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Abstrat. A new Inexat-Restoration method for Nonlinear Programming is introdued.

The iteration of the main algorithm has two phases. In Phase 1, feasibility is expliitly im-

proved and in Phase 2 optimality is improved on a tangent approximation of the onstraints.

Trust regions are used for reduing the step when the trial point is not good enough. The trust

region is not entered in the urrent point, as in many Nonlinear Programming algorithms,

but in the intermediate \more feasible" point. Therefore, in this semifeasible approah, the

more feasible intermediate point is onsidered to be essentially better than the urrent point.

This is the �rst method in whih intermediate-point-entered trust regions are ombined with

the derease of the Lagrangian in the tangent approximation to the onstraints. The merit

funtion used in this paper is also new: it onsists of a onvex ombination of the Lagrangian

and the (non-squared) norm of the onstraints. The Eulidean norm is used for simpliity

but other norms for measuring infeasibility are admissible. Global onvergene theorems are

proved, a theoretially justi�ed algorithm for the �rst phase is introdued and some numerial

insight is given.

KeyWords: Nonlinear Programming, trust regions, GRGmethods, SGRAmethods, restora-

tion methods, global onvergene.



1 Introdution

Inexat-Restoration (IR) methods have been reently introdued to solve onstrained opti-

mization problems [1, 2℄.

These methods onsider feasibility and optimality at di�erent phases of a single iteration.

In the Feasibility Phase, a \more feasible point" (with respet to the \urrent point") is

omputed and in the Optimality Phase, a \more optimal point" is alulated on a region

that approximates the admissible set. The point that omes from the seond phase is a \trial

point" that must be ompared with the urrent point by means of a suitable merit funtion.

If the trial point is not aepted, the \trust region radius" is redued.

The point of view of Inexat-Restoration ideas is that feasibility is an important feature

of the problem that must be ontrolled independently of optimality. Inexat-Restoration

methods are onneted with feasible and semifeasible methods for Nonlinear Programming

like GRG, SGRA and \pure" barrier methods. See [3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄. On the

other hand, a well known drawbak of feasible methods is their inability to follow very urved

domains, whih auses that very short steps might be omputed far from the solution. The

Inexat-Restoration methodology tries to avoid that inonvenient by means of proedures

that automatially derease the tolerane for infeasibility as the solution is approximated.

In this way, large steps on an enlarged feasible region are omputed at the beginning of the

proess.

Many tehnial and theoretial arguments of Inexat-Restoration methods ome from

Sequential Quadrati Programming (SQP). See [13, 14, 15, 16, 17℄. However, in modern IR

algorithms some important features were introdued that enlarge the gap between IR and

SQP. The freedom with respet to the method hosen in the Feasibility Phase allows one to

use problem-oriented algorithms, Newton-like methods or global-optimization proedures for

�nding the \more feasible" point. Moreover, in reent methods the trust region is entered

in the \more feasible point" (the output point of the Feasibility Phase) instead of the more

lassial urrent-point-entered trust regions used, for example, in [1℄.

In this paper, we introdue an IR algorithm where the trust-region is entered in the

intermediate point, as in [2, 18℄, but, unlike the algorithms introdued in those papers, the

Lagrangian funtion is used in the \tangent set" (whih approximates the feasible region),

as in [1℄. Aordingly, we de�ne a new merit funtion that �ts well with both requirements:

one of its terms is the Lagrangian, as in [1℄, but the seond term is a nonsmooth measure of

infeasibility as in [2, 18℄.

This paper is organized as follows. The new algorithm is introdued in Setion 2. In

Setion 3 we state the assumptions on the problem that allow us to prove global onvergene.

In Setion 4 it is proved that limit points of the algorithm are feasible. In Setion 5 we prove

that there exist optimal aumulation points. In Setion 6 we de�ne a spei� algorithm for

the Feasibility Phase. In Setion 7 we give some numerial insight on the pratial behavior

of the algorithm. Finally, in Setion 8 we state some onlusions and we give the lines for

future researh.
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2 Desription of the Algorithm

We onsider the problem

Minimize f(x) s. t. C(x) = 0; x 2 
 � IR

n

; (1)

where 
 is losed and onvex, f : IR

n

! IR, C : IR

n

! IR

m

. We denote C

0

(x) the Jaobian

matrix of C evaluated at x. Throughout the paper we assume that rf(x) and C

0

(x) exist

and are ontinuous in 
.

The algorithm is iterative and generates a sequene fx

k

g � 
. The parameters � > 0; r 2

[0; 1); � > 0;M > 0; �

�1

2 (0; 1); Æ

min

> 0; �

1

> 0; �

2

> 0 are given, as well as the initial

approximation x

0

2 
, the initial vetor of Lagrange multipliers �

0

2 IR

m

and a sequene of

positive numbers f!

k

g suh that

P

1

k=0

!

k

<1 . All along this paper k�k will an be arbitrary

norm. For simpliity, j � j will denote the Eulidean norm, although in many ases it an be

replaed by an arbitrary norm.

