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Abstract. A new Inexact-Restoration method for Nonlinear Programming is introduced.
The iteration of the main algorithm has two phases. In Phase 1, feasibility is explicitly im-
proved and in Phase 2 optimality is improved on a tangent approximation of the constraints.
Trust regions are used for reducing the step when the trial point is not good enough. The trust
region is not centered in the current point, as in many Nonlinear Programming algorithms,
but in the intermediate “more feasible” point. Therefore, in this semifeasible approach, the
more feasible intermediate point is considered to be essentially better than the current point.
This is the first method in which intermediate-point-centered trust regions are combined with
the decrease of the Lagrangian in the tangent approximation to the constraints. The merit
function used in this paper is also new: it consists of a convex combination of the Lagrangian
and the (non-squared) norm of the constraints. The Euclidean norm is used for simplicity
but other norms for measuring infeasibility are admissible. Global convergence theorems are
proved, a theoretically justified algorithm for the first phase is introduced and some numerical
insight is given.

Key Words: Nonlinear Programming, trust regions, GRG methods, SGRA methods, restora-
tion methods, global convergence.



1 Introduction

Inexact-Restoration (IR) methods have been recently introduced to solve constrained opti-
mization problems [1, 2].

These methods consider feasibility and optimality at different phases of a single iteration.
In the Feasibility Phase, a “more feasible point” (with respect to the “current point”) is
computed and in the Optimality Phase, a “more optimal point” is calculated on a region
that approximates the admissible set. The point that comes from the second phase is a “trial
point” that must be compared with the current point by means of a suitable merit function.
If the trial point is not accepted, the “trust region radius” is reduced.

The point of view of Inexact-Restoration ideas is that feasibility is an important feature
of the problem that must be controlled independently of optimality. Inexact-Restoration
methods are connected with feasible and semifeasible methods for Nonlinear Programming
like GRG, SGRA and “pure” barrier methods. See [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. On the
other hand, a well known drawback of feasible methods is their inability to follow very curved
domains, which causes that very short steps might be computed far from the solution. The
Inexact-Restoration methodology tries to avoid that inconvenient by means of procedures
that automatically decrease the tolerance for infeasibility as the solution is approximated.
In this way, large steps on an enlarged feasible region are computed at the beginning of the
process.

Many technical and theoretical arguments of Inexact-Restoration methods come from
Sequential Quadratic Programming (SQP). See [13, 14, 15, 16, 17]. However, in modern IR
algorithms some important features were introduced that enlarge the gap between IR and
SQP. The freedom with respect to the method chosen in the Feasibility Phase allows one to
use problem-oriented algorithms, Newton-like methods or global-optimization procedures for
finding the “more feasible” point. Moreover, in recent methods the trust region is centered
in the “more feasible point” (the output point of the Feasibility Phase) instead of the more
classical current-point-centered trust regions used, for example, in [1].

In this paper, we introduce an IR algorithm where the trust-region is centered in the
intermediate point, as in [2, 18], but, unlike the algorithms introduced in those papers, the
Lagrangian function is used in the “tangent set” (which approximates the feasible region),
as in [1]. Accordingly, we define a new merit function that fits well with both requirements:
one of its terms is the Lagrangian, as in [1], but the second term is a nonsmooth measure of
infeasibility as in [2, 18].

This paper is organized as follows. The new algorithm is introduced in Section 2. In
Section 3 we state the assumptions on the problem that allow us to prove global convergence.
In Section 4 it is proved that limit points of the algorithm are feasible. In Section 5 we prove
that there exist optimal accumulation points. In Section 6 we define a specific algorithm for
the Feasibility Phase. In Section 7 we give some numerical insight on the practical behavior
of the algorithm. Finally, in Section 8 we state some conclusions and we give the lines for
future research.



2 Description of the Algorithm
We consider the problem
Minimize f(z) s. t. C(z)=0, x € Q C R", (1)

where 2 is closed and convex, f : R" — IR, C : IR — IR™. We denote C’'(z) the Jacobian
matrix of C' evaluated at x. Throughout the paper we assume that Vf(z) and C'(z) exist
and are continuous in §2.

The algorithm is iterative and generates a sequence {z*} C Q. The parameters 7 > 0,7 €
[0,1),8 > 0,M > 0,0_; € (0,1),0min > 0,71 > 0,72 > 0 are given, as well as the initial
approximation z° € €2, the initial vector of Lagrange multipliers A\’ € IR™ and a sequence of
positive numbers {wy} such that Y 72wy < oo . All along this paper ||- || will an be arbitrary
norm. For simplicity, | - | will denote the Euclidean norm, although in many cases it can be
replaced by an arbitrary norm.

