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Abstra
t. A new Inexa
t-Restoration method for Nonlinear Programming is introdu
ed.

The iteration of the main algorithm has two phases. In Phase 1, feasibility is expli
itly im-

proved and in Phase 2 optimality is improved on a tangent approximation of the 
onstraints.

Trust regions are used for redu
ing the step when the trial point is not good enough. The trust

region is not 
entered in the 
urrent point, as in many Nonlinear Programming algorithms,

but in the intermediate \more feasible" point. Therefore, in this semifeasible approa
h, the

more feasible intermediate point is 
onsidered to be essentially better than the 
urrent point.

This is the �rst method in whi
h intermediate-point-
entered trust regions are 
ombined with

the de
rease of the Lagrangian in the tangent approximation to the 
onstraints. The merit

fun
tion used in this paper is also new: it 
onsists of a 
onvex 
ombination of the Lagrangian

and the (non-squared) norm of the 
onstraints. The Eu
lidean norm is used for simpli
ity

but other norms for measuring infeasibility are admissible. Global 
onvergen
e theorems are

proved, a theoreti
ally justi�ed algorithm for the �rst phase is introdu
ed and some numeri
al

insight is given.

KeyWords: Nonlinear Programming, trust regions, GRGmethods, SGRAmethods, restora-

tion methods, global 
onvergen
e.



1 Introdu
tion

Inexa
t-Restoration (IR) methods have been re
ently introdu
ed to solve 
onstrained opti-

mization problems [1, 2℄.

These methods 
onsider feasibility and optimality at di�erent phases of a single iteration.

In the Feasibility Phase, a \more feasible point" (with respe
t to the \
urrent point") is


omputed and in the Optimality Phase, a \more optimal point" is 
al
ulated on a region

that approximates the admissible set. The point that 
omes from the se
ond phase is a \trial

point" that must be 
ompared with the 
urrent point by means of a suitable merit fun
tion.

If the trial point is not a

epted, the \trust region radius" is redu
ed.

The point of view of Inexa
t-Restoration ideas is that feasibility is an important feature

of the problem that must be 
ontrolled independently of optimality. Inexa
t-Restoration

methods are 
onne
ted with feasible and semifeasible methods for Nonlinear Programming

like GRG, SGRA and \pure" barrier methods. See [3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄. On the

other hand, a well known drawba
k of feasible methods is their inability to follow very 
urved

domains, whi
h 
auses that very short steps might be 
omputed far from the solution. The

Inexa
t-Restoration methodology tries to avoid that in
onvenient by means of pro
edures

that automati
ally de
rease the toleran
e for infeasibility as the solution is approximated.

In this way, large steps on an enlarged feasible region are 
omputed at the beginning of the

pro
ess.

Many te
hni
al and theoreti
al arguments of Inexa
t-Restoration methods 
ome from

Sequential Quadrati
 Programming (SQP). See [13, 14, 15, 16, 17℄. However, in modern IR

algorithms some important features were introdu
ed that enlarge the gap between IR and

SQP. The freedom with respe
t to the method 
hosen in the Feasibility Phase allows one to

use problem-oriented algorithms, Newton-like methods or global-optimization pro
edures for

�nding the \more feasible" point. Moreover, in re
ent methods the trust region is 
entered

in the \more feasible point" (the output point of the Feasibility Phase) instead of the more


lassi
al 
urrent-point-
entered trust regions used, for example, in [1℄.

In this paper, we introdu
e an IR algorithm where the trust-region is 
entered in the

intermediate point, as in [2, 18℄, but, unlike the algorithms introdu
ed in those papers, the

Lagrangian fun
tion is used in the \tangent set" (whi
h approximates the feasible region),

as in [1℄. A

ordingly, we de�ne a new merit fun
tion that �ts well with both requirements:

one of its terms is the Lagrangian, as in [1℄, but the se
ond term is a nonsmooth measure of

infeasibility as in [2, 18℄.

This paper is organized as follows. The new algorithm is introdu
ed in Se
tion 2. In

Se
tion 3 we state the assumptions on the problem that allow us to prove global 
onvergen
e.

In Se
tion 4 it is proved that limit points of the algorithm are feasible. In Se
tion 5 we prove

that there exist optimal a

umulation points. In Se
tion 6 we de�ne a spe
i�
 algorithm for

the Feasibility Phase. In Se
tion 7 we give some numeri
al insight on the pra
ti
al behavior

of the algorithm. Finally, in Se
tion 8 we state some 
on
lusions and we give the lines for

future resear
h.
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2 Des
ription of the Algorithm

We 
onsider the problem

Minimize f(x) s. t. C(x) = 0; x 2 
 � IR

n

; (1)

where 
 is 
losed and 
onvex, f : IR

n

! IR, C : IR

n

! IR

m

. We denote C

0

(x) the Ja
obian

matrix of C evaluated at x. Throughout the paper we assume that rf(x) and C

0

(x) exist

and are 
ontinuous in 
.

The algorithm is iterative and generates a sequen
e fx

k

g � 
. The parameters � > 0; r 2

[0; 1); � > 0;M > 0; �

�1

2 (0; 1); Æ

min

> 0; �

1

> 0; �

2

> 0 are given, as well as the initial

approximation x

0

2 
, the initial ve
tor of Lagrange multipliers �

0

2 IR

m

and a sequen
e of

positive numbers f!

k

g su
h that

P

1

k=0

!

k

<1 . All along this paper k�k will an be arbitrary

norm. For simpli
ity, j � j will denote the Eu
lidean norm, although in many 
ases it 
an be

repla
ed by an arbitrary norm.

We de�ne the Lagrangian fun
tion

L(x; �) = f(x) + hC(x); �i (2)

for all x 2 
, � 2 IR

m

.