We de�ne the Lagrangian funtion

L(x; �) = f(x) + hC(x); �i (2)

for all x 2 
, � 2 IR

m

.

Assume that k 2 f0; 1; 2; : : :g, x

k

2 
; �

k

2 IR

m

and �

k�1

; �

k�2

; : : : ; �

�1

have been om-

puted. The steps for obtaining x

k+1

; �

k+1

and �

k

are given below.

Algorithm 2.1

Step 1. Initialize penalty parameter.

De�ne

�

min

k

= min f1; �

k�1

; : : : ; �

�1

g; (3)

�

large

k

= min f1; �

min

k

+ !

k

g (4)

and

�

k;�1

= �

large

k

:

Step 2. Feasibility phase of the iteration.

Compute y

k

2 
 suh that

jC(y

k

)j � rjC(x

k

)j (5)

and

ky

k

� x

k

k � �jC(x

k

)j: (6)

Step 3. Tangent Cauhy diretion.

Compute

d

k

tan

= P

k

[y

k

� �rL(x

k

; �

k

)℄� y

k

; (7)

where P

k

(z) is the orthogonal projetion of z on �

k

and

�

k

= fz 2 
 j C

0

(y

k

)(z � y

k

) = 0g: (8)
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If y

k

= x

k

(so C(x

k

) = C(y

k

) = 0) and d

k

tan

= 0, terminate the exeution of the algorithm

returning x

k

as \the solution".

If d

k

tan

= 0 ompute �

k+1

2 IR

m

suh that j�

k+1

j �M , de�ne

x

k+1

= y

k

; �

k

= �

k�1

;

Ared

k

= (1� �

k

)[jC(x

k

)j � jC(y

k

)j℄

and terminate the iteration.

Else, set i 0, hoose Æ

k;0

� Æ

min

and ontinue.

Step 4. Trial point in the tangent set.

Compute, using Algorithm 2.2 below, z

k;i

2 �

k

suh that

kz

k;i

� y

k

k � Æ

k;i

and L(z

k;i

; �

k

) < L(y

k

; �

k

):

Step 5. Trial multipliers.

Compute �

k;i

trial

2 IR

m

suh that j�

k;i

trial

j �M .

Step 6. Predited redution.

De�ne, for all � 2 [0; 1℄,

Pred

k;i

(�) = �[L(x

k

; �

k

)�L(z

k;i

; �

k

)� hC(y

k

); �

k;i

trial

� �

k

i℄ + (1� �)[jC(x

k

)j � jC(y

k

)j℄ (9)

Compute �

k;i

, the maximum of the elements � 2 [0; �

k;i�1

℄ that verify

Pred

k;i

(�) �

1

2

[jC(x

k

)j � jC(y

k

)j℄: (10)

De�ne

Pred

k;i

= Pred

k;i

(�

k;i

):

Step 7. Compare atual and predited redution.

Compute

Ared

k;i

= �

k;i

[L(x

k

; �

k

)� L(z

k;i

; �

k;i

trial

)℄ + (1� �

k;i

)[jC(x

k

)j � jC(z

k;i

)j℄

If

Ared

k;i

� 0:1 Pred

k;i

de�ne

x

k+1

= z

k;i

; �

k+1

= �

k;i

trial

; �

k

= �

k;i

; Æ

k

= Æ

k;i

; ia(k) = i;

Ared

k

= Ared

k;i

; Pred

k

= Pred

k;i

and terminate iteration k.

Else, hoose Æ

k;i+1

2 [0:1Æ

k;i

; 0:9Æ

k;i

℄, set i i+ 1 and go to Step 4 .

Algorithm 2.2
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Step 1.

Compute t

k;i

break

= min f1; Æ

k;i

=kd

k

tan

kg.

Step 2.

Set t t

k;i

break

.

Step 3.

If

L(y

k

+ td

k

tan

; �

k

) � L(y

k

; �

k

) + 0:1thrL(y

k

; �

k

); d

k

tan

i; (11)

de�ne z

k;i

2 
 suh that kz

k;i

� y

k

k � Æ

k;i

and

L(z

k;i

; �

k

) � maxfL(y

k

+ td

k

tan

; �

k

); L(y

k

; �

k

)� �

1

Æ

k;i

; L(y

k

; �

k

� �

2

g: (12)

and terminate. (Observe that the hoie z

k;i

= y

k

+ td

k

tan

is admissible but, very likely, it is

not the most eÆient hoie.)

Step 4.

If (11) does not hold, hoose t

new

2 [0:1t; 0:9t℄, set t t

new

and go to Step 3.