We define the Lagrangian function

L(z, A) = f(z) +(C(z),A) (2)

for all z € 2, A € IR™.
Assume that k € {0,1,2,...}, z¥ € Q,A\¥ € IR™ and 6 1,0, »,...,0_1 have been com-
puted. The steps for obtaining z**1, \¥*1 and 6, are given below.

Algorithm 2.1
Step 1. Initialize penalty parameter.
Define
O = min {1,04_1,...,0 1}, (3)

0,9 = min {1,07" + wy} (4)

and
large
O,y = 0179,

Step 2. Feasibility phase of the iteration.
Compute y*¥ € Q such that

IC(y")| < r|C(z")] (5)
and
Iy — | < BIC("). (6)
Step 3. Tangent Cauchy direction.
Compute
dan = Puly® = nVL(z*, 2)] = o, (7)

where Pj(z) is the orthogonal projection of z on 7 and

m={z€Q | C'(y")(= —y*) = 0}. (8)



If y* = 2 (so C(z%) = C(y¥) =

returning z* as “the solution”.
If df , = 0 compute A1 € IR™ such that |\¥*!| < M, define

0) and df,, = 0, terminate the execution of the algorithm

k+1 _ k _
z =Y, 0/6_0/6—17

Ared = (1 - 6,)[|C(z")] = 1C(y")]]

and terminate the iteration.
Else, set 7 < 0, choose d; o > dmin and continue.

Step 4. Trial point in the tangent set.
Compute, using Algorithm 2.2 below, z¥* € 7}, such that

1257 — ¥l < 0k and L(zM,A%) < L(y*, AF).

Step 5. Trial multipliers. .
Compute A%, € R™ such that [A;% | < M.

Step 6. Predicted reduction.
Define, for all 6 € [0, 1],
Predy;(0) = O[L(z*, \*) = L(zF, \F) — (C(y"), Ay — A + (1 = O)[|C(")] = |C(")]] (9)
Compute 6y, ;, the maximum of the elements 6 € [0, 6, ;_1] that verify

1C()] = 1CEMI] (10)

N =

Predy ;(0) >

Define
Predk,i = Predkyi (0]971) .

Step 7. Compare actual and predicted reduction.

Compute
Avedy,; = Oy ;[L(a%, \F) — L(zF, Afﬁiaz)] + (1= 0, [|C (") — |C(Z*)]]

If
Ared;; > 0.1 Predy;

define .
ki 0, = Hk,ia O = 6k,i7 iacc(k) =1,

k+1 _ kg k+1 __
=z, A - Atrial’

T

Aredy = Aredy;, Pred, = Pred;;

and terminate iteration k.
Else, choose 0y, ;41 € [0.10% 4,0.99; ;], set ¢ < i+ 1 and go to Step 4 .

Algorithm 2.2



Step 1. .
Compute t;, . = min {1,/ d5, ||}-
Step 2. .
Set t <ty .
Step 3.
If
L(y® + tdf,,,, \F) < L(y*, \F) + 0.16(VL(y*, AF), dF,,,), (11)

tan»

define 2% € Q such that ||2%¢ — y*|| < & ,; and

L(Z%, %) < max{L(y* + tdy,,, \*), L(y*, \¥) = 11013, L(y", A* — 72} (12)

tan>
and terminate. (Observe that the choice z%? = y* +tdf  is admissible but, very likely, it is

tan
not the most efficient choice.)

Step 4.
If (11) does not hold, choose t,e, € [0.1¢,0.9¢], set t < t,¢ and go to Step 3.

Lemma 2.1. Algorithm 2.2 is well defined.

Proof. Algorithm 2.2 is called only when df  # 0. Since y* € 7}, we have that

tan
|(y* = nVL(y", A*) = Pe(y® —nVL*, X)) < |6 = nVL",AF) — ).
Therefore,
ly* — Pr(y® —nVL*, X)) 5 + nVL(*, )5 + 20(Pe (v — nVL(y*, A7) — o, VL(y", A¥))
< [nVL(y*, ).
So,
(hans VLG A < =5l (13)

Therefore, by the definition of directional derivative, after a finite number of reductions of t,
(27) is obtained. O

3 Assumptions on the Problem

The assumptions below represent minimal sufficient conditions which will allow us to prove
convergence. The “simple set” €2 will be assumed to be bounded, because this is the simplest
assumption on the problem that guarantees boundedness of the generated sequence. On the
other hand, this is a practical assumption since any optimization problem can be compactified
using artificial bounds on the variables, and our algorithm is able to deal with bounds. The



other two assumptions are Lipschitz conditions on the derivatives of the objective function
and the constraints. So, second derivatives are not assumed to exist at all.