Assume that k 2 f0; 1; 2; : : :g, x

k

2 
; �

k

2 IR

m

and �

k�1

; �

k�2

; : : : ; �

�1

have been 
om-

puted. The steps for obtaining x

k+1

; �

k+1

and �

k

are given below.

Algorithm 2.1

Step 1. Initialize penalty parameter.

De�ne

�

min

k

= min f1; �

k�1

; : : : ; �

�1

g; (3)

�

large

k

= min f1; �

min

k

+ !

k

g (4)

and

�

k;�1

= �

large

k

:

Step 2. Feasibility phase of the iteration.

Compute y

k

2 
 su
h that

jC(y

k

)j � rjC(x

k

)j (5)

and

ky

k

� x

k

k � �jC(x

k

)j: (6)

Step 3. Tangent Cau
hy dire
tion.

Compute

d

k

tan

= P

k

[y

k

� �rL(x

k

; �

k

)℄� y

k

; (7)

where P

k

(z) is the orthogonal proje
tion of z on �

k

and

�

k

= fz 2 
 j C

0

(y

k

)(z � y

k

) = 0g: (8)
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If y

k

= x

k

(so C(x

k

) = C(y

k

) = 0) and d

k

tan

= 0, terminate the exe
ution of the algorithm

returning x

k

as \the solution".

If d

k

tan

= 0 
ompute �

k+1

2 IR

m

su
h that j�

k+1

j �M , de�ne

x

k+1

= y

k

; �

k

= �

k�1

;

Ared

k

= (1� �

k

)[jC(x

k

)j � jC(y

k

)j℄

and terminate the iteration.

Else, set i 0, 
hoose Æ

k;0

� Æ

min

and 
ontinue.

Step 4. Trial point in the tangent set.

Compute, using Algorithm 2.2 below, z

k;i

2 �

k

su
h that

kz

k;i

� y

k

k � Æ

k;i

and L(z

k;i

; �

k

) < L(y

k

; �

k

):

Step 5. Trial multipliers.

Compute �

k;i

trial

2 IR

m

su
h that j�

k;i

trial

j �M .

Step 6. Predi
ted redu
tion.

De�ne, for all � 2 [0; 1℄,

Pred

k;i

(�) = �[L(x

k

; �

k

)�L(z

k;i

; �

k

)� hC(y

k

); �

k;i

trial

� �

k

i℄ + (1� �)[jC(x

k

)j � jC(y

k

)j℄ (9)

Compute �

k;i

, the maximum of the elements � 2 [0; �

k;i�1

℄ that verify

Pred

k;i

(�) �

1

2

[jC(x

k

)j � jC(y

k

)j℄: (10)

De�ne

Pred

k;i

= Pred

k;i

(�

k;i

):

Step 7. Compare a
tual and predi
ted redu
tion.

Compute

Ared

k;i

= �

k;i

[L(x

k

; �

k

)� L(z

k;i

; �

k;i

trial

)℄ + (1� �

k;i

)[jC(x

k

)j � jC(z

k;i

)j℄

If

Ared

k;i

� 0:1 Pred

k;i

de�ne

x

k+1

= z

k;i

; �

k+1

= �

k;i

trial

; �

k

= �

k;i

; Æ

k

= Æ

k;i

; ia

(k) = i;

Ared

k

= Ared

k;i

; Pred

k

= Pred

k;i

and terminate iteration k.

Else, 
hoose Æ

k;i+1

2 [0:1Æ

k;i

; 0:9Æ

k;i

℄, set i i+ 1 and go to Step 4 .

Algorithm 2.2
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Step 1.

Compute t

k;i

break

= min f1; Æ

k;i

=kd

k

tan

kg.

Step 2.

Set t t

k;i

break

.

Step 3.

If

L(y

k

+ td

k

tan

; �

k

) � L(y

k

; �

k

) + 0:1thrL(y

k

; �

k

); d

k

tan

i; (11)

de�ne z

k;i

2 
 su
h that kz

k;i

� y

k

k � Æ

k;i

and

L(z

k;i

; �

k

) � maxfL(y

k

+ td

k

tan

; �

k

); L(y

k

; �

k

)� �

1

Æ

k;i

; L(y

k

; �

k

� �

2

g: (12)

and terminate. (Observe that the 
hoi
e z

k;i

= y

k

+ td

k

tan

is admissible but, very likely, it is

not the most eÆ
ient 
hoi
e.)

Step 4.

If (11) does not hold, 
hoose t

new

2 [0:1t; 0:9t℄, set t t

new

and go to Step 3.

Lemma 2.1. Algorithm 2.2 is well de�ned.

Proof. Algorithm 2.2 is 
alled only when d

k

tan

6= 0. Sin
e y

k

2 �

k

, we have that

j(y

k

� �rL(y

k

; �

k

))� P

k

(y

k

� �rL(y

k

; �

k

))j � j(y

k

� �rL(y

k

; �

k

))� y

k

j:

Therefore,

jy

k

� P

k

(y

k

� �rL(y

k

; �

k

))j

2

2

+ j�rL(y

k

; �

k

)j

2

2

+ 2�hP

k

(y

k

� �rL(y

k

; �

k

))� y

k

;rL(y

k

; �

k

)i

� j�rL(y

k

; �

k

)j

2

2

:

So,

hd

k

tan

;rL(y

k

; �

k

)i � �

1

2�

jd

k

tan

j

2

: (13)

Therefore, by the de�nition of dire
tional derivative, after a �nite number of redu
tions of t,

(27) is obtained. 2

3 Assumptions on the Problem

The assumptions below represent minimal suÆ
ient 
onditions whi
h will allow us to prove


onvergen
e. The \simple set" 
 will be assumed to be bounded, be
ause this is the simplest

assumption on the problem that guarantees boundedness of the generated sequen
e. On the

other hand, this is a pra
ti
al assumption sin
e any optimization problem 
an be 
ompa
ti�ed

using arti�
ial bounds on the variables, and our algorithm is able to deal with bounds. The
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other two assumptions are Lips
hitz 
onditions on the derivatives of the obje
tive fun
tion

and the 
onstraints. So, se
ond derivatives are not assumed to exist at all.