Lemma 2.1. Algorithm 2.2 is well de�ned.

Proof. Algorithm 2.2 is alled only when d

k

tan

6= 0. Sine y

k

2 �

k

, we have that

j(y

k

� �rL(y

k

; �

k

))� P

k

(y

k

� �rL(y

k

; �

k

))j � j(y

k

� �rL(y

k

; �

k

))� y

k

j:

Therefore,

jy

k

� P

k

(y

k

� �rL(y

k

; �

k

))j

2

2

+ j�rL(y

k

; �

k

)j

2

2

+ 2�hP

k

(y

k

� �rL(y

k

; �

k

))� y

k

;rL(y

k

; �

k

)i

� j�rL(y

k

; �

k

)j

2

2

:

So,

hd

k

tan

;rL(y

k

; �

k

)i � �

1

2�

jd

k

tan

j

2

: (13)

Therefore, by the de�nition of diretional derivative, after a �nite number of redutions of t,

(27) is obtained. 2

3 Assumptions on the Problem

The assumptions below represent minimal suÆient onditions whih will allow us to prove

onvergene. The \simple set" 
 will be assumed to be bounded, beause this is the simplest

assumption on the problem that guarantees boundedness of the generated sequene. On the

other hand, this is a pratial assumption sine any optimization problem an be ompati�ed

using arti�ial bounds on the variables, and our algorithm is able to deal with bounds. The
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other two assumptions are Lipshitz onditions on the derivatives of the objetive funtion

and the onstraints. So, seond derivatives are not assumed to exist at all.

A1. 
 is onvex and ompat.

A2. There exists L

1

> 0 suh that, for all x; y 2 
,

jC

0

(x)�C

0

(y)j � L

1

jx� yj (14)

A3. There exists L

2

> 0 suh that, for all x; y 2 
,

jrf(x)�rf(y)j � L

2

jx� yj: (15)

Without loss of generality, we will assume that (14) and (15) hold for the two norms used

in this paper.

Lemma 3.1. There exist L

3

; L

4

> 0 suh that, whenever j�j �M , x; y 2 
, we have that

jC(y)� C(x)� C

0

(x)(y � x)j �

L

1

2

jy � xj

2

; (16)

jf(y)� f(x)� hrf(x); y � xij �

L

2

2

jy � xj

2

; (17)

jrL(y; �)�rL(x; �)j � L

3

jy � xj; (18)

jL(y; �) � L(x; �)� hrL(x; �); y � xij �

L

3

2

jy � xj

2

: (19)

Moreover, de�ning, for all z 2 IR

n

,

'(z) =

1

2

jC(z)j

2

; (20)

we have:

j'(y)� '(x) � hr'(x); (y � x)ij �

L

4

2

jy � xj

2

: (21)

Proof. It follows from (14), (15), the ompatness of 
, the ontinuity of C and the bound-

edness of �. 2

Lemma 3.2. If z 2 �

k

, then

jC(z)j � jC(y

k

)j+

L

1

2

jy

k

� zj

2

: (22)

Proof. The result follows from (16) and the de�nition of �

k

. 2

Lemma 3.3. There exist 

2

; 

3

> 0 (independent of k) suh that, if z

k;i

is omputed by

Algorithm 2.2, we have that

L(z

k;i

; �

k

) � L(y

k

; �

k

)�minf�

2

; 

2

jd

k

tan

j

2

; �

1

Æ

k;i

; 

3

jd

k

tan

jÆ

k;i

g: (23)

Proof. Inequality (23) follows from (12) and the assumptions as in the proof of Theorem 3.2

of [2℄, replaing f(:) by L(:; �

k

). 2
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4 Convergene to Feasible Points

Theorem 4.1 Algorithm 2.1 is well de�ned.

Proof. Diret alulation leads to

Ared

k;i

� 0:1 Pred

k;i

= 0:9 Pred

k;i

+ (1� �

k;i

)[jC(y

k

)j � jC(z

k;i

)j℄ + 0:1�

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

i: (24)

Therefore, by (10),

Ared

k;i

� 0:1 Pred

k;i

� 0:45[jC(x

k

)j� jC(y

k

)j℄+(1��

k;i

)[jC(y

k

)j� jC(z

k;i

)j℄�j0:1�

k;i

hC(y

k

)�C(z

k;i

); �

k;i

trial

��

k

ij:

Then, by (5),

Ared

k;i

� 0:1 Pred

k;i

� 0:45(1 � r)jC(x

k

)j � jjC(y

k

)j � jC(z

k;i

)jj � j0:1�

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

ij: (25)

If C(x

k

) 6= 0, the �rst term of the right-hand side of (25) is positive and, by ontinuity of

C, the seond and third terms tend to zero as Æ

k;i

! 0. Therefore, there exists a positive

Æ

k;i

suh that Ared

k;i

� 0:1 Pred

k;i

� 0. This means that the algorithm is well de�ned if

C(x

k

) 6= 0.

