v,.
Lemma 3.2. 1).Re < [AL', AY] ¢ >= 0, 2).< AY, m;Br; >=< AY, B >

I 7. o 9L
where Az :=1I; o %,

Proof. 1).1t is easy to see that
(AB)* = —a¥ (3.9)

so we have

AL, AT = [AL, AY] (3.10)
By using (3.4),(3.6) and (3.9) one gets
2Re < [AY', AT], ¢ > =< [A}, A7), ¢ > + <q, [AT, AY] >
= tr([AL, AY)q") + tr(q[AL, AYT)
= —tr([AY, AYq) + tr(q[AL, AV]) =0



2). Notice that II;II; =0, ¢ # j and 1I? = II; we have

< AY, I;BIL; > = tr(AY1I; B*1I;)
Ol

= tr(1l; = 211 B°11;)

= tr( i%njB*)

= —tr(aarj 11, B*)

= tr( 1%3*) =< AY B>

It is clear to see that, from (3.5)(3.8)(3.9) and Lemma 3.2
I = —2Re/ Shij < [AL) AY] g > v, =0
M
Using Lemma 3.2 and the Stokes’ theorem it is easy to see that

I1= —Re/ Shi; < AY, % v,
M 82

DA 9
:RG/ME)\U<¥,Q>U9—R€/Mz)\i]‘£ <Az,q>vg

OAA
=R —=
e/M< 82,q>vg

.. A
where A} = > i NijAY and 8(,;4; : M — u(n). We have

A
Proposition 3.3. ¢ : (M, g) — (F(n), ds%) is harmonic if and only if 854; +
9AN oI ; OIlI;
- = 0 where AL = NI, AL = > Ayl Tt

8AA .. .. aAA
Proof. In fact 4Re 55 = Z” AijRe (a% + ,/_18%> (AW — ‘/_1AZJ) =2
0AD
oy -~
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§4 NON— f —HOLOMORPHIC EQUIHARMONIC TORI

Suppose ¢ : R? — F(n) is defined by

p=mog, (z,y)=etP (4.1)
where A, B € u(n), [A,B]=0. Then ¢(z,y) = eB¥eA* and
‘% =ga, o A (4.2)
Combine with (3.3), we have 95 = (ch,cb*) = B[A, E;]o*. So
Al = %Zi = BE,[A, Ei|¢* = ¢E;AE;¢" (4.3)

Similarly we have Aii = &EjBEicg*. Hence the matrix of second fundamental
forms of ¢ satisfy that o .

Al = ¢E;xEi¢" (4.4)
where x = %(A—\/ —1B). Now let F be an invariant f-structure with associated
e-matrix (F;j). Put A = (a;j) and B = (b;;). Using (3.1)(4.4) and Proposition
2.2 it is clear that ¢ is f— holomorphic with respect to F if and only if

1 7é j, fij 7£ 1 - bij =V —1aij. (45)
In fact, we have stronger conditions as following:

Proposition 4.1. An equivalent condition of ¢ to be f—holomorphic with re-
spect to f-structure F is

1) ai]‘:bi]‘:()iffij:o, 7,75]

2) bij = —\/—_1aij Zf fij =1

3) bi]‘ = \/—_1aij Zf fij = —
Proof. ;From (4.5) it is enough to show the necessity. If F;; = 0 and ¢ # j, then
(4.5) implies that b;; = \/_aw and bj; = \/_aﬂ Together with A, B € u(n)
we get a;; = b;; = 0. If F;; = 1 then F;; = —1, so we geth;; = \/—a], Take
conjugation we have b;; = —/—1a;;. Q.E.D.

Now we are in the position to investigate the harmonicity of ¢ (defined in
(4.1) with double periods. ;jFrom (4.2) and (4.3) it is easy to see that

OAY 0
or  ox

(PE:AE;") = 94, B:AE;)§" (4.6)
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Similarly we have Ny
0AY

oy

Substitute (4.6) and (4.7) into (3.11), we have

Proposition 4.2. Suppose that ¢ : R? — F(n) defined in (4.1) has double
periods. Then ¢ is harmonic with respect to ds% if and only if

= ¢|B, E;BE;]|¢" (4.7)

[A, SX\i; B AE;] + [B, £\ E;BE;] = 0 (4.8)

Now we construct two classes of non— f —holomorphic equiharmonic tori on
full complex flag manifolds. Let asq, - ,ak, 01, -+, 0 € Q\{0} (where Q de-

notes the set of rational numbers) and for j =1,--- [k < %
. 0 1 o OéjX 0 o BjX 0
X_(l 0>’A’_< 0 ﬂjX>’BJ_( 0 ;X (4.9)
A =+/—1diag(Ay,---, Ak, 0---,0) (4.10)
B = v/—1diag(By,- -+ ,Bg,0,---,0) (4.11)

We have the following

Theorem 4.3. 1). ¢ : R2 — F(n) given by ¢(x, y) = w(e*+BY) has double
periods; 2). ¢ : T? — F(n) given by ¥ op = ¢ is equiharmonic but not
f—holomorphic with respect to any invariant f—structure on F(n) where p :
R? — T? is the natural projection.

Proof. 1). Al = (v/=1)'diag(a} X!, B X!, ol X!, 8L XY 0,---,0), for | €
{1,2,--- },where

X! X if [=odd I 1 0
_{Iz if | =even 2_<0 1)

It follows that

2,2
e =T+ Az + ot
= diag(cos ayzly, cos frxls, - -, cosayxls, cos Brxls, 0, -+ -, 0)

+ vV —1diag(sinayz X, sin f1zX -- -, sinagx X, sin Gz X ,0, ---,0)
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Combine with [A, B] = 0 and a3, - ,0,01, -, 0k € Q\{0}, there exists
a v € Z\{0}, such that ¢(z + 2mnv, y + 2rmv) = ¢(x, y). Hence we have

.2 — __R?

2). For any left-invariant ds% on F(n), from (4.9) and (4.10) we get
1

9\, B AE;

V=1
= diag(a1 A 12X, B1A3a X, -+ -, agpAag—3,ak—2X, BeAak-1,46 X, 0,- -+ ,0)

S0
A SN, B AE,
= —diag(ai M2 X?, BiXsaX?, -, @G Aak—sak—2X %, Bpdak—1,41 X%, 0,- -+ ,0)
It follows that
[A, X\ E;AE;] =0 (4.12)

Similarly we have
(B, ¥\i; E;BE;] =0 (4.13)

Subutitute (4.12) and (4.13) into (4.8), we see that ¢ is equiharmonic.
3). Suppose that ¢ is f—holomorphic for the invariant f—structure F, and
(Fij) is the e-matrix of F. From Proposition 4.1 one of following is true: i).

\/—]_0[1 = \/—1ﬂ1 = 0, ll) \/—1B1 = g, lll) V_]-Bl = —Q. However this is

impossible because a1, 51 € Q\{0}.
Similarly, let oy, ,a € Q\{0}, 2k <n and

A= v —1diag(a1X,a2X,--- 7aan07"' )0)

where X is defined in (4.9) Then we have

Theorem 4.4. ¢ : T? — F(n) defined by (z,y) — w(eA@¥)) has double
periods and the corresponding v : T? — F(n) is an equiharmonic map but not
f—holomorphic with respect to any invariant f—structure on F(n).
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