
EQUIHARMONIC TORI IN FLAG MANIFOLDS

Xiaohuan Mo and Caio J.C. Negreiros

Abstrat. Exploring the geometry of invariant f�strutures and f�holo-

morphi urves on ag manifolds, we onstrut equiharmoni tori on full omplex

ag manifolds whih are not f�holomorphi for any invariant f�struture.

x0. Introdution

Theory of harmoni maps from surfaes into (non)-symmetri ag mani-

folds turns out to be more diÆult and subtle than the orresponding the-

ory for symmetri spaes, in part beause of the profusion of invariant metris

available. However, a distinguished lass, the equiharmoni maps (harmoni

with respet to all invariant metris) have been notied by a number of au-

thors[Bl,Bu2,M,BPW,Ud,Uh℄. Let � : M ! CP

n

be a full holomorphi urve

from Riemannian surfae and �

0

; � � � ; �

n�1

is its harmoni sequene. The se-

ond author has in [N℄ showed that � := (�

0

; � � � ; �

n�1

) : M ! F (n) is an

equiharmoni map into full ag manifold.

The equiharmoni maps that have arisen so far in the literature are, in fat, all

solutions to a �rst order Cauhy-Riemann type system{they are \f -holomorphi

with repet to a horizontal f -struture" in the sense of Blak[Bl℄.
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Conversely, an unexpeted result due to Blak asserts that any equiminimal

(i.e. minimal for eah invariant metri on the o-domain) map of a Riemannian

surfae into a full ag manifold is f -holomorphi with respet to a horizontal

f -struture.

Notie that equiminimality is equivalent to equiharmoniity and equionfor-

mality. This raised the question of whether or not hypothesis of equionformal-

ity in Blak's result is essential. In x4 of this manusript, we show that this is

tha ase by onstruting onrete examples and show in fat

There exist two families of equiharmoni maps from the tori to the full

omplex ag manifold F (n) whih are not f�holomorphi for any invariant

f�struture (Theorem 4.3 and Theorem 4.4).

We begin by show how the geometry of invariant f�strutures on non-

symmetri ag manifolds is enoded in the �-matries. As a bonus, we show

how the �-matries an be used to derive the seond author's result mentioned

above.

x1. f-strutures on omplex flag manifolds

In this setion, we will establish one-one orrespondene between invariant

f�strutures and skew-symmetri matries valued in f�1; 0; 1g(Theorem 1.4).

Consider the omplex ag manifold

F (r

1

; � � � ; r

n

; N) =

U(N)

U(r

1

)� � � � � U(r

n

)

where r

1

+ � � �+ r

n

= N . F (r

1

; � � � ; r

n

; N) is a ompletely redutive homoge-

neous spae with redutive splitting[Bl℄

u(N) = [u(r

1

) + � � �+ u(r

n

)℄� [�

i<j

m

ij

℄ (1.1)

where m

ij

= fA = (A

kl

) 2 u(N)j; A

kl

= 0 if (k; l) 6= (i; j) and (j; i)g is the

isotropy representation and A

kl

2 gl(r

k

�r

l

; C). It will be neessary to onsider

the omplexi�ed version of (1.1). We have

m

C

ij

= fA = (A

kl

) 2 gl(N ; C )jA

kl

= 0 if (k; l) 6= (i; j) and (j; i)g = E

ij

� E

ji

and

E

ij

:= fA = (A

kl

) 2 gl(N; C )jA

kl

= 0 if (k; l) 6= (i; j)g
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is U(r

1

)� � � � � U(r

n

) invariant and irreduible. For arbitrary A = (A

kl

) 2 E

ij

we have A = (A

1

kl

) +

p

�1(A

2

kl

) where

A

1

kl

=

8

>

<

>

:

A

ij

2

(k; l) = (i; j)

�

�

A

t

ij

2

(k; l) = (j; i)

0 otherwise

; A

2

kl

=

8

>

>

<

>

>

:

A

ij

2

p

�1

(k; l) = (i; j)

�

�

A

t

ij

2

p

�1

(k; l) = (j; i)

0 otherwise

so it is easy to see that

�

A = (A

1

kl

) �

p

�1(A

2

kl

) 2 E

ji

and vie versa, we get

E

ij

= E

ji

, and [�

i<j

m

ij

℄

C

= �

i 6=j

E

ij

De�nition 1.1[Y℄. An f -struture on

F = F (r

1

; � � � ; r

n

; N)

is a setion F of End(TF (r

1

; � � � ; r

n

; N)) suh that F

3

+ F = 0.

De�nition 1.2. An � matrix, denoted by (�

ij

), is an n � n skew-symmetri

matrix with values in f1; 0; �1g.

An U(N) invariant f -struture on F (r

1

; � � � ; r

n

; N) may be identi�ed with

an H equivariant endomorphism,F , of �

i<j

m

ij

suh that F

3

+ F = 0 where

H = U(r

1

)� � � � � U(r

n

). Using Shur's Lemma [Bl, Page 15℄ all the U(N)-

invariant f -strutures may be onstruted as following: let (�

ij

) be an �-matrix

and de�ne

p

�1 eigenspae of F = �

�

ij

=1

E

ij

�

p

�1 eigenspae of F = �

�

ij

=1

E

ij

= �

�

ij

=�1

E

ij

(1.2)

0 eigenspae of F = �

�

ij

=0

E

ij

Determining the eigenspaes in this way de�nes anH equivariant endomorphism

F of �

i 6=j

E

ij

, whih is seen to be the C-linear extension of an H equivariant

endomorphism of �

i<j

m

ij

sine �

�

ij

=1

E

ij

and �

�

ij

=�1

E

ij

are onjugate and

[�

�

ij

=1

E

ij

℄ \ [�

�

ij

=�1

E

ij

℄ = f0g.

De�nition 1.3[Bu1℄. The omplex dimension of

p

�1 eigenspae of F is the

rank of F .

Suppose that f -struture F is de�ned by �(F) = (F

ij

) then

rankF : = dim

C

[

p

�1 eigenspae of F ℄

= dim

C

�

F

ij

=1

E

ij

= �

F

ij

=1

dim

C

E

ij

= �

F

ij

=1

r

i

r

j
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In partiular, if 2 rankF = dimF (r

1

; � � � ; r

n

; N), i.e. 2�

F

ij

=1

r

i

r

j

= N

2

� r

2

1

�

� � � � r

2

n

= �

i 6=j

r

i

r

j

. It follows that 0 eigenspae = f0g, so F is an almost

omplex struture. And vie versa. This leads to

Theorem 1.4. There is a 1 : 1 orrespondene between U(N) invariant f-

struture F on F (r

1

; � � � ; r

n

; N) and �-matries �(F) = (F

ij

) suh that

rank F = �

F

ij

=1

r

i

r

j

= �

F

ij

=�1

r

i

r

j

=

1

2

�

F

ij

6=0

r

i

r

j

and F is almost omplex struture if and only if F

ij

6= 0 for any i 6= j.

We an now generalize to our ase the result in[BH℄ onerning invariant

almost omplex strutures.

Corollary 1.5. There are 3

(

n

2

)

U(N)-invariant f-strutures on a omplex ag

manifold F (r

1

; � � � ; r

n

;N) obtained by hoosing �

ij

for eah (i < j).

x2. �-matries and f-holomorphi urves

In this setion we will haraterize f -holomorphiity of a smooth map from

a Riemannian surfae to a omplex ag manifold in terms of �-matries.