Let us now analyze the ase in whih x

k

is feasible. Sine the algorithm does not terminate

at iteration k, we have that d

k

tan

6= 0. So, by (6), y

k

= x

k

and C(y

k

) = C(x

k

) = 0. Therefore,

ondition (10) redues to

L(y

k

; �

k

)� L(z

k;i

; �

k

) � 0: (26)

By (23), (26) holds independently of �, so �

k;i

= �

k;�1

for all i.

Therefore, by (9) and (23),

Pred

k;i

= �

k;�1

[L(y

k

; �

k

)� L(z

k;i

; �

k

)℄ � �

k;�1

minf�

2

; 

2

jd

k

tan

j

2

; �

1

Æ

k;i

; 

3

jd

k

tan

jÆ

k;i

g:

So, by (24),

Ared

k;i

� 0:1 Pred

k;i

� 0:9�

k;�1

minf�

2

; 

2

jd

k

tan

j

2

; �

1

Æ

k;i

; 

3

jd

k

tan

jÆ

k;i

g�jjC(y

k

)j�jC(z

k;i

)jj�0:1jhC(y

k

)�C(z

k;i

); �

k;i

trial

��

k

ij:

Thus,

Ared

k;i

� 0:1 Pred

k;i

Æ

k;i

� 0:9�

k;�1

minf

�

2

Æ

k;i

; 

2

jd

k

tan

j

2

Æ

k;i

; �

1

; 

3

jd

k

tan

jg�

jjC(y

k

)j � jC(z

k;i

)jj

Æ

k;i

�0:1

jC(y

k

)� C(z

k;i

)jj�

k;i

trial

� �

k

j

Æ

k;i

:

The �rst term of the right-hand side of the previous inequality is bounded away from zero

whereas, by (22), the seond and third terms tend to zero. Therefore, Ared

k;i

�0:1 Pred

k;i

�

0 if Æ

k;i

is small enough. 2
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Lemma 4.1 lim

k!1

Ared

k

= 0.

Proof. It follows as in the proof of Theorem 3.4 of [2℄, replaing f(x

k

) by L(x

k

; �

k

) and

jC

+

(x

k

)j by jC(x

k

)j. 2

Theorem 4.2. lim

k!1

jC(x

k

)j = 0.

Proof. This proof is similar to the proof of Theorem 3.5 of [2℄, replaing jC

+

(x

k

)j by jC(x

k

)j.

2

5 Convergene to Optimality

Up to now, we proved that, if Phase 1 an always be at every iteration, then the main

algorithm is well de�ned and C(x

k

) ! 0. This implies that every aumulation point is

feasible. So, by the ompatness of 
, there exists a feasible limit point and any other limit

point is feasible too. Optimality is assoiated to the tangent Cauhy diretion d

k

tan

. In this

setion we prove that, for a suitable subsequene, the norm of this diretion tends to zero.

This result is independent of onstraint quali�ations. At the end of the setion, we prove

that, under a regularity ondition, there exists a point that satis�es the KKT �rst-order

neessary onditions for optimality.

We are going to assume (in Hypothesis C below) that no subsequene of d

k

tan

tends to

zero. Using, essentially, the arguments of [2℄, we will see that this assumption leads to a

ontradition.

Hypothesis C. There exist " > 0 and k

0

2 f0; 1; 2; : : :g suh that jd

k

tan

j � " for all k � k

0

.

Lemma 5.1. Suppose that Hypothesis C holds. Then, there exist 

4

; 

5

> 0 suh that

L(y

k

; �

k

)� L(z

k;i

; �

k

) � minf

4

; 

5

Æ

k;i

g for all k � k

0

, i = 0; 1; : : : ; ia(k).

Proof. It follows trivially from Lemma 3.3 and Hypothesis C. 2

Lemma 5.2. Suppose that Hypothesis C holds. Then, there exist �; "

1

> 0 suh that when-

ever k � k

0

and jC(x

k

)j � minf"

1

; �Æ

k;i

g we have that �

k;i

= �

k;i�1

.