A1. 
 is 
onvex and 
ompa
t.

A2. There exists L

1

> 0 su
h that, for all x; y 2 
,

jC

0

(x)�C

0

(y)j � L

1

jx� yj (14)

A3. There exists L

2

> 0 su
h that, for all x; y 2 
,

jrf(x)�rf(y)j � L

2

jx� yj: (15)

Without loss of generality, we will assume that (14) and (15) hold for the two norms used

in this paper.

Lemma 3.1. There exist L

3

; L

4

> 0 su
h that, whenever j�j �M , x; y 2 
, we have that

jC(y)� C(x)� C

0

(x)(y � x)j �

L

1

2

jy � xj

2

; (16)

jf(y)� f(x)� hrf(x); y � xij �

L

2

2

jy � xj

2

; (17)

jrL(y; �)�rL(x; �)j � L

3

jy � xj; (18)

jL(y; �) � L(x; �)� hrL(x; �); y � xij �

L

3

2

jy � xj

2

: (19)

Moreover, de�ning, for all z 2 IR

n

,

'(z) =

1

2

jC(z)j

2

; (20)

we have:

j'(y)� '(x) � hr'(x); (y � x)ij �

L

4

2

jy � xj

2

: (21)

Proof. It follows from (14), (15), the 
ompa
tness of 
, the 
ontinuity of C and the bound-

edness of �. 2

Lemma 3.2. If z 2 �

k

, then

jC(z)j � jC(y

k

)j+

L

1

2

jy

k

� zj

2

: (22)

Proof. The result follows from (16) and the de�nition of �

k

. 2

Lemma 3.3. There exist 


2

; 


3

> 0 (independent of k) su
h that, if z

k;i

is 
omputed by

Algorithm 2.2, we have that

L(z

k;i

; �

k

) � L(y

k

; �

k

)�minf�

2

; 


2

jd

k

tan

j

2

; �

1

Æ

k;i

; 


3

jd

k

tan

jÆ

k;i

g: (23)

Proof. Inequality (23) follows from (12) and the assumptions as in the proof of Theorem 3.2

of [2℄, repla
ing f(:) by L(:; �

k

). 2
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4 Convergen
e to Feasible Points

Theorem 4.1 Algorithm 2.1 is well de�ned.

Proof. Dire
t 
al
ulation leads to

Ared

k;i

� 0:1 Pred

k;i

= 0:9 Pred

k;i

+ (1� �

k;i

)[jC(y

k

)j � jC(z

k;i

)j℄ + 0:1�

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

i: (24)

Therefore, by (10),

Ared

k;i

� 0:1 Pred

k;i

� 0:45[jC(x

k

)j� jC(y

k

)j℄+(1��

k;i

)[jC(y

k

)j� jC(z

k;i

)j℄�j0:1�

k;i

hC(y

k

)�C(z

k;i

); �

k;i

trial

��

k

ij:

Then, by (5),

Ared

k;i

� 0:1 Pred

k;i

� 0:45(1 � r)jC(x

k

)j � jjC(y

k

)j � jC(z

k;i

)jj � j0:1�

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

ij: (25)

If C(x

k

) 6= 0, the �rst term of the right-hand side of (25) is positive and, by 
ontinuity of

C, the se
ond and third terms tend to zero as Æ

k;i

! 0. Therefore, there exists a positive

Æ

k;i

su
h that Ared

k;i

� 0:1 Pred

k;i

� 0. This means that the algorithm is well de�ned if

C(x

k

) 6= 0.

Let us now analyze the 
ase in whi
h x

k

is feasible. Sin
e the algorithm does not terminate

at iteration k, we have that d

k

tan

6= 0. So, by (6), y

k

= x

k

and C(y

k

) = C(x

k

) = 0. Therefore,


ondition (10) redu
es to

L(y

k

; �

k

)� L(z

k;i

; �

k

) � 0: (26)

By (23), (26) holds independently of �, so �

k;i

= �

k;�1

for all i.

Therefore, by (9) and (23),

Pred

k;i

= �

k;�1

[L(y

k

; �

k

)� L(z

k;i

; �

k

)℄ � �

k;�1

minf�

2

; 


2

jd

k

tan

j

2

; �

1

Æ

k;i

; 


3

jd

k

tan

jÆ

k;i

g:

So, by (24),

Ared

k;i

� 0:1 Pred

k;i

� 0:9�

k;�1

minf�

2

; 


2

jd

k

tan

j

2

; �

1

Æ

k;i

; 


3

jd

k

tan

jÆ

k;i

g�jjC(y

k

)j�jC(z

k;i

)jj�0:1jhC(y

k

)�C(z

k;i

); �

k;i

trial

��

k

ij:

Thus,

Ared

k;i

� 0:1 Pred

k;i

Æ

k;i

� 0:9�

k;�1

minf

�

2

Æ

k;i

; 


2

jd

k

tan

j

2

Æ

k;i

; �

1

; 


3

jd

k

tan

jg�

jjC(y

k

)j � jC(z

k;i

)jj

Æ

k;i

�0:1

jC(y

k

)� C(z

k;i

)jj�

k;i

trial

� �

k

j

Æ

k;i

:

The �rst term of the right-hand side of the previous inequality is bounded away from zero

whereas, by (22), the se
ond and third terms tend to zero. Therefore, Ared

k;i

�0:1 Pred

k;i

�

0 if Æ

k;i

is small enough. 2
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Lemma 4.1 lim

k!1

Ared

k

= 0.