Let M be a Riemannian surfae. We shall onsider the trivial vetor bundle

C

N

over M whose �bre C

N

ontinues to be endowed with the standard Her-

mition inner produt. Consider a olletion (E

i

)

1�i�n

of mutually orthogonal

subbundles of C

N

with �bres C

r

i

suh that �

n

i=1

r

i

= N . Hene C

N

= �

n

i=1

E

i

and we have simply de�ned a map � : M ! F (r

1

; � � � ; r

n

;N) into a ag man-

ifold. We shall all the olletion (E

i

) of subbundles desribing � a moving

ag[BS℄. Set A

0

ij

= �

j

Æ

�

�z

Æ �

i

where �

i

denotes orthogonal projetion onto E

i

.

For i 6= j these quantities onstitute the seond fundamental forms of the E

i

.

Remark. The notations of the seond fundamental forms are adopted here di�er

from those of Burstall and Salamon[BS℄, where A

0

ij

de�nes a homomorphism

from E

j

to E

i

.

De�nition 2.1. A map � :M ! F (r

1

; � � � ; r

n

;N) is said to be subordinate to

an �-matrix (�

ij

) if �

ij

6= 1,and i 6= j ) A

0

ij

= 0.

The following result generalize slightly Proposition 2 in [BS℄.
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Proposition 2.2. A map � :M ! F (r

1

; � � � ; r

n

;N) is f-holomorphi relative

to an invariant f-struture F on F if and only if it is subordinate to �(F).

Proof. A map � : M ! F (r

1

; � � � ; r

n

;N) is f-holomorphi if and only if d�

interwines the f -strutures, i,e,

d� Æ J = F Æ d� (2.1)

where J is the standard omplex struture on Riemann surfae. It is easy to see

that (2.1) holds if and only if d�(

�

�z

) 2

p

�1�eigenspae of F [R,p.90℄. Notie

that the Maurer-Cartan form gives the familiar isomorphism

�

�1

TF (r

1

; � � � ; r

n

;N)

C

= �

i 6=j

�

E

i

E

j

= �

i 6=j

Hom(E

i

; E

j

)

Furthermore under this isomorphism the omponent of d�(

�

�z

) in Hom(E

i

; E

j

)

is A

0

ij

[BS℄. By the onjugation it is lear to see that the subspae E

ij

(see

x1) orresponds to

�

E

i

E

j

= Hom(E

i

; E

j

), whih ombine with (1.2) we have

p

�1 eigenspae of F = �

F

ij

=1

Hom(E

i

; E

j

) where (F

ij

) = �(F). It follows

that � is f� holomorphi related to F if and only if F

ij

6= 1; i 6= j ) A

0

ij

= 0

We say that an invariant f -struture F is horizontal if it satis�es [F

+

; F

�

℄ �

h where F

�

= �

�

ij

=�1

E

ij

and h = u(r

1

)+ � � �+u(r

n

). Notie that maps whih

are f -holomorphi with respet to a horizontal f -struture are equiharmoni

(i,e, harmoni for all invariant metris) and equiharmoniity is preserved by

homogeneous projetions[Bl℄[Bu2℄. Combine with Proposition 2.2 we have

Corollary 2.3. Suppose that � : M

2

! F (r

1

; � � � ; r

n

;N) is subordinate to an

��matrix assoiated to a horizontal f-struture. Then � = (�

1

; � � � ; �

n

) is an

equiharmoni map and eah �

j

:M

2

! G

r

j

;N

is a harmoni map into omplex

Grassmannian for j = 1; 2; � � � ; n.

Let f :M

2

! CP

n�1

be a full holomorphi urve. A famous theorem due to

Eells-Wood tells us that � = �

r

=: f

?

r�1

\f

r

is a full harmoni map into CP

n�1

for any r 2 f0; 1; � � � ; n� 1g where f

�

:M

2

! G

�+1; n

is �-th assoiate urve

of f and z is the loal omplex oordinate on M

2

. �, �

0

; �

1

; � � � ; �

n�1

and

� := (�

0

; �

1

; � � � ; �

n�1

) are alled the isotropi map, the harmoni sequene

and the Eells-Wood map respetively.