Proof. By (5), (6), (9), Lemma 5.1, the ompatness of 
, the ontinuity of C and f and

the boundedness of �

k

, there exist ; 

0

; 

00

> 0 suh that

Pred

k;i

(1)�

1

2

[jC(x

k

)j � jC(y

k

)j℄

� [L(x

k

; �

k

)� L(z

k;i

; �

k

)� hC(y

k

); �

k;i

trial

� �

k

i �

1

2

jC(x

k

)j �

� [L(y

k

; �

k

)� L(z

k;i

; �

k

)℄� jL(x

k

; �

k

)� L(y

k

; �

k

)j � 

00

jC(x

k

)j �

1

2

jC(x

k

)j

7



� minf

4

; 

5

Æ

k;i

g � 

0

jy

k

� x

k

j � (

00

+

1

2

)jC(x

k

)j

� minf

4

; 

5

Æ

k;i

g � 

0

�jC(x

k

)j � (

00

+

1

2

)jC(x

k

)j

= minf

4

; 

5

Æ

k;i

g � jC(x

k

)j;

with  = 

0

� + 

00

+

1

2

. Therefore,

Pred

k;i

(1)�

1

2

[jC(x

k

)j � jC(y

k

)j℄



� minf



4



;



5



Æ

k;i

g � jC(x

k

)j:

So, if "

1

= 

4

=, � = 

5

= and jC(x

k

)j � minf"

1

; �Æ

k;i

g, we have that Pred

k;i

(1)�

1

2

[jC(x

k

)j�

jC(y

k

)j℄ � 0. This means that inequality (10) holds for � = 1. Sine it obviously holds for

� = 0, it holds for all � 2 [0; 1℄. This implies that �

k;i

= �

k;i�1

, as we wanted to prove. 2

Lemma 5.3. Suppose that Hypothesis C holds. Then, there exists

�

� > 0 suh that �

k

�

�

�

for all k 2 f0; 1; 2; : : :g.

Proof. Observe that

Ared

k;i

� Pred

k;i

= �

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

i+ (1� �

k;i

)[jC(y

k

)j � jC(z

k;i

)j℄:

Therefore, by (14) and (22), there exists  > 0 suh that

Ared

k;i

� Pred

k;i

� Æ

2

k;i

for all k 2 f0; 1; 2; : : :g, i = 0; 1; : : : ; ia(k). The proof of the lemma follows as in Lemma 4.3

of [2℄, replaing 

1

by  and C

+

(:) by C(:). 2

Theorem 5.1. Hypothesis C is false.

Proof. This proof is quite similar to the one of Theorem 4.4 of [2℄, with (obvious) slight

modi�ations. 2

Theorem 5.2. If Assumptions A1, A2 and A3 are satis�ed and fx

k

g is a sequene generated

by Algorithm 2.1, then

1. jC(x

k

)j ! 0.

2. Every limit point of fx

k

g is feasible.

3. If x

�

is a limit point of fx

k

g and lim

k2K

1

x

k

= x

�

, then lim

k2K

1

y

k

= y

�

.

4. There exists an in�nite set K

2

� f0; 1; 2; : : :g suh that lim

k2K

2

d

k

tan

= 0.
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5. There exists an in�nite set K

3

� f0; 1; 2; : : :g and x

�

2 
 suh that

lim

k2K

3

x

k

= lim

k2K

3

y

k

= x

�

; C(x

�

) = 0 and lim

k2K

3

d

k

tan

= 0:

Moreover, if x

�

is a regular point, it satis�es the Karush-Kuhn-Tuker optimality on-

ditions of (1).

Proof. The �rst two items follow from Theorem 4.2 and the boundedness of 
. The third is

a onsequene of (6) and, sine we have proved that Hypothesis C is false, the �fth item also

holds. For proving the �fth item it is enough to take an appropriate onvergent subsequene

of fx

k

g

k2K

2

. Finally, the last item follows from Proposition 2 of [15℄. 2

6 Algorithm for the Feasibility Phase

An essential feature of the Inexat-Restoration algorithm is that one is free to hoose dif-

ferent methods both for the Feasibility and for the Optimality Phase. However, it will be

useful to show that, under suitable assumptions, a point that satis�es the Feasibility Phase

requirements exists and an be omputed using an implementable proedure.

Let us all

F = fy 2 
 j C(x) = 0g

and suppose that 
 is an n-dimensional box:


 = fx 2 IR

n

j ` � x � ug;

where ` 2 IR

n

; u 2 IR

n

; ` < u.

In this setion we use the following Assumption.

A4. All the feasible points are regular. (Therefore, for all y 2 F there exist j

1

; : : : ; j

m

2

f1; : : : ; ng suh that `

j

k

< y

j

k

< u

j

k

, k = 1; : : : ;m, and the olumns j

1

; : : : ; j

m

of C

0

(y) are

linearly independent.)

For all x 2 
 we de�ne

T (x) = fy 2 
 j C

0

(x)(y � x) + C(x) = 0g:

If T (x) 6= ; we de�ne �(x) = argmin fjy � xj j y 2 T (x)g:

We denote B(y; ") = fz 2 
 j jz � yj < "g.

In the following Lemma, we prove that, under Assumption A4, the hoie y = �(x) sat-

is�es the onditions (5) and (6) required in Phase 1 of Algorithm 2.1. This hoie ould be

alled \Newtonian" beause it omes from linearization of the onstraints, exat ful�llment

of linearized equations and minimal variation. Aordingly, Lemma 6.1 remembers the basi

9



loal onvergene results of Newton's method.