Proof. It follows as in the proof of Theorem 3.4 of [2℄, repla
ing f(x

k

) by L(x

k

; �

k

) and

jC

+

(x

k

)j by jC(x

k

)j. 2

Theorem 4.2. lim

k!1

jC(x

k

)j = 0.

Proof. This proof is similar to the proof of Theorem 3.5 of [2℄, repla
ing jC

+

(x

k

)j by jC(x

k

)j.

2

5 Convergen
e to Optimality

Up to now, we proved that, if Phase 1 
an always be at every iteration, then the main

algorithm is well de�ned and C(x

k

) ! 0. This implies that every a

umulation point is

feasible. So, by the 
ompa
tness of 
, there exists a feasible limit point and any other limit

point is feasible too. Optimality is asso
iated to the tangent Cau
hy dire
tion d

k

tan

. In this

se
tion we prove that, for a suitable subsequen
e, the norm of this dire
tion tends to zero.

This result is independent of 
onstraint quali�
ations. At the end of the se
tion, we prove

that, under a regularity 
ondition, there exists a point that satis�es the KKT �rst-order

ne
essary 
onditions for optimality.

We are going to assume (in Hypothesis C below) that no subsequen
e of d

k

tan

tends to

zero. Using, essentially, the arguments of [2℄, we will see that this assumption leads to a


ontradi
tion.

Hypothesis C. There exist " > 0 and k

0

2 f0; 1; 2; : : :g su
h that jd

k

tan

j � " for all k � k

0

.

Lemma 5.1. Suppose that Hypothesis C holds. Then, there exist 


4

; 


5

> 0 su
h that

L(y

k

; �

k

)� L(z

k;i

; �

k

) � minf


4

; 


5

Æ

k;i

g for all k � k

0

, i = 0; 1; : : : ; ia

(k).

Proof. It follows trivially from Lemma 3.3 and Hypothesis C. 2

Lemma 5.2. Suppose that Hypothesis C holds. Then, there exist �; "

1

> 0 su
h that when-

ever k � k

0

and jC(x

k

)j � minf"

1

; �Æ

k;i

g we have that �

k;i

= �

k;i�1

.

Proof. By (5), (6), (9), Lemma 5.1, the 
ompa
tness of 
, the 
ontinuity of C and f and

the boundedness of �

k

, there exist 
; 


0

; 


00

> 0 su
h that

Pred

k;i

(1)�

1

2

[jC(x

k

)j � jC(y

k

)j℄

� [L(x

k

; �

k

)� L(z

k;i

; �

k

)� hC(y

k

); �

k;i

trial

� �

k

i �

1

2

jC(x

k

)j �

� [L(y

k

; �

k

)� L(z

k;i

; �

k

)℄� jL(x

k

; �

k

)� L(y

k

; �

k

)j � 


00

jC(x

k

)j �

1

2

jC(x

k

)j
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� minf


4

; 


5

Æ

k;i

g � 


0

jy

k

� x

k

j � (


00

+

1

2

)jC(x

k

)j

� minf


4

; 


5

Æ

k;i

g � 


0

�jC(x

k

)j � (


00

+

1

2

)jC(x

k

)j

= minf


4

; 


5

Æ

k;i

g � 
jC(x

k

)j;

with 
 = 


0

� + 


00

+

1

2

. Therefore,

Pred

k;i

(1)�

1

2

[jC(x

k

)j � jC(y

k

)j℄




� minf




4




;




5




Æ

k;i

g � jC(x

k

)j:

So, if "

1

= 


4

=
, � = 


5

=
 and jC(x

k

)j � minf"

1

; �Æ

k;i

g, we have that Pred

k;i

(1)�

1

2

[jC(x

k

)j�

jC(y

k

)j℄ � 0. This means that inequality (10) holds for � = 1. Sin
e it obviously holds for

� = 0, it holds for all � 2 [0; 1℄. This implies that �

k;i

= �

k;i�1

, as we wanted to prove. 2

Lemma 5.3. Suppose that Hypothesis C holds. Then, there exists

�

� > 0 su
h that �

k

�

�

�

for all k 2 f0; 1; 2; : : :g.

Proof. Observe that

Ared

k;i

� Pred

k;i

= �

k;i

hC(y

k

)� C(z

k;i

); �

k;i

trial

� �

k

i+ (1� �

k;i

)[jC(y

k

)j � jC(z

k;i

)j℄:

Therefore, by (14) and (22), there exists 
 > 0 su
h that

Ared

k;i

� Pred

k;i

� 
Æ

2

k;i

for all k 2 f0; 1; 2; : : :g, i = 0; 1; : : : ; ia

(k). The proof of the lemma follows as in Lemma 4.3

of [2℄, repla
ing 


1

by 
 and C

+

(:) by C(:). 2

Theorem 5.1. Hypothesis C is false.

Proof. This proof is quite similar to the one of Theorem 4.4 of [2℄, with (obvious) slight

modi�
ations. 2

Theorem 5.2. If Assumptions A1, A2 and A3 are satis�ed and fx

k

g is a sequen
e generated

by Algorithm 2.1, then

1. jC(x

k

)j ! 0.

2. Every limit point of fx

k

g is feasible.

3. If x

�

is a limit point of fx

k

g and lim

k2K

1

x

k

= x

�

, then lim

k2K

1

y

k

= y

�

.

4. There exists an in�nite set K

2

� f0; 1; 2; : : :g su
h that lim

k2K

2

d

k

tan

= 0.
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5. There exists an in�nite set K

3

� f0; 1; 2; : : :g and x

�

2 
 su
h that

lim

k2K

3

x

k

= lim

k2K

3

y

k

= x

�

; C(x

�

) = 0 and lim

k2K

3

d

k

tan

= 0:

Moreover, if x

�

is a regular point, it satis�es the Karush-Kuhn-Tu
ker optimality 
on-

ditions of (1).