Corollary 2.4[N℄. The Eells-Wood maps: � :M

2

! F (n) are equiharmoni.

Proof. Let � := (�

0

; �

1

; � � � ; �

n�1

)M

2

! F (n) be an Eells-Wood map. Then

we have diagram [BW℄:

�

�

0

�! �

�

1

�! � � � �! �

�

n�1

�! 0
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Hene � is subordinate to the �� matrix

0

B

B

B

B

B

B

�

0 1 0 � � � 0

�1 0 1 0 � � � 0

0 �1 0 1 0 � � � 0

.

.

.

.

.

.

.

.

.

0 � � � 0 1

0 � � � 0 �1 0

1

C

C

C

C

C

C

A

(2.2)

On the other hand using a diret alulation ones get

[E

ij

; E

kl

℄ =

8

>

<

>

:

0 if i; j; k; l are distint or j 6= l

E

il

if j = k; i 6= l

E

ii

� E

jj

if j = k; i = l

It follows that (2.2) is assoiated to a horizontal f -struture, and � is equihar-

moni from Corollary 2.3.

x3. Harmoni equations of losed

surfaes on full omplex flag manifolds

>From this setion, we restrit ourselves to full omplex ag manifolds i.e.

F (n) := F (1; � � � ; 1

| {z }

n

;n). Let � :M ! F (n) be a smooth map from a Riemannian

surfae M with moving ag (E

i

) and

~

� : M ! U(n) its lift map, i.e. � = � Æ

~

�

where � : U(n)! F (n) is the natural projetion. Let e

1

; � � � ; e

n

be the standard

basis in C

n

, i.e. e

j

= (0; � � � ; 0; 1; 0 � � � ; 0)

t

We denote �

j

: M ! gl(n; C) the

matrix of the orthogonal projetion onto E

j

with respet to e

1

; � � � ; e

n

(ref. x2).

Then �

i

��

j

�z

, denoted by A

ij

z

, are the matries of seond fundamental forms A

0

ji

,

i.e.

A

0

ji

(e

1

; � � � ; e

n

) = (e

1

; � � � ; e

n

)A

ij

z

(3.1)

For V 2 � (�

�

TF (n)), we set q = �

�

�(V ) where �

�

� : �

�

F (n) ! M � u(n) is

the pull-bak of Maurer-Cartan form. De�ne the variation of � by

�

t

(x) := �

�

exp(�tq)

~

�

�

(3.2)

Denote assoiate objets by �

j

(t); A

ij

z

(t) et. Then we have



7

Lemma 3.1. 1).

�

�t

j

t=0

�

j

(t) = [�

j

; q℄; 2).

�

�t

j

t=0

A

ij

z

(t) = [A

ij

z

; q℄��

i

�q

�z

�

j

Proof. 1). From (3.1) we have

�

j

=

~

�E

j

~

�

�

(3.3)

where E

j

will denote the matrix whih has 1 in the (j,j)-position and zero else-

where. Together with (3.2) one gets �

j

(t) = e

�tq

�

j

e

tq

. Hene

�

�t

j

t=0

�

j

(t) =

�q�

j

+�

j

q = [�

j

; q℄.

2).It is easy to show that

�

�z

[�

j

; q℄ = [

��

j

�z

; q℄ + [�

j

;

�q

�z

℄. Combine with 1)

we have

�

�t

j

t=0

A

ij

z

(t) =

�

�t

j

t=0

[�

i

(t)

��

j

(t)

�z

℄

=

�

�

�t

j

t=0

�

i

(t)

�

��

j

�z

+�

i

�

�z

�

�

�t

j

t=0

�

j

(t)

�

= [�

i

; q℄

��

j

�z

+�

i

�

�z

[�

j

; q℄ = [A

ij

z

; q℄��

i

�q

�z

�

j

where notie that �

i

�

j

= 0 whenever i 6= j. Q.E.D.