Al. Q is convex and compact.
A2. There exists Ly > 0 such that, for all z,y € ,

C'(z) = C'(y)| < Ll — y] (14)
A3. There exists Lo > 0 such that, for all z,y € ,
IVf(z) = V)l < Lofz —yl. (15)
Without loss of generality, we will assume that (14) and (15) hold for the two norms used
in this paper.

Lemma 3.1. There exist L3, Ly > 0 such that, whenever |A\| < M, z,y € €2, we have that

L
C(y) — Clz) = C'(@)(y — 2)| < Elly—$|2, (16)
[f(y) = f(@) ={Vf(2),y — )| < |y — =], (17)
IVL(y, A) = VL(z, M)| < Laly — x], (18)
L
[L(y. N) = L(z, ) = (VL(z, \),y — o) < Tly — . (19)
Moreover, defining, for all z € IR,
1

o(2) = 51C()I%, (20)

we have: L

4
[p(y) = p(z) = (Ve(@), (y — ) < - ly — 2l (21)
Proof. It follows from (14), (15), the compactness of €, the continuity of C' and the bound-
edness of \. O

Lemma 3.2. If z € 7, then
L

C) < 1CWH+ Iy — . (22)
Proof. The result follows from (16) and the definition of 7. O

Lemma 3.3. There exist cz,c3 > 0 (independent of k) such that, if z%*

Algorithm 2.2, we have that

is computed by

L(zM, XF) < L(y¥, XF) — min{ry, caldf, %, 710k, c31d8 0% (23)

Proof. Inequality (23) follows from (12) and the assumptions as in the proof of Theorem 3.2
of [2], replacing f(.) by L(., \F). O



4 Convergence to Feasible Points

Theorem 4.1 Algorithm 2.1 is well defined.

Proof. Direct calculation leads to
Aredy ; — 0.1 Predy;

= 0.9 Predy; + (1= ) [|C(0F)] — |C(ZP)] + 0.105,:(C(yF) — C(M), Ay — XF). (24)

trial
Therefore, by (10),
Ared; ; — 0.1 Predy;

> 0.45[C(a")] = |C (M) 14+ (1= 0. ) |C(WF) | = |C ()] = 0.10) :(C (5F) — C(7), Mty = AF)].
Then, by (5),
Aredy ; — 0.1 Predy;
> 045(1 — 1)|C(a")| = [|C(W")] = |C(5)]| = 010 :(C(WF) — C(F), Al — AF). (25)

» “Mrial
If C(z*) # 0, the first term of the right-hand side of (25) is positive and, by continuity of
C, the second and third terms tend to zero as d;; — 0. Therefore, there exists a positive
Ok,; such that Aredy; — 0.1 Pred;; > 0. This means that the algorithm is well defined if
C(z*) # 0.

Let us now analyze the case in which z* is feasible. Since the algorithm does not terminate
at iteration k, we have that df # 0. So, by (6), y* = z* and C(y*) = C(z*) = 0. Therefore,
condition (10) reduces to

L(y*, \¥) — L(zF, AF) > 0. (26)

By (23), (26) holds independently of 6, so 0 ; = 6, _; for all 4.
Therefore, by (9) and (23),
Predg,; = 0, —1[L(y", A*) = L(z"*, A")] 2 Op,—1 min{ms, c2|di,|*, 710k, €3] dfun |k, }-

So, by (24),
Aredy ; — 0.1 Predy ;

> 0.90), 1 min{ra, eoldfy, P, 7165, sl 51,0}~ 10 (61)| - [CGH)] [ =0.1[{C(F) ~C (), Ay A9,

» Mtrial
Thus,
Aredkyi —0.1 Predk,i

Ok,i
dk |2 kY| _ ki
5 0.90 s minf T2, ¢y ] lCEhI = ICEAI_
Ok,i Ok,i Ok i O

The first term of the right-hand side of the previous inequality is bounded away from zero
whereas, by (22), the second and third terms tend to zero. Therefore, Aredj;—0.1 Predy; >
0 if 0y ; is small enough. O

C(y*) — C(N)|IA2, — N

trial

7Tlac3|dfan|}_ :



Lemma 4.1 limy_,,, Ared; = 0.

Proof. It follows as in the proof of Theorem 3.4 of [2], replacing f(z¥) by L(z*,\¥) and
|G (a*)| by |C(a*)]. =

Theorem 4.2. limy_, o, |C(z*)| = 0.

Proof. This proof is similar to the proof of Theorem 3.5 of [2], replacing |C* (z*)| by |C(z¥)].
a

5 Convergence to Optimality

Up to now, we proved that, if Phase 1 can always be at every iteration, then the main
algorithm is well defined and C(z*) — 0. This implies that every accumulation point is
feasible. So, by the compactness of €2, there exists a feasible limit point and any other limit
point is feasible too. Optimality is associated to the tangent Cauchy direction dfan. In this
section we prove that, for a suitable subsequence, the norm of this direction tends to zero.
This result is independent of constraint qualifications. At the end of the section, we prove
that, under a regularity condition, there exists a point that satisfies the KKT first-order
necessary conditions for optimality.