Proof. The �rst two items follow from Theorem 4.2 and the boundedness of 
. The third is

a 
onsequen
e of (6) and, sin
e we have proved that Hypothesis C is false, the �fth item also

holds. For proving the �fth item it is enough to take an appropriate 
onvergent subsequen
e

of fx

k

g

k2K

2

. Finally, the last item follows from Proposition 2 of [15℄. 2

6 Algorithm for the Feasibility Phase

An essential feature of the Inexa
t-Restoration algorithm is that one is free to 
hoose dif-

ferent methods both for the Feasibility and for the Optimality Phase. However, it will be

useful to show that, under suitable assumptions, a point that satis�es the Feasibility Phase

requirements exists and 
an be 
omputed using an implementable pro
edure.

Let us 
all

F = fy 2 
 j C(x) = 0g

and suppose that 
 is an n-dimensional box:


 = fx 2 IR

n

j ` � x � ug;

where ` 2 IR

n

; u 2 IR

n

; ` < u.

In this se
tion we use the following Assumption.

A4. All the feasible points are regular. (Therefore, for all y 2 F there exist j

1

; : : : ; j

m

2

f1; : : : ; ng su
h that `

j

k

< y

j

k

< u

j

k

, k = 1; : : : ;m, and the 
olumns j

1

; : : : ; j

m

of C

0

(y) are

linearly independent.)

For all x 2 
 we de�ne

T (x) = fy 2 
 j C

0

(x)(y � x) + C(x) = 0g:

If T (x) 6= ; we de�ne �(x) = argmin fjy � xj j y 2 T (x)g:

We denote B(y; ") = fz 2 
 j jz � yj < "g.

In the following Lemma, we prove that, under Assumption A4, the 
hoi
e y = �(x) sat-

is�es the 
onditions (5) and (6) required in Phase 1 of Algorithm 2.1. This 
hoi
e 
ould be


alled \Newtonian" be
ause it 
omes from linearization of the 
onstraints, exa
t ful�llment

of linearized equations and minimal variation. A

ordingly, Lemma 6.1 remembers the basi
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lo
al 
onvergen
e results of Newton's method.

Lemma 6.1. Let r 2 (0; 1). There exist " > 0; � > 0 su
h that, if jC(x)j � " we have that

T (x) 6= ;,

jC(�(x))j � rjC(x)j

and

j�(x)� xj � �jC(x)j:

Proof. Let y 2 F . Sin
e y is regular, there exists fj

1

; : : : ; j

m

g � f1; : : : ; ng su
h that the

m � m matrix formed by the 
olumns j

1

; : : : ; j

m

of C

0

(y) is nonsingular. For all z 2 
,

we 
all A

y

(z) the matrix whose 
olumns are the 
olumns j

1

; : : : ; j

m

of C

0

(z). By 
ontinuity

of C

0

and nonsingularity of A

y

, there exists "(y) > 0 su
h that A

y

(z) is nonsingular and

jA

y

(z)

�1

j � 2jA

y

(y)

�1

j whenever z 2 B(y; "(y)). Moreover, if "(y) is small enough and

z 2 B(y; "(y)), the 
olumns of A

y

(z) also 
orrespond to variables j su
h that `

j

< z

j

< u

j

.

Clearly, F is 
ontained in the union of the balls B(y; "(y)) so far de�ned. Sin
e F is 
ompa
t,

there exist y

1

; : : : ; y

p

2 F su
h that

F � B(y

1

; "

1

) [ : : : [ B(y

p

; "

p

);

where "

k

= "(y

k

); k = 1; : : : ; p. Now, for ea
h y 2 F we 
hoose k su
h that y 2 B(y

k

; "

k

)

and we de�ne B(y) = A

y

k

(y). By 
onstru
tion, B(y) is a nonsingular m�m matrix whose


olumns 
orresponds to variables y

j

su
h that `

j

< y

j

< u

j

. Moreover,

jB(y)

�1

j � 
 8 y 2 F ;

where


 = 2 maxfjA

�1

y

1

j; : : : ; jA

�1

y

p

jg:

Now, given y 2 F , assume, without loss of generality, that C

0

(y) = (B(y); N(y)), where

B(y) is de�ned above and N(y) 2 IR

m�(n�m)

. Let Æ(y) > 0 be su
h that for all w 2 B(y; Æ(y)),

we have:

`

j

< w

j

< u

j

; j = 1; : : : ;m;

B(w) is nonsingular and

jB(w)

�1

j � 2
:

For all w 2 B(y; Æ(y)), w = (w

B

; w

N

), we de�ne

v(w) = (w

B

�B(w)

�1

C(w); w

N

):

Clearly,

C

0

(w)(v(w) � w) + C(w) = 0:

Moreover,

jv(w) � wj � 2



0

jC(w)j

where 


0

is a norm-dependent 
onstant.
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Therefore, if jC(w)j is suÆ
iently small (say, jC(w)j � "

1

) we have that v(w) 2 
. This

implies that T (w) is nonempty. Therefore, �(w) is well de�ned. Now, by the de�nition of

�(w),

j�(w)� wj � 2



0

jC(w)j:

Finally, by (16), for an appropriate 
hoi
e of 


00

,

jC(�(w)j � jC(w) + C

0

(w)(�(w) � w)j+

L

1

2

j�(w) � wj

2

� 


00

jC(w)j

2

:

Therefore, jC(�(w))j � rjC(w)j if " � r=


00

. This means that the thesis of the Lemma holds,

de�ning � = 2



0

. 2

Now we give a general and implementable method for Phase 1 of Algorithm 2.1. The idea

is that we try, initially, an arbitrary, perhaps problem-oriented pro
edure, as it was done,

for example in [2℄. If the problem-oriented method fails, we 
ompute �(x) trying to satisfy

the 
onditions (5) and (6). If this fails, we try a gradient-proje
tion s
heme. The theoreti
al

properties of this method will be given in Theorem 6.1.