The inner produt on gl(n; C) is de�ned by

< A; B >:= tr(AB

�

) 8A;B 2 gl(n; C) (3.4)

It is easy to hek that

< A; B >= < B; A >; < A; [B; C℄ >=< [B

�

; A℄; C > (3.5)

In partiular we have

< A; B > + < B; A >= 2Re < A; B > (3.6)

Furthermore, the inner produts are preserved under orrespondene (3.1). Let

ds

2

�

:=

P

�

ij

!

i

�

j

!

�

ij

be an invariant metri on F (n) where ! = (!

i

�

j

) is the

Maurer-Cartan form on U(n) and

�

ij

= �

ji

�

> 0 if i 6= j

= 0 if i = j
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>From now we suppose that M is a losed Riemannian surfae and g its Rie-

mannian metri. Then with respet to ds

2

�

, the energy of �

t

is de�ned by

E(�

t

) :=

Z

M

X

�

ij

jA

ij

z

(t)j

2

v

g

(3.7)

where v

g

=

p

�1dz ^ d�z. >From (3.6)(3.7) and Lemma 3.1 we have

d

dt

j

t=0

E(�

t

) =

Z

M

X

�

ij

�

�t

j

t=0

jA

ij

z

(t)j

2

v

g

= 2Re

Z

M

X

�

ij

< A

ij

z

;

�

�t

j

t=0

A

ij

z

(t) > v

g

= 2Re

Z

M

X

�

ij

< A

ij

z

; [A

ij

z

; q℄��

i

�q

�z

�

j

> v

g

so we get

1

2

d

dt

j

t=0

E(�

t

) = I + II where

I = Re

Z

M

��

ij

< A

ij

z

; [A

ij

z

; q℄ > v

g

(3.8)

and II = �Re

R

M

P

�

ij

< A

ij

z

; �

i

�q

�z

�

j

> v

g

.

Lemma 3.2. 1).Re < [A

ji

�z

; A

ij

z

℄; q >= 0, 2).< A

ij

z

; �

i

B�

j

>=< A

ij

z

; B >

where A

ji

�z

:= �

j

Æ

��

i

��z

.

Proof. 1).It is easy to see that

(A

ji

�z

)

�

= �A

ij

z

(3.9)

so we have

[A

ji

�z

; A

ij

z

℄

�

= [A

ji

�z

; A

ij

z

℄ (3.10)

By using (3.4),(3.6) and (3.9) one gets

2Re < [A

ji

�z

; A

ij

z

℄; q > =< [A

ji

�z

; A

ij

z

℄; q > + < q; [A

ji

�z

; A

ij

z

℄ >

= tr([A

ji

�z

; A

ij

z

℄q

�

) + tr(q[A

ji

�z

; A

ij

z

℄

�

)

= �tr([A

ji

�z

; A

ij

z

℄q) + tr(q[A

ji

�z

; A

ij

z

℄) = 0
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2). Notie that �

i

�

j

= 0; i 6= j and �

2

i

= �

i

we have

< A

ij

z

; �

i

B�

j

> = tr(A

ij

z

�

�

j

B

�

�

�

i

)

= tr(�

i

��

j

�z

�

j

B

�

�

i

)

= tr(�

i

��

j

�z

�

j

B

�

)

= �tr(

��

i

�z

�

j

B

�

)

= tr(�

i

��

j

�z

B

�

) =< A

ij

z

; B >

It is lear to see that, from (3.5)(3.8)(3.9) and Lemma 3.2

I = �2Re

Z

M

��

ij

< [A

ji

�z

; A

ij

z

℄; q > v

g

= 0

Using Lemma 3.2 and the Stokes' theorem it is easy to see that

II = �Re

Z

M

��

ij

< A

ij

z

;

�q

�z

> v

g

= Re

Z

M

��

ij

<

�A

ij

z

��z

; q > v

g

�Re

Z

M

��

ij

�

��z

< A

z

; q > v

g

= Re

Z

M

<

�A

�

z

��z

; q > v

g

where A

�

z

=

P

i;j

�

ij

A

ij

z

and

�A

�

z

��z

:M ! u(n). We have

Proposition 3.3. � : (M; g)! (F (n); ds

2

�

) is harmoni if and only if

�A

�

x

�x

+

�A

�

y

�y

= 0 where A

�

x

:=

P

�

ij

�

i

��

j

�x

, A

�

y

:=

P

�

ij

�

i

��

j

�y

.