We are going to assume (in Hypothesis C below) that no subsequence of df,, tends to
zero. Using, essentially, the arguments of [2], we will see that this assumption leads to a
contradiction.

Hypothesis C. There exist ¢ > 0 and kg € {0,1,2,...} such that |df,,| > ¢ for all k > ko.

Lemma 5.1. Suppose that Hypothesis C holds. Then, there exist c4,c5 > 0 such that
L(y*, A\F) — L(z%%, \*) > min{cy, 505 ;} for all k > ko, i =0,1,...,iacc(k).

Proof. It follows trivially from Lemma 3.3 and Hypothesis C. O

Lemma 5.2. Suppose that Hypothesis C holds. Then, there exist «, €1 > 0 such that when-
ever k > ko and |C(z%)| < min{e;, ady;} we have that 0 ; = Oy ;1.

Proof. By (5), (6), (9), Lemma 5.1, the compactness of €2, the continuity of C' and f and
the boundedness of \¥, there exist ¢, ¢, ¢" > 0 such that

Predi;(1) — 2 1C(4)] ~ 106"
> (LG4, M) = LM, 08) — (Olgh), My = XF) = 210(H)]

trial

> [L(y", AF) = L5 N0)) = |L(a™, AF) = Ly A8 = O ()] - %IC(JI'“)I



. 1
> minf{cy, c50,;} — c|y* — 2F| — (" + §)|C($k)|

. 1
> min{cy, c50k,i} — c'ﬁ|C(:1:k)| — (" + §)|C(zk)|

= min{C4, C55k,i} — C|C(Ik)|,

with ¢ = ¢+ ¢’ + 5. Therefore,

C4 Cp

Predy, ;(1) — [|C(zF)| — |C(v*

c ¢’ c
So, if e1 = ¢s/c, a = ¢5/c and |C(2¥)| < min{eq, ady;}, we have that Predy;(1)—3[|C(z*)|—
|C(y*)|] > 0. This means that inequality (10) holds for § = 1. Since it obviously holds for
§ = 0, it holds for all 6 € [0,1]. This implies that 6y ; = 651, as we wanted to prove. O

Lemma 5.3. Suppose that Hypothesis C holds. Then, there exists > 0 such that 6, >
for all k € {0,1,2,...}.

Proof. Observe that

Aredg; — Predg; = 0, (C(y") — C(zF), AL, — ) + (1 = 0 0)[|C(F)| — |C(=*)

trial

|-
Therefore, by (14) and (22), there exists ¢ > 0 such that

Aredy; > Pred;; — 05,%,1-

forall k € {0,1,2,...},i=0,1,...,iacc(k). The proof of the lemma follows as in Lemma 4.3
of [2], replacing ¢; by ¢ and C*(.) by C(.). O

Theorem 5.1. Hypothesis C is false.

Proof. This proof is quite similar to the one of Theorem 4.4 of [2], with (obvious) slight
modifications. O

Theorem 5.2. If Assumptions A1, A2 and A3 are satisfied and {z*} is a sequence generated
by Algorithm 2.1, then

1. |C(zF)] — 0.
2. Every limit point of {z*} is feasible.

k

3. If z* is a limit point of {z*} and limye g, 2% = z*, then limge g, y* = y*.

4. There exists an infinite set Ky C {0,1,2,...} such that limycg, df,,, = 0.



5. There exists an infinite set K3 C {0,1,2,...} and z* € Q such that

lim z¥ = lim 4* = 2*, C(z*)=0 and lim d* =0.
kEII?;;:L‘ kEIII(lgy x7 (x) n kEIIIflg tan

Moreover, if z* is a regular point, it satisfies the Karush-Kuhn-Tucker optimality con-
ditions of (1).

Proof. The first two items follow from Theorem 4.2 and the boundedness of 2. The third is
a consequence of (6) and, since we have proved that Hypothesis C is false, the fifth item also
holds. For proving the fifth item it is enough to take an appropriate convergent subsequence
of {z¥}1ck,. Finally, the last item follows from Proposition 2 of [15]. O

6 Algorithm for the Feasibility Phase

An essential feature of the Inexact-Restoration algorithm is that one is free to choose dif-
ferent methods both for the Feasibility and for the Optimality Phase. However, it will be
useful to show that, under suitable assumptions, a point that satisfies the Feasibility Phase
requirements exists and can be computed using an implementable procedure.
Let us call
F={ye | Cz)=0}

and suppose that 2 is an n-dimensional box:
Q={zxeR" | {<z<u}

where ¢ € IR", u € IR", ¢ < u.
In this section we use the following Assumption.