Lemma 6.1. Let r 2 (0; 1). There exist " > 0; � > 0 suh that, if jC(x)j � " we have that

T (x) 6= ;,

jC(�(x))j � rjC(x)j

and

j�(x)� xj � �jC(x)j:

Proof. Let y 2 F . Sine y is regular, there exists fj

1

; : : : ; j

m

g � f1; : : : ; ng suh that the

m � m matrix formed by the olumns j

1

; : : : ; j

m

of C

0

(y) is nonsingular. For all z 2 
,

we all A

y

(z) the matrix whose olumns are the olumns j

1

; : : : ; j

m

of C

0

(z). By ontinuity

of C

0

and nonsingularity of A

y

, there exists "(y) > 0 suh that A

y

(z) is nonsingular and

jA

y

(z)

�1

j � 2jA

y

(y)

�1

j whenever z 2 B(y; "(y)). Moreover, if "(y) is small enough and

z 2 B(y; "(y)), the olumns of A

y

(z) also orrespond to variables j suh that `

j

< z

j

< u

j

.

Clearly, F is ontained in the union of the balls B(y; "(y)) so far de�ned. Sine F is ompat,

there exist y

1

; : : : ; y

p

2 F suh that

F � B(y

1

; "

1

) [ : : : [ B(y

p

; "

p

);

where "

k

= "(y

k

); k = 1; : : : ; p. Now, for eah y 2 F we hoose k suh that y 2 B(y

k

; "

k

)

and we de�ne B(y) = A

y

k

(y). By onstrution, B(y) is a nonsingular m�m matrix whose

olumns orresponds to variables y

j

suh that `

j

< y

j

< u

j

. Moreover,

jB(y)

�1

j �  8 y 2 F ;

where

 = 2 maxfjA

�1

y

1

j; : : : ; jA

�1

y

p

jg:

Now, given y 2 F , assume, without loss of generality, that C

0

(y) = (B(y); N(y)), where

B(y) is de�ned above and N(y) 2 IR

m�(n�m)

. Let Æ(y) > 0 be suh that for all w 2 B(y; Æ(y)),

we have:

`

j

< w

j

< u

j

; j = 1; : : : ;m;

B(w) is nonsingular and

jB(w)

�1

j � 2:

For all w 2 B(y; Æ(y)), w = (w

B

; w

N

), we de�ne

v(w) = (w

B

�B(w)

�1

C(w); w

N

):

Clearly,

C

0

(w)(v(w) � w) + C(w) = 0:

Moreover,

jv(w) � wj � 2

0

jC(w)j

where 

0

is a norm-dependent onstant.
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Therefore, if jC(w)j is suÆiently small (say, jC(w)j � "

1

) we have that v(w) 2 
. This

implies that T (w) is nonempty. Therefore, �(w) is well de�ned. Now, by the de�nition of

�(w),

j�(w)� wj � 2

0

jC(w)j:

Finally, by (16), for an appropriate hoie of 

00

,

jC(�(w)j � jC(w) + C

0

(w)(�(w) � w)j+

L

1

2

j�(w) � wj

2

� 

00

jC(w)j

2

:

Therefore, jC(�(w))j � rjC(w)j if " � r=

00

. This means that the thesis of the Lemma holds,

de�ning � = 2

0

. 2

Now we give a general and implementable method for Phase 1 of Algorithm 2.1. The idea

is that we try, initially, an arbitrary, perhaps problem-oriented proedure, as it was done,

for example in [2℄. If the problem-oriented method fails, we ompute �(x) trying to satisfy

the onditions (5) and (6). If this fails, we try a gradient-projetion sheme. The theoretial

properties of this method will be given in Theorem 6.1.

Algorithm 6.1

Let r

1

2 (0; 1); 0 <  <  < 1. Assume that x 2 
.

Step 0. If C(x) = 0 set y = x and terminate.

Step 1. Compute y 2 
 in some unspei�ed (perhaps problem-oriented) manner. If

jC(y)j � rjC(x)j and ky � xk � �jC(x)j, terminate. Otherwise, disard y and ontinue.

Step 2. If T (x) 6= ; and jC(�(x))j � r

1

jC(x)j, de�ne y = �(x) and terminate.

Step 3. Choose  2 [; ℄,

g = g(x; ) = P (x� r'(x)) � x;

where P (z) denotes the projetion of z on 
 and ' is de�ned by (20). If g = 0, stop the exeu-

tion of the algorithm. In this ase x is a stationary point of ' in 
 but it is not a feasible point.

Step 4. Set t 1.

Step 5. If

'(x+ tg) � '(x) + 0:1thg;r'(x)i; (27)

de�ne y = x+ tg and terminate.