Proof. In fat 4Re

�A

�

z

��z

=

P

i;j

�

ij

Re

�

�

�x

+

p

�1

�

�y

�

(A

ij

x

�

p

�1A

ij

y

) =

�A

�

x

�x

+

�A

�

y

�y

.
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x4 Non�f�holomorphi equiharmoni tori

Suppose � : R

2

! F (n) is de�ned by

� = � Æ

~

�;

~

�(x; y) = e

Ax+By

(4.1)

where A;B 2 u(n); [A;B℄ = 0. Then

~

�(x; y) = e

By

e

Ax

and

�

~

�

�x

=

~

�A;

�

~

�

�

�x

= �A

~

�

�

(4.2)

Combine with (3.3), we have

��

i

�x

=

�

�x

(

~

�E

i

~

�

�

) =

~

�[A; E

i

℄

~

�

�

. So

A

ji

x

= �

j

��

i

�x

=

~

�E

j

[A; E

i

℄

~

�

�

=

~

�E

j

AE

i

~

�

�

(4.3)

Similarly we have A

ji

y

=

~

�E

j

BE

i

~

�

�

. Hene the matrix of seond fundamental

forms of � satisfy that

A

ji

z

=

~

�E

j

�E

i

~

�

�

(4.4)

where � =

1

2

(A�

p

�1B). Now let F be an invariant f -struture with assoiated

�-matrix (F

ij

). Put A = (a

ij

) and B = (b

ij

). Using (3.1)(4.4) and Proposition

2.2 it is lear that � is f� holomorphi with respet to F if and only if

i 6= j; F

ij

6= 1 =) b

ij

=

p

�1a

ij

: (4.5)

In fat, we have stronger onditions as following:

Proposition 4.1. An equivalent ondition of � to be f�holomorphi with re-

spet to f-struture F is

1) a

ij

= b

ij

= 0 if F

ij

= 0; i 6= j

2) b

ij

= �

p

�1a

ij

if F

ij

= 1

3) b

ij

=

p

�1a

ij

if F

ij

= �1

Proof. >From (4.5) it is enough to show the neessity. If F

ij

= 0 and i 6= j, then

(4.5) implies that b

ij

=

p

�1a

ij

and b

ji

=

p

�1a

ji

. Together with A;B 2 u(n)

we get a

ij

= b

ij

= 0. If F

ij

= 1 then F

ji

= �1, so we getb

ji

=

p

�1a

ji

Take

onjugation we have b

ij

= �

p

�1a

ij

. Q.E.D.

Now we are in the position to investigate the harmoniity of � (de�ned in

(4.1) with double periods. >From (4.2) and (4.3) it is easy to see that

�A

ij

x

�x

=

�

�x

�

~

�E

i

AE

j

~

�

�

�

=

~

�[A; E

i

AE

j

℄

~

�

�

(4.6)
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Similarly we have

�A

ij

y

�y

=

~

�[B; E

i

BE

j

℄

~

�

�

(4.7)

Substitute (4.6) and (4.7) into (3.11), we have

Proposition 4.2. Suppose that � : R

2

! F (n) de�ned in (4.1) has double

periods. Then � is harmoni with respet to ds

2

�

if and only if

[A; ��

ij

E

i

AE

j

℄ + [B; ��

ij

E

i

BE

j

℄ = 0 (4.8)