A4. All the feasible points are regular. (Therefore, for all y € F there exist ji,...,Jm €
{1,...,n} such that ¢;, <y, <uj,k=1,...,m, and the columns ji,...,jn, of C'(y) are
linearly independent.)

For all z € 2 we define
T(zr) ={y€Q | C'(z)(y —z) + C(z) = 0}.
If T(z) # 0 we define I'(z) = argmin {|ly —z| | y € T'(z)}.
We denote B(y,e) ={z € Q| |z —y| <e}.

In the following Lemma, we prove that, under Assumption A4, the choice y = I'(z) sat-
isfies the conditions (5) and (6) required in Phase 1 of Algorithm 2.1. This choice could be
called “Newtonian” because it comes from linearization of the constraints, exact fulfillment
of linearized equations and minimal variation. Accordingly, Lemma 6.1 remembers the basic



local convergence results of Newton’s method.

Lemma 6.1. Let r € (0,1). There exist € > 0,8 > 0 such that, if |C(z)| < ¢ we have that

T(z) # 0,
|C(T(x))] < r|C(x)]

and

IT'(z) — x| < BIC(z)].

Proof. Let y € F. Since y is regular, there exists {j1,...,jm} C {1,...,n} such that the
m x m matrix formed by the columns ji,...,j, of C'(y) is nonsingular. For all z € ,
we call Ay(z) the matrix whose columns are the columns ji,...,j, of C'(z). By continuity
of C" and nonsingularity of A,, there exists e(y) > 0 such that A,(z) is nonsingular and
|Ay(2)7Y| < 2|Ay(y)~'| whenever z € B(y,e(y)). Moreover, if (y) is small enough and
z € B(y,e(y)), the columns of A,(z) also correspond to variables j such that ¢; < z; < u;.
Clearly, F is contained in the union of the balls B(y, (y)) so far defined. Since F is compact,
there exist y',...,y? € F such that

F C B(yl,sl) U...UB(y, ep),

where ¢, = ¢(y¥),k = 1,...,p. Now, for each y € F we choose k such that y € B(y*, ")
and we define B(y) = Ak (y). By construction, B(y) is a nonsingular m X m matrix whose
columns corresponds to variables y; such that ¢; < y; < u;. Moreover,

By <cVyeF,
where
¢ =2 max{]A,l), ..., |4},

Now, given y € F, assume, without loss of generality, that C'(y) = (B(y), N(y)), where
B(y) is defined above and N (y) € R™ ("~™)_ Let §(y) > 0 be such that for all w € B(y, (y)),
we have:

Kj <wj < Uy, j=1...,m,

B(w) is nonsingular and
|B(w) ™| < 2.

For all w € B(y,d(y)), w = (wp,wn), we define
v(w) = (wp — B(w) 'C(w), wy).

Clearly,
C'(w)(v(w) — w) + C(w) = 0.

Moreover,
[o(w) — w| < 2¢d|C(w))

where ¢’ is a norm-dependent constant.

10



Therefore, if |C(w)| is sufficiently small (say, |C'(w)| < ;) we have that v(w) € Q. This
implies that 7'(w) is nonempty. Therefore, I'(w) is well defined. Now, by the definition of
P(w),

IT'(w) — w| < 2¢d|C(w)].

Finally, by (16), for an appropriate choice of ¢,
L
|C(T(w)] < [C(w) + C"(w)(T(w) —w)| + 71|F(w) —wl? < "C(w).

Therefore, |C(T'(w))| < r|C(w)| if e < r/c". This means that the thesis of the Lemma holds,
defining 8 = 2¢d. O

Now we give a general and implementable method for Phase 1 of Algorithm 2.1. The idea
is that we try, initially, an arbitrary, perhaps problem-oriented procedure, as it was done,
for example in [2]. If the problem-oriented method fails, we compute I'(z) trying to satisfy
the conditions (5) and (6). If this fails, we try a gradient-projection scheme. The theoretical
properties of this method will be given in Theorem 6.1.

Algorithm 6.1
Let 1 € (0,1),0 <y <7¥ < 1. Assume that = € €.

Step 0. If C(z) = 0 set y = z and terminate.

Step 1. Compute y € Q in some unspecified (perhaps problem-oriented) manner. If
|C(y)| < r|C(z)| and ||y — z|| < B|C(z)]|, terminate. Otherwise, discard y and continue.

Step 2. If T(z) # 0 and |C(I'(z))| < r1|C(x)|, define y = I'(z) and terminate.

Step 3. Choose 7y € [v,7],

9 =g(z,7) = P(x —vVe(z)) -z,

where P(z) denotes the projection of z on €2 and ¢ is defined by (20). If g = 0, stop the execu-
tion of the algorithm. In this case x is a stationary point of ¢ in Q but it is not a feasible point.