Step 6. Choose t

new

2 [0:1t; 0:9t℄. Update t t

new

and go to Step 5.

Clearly, Algorithm 6.1 is well de�ned sine g is a desent diretion for ' and the loop

Step 4{Step 5 neessarily terminates. For details, see [19℄. Therefore, this method an always

11



be used in pratial implementations of Algorithm 2.1. When stopping ours at Step 3 of

Algorithm 6.1, this probably means that x is a loal minimizer of '(x) and nothing an be

done. In this ase, if we are not prepared to apply global-optimization proedures to the

minimization of ', the main algorithm must also stop, by failure of (5)-(6). If stopping at

Step 3 does not our, it is reommendable to use the output of Algorithm 6.1 at Step 2

of Algorithm 2.1. We will see now that, under reasonable onditions on the problem, this

hoie y

k

satis�es (5) and (6) and, thus, ful�lls the assumptions of the global onvergene the-

orems of Setions 4 and 5. Besides Assumption A4, we are going to use Assumption A5 below.

A5. If x is a �rst-order stationary point of

Minimize '(x) s. t. x 2 
;

then C(x) = 0.

Theorem 6.1 Suppose that Assumptions A4 and A5 are satis�ed. Then, there exist r 2 (0; 1)

and � > 0 (independent of x) suh that, if y is omputed by Algorithm 6.1, we have that

jC(y)j � rjC(x)j (28)

and

ky � xk � �jC(x)j:

Proof. The theorem is obviously true if y is omputed at Step 0. Let r

1

be as in Algorithm

6.1. By Lemma 6.1, there exist "

1

; �

1

> 0 suh that, whenever jC(x)j � "

1

, y is omputed at

Step 1 and

ky � xk � �

1

jC(x)j: (29)

Therefore, we also have that

jC(y)j � r

1

jC(x)j (30)

in this ase.

Now, for all x 2 
, if y is omputed by Algorithm 6.1, we have that:

ky � xk � diam(
) =

"

1

diam(
)

"

1

:

So, if jC(x)j � "

1

,

ky � xk �

diam(
)

"

1

jC(x)j: (31)

De�ne

A = fx 2 
 j jC(x)j � "

1

g:

By Assumption A5, jg(x; )j > 0 and hg(x; );r'(x)i < 0 for all x 2 A. So, sine A and

[; ℄ are ompat, there exist ; 

1

> 0 suh that

jg(x; )j � 

1

and hg(x; );r'(x)i � �

12



for all x 2 A,  2 [; ℄. Now, by (21), we have that

'(x+ tg) � '(x) + thg;r'(x)i +

L

4

2

t

2

jgj

2

:

So, for all t � 0; x 2 A,

'(x+ tg) � '(x) + t+ 

2

t

2

where 

2

= L

4



2

1

=2. This implies that the value of t that satis�es (27) is bounded away from

zero. Therefore, by (27), '(x) � '(y) is bounded away from zero and, so, jC(x)j � jC(y)j is

bounded away from zero. Say, jC(x)j � jC(y)j � 

3

for all x suh that y is omputed at Step

4. Therefore, sine jC(x)j � ",

jC(y)j � jC(x)j � 

3

= jC(x)j(1 � 

3

=jC(x)j) � (1� 

3

="

1

)jC(x)j:

The desired result follows from this inequality, (29), (30) and (31). 2

7 Some Numerial Insight

In [2℄ an Inexat-Restoration algorithm that deals diretly with inequality onstraints and

uses f(x) as objetive funtion of Phase 2 was implemented. This algorithm turned out to

be 10 times faster than an Augmented Lagrangian algorithm in problems of around 1000

variables and inequality onstraints. In spite of this exellent behavior, we deided to hange

the objetive funtion of Phase 2 and, onsequently, the merit funtion, in order to inor-

porate estimates of the Lagrange multipliers at eah urrent point. The positive e�et of

using Lagrange multiplier estimates omes from the well-known fat that, when nonlinear

onstraints are present, the behavior of the funtion on the tangent subspae does not mimi

its behavior on the feasible region, but the Lagrangian on the tangent subspae does. So, if

we do not use good estimates of Lagrange multipliers and the trust region is not very small,

the trial points near the solution tend to be rejeted. This auses severe inrease of work per

iteration at the last stages of alulations.

For example, suppose that we want to minimize �x

2

subjet to x

2

1

+ x

2

2

� 1 = 0 and that

x

k

is a feasible point slightly on the left of the solution (0; 1). (So, x

k

= y

k

.) If we minimize

�x

2

on the tangent subspae (Phase 2) we obtain a point on the tangent line, on the right

of (0; 1) and on the border of the trust region, independently of the trust-region size. At this

trial point, optimality is only marginally improved but the point is muh less feasible than

x

k

. Therefore the trial point will be rejeted, unless the trust region is very small. On the

other hand, if (at Phase 2) we minimize a Lagrangian with good estimates of the multipliers,

the auxiliary (Lagrangian) objetive funtion would be onvex on the tangent line, the trial

point would be lose to x

k

and it would be aepted independently of the trust-region radius.