Algorithm 6.1

Let r

1

2 (0; 1); 0 < 
 < 
 < 1. Assume that x 2 
.

Step 0. If C(x) = 0 set y = x and terminate.

Step 1. Compute y 2 
 in some unspe
i�ed (perhaps problem-oriented) manner. If

jC(y)j � rjC(x)j and ky � xk � �jC(x)j, terminate. Otherwise, dis
ard y and 
ontinue.

Step 2. If T (x) 6= ; and jC(�(x))j � r

1

jC(x)j, de�ne y = �(x) and terminate.

Step 3. Choose 
 2 [
; 
℄,

g = g(x; 
) = P (x� 
r'(x)) � x;

where P (z) denotes the proje
tion of z on 
 and ' is de�ned by (20). If g = 0, stop the exe
u-

tion of the algorithm. In this 
ase x is a stationary point of ' in 
 but it is not a feasible point.

Step 4. Set t 1.

Step 5. If

'(x+ tg) � '(x) + 0:1thg;r'(x)i; (27)

de�ne y = x+ tg and terminate.

Step 6. Choose t

new

2 [0:1t; 0:9t℄. Update t t

new

and go to Step 5.

Clearly, Algorithm 6.1 is well de�ned sin
e g is a des
ent dire
tion for ' and the loop

Step 4{Step 5 ne
essarily terminates. For details, see [19℄. Therefore, this method 
an always

11



be used in pra
ti
al implementations of Algorithm 2.1. When stopping o

urs at Step 3 of

Algorithm 6.1, this probably means that x is a lo
al minimizer of '(x) and nothing 
an be

done. In this 
ase, if we are not prepared to apply global-optimization pro
edures to the

minimization of ', the main algorithm must also stop, by failure of (5)-(6). If stopping at

Step 3 does not o

ur, it is re
ommendable to use the output of Algorithm 6.1 at Step 2

of Algorithm 2.1. We will see now that, under reasonable 
onditions on the problem, this


hoi
e y

k

satis�es (5) and (6) and, thus, ful�lls the assumptions of the global 
onvergen
e the-

orems of Se
tions 4 and 5. Besides Assumption A4, we are going to use Assumption A5 below.

A5. If x is a �rst-order stationary point of

Minimize '(x) s. t. x 2 
;

then C(x) = 0.

Theorem 6.1 Suppose that Assumptions A4 and A5 are satis�ed. Then, there exist r 2 (0; 1)

and � > 0 (independent of x) su
h that, if y is 
omputed by Algorithm 6.1, we have that

jC(y)j � rjC(x)j (28)

and

ky � xk � �jC(x)j:

Proof. The theorem is obviously true if y is 
omputed at Step 0. Let r

1

be as in Algorithm

6.1. By Lemma 6.1, there exist "

1

; �

1

> 0 su
h that, whenever jC(x)j � "

1

, y is 
omputed at

Step 1 and

ky � xk � �

1

jC(x)j: (29)

Therefore, we also have that

jC(y)j � r

1

jC(x)j (30)

in this 
ase.

Now, for all x 2 
, if y is 
omputed by Algorithm 6.1, we have that:

ky � xk � diam(
) =

"

1

diam(
)

"

1

:

So, if jC(x)j � "

1

,

ky � xk �

diam(
)

"

1

jC(x)j: (31)

De�ne

A = fx 2 
 j jC(x)j � "

1

g:

By Assumption A5, jg(x; 
)j > 0 and hg(x; 
);r'(x)i < 0 for all x 2 A. So, sin
e A and

[
; 
℄ are 
ompa
t, there exist 
; 


1

> 0 su
h that

jg(x; 
)j � 


1

and hg(x; 
);r'(x)i � �
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for all x 2 A, 
 2 [
; 
℄. Now, by (21), we have that

'(x+ tg) � '(x) + thg;r'(x)i +

L

4

2

t

2

jgj

2

:

So, for all t � 0; x 2 A,

'(x+ tg) � '(x) + t
+ 


2

t

2

where 


2

= L

4




2

1

=2. This implies that the value of t that satis�es (27) is bounded away from

zero. Therefore, by (27), '(x) � '(y) is bounded away from zero and, so, jC(x)j � jC(y)j is

bounded away from zero. Say, jC(x)j � jC(y)j � 


3

for all x su
h that y is 
omputed at Step

4. Therefore, sin
e jC(x)j � ",

jC(y)j � jC(x)j � 


3

= jC(x)j(1 � 


3

=jC(x)j) � (1� 


3

="

1

)jC(x)j:

The desired result follows from this inequality, (29), (30) and (31). 2

7 Some Numeri
al Insight

In [2℄ an Inexa
t-Restoration algorithm that deals dire
tly with inequality 
onstraints and

uses f(x) as obje
tive fun
tion of Phase 2 was implemented. This algorithm turned out to

be 10 times faster than an Augmented Lagrangian algorithm in problems of around 1000

variables and inequality 
onstraints. In spite of this ex
ellent behavior, we de
ided to 
hange

the obje
tive fun
tion of Phase 2 and, 
onsequently, the merit fun
tion, in order to in
or-

porate estimates of the Lagrange multipliers at ea
h 
urrent point. The positive e�e
t of

using Lagrange multiplier estimates 
omes from the well-known fa
t that, when nonlinear


onstraints are present, the behavior of the fun
tion on the tangent subspa
e does not mimi


its behavior on the feasible region, but the Lagrangian on the tangent subspa
e does. So, if

we do not use good estimates of Lagrange multipliers and the trust region is not very small,

the trial points near the solution tend to be reje
ted. This 
auses severe in
rease of work per

iteration at the last stages of 
al
ulations.