Now we onstrut two lasses of non�f�holomorphi equiharmoni tori on

full omplex ag manifolds. Let �

1

; � � � ; �

k

; �

1

; � � � ; �

k

2 Qnf0g (where Q de-

notes the set of rational numbers) and for j = 1; � � � ; k �

n

4

X =

�

0 1

1 0

�

; A

j

=

�

�

j

X 0

0 �

j

X

�

; B

j

=

�

�

j

X 0

0 �

j

X

�

(4.9)

A =

p

�1diag(A

1

; � � � ; A

k

; 0 � � � ; 0) (4.10)

B =

p

�1diag(B

1

; � � � ; B

k

; 0; � � � ; 0) (4.11)

We have the following

Theorem 4.3. 1). � : R

2

! F (n) given by �(x; y) = �(e

Ax+By

) has double

periods; 2).  : T

2

! F (n) given by  Æ p = � is equiharmoni but not

f�holomorphi with respet to any invariant f�struture on F (n) where p :

R

2

! T

2

is the natural projetion.

Proof. 1). A

l

= (

p

�1)

l

diag(�

l

1

X

l

; �

l

1

X

l

; � � � ; �

l

k

X

l

; �

l

k

X

l

; 0; � � � ; 0), for l 2

f1; 2; � � � g,where

X

l

=

�

X if l = odd

I

2

if l = even

I

2

=

�

1 0

0 1

�

It follows that

e

Ax

= I +Ax+

A

2

x

2

2!

+ � � �

= diag(os�

1

xI

2

; os�

1

xI

2

; � � � ; os�

k

xI

2

; os�

k

xI

2

; 0; � � � ; 0)

+

p

�1diag(sin�

1

xX; sin�

1

xX � � � ; sin�

k

xX; sin �

k

xX ; 0; � � � ; 0)
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Combine with [A; B℄ = 0 and �

1

; � � � ; �

k

; �

1

; � � � ; �

k

2 Qnf0g, there exists

a � 2 Znf0g, suh that �(x + 2�n�; y + 2�m�) = �(x; y). Hene we have

� : T

2

=

R

2

2��(Z�Z)

! F (n).

2). For any left-invariant ds

2

�

on F (n), from (4.9) and (4.10) we get

1

p

�1

��

ij

E

i

AE

j

= diag(�

1

�

12

X;�

1

�

34

X; � � � ; �

k

�

4k�3;4k�2

X;�

k

�

4k�1;4k

X; 0; � � � ; 0)

so

A ���

ij

E

i

AE

j

= �diag(�

2

1

�

12

X

2

; �

2

1

�

34

X

2

; � � � ; �

2

k

�

4k�3;4k�2

X

2

; �

2

k

�

4k�1;4k

X

2

; 0; � � � ; 0)

= (��

ij

E

i

AE

j

) �A

It follows that

[A; ��

ij

E

i

AE

j

℄ = 0 (4.12)

Similarly we have

[B; ��

ij

E

i

BE

j

℄ = 0 (4.13)

Subutitute (4.12) and (4.13) into (4.8), we see that � is equiharmoni.

3). Suppose that � is f�holomorphi for the invariant f�struture F , and

(F

ij

) is the �-matrix of F . From Proposition 4.1 one of following is true: i).

p

�1�

1

=

p

�1�

1

= 0, ii).

p

�1�

1

= �

1

, iii).

p

�1�

1

= ��

1

. However this is

impossible beause �

1

; �

1

2 Qnf0g.

Similarly, let �

1

; � � � ; �

k

2 Qnf0g; 2k � n and

A =

p

�1diag(�

1

X;�

2

X; � � � ; �

k

X; 0; � � � ; 0)

where X is de�ned in (4.9) Then we have

Theorem 4.4. � : T

2

! F (n) de�ned by (x; y) ! �(e

A(x+y)

) has double

periods and the orresponding  : T

2

! F (n) is an equiharmoni map but not

f�holomorphi with respet to any invariant f�struture on F (n).
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