Step 4. Set t + 1.

Step 5. If
o(x +tg) < p(x) + 0.1t(g, Vo(z)), (27)

define y = x + tg and terminate.
Step 6. Choose tpey € [0.1%,0.9¢]. Update ¢ < e and go to Step 5.

Clearly, Algorithm 6.1 is well defined since g is a descent direction for ¢ and the loop
Step 4-Step 5 necessarily terminates. For details, see [19]. Therefore, this method can always

11



be used in practical implementations of Algorithm 2.1. When stopping occurs at Step 3 of
Algorithm 6.1, this probably means that z is a local minimizer of ¢(z) and nothing can be
done. In this case, if we are not prepared to apply global-optimization procedures to the
minimization of ¢, the main algorithm must also stop, by failure of (5)-(6). If stopping at
Step 3 does not occur, it is recommendable to use the output of Algorithm 6.1 at Step 2
of Algorithm 2.1. We will see now that, under reasonable conditions on the problem, this
choice y* satisfies (5) and (6) and, thus, fulfills the assumptions of the global convergence the-
orems of Sections 4 and 5. Besides Assumption A4, we are going to use Assumption A5 below.

A5, If x is a first-order stationary point of
Minimize p(z) s. t. z €€,
then C'(z) = 0.

Theorem 6.1 Suppose that Assumptions A4 and A5 are satisfied. Then, there exist r € (0,1)
and § > 0 (independent of z) such that, if y is computed by Algorithm 6.1, we have that

[Cy)| < r[C(=)| (28)

and
|y — x| < BIC(=)|.

Proof. The theorem is obviously true if y is computed at Step 0. Let r; be as in Algorithm
6.1. By Lemma 6.1, there exist €1, 51 > 0 such that, whenever |C(z)| < €1, y is computed at
Step 1 and

ly — x|l < B1|C(2)]. (29)

Therefore, we also have that
IC(y)| < r1|C(2)] (30)

in this case.
Now, for all z € €, if y is computed by Algorithm 6.1, we have that:

ly - 2]l < diam(®) = 242
€1
807 if |C($)| > €1,
diam/(2
ly— 2| < T2, ), (31)

€1
Define
A={zeQ||C(z)| >e1}.

By Assumption A5, |g(z,y)| > 0 and (g(z,7), Ve(z)) <0 for all z € A. So, since A and
[7,7] are compact, there exist ¢,c¢; > 0 such that

lg(z,7)| > 1 and (g(z,7), Ve(z)) < —c

12



for all x € A, v € [v,7]. Now, by (21), we have that

ol +tg) < pl) + g, Vi) + 2 1lgl”

So, for allt > 0,z € A,
o(x +tg) < p(z) + tc + cot?

where ¢y = Lqc?/2. This implies that the value of ¢ that satisfies (27) is bounded away from
zero. Therefore, by (27), ¢(z) — ¢(y) is bounded away from zero and, so, |C(z)| —|C(y)| is
bounded away from zero. Say, |C(z)| — |C(y)| > cs for all z such that y is computed at Step
4. Therefore, since |C(z)| > ¢,

[C(y)] < [C(2)] = ez = [C@)|(1 = e3/|C(2)]) < (1 = e3/e1)|C(2)].

The desired result follows from this inequality, (29), (30) and (31). O

7 Some Numerical Insight

In [2] an Inexact-Restoration algorithm that deals directly with inequality constraints and
uses f(z) as objective function of Phase 2 was implemented. This algorithm turned out to
be 10 times faster than an Augmented Lagrangian algorithm in problems of around 1000
variables and inequality counstraints. In spite of this excellent behavior, we decided to change
the objective function of Phase 2 and, consequently, the merit function, in order to incor-
porate estimates of the Lagrange multipliers at each current point. The positive effect of
using Lagrange multiplier estimates comes from the well-known fact that, when nonlinear
constraints are present, the behavior of the function on the tangent subspace does not mimic
its behavior on the feasible region, but the Lagrangian on the tangent subspace does. So, if
we do not use good estimates of Lagrange multipliers and the trust region is not very small,
the trial points near the solution tend to be rejected. This causes severe increase of work per
iteration at the last stages of calculations.

For example, suppose that we want to minimize —zy subject to 22 + 2% — 1 = 0 and that
z¥ is a feasible point slightly on the left of the solution (0,1). (So, ¥ = y*.) If we minimize
—1z9 on the tangent subspace (Phase 2) we obtain a point on the tangent line, on the right
of (0,1) and on the border of the trust region, independently of the trust-region size. At this
trial point, optimality is only marginally improved but the point is much less feasible than
z¥. Therefore the trial point will be rejected, unless the trust region is very small. On the
other hand, if (at Phase 2) we minimize a Lagrangian with good estimates of the multipliers,
the auxiliary (Lagrangian) objective function would be convex on the tangent line, the trial
point would be close to z* and it would be accepted independently of the trust-region radius.