For example, suppose that we want to minimize �x

2

subje
t to x

2

1

+ x

2

2

� 1 = 0 and that

x

k

is a feasible point slightly on the left of the solution (0; 1). (So, x

k

= y

k

.) If we minimize

�x

2

on the tangent subspa
e (Phase 2) we obtain a point on the tangent line, on the right

of (0; 1) and on the border of the trust region, independently of the trust-region size. At this

trial point, optimality is only marginally improved but the point is mu
h less feasible than

x

k

. Therefore the trial point will be reje
ted, unless the trust region is very small. On the

other hand, if (at Phase 2) we minimize a Lagrangian with good estimates of the multipliers,

the auxiliary (Lagrangian) obje
tive fun
tion would be 
onvex on the tangent line, the trial

point would be 
lose to x

k

and it would be a

epted independently of the trust-region radius.

The penalty parameter � is de
reased when the feasibility progress from x

k

to y

k

largely

ex
eeds the optimality progress (whi
h, in fa
t, 
ould be even \negative") between x

k

and

z

k;i

. Sin
e large feasibility improvements are likely to o

ur at the �rst iterations, an im-

portant de
rease of � 
ould be expe
ted at these stages. For this reason it is important to

use a nonmonotone strategy, as the one employed in this paper. In pra
ti
e, it is even re
-

ommendable to restart the algorithm after (say) the �rst 10 iterations in su
h a way that
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a premature de
rease of the penalty parameter is 
ompletely forgotten. We generally use

�

0

= 0:8 in experiments and we observed that the penalty parameter de
reases in less than

10 % of the iterations.

It is interesting to observe the behavior of inexa
t-restoration algorithms in problems in

whi
h the solution is non-regular and the Karush-Kuhn-Tu
ker 
onditions are not ful�lled.

We have studied some a
ademi
 problems of this type, mostly with the aim of dete
ting

possible extensions of the theory. With that purpose, problems were solved using Algorithm

2.1, inhibiting the requirement (6) whi
h, in fa
t, tends to be violated in those 
ases, at least

when the iterate is 
lose to the (non-regular) solution. Convergen
e to the solution took

pla
e in all the (a
ademi
 and small-dimensional) 
ases studied. In some 
ases (for example,

minimizing 3x

1

+ x

2

subje
t to x

2

1

+ x

2

2

= 0), in spite of the violation of (6), the property

d

k

tan

! 0 was observed. In other 
ases (for example, minimizing 3x

1

+ x

2

subje
t to x

2

� 0

and x

2

� x

3

1

) the iterates 
onverged to the solution along a traje
tory where (6) was always

violated and d

k

tan

did not tend to zero.

We also studied some problems where the 
onstraints are not smooth at the solution.

(For example, minimize 3x

1

+ x

2

subje
t to x

1

+ x

2

�

q

x

2

1

+ x

2

2

= 0, where the 
onstraint is

the 
elebrated Fis
her-Burmeister fun
tion, largely used in the solution of 
omplementarity

and variational inequality problems.) The set of points for whi
h d

k

tan

= 0 form a 
urve in

IR

2

that passes through the origin, whi
h is the solution. The Inexa
t-Restoration algorithm


onverges to the solution in this 
ase following asymptoti
ally the \d

k

tan

= 0" 
urve. This

suggests that 
onvergen
e results 
ould be strengthened.

8 Final Remarks

Some features of the Inexa
t-Restoration framework are reasonably 
onsolidated. Among

them, we 
an 
ite:

1. Freedom for 
hoosing di�erent algorithms in both phases of the method, so that problem


hara
teristi
s 
an be exploited and large problems 
an be solved using appropriate sub-

algorithms.

2. Loose toleran
es for restoration dis
ourage the danger of \over-restoring", a pro
edure

that 
ould demand a large amount of work in feasible methods and that, potentially,

leads to short steps far from the solution.

3. Trust regions 
entered in the intermediate point adequately re
e
t the \preferen
e for

feasibility" of IR methods.

4. The use of the Lagrangian in the optimality phase favors pra
ti
al fast 
onvergen
e

near the solution.

In our opinion, the above 
hara
teristi
s should be preserved in future IR implementations.

It is not so 
lear for us whi
h is the best merit fun
tion for IR methods. The one introdu
ed

in this paper seems to deal well with the feasibility and the optimality requirements but it
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is 
ertainly ne
essary to pay attention to other alternatives or, even to the possibility of not

using merit fun
tions at all, as proposed, for example, in [20, 21, 22℄.

The philosophy of Inexa
t Restoration en
ourages 
ase-oriented appli
ations. Presently

we are beginning to work in IR methods for Bilevel Programming, be
ause we think that, in

this important family of problems, the strategy of using opportunisti
 methods in the lower

level (Feasibility Phase) 
ould be very useful. A related family of problems for whi
h IR


ould be interesting is MPEC (Mathemati
al Programming with Equilibrium Constraints)

whi
h, of 
ourse, it is 
losely related bo Bilevel Programming. The dis
retization of 
ontrol

problems also o�ers an interesting �eld of IR appli
ations be
ause, in this 
ase, the stru
ture

of the state equations suggests ad ho
 restoration methods.

In the previous se
tion we suggested that there are interesting theoreti
al problems asso-


iated to 
onvergen
e. Roughly speaking, the question is \what happens when we do not have

regularity at the solution?" We are also interested in relaxing the di�erentiability assump-

tions. Both questions are related to the possibility of applying IR to MPEC. We have already

seen that 
ondition (6), although ne
essary for the 
onvergen
e theory presented here, 
an

be relaxed in some 
ases without deterioration of pra
ti
al 
onvergen
e. Sometimes d

k

tan

! 0

holds and other times 
onvergen
e to the solution o

urs, whereas regularity and (6) do not

hold and d

k

tan

does not tend to zero. A lot of (probably nontrivial) theory is ne
essary to

understand the relation between pra
ti
e and 
onvergen
e theory in those 
ases.