The penalty parameter � is dereased when the feasibility progress from x

k

to y

k

largely

exeeds the optimality progress (whih, in fat, ould be even \negative") between x

k

and

z

k;i

. Sine large feasibility improvements are likely to our at the �rst iterations, an im-

portant derease of � ould be expeted at these stages. For this reason it is important to

use a nonmonotone strategy, as the one employed in this paper. In pratie, it is even re-

ommendable to restart the algorithm after (say) the �rst 10 iterations in suh a way that
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a premature derease of the penalty parameter is ompletely forgotten. We generally use

�

0

= 0:8 in experiments and we observed that the penalty parameter dereases in less than

10 % of the iterations.

It is interesting to observe the behavior of inexat-restoration algorithms in problems in

whih the solution is non-regular and the Karush-Kuhn-Tuker onditions are not ful�lled.

We have studied some aademi problems of this type, mostly with the aim of deteting

possible extensions of the theory. With that purpose, problems were solved using Algorithm

2.1, inhibiting the requirement (6) whih, in fat, tends to be violated in those ases, at least

when the iterate is lose to the (non-regular) solution. Convergene to the solution took

plae in all the (aademi and small-dimensional) ases studied. In some ases (for example,

minimizing 3x

1

+ x

2

subjet to x

2

1

+ x

2

2

= 0), in spite of the violation of (6), the property

d

k

tan

! 0 was observed. In other ases (for example, minimizing 3x

1

+ x

2

subjet to x

2

� 0

and x

2

� x

3

1

) the iterates onverged to the solution along a trajetory where (6) was always

violated and d

k

tan

did not tend to zero.

We also studied some problems where the onstraints are not smooth at the solution.

(For example, minimize 3x

1

+ x

2

subjet to x

1

+ x

2

�

q

x

2

1

+ x

2

2

= 0, where the onstraint is

the elebrated Fisher-Burmeister funtion, largely used in the solution of omplementarity

and variational inequality problems.) The set of points for whih d

k

tan

= 0 form a urve in

IR

2

that passes through the origin, whih is the solution. The Inexat-Restoration algorithm

onverges to the solution in this ase following asymptotially the \d

k

tan

= 0" urve. This

suggests that onvergene results ould be strengthened.

8 Final Remarks

Some features of the Inexat-Restoration framework are reasonably onsolidated. Among

them, we an ite:

1. Freedom for hoosing di�erent algorithms in both phases of the method, so that problem

harateristis an be exploited and large problems an be solved using appropriate sub-

algorithms.

2. Loose toleranes for restoration disourage the danger of \over-restoring", a proedure

that ould demand a large amount of work in feasible methods and that, potentially,

leads to short steps far from the solution.

3. Trust regions entered in the intermediate point adequately reet the \preferene for

feasibility" of IR methods.

4. The use of the Lagrangian in the optimality phase favors pratial fast onvergene

near the solution.

In our opinion, the above harateristis should be preserved in future IR implementations.

It is not so lear for us whih is the best merit funtion for IR methods. The one introdued

in this paper seems to deal well with the feasibility and the optimality requirements but it
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is ertainly neessary to pay attention to other alternatives or, even to the possibility of not

using merit funtions at all, as proposed, for example, in [20, 21, 22℄.

The philosophy of Inexat Restoration enourages ase-oriented appliations. Presently

we are beginning to work in IR methods for Bilevel Programming, beause we think that, in

this important family of problems, the strategy of using opportunisti methods in the lower

level (Feasibility Phase) ould be very useful. A related family of problems for whih IR

ould be interesting is MPEC (Mathematial Programming with Equilibrium Constraints)

whih, of ourse, it is losely related bo Bilevel Programming. The disretization of ontrol

problems also o�ers an interesting �eld of IR appliations beause, in this ase, the struture

of the state equations suggests ad ho restoration methods.

In the previous setion we suggested that there are interesting theoretial problems asso-

iated to onvergene. Roughly speaking, the question is \what happens when we do not have

regularity at the solution?" We are also interested in relaxing the di�erentiability assump-

tions. Both questions are related to the possibility of applying IR to MPEC. We have already

seen that ondition (6), although neessary for the onvergene theory presented here, an

be relaxed in some ases without deterioration of pratial onvergene. Sometimes d

k

tan

! 0

holds and other times onvergene to the solution ours, whereas regularity and (6) do not

hold and d

k

tan

does not tend to zero. A lot of (probably nontrivial) theory is neessary to

understand the relation between pratie and onvergene theory in those ases.
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