The penalty parameter 6 is decreased when the feasibility progress from z* to y* largely
exceeds the optimality progress (which, in fact, could be even “negative”) between z* and
2k Since large feasibility improvements are likely to occur at the first iterations, an im-
portant decrease of 6 could be expected at these stages. For this reason it is important to
use a nonmonotone strategy, as the one employed in this paper. In practice, it is even rec-
ommendable to restart the algorithm after (say) the first 10 iterations in such a way that
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a premature decrease of the penalty parameter is completely forgotten. We generally use
0y = 0.8 in experiments and we observed that the penalty parameter decreases in less than
10 % of the iterations.

It is interesting to observe the behavior of inexact-restoration algorithms in problems in
which the solution is non-regular and the Karush-Kuhn-Tucker conditions are not fulfilled.
We have studied some academic problems of this type, mostly with the aim of detecting
possible extensions of the theory. With that purpose, problems were solved using Algorithm
2.1, inhibiting the requirement (6) which, in fact, tends to be violated in those cases, at least
when the iterate is close to the (non-regular) solution. Convergence to the solution took
place in all the (academic and small-dimensional) cases studied. In some cases (for example,
minimizing 3z; + z2 subject to z? + 23 = 0), in spite of the violation of (6), the property
df. — 0 was observed. In other cases (for example, minimizing 3z, + z3 subject to 2o > 0
and xo < z}) the iterates converged to the solution along a trajectory where (6) was always
violated and df,,, did not tend to zero.

We also studied some problems where the constraints are not smooth at the solution.
(For example, minimize 3z1 + z2 subject to 1 + z2 — \/z? 4+ x5 = 0, where the constraint is
the celebrated Fischer-Burmeister function, largely used in the solution of complementarity
and variational inequality problems.) The set of points for which df,, = 0 form a curve in
IR? that passes through the origin, which is the solution. The Inexact-Restoration algorithm
converges to the solution in this case following asymptotically the “d¥ = 0” curve. This

tan
suggests that convergence results could be strengthened.

8 Final Remarks

Some features of the Inexact-Restoration framework are reasonably consolidated. Among
them, we can cite:

1. Freedom for choosing different algorithms in both phases of the method, so that problem
characteristics can be exploited and large problems can be solved using appropriate sub-
algorithms.

2. Loose tolerances for restoration discourage the danger of “over-restoring”, a procedure
that could demand a large amount of work in feasible methods and that, potentially,
leads to short steps far from the solution.

3. Trust regions centered in the intermediate point adequately reflect the “preference for
feasibility” of IR methods.

4. The use of the Lagrangian in the optimality phase favors practical fast convergence
near the solution.

In our opinion, the above characteristics should be preserved in future IR implementations.
It is not so clear for us which is the best merit function for IR methods. The one introduced
in this paper seems to deal well with the feasibility and the optimality requirements but it
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is certainly necessary to pay attention to other alternatives or, even to the possibility of not
using merit functions at all, as proposed, for example, in [20, 21, 22].

The philosophy of Inexact Restoration encourages case-oriented applications. Presently
we are beginning to work in IR methods for Bilevel Programming, because we think that, in
this important family of problems, the strategy of using opportunistic methods in the lower
level (Feasibility Phase) could be very useful. A related family of problems for which IR
could be interesting is MPEC (Mathematical Programming with Equilibrium Constraints)
which, of course, it is closely related bo Bilevel Programming. The discretization of control
problems also offers an interesting field of IR applications because, in this case, the structure
of the state equations suggests ad hoc restoration methods.

In the previous section we suggested that there are interesting theoretical problems asso-
ciated to convergence. Roughly speaking, the question is “what happens when we do not have
regularity at the solution?” We are also interested in relaxing the differentiability assump-
tions. Both questions are related to the possibility of applying IR to MPEC. We have already
seen that condition (6), although necessary for the convergence theory presented here, can
be relaxed in some cases without deterioration of practical convergence. Sometimes df,,, — 0
holds and other times convergence to the solution occurs, whereas regularity and (6) do not
hold and df , does not tend to zero. A lot of (probably nontrivial) theory is necessary to

tan
understand the relation between practice and convergence theory in those cases.

References

[1] J. M. MARTINEZ, Two-Phase Model Algorithm with Global Convergence for Nonlinear
Programming, Journal of Optimization Theory and Applications 96, pp. 397-436 (1998).

[2] J. M. MARTINEZ AND E. A. PILOTTA, Inezact-Restoration Algorithm for Constrained
Optimization, to appear in Journal of Optimization Theory and Applications.