Referen
es

[1℄ J. M. Mart

�

�nez, Two-Phase Model Algorithm with Global Convergen
e for Nonlinear

Programming, Journal of Optimization Theory and Appli
ations 96, pp. 397-436 (1998).

[2℄ J. M. Mart

�

�nez and E. A. Pilotta, Inexa
t-Restoration Algorithm for Constrained

Optimization, to appear in Journal of Optimization Theory and Appli
ations.

[3℄ J. Abadie and J. Carpentier, Generalization of the Wolfe Redu
ed-Gradient Method

to the Case of Nonlinear Constraints, in Optimization, Edited by R. Flet
her, A
ademi


Press, New York, pp. 37-47, 1968.

[4℄ L. S. Lasdon, Redu
ed Gradient Methods, in Nonlinear Optimization 1981, edited by

M. J. D. Powell, A
ademi
 Press, New York, pp. 235-242, 1982.

[5℄ A. Miele, H. Y. Huang and J. C. Heideman, Sequential Gradient-Restoration

Algorithm for the Minimization of Constrained Fun
tions, Ordinary and Conjugate

Gradient Version, Journal of Optimization Theory and Appli
ations, Vol. 4, pp. 213-

246, 1969.

[6℄ A. Miele, A. V. Levy and E. E. Cragg, Modi�
ations and Extensions of the

Conjugate-Gradient Restoration Algorithm for Mathemati
al Programming Problems,

Journal of Optimization Theory and Appli
ations, Vol. 7, pp. 450-472, 1971.

15



[7℄ A. Miele, E. M. Sims and V. K. Basapur, Sequential Gradient-Restoration Al-

gorithm for Mathemati
al Programming Problems with Inequality Constraints, Part 1,

Theory, Ri
e University, Aero-Astronauti
s Report No. 168, 1983.

[8℄ M. Rom and M. Avriel, Properties of the Sequential Gradient-Restoration Algorithm

(SGRA), Part 1: Introdu
tion and Comparison with Related Methods, Journal of Op-

timization Theory and Appli
ations, Vol. 62, pp. 77-98, 1989.

[9℄ M. Rom and M. Avriel, Properties of the Sequential Gradient-Restoration Algorithm

(SGRA), Part 2: Convergen
e Analysis, Journal of Optimization Theory and Appli
a-

tions, Vol. 62, pp. 99-126, 1989.

[10℄ J. B. Rosen, The Gradient Proje
tion Method for Nonlinear Programming, Part 1,

Linear Constraints, SIAM Journal on Applied Mathemati
s, Vol. 8, pp. 181-217, 1960.

[11℄ J. B. Rosen, The Gradient Proje
tion Method for Nonlinear Programming, Part 2,

Nonlinear Constraints, SIAM Journal on Applied Mathemati
s, Vol. 9, pp. 514-532,

1961.

[12℄ J. B. Rosen, Two-Phase Algorithm for Nonlinear Constraint Problems, Nonlinear

Programming 3, Edited by O. L. Mangasarian, R. R. Meyer and S. M. Robinson,

A
ademi
 Press, London and New York, pp. 97-124, 1978.

[13℄ R. H. Byrd, Robust Trust Region Methods for Constrained Optimization, Contributed

presentation, SIAM Conferen
e on Optimization, Houston, Texas, 1987.

[14℄ J. E. Dennis, M. El-Alem and M. C. Ma
iel, A Global Convergen
e Theory for

General Trust-Region-Based Algorithms for Equality Constrained Optimization, SIAM

Journal on Optimization 7 (1997), 177-207.

[15℄ F. M. Gomes, M. C. Ma
iel and J. M. Mart

�

�nez, Nonlinear Programming Al-

gorithms Using Trust Regions and Augmented Lagrangians with Nonmonotone Penalty

Parameters, Mathemati
al Programming 84 (1999), 161-200.

[16℄ E. Omojokun, Trust-Region Strategies for Optimization with Nonlinear Equality and

Inequality Constraints, PhD Thesis, Department of Computer S
ien
e, University of

Colorado, Boulder, Colorado, 1989.

[17℄ M. J. D. Powell and Y. Yuan, A Trust-Region Algorithm for Equality Constrained

Optimization, Mathemati
al Programming, Vol. 49, pp. 190-211, 1991.

[18℄ J. M. Mart

�

�nez, A Trust-Region SLCP Model Algorithm for Nonlinear Programming.

In Foundations of Computational Mathemati
s. Edited by F. Cu
ker and M. Shub.

Springer-Verlag, pp. 246-255 (1997).

[19℄ E. G. Birgin, J. M. Mart

�

�nez and M. Raydan, Nonmonotone Spe
tral Proje
ted

Gradient Methods on Convex Sets, to appear in SIAM Journal on Optimization.

16



[20℄ Biels
howsky R. H., Nonlinear Programming Algorithms with Dynami
 De�nition

of Near-Feasibility: Theory and Implementations, Do
toral Dissertation, Institute of

Mathemati
s, University of Campinas, Campinas, SP, Brazil, 1996.

[21℄ R. H. Biels
howsky and F. M. Gomes, Dynami
al Control of Infeasibility in Con-

strained Optimization, Contributed Presentation in Optimization 98, Coimbra, Portu-

gal, 1998.

[22℄ R. Flet
her and S. Leyffer, Nonlinear Programming without Penalty Fun
tion,

Numeri
al Analysis Report NA/171, University of Dundee, 1997.

17