[3] J. ABADIE AND J. CARPENTIER, Generalization of the Wolfe Reduced-Gradient Method
to the Case of Nonlinear Constraints, in Optimization, Edited by R. Fletcher, Academic
Press, New York, pp. 37-47, 1968.

[4] L. S. LASDON, Reduced Gradient Methods, in Nonlinear Optimization 1981, edited by
M. J. D. Powell, Academic Press, New York, pp. 235-242, 1982.

[5] A. MIELE, H. Y. HUANG AND J. C. HEIDEMAN, Sequential Gradient-Restoration
Algorithm for the Minimization of Constrained Functions, Ordinary and Conjugate
Gradient Version, Journal of Optimization Theory and Applications, Vol. 4, pp. 213-
246, 1969.

[6] A. MIELE, A. V. LEvy AND E. E. CRAGG, Modifications and Extensions of the
Conjugate-Gradient Restoration Algorithm for Mathematical Programming Problems,
Journal of Optimization Theory and Applications, Vol. 7, pp. 450-472, 1971.

15



7]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. MIELE, E. M. SimMs AND V. K. BASAPUR, Sequential Gradient-Restoration Al-
gorithm for Mathematical Programming Problems with Inequality Constraints, Part 1,
Theory, Rice University, Aero-Astronautics Report No. 168, 1983.

M. RoM AND M. AVRIEL, Properties of the Sequential Gradient-Restoration Algorithm
(SGRA), Part 1: Introduction and Comparison with Related Methods, Journal of Op-
timization Theory and Applications, Vol. 62, pp. 77-98, 1989.

M. RoM AND M. AVRIEL, Properties of the Sequential Gradient-Restoration Algorithm
(SGRA), Part 2: Convergence Analysis, Journal of Optimization Theory and Applica-
tions, Vol. 62, pp. 99-126, 1989.

J. B. ROSEN, The Gradient Projection Method for Nonlinear Programming, Part 1,
Linear Constraints, SIAM Journal on Applied Mathematics, Vol. 8, pp. 181-217, 1960.

J. B. ROSEN, The Gradient Projection Method for Nonlinear Programming, Part 2,
Nonlinear Constraints, STAM Journal on Applied Mathematics, Vol. 9, pp. 514-532,
1961.

J. B. ROSEN, Two-Phase Algorithm for Nonlinear Constraint Problems, Nonlinear
Programming 3, Edited by O. L. Mangasarian, R. R. Meyer and S. M. Robinson,
Academic Press, London and New York, pp. 97-124, 1978.

R. H. BYRD, Robust Trust Region Methods for Constrained Optimization, Contributed
presentation, SIAM Conference on Optimization, Houston, Texas, 1987.

J. E. DENNIS, M. EL-ALEM AND M. C. MACIEL, A Global Convergence Theory for
General Trust-Region-Based Algorithms for Equality Constrained Optimization, STAM
Journal on Optimization 7 (1997), 177-207.

F. M. GoMmEs, M. C. MACIEL AND J. M. MARTINEZ, Nonlinear Programming Al-
gorithms Using Trust Regions and Augmented Lagrangians with Nonmonotone Penalty
Parameters, Mathematical Programming 84 (1999), 161-200.

E. OMOJOKUN, Trust-Region Strategies for Optimization with Nonlinear Equality and
Inequality Constraints, PhD Thesis, Department of Computer Science, University of
Colorado, Boulder, Colorado, 1989.

M. J. D. POWELL AND Y. YUAN, A Trust-Region Algorithm for Equality Constrained
Optimization, Mathematical Programming, Vol. 49, pp. 190-211, 1991.

J. M. MARTINEZ, A Trust-Region SLCP Model Algorithm for Nonlinear Programming.
In Foundations of Computational Mathematics. Edited by F. Cucker and M. Shub.
Springer-Verlag, pp. 246-255 (1997).

E. G. BIRGIN, J. M. MARTINEZ AND M. RAYDAN, Nonmonotone Spectral Projected
Gradient Methods on Convez Sets, to appear in SIAM Journal on Optimization.

16



[20] BIELSCHOWSKY R. H., Nonlinear Programming Algorithms with Dynamic Definition
of Near-Feasibility: Theory and Implementations, Doctoral Dissertation, Institute of
Mathematics, University of Campinas, Campinas, SP, Brazil, 1996.

[21] R. H. BIELSCHOWSKY AND F. M. GOMES, Dynamical Control of Infeasibility in Con-
strained Optimization, Contributed Presentation in Optimization 98, Coimbra, Portu-
gal, 1998.

[22] R. FLETCHER AND S. LEYFFER, Nonlinear Programming without Penalty Function,
Numerical Analysis Report NA/171, University of Dundee, 1997.

17



