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1 Introduction

In this paper, we focus on mathematical aspects of a simpli�ed model of the liquid

crystal proposed by Lin [14]. This model inclues as a particular case the classical

Navier-Stokes equations, wich has been widely studied (see for instance, Ladyzhen-

skaya [10], Lions [11], Temam [20] and the referencees there in).

We study convergence rates in several norms of spectral semi-Galerkin approx-

imations. Although this is not a too interesting case from the point view of ap-

plications, we hope that the techniques that we introduce may be adapted in the

important case where full discretization is used. This question is presently under

investigation. We point out that the exact knowledge of the eigenfunctions of the

Stokes operator is possible in certain domains see [18], [19].

Rautmann [15] gave a systematic development of error estimates for spectral

Galerkin approximations of the classical Navier-Stokes equations(see also [8], [16]).

Boldrini and Rojas-Medar gave analogous error estimates for the model of nonho-

mogeneous viscous incompressible uids [2], [3].

The paper is organized as follows: in Section 2 we state some preliminaries

results that will be useful in the rest of the paper; we describe the approximation

method and state the results of existence and uniqueness as also some estimates

apriori that form the theoretical basis for the problem. In Section 3 we derive a

L

2

-error estimate for the velocity and a H

1

-error estimate for the optical director.

In Section 4 we derive H

1

-error estimates for velocity and H

2

-error estimates for

the optical director and Section 5 is devoted to the H

3

- error estimates for optical

director:

Finally, we would like to say that, as it usual in this context, to simplify the

notation we will denote by C;M generic �nite positive constants depending only on


 and the other �xed parameters of the problem (like the initial data) that may

have di�erent values in di�erent expressions. Sometimes, to emphasize the fact that

the constants are di�erent, we use C

1

; C

2

; : : : ;M

1

;M

2

; : : : ; and so on.

2 Preliminaries

The equations for the ow of liquid crystals are as follows. Being 
 � IR

n

; n = 2 or

3, a C

1;1

-regular bounded domain, T > 0, these equations are (see [13])
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@v

@t

+ (v � r)v � �4v +rp = ��r � (rd}rd) in 
;

rv = 0 in 
;

@d

@t

+ (v � r)d = (4d� f(d)) in 
; (1)

v = 0 on @
�]0; T [;

d(x; t) = d

0

(x) on @
�]0; T [;

v(x; 0) = v

0

(x) in 
;

d(x; 0) = d

0

(x) in 
:

Here [0; T [ is the interval of time under consideration; 
 is the container where the

uid is; v(x; t) 2 IR

n

denotes the velocity of the uid at point x 2 
 and time

t 2 [0; T [;d(x; t) 2 IR

n

and p(x; t) 2 IR denote, respectively, the optical director

and the hydrostatic pressure of the uid; v

0

(x) and d

0

(x) are the initial velocity

and optical director respectively; �; �;  are positive constants and f(d) is a vector

valued, smooth, bounded function de�ned for all d 2 IR

n

;the uid adheres to the

wall @
 of the container which is at rest. The expressions r;� and div denote the

gradient, Laplacian and divergence operators, respectively (we also denote

@v

@t

by

v

t

); the i

th

component of v �rv is given by [(v �r)v]

i

=

X

j

v

j

@v

i

@x

j

and [(v �r)d]

i

=

X

j

v

j

@d

i

@x

j

. The unusual term rd}rd denotes the n � n matrix whose (i; j)-th

entry is given by d

x

i

� d

x

j

, for 1 � i; j � n: The �rst equation in (1.1) corresponds

to the balance of linear momentum; the third equation to the optical director and

the second one states that uid is incompressible. The unknowns in the problem

are v;d and p.

The �srt tentative of mathematical study to this model was given by Lin and Liu

[13], their approach adop being inspired mainly in the pioneer work of Ladyzhenskaya

[10]. But this trial has some gaps as we will show in our work [17]. The method

used in [13] is similar to the one utilized by Kazhikov [9] in another context and was

called "semi-Galerkin method " by Lions [12]. It consists in using the eigenfunctions

of the Stokes operator to approximate the velocity �eld and one in�nite-dimensional

approximation for the optical director. To pro�le some gaps in [13], we follow the

beautiful work of Heywood [6], [7]; moreover, we establishe the regularity of solutions

(see [17]).
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Let 
 � IR

n

; n = 2 or 3, be a bounded domain with smooth boundary � (class

C

1;1

is enough), and we will consider the usual Sobolev spaces

W

m;q

(D) = ff 2 L

q

(D); jj@

�

f jj

L

q

(D)

< +1; j�j � mg

m = 0; 1; 2; : : : ; 1 � q � +1; D = 
 or 
�]0; T [; 0 < T < +1, with their usual

norms. When q = 2, we denote by H

m

(D) = W

m;2

(D) and H

m

0

(D) = closure of

C

1

0

(D) in H

m

(D). If B is a Banach space, we denote by L

q

(0; T ;B) the Banach

space of the B-valued functions de�ned in the interval [0; T ] that are L

q

-integrable

in the sense of Bochner. We shall consider the following spaces of divergence free

functions

C

1

0;�

(
) = fv 2 (C

1

0

(
))

n

= div v = 0 in 
g;

H = closure of C

1

0;�

(
) in (L

2

(
))

n

;

V = closure of C

1

0;�

(
) in (H

1

(
))

n

:

Throughout the paper, P denotes the orthogonal projection from (L

2

(
))

n

into

H and A = �P� with D(A) = V \H

2

(
) is the usual Stokes operator.

We will denote by '

n

(x) and �

n

the eigenfunction and eigenvalue of A. It is

well know that f'

n

g

1

n=1

is an orthogonal, complete, system in the spaces H; V and

H

2

(
)\V , equipped with their usual inner products (v;u); (rv;ru) and (Av; Au)

respectively.

For each n 2 IN , we denote by P

n

the orthogonal projection from L

2

(
) onto

V

n

= spanf'

1

(x); :::; '

n

(x)g . For more details on the Stokes operator see Temam

[20].

We observe that for the regularity of the Stokes operator, it is usually assumed

that 
 is of class C

3

; this being in order to use Cattabriga's results [5]. We use

instead the stronger results of Amrouche and Girault [1] which imply, in particular,

that when Av 2 L

2

(
), then v 2 H

2

(
) and jjvjj

H

2

and jjAvjj are equivalent norms

when 
 is of Class C

1;1

. Here jj � jj denotes the L

2

-norm; also in this paper we will

denote the inner product in L

2

(
) by (�; �).

We can rewrite the problem (2.1), by using the orthogonal projection P , as

follows

@d

@t

+ v � rd = (4d� f(d)) ( a:e: (x; t) 2 
�]0; T [ );

@v

@t

+ �Av = P (�v � rv � �r � (rd}rd)); t > 0 (2)
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v(0) = v

0

(x); d(x; 0) = d

0

(x); x 2 


d(x; t) = d

0

(x); (x; t) 2 @
 � (0; T ):

or, equivalently,

d

t

+ v � rd = (4d� f(d)) for (x; t) 2 
� (0; T );

(v

t

; ') + (v � rv; ') + �(rv;r') = ��(r � (rd}rd);')

for 0 < t < T; 8' 2 V; (3)

v(0) = v

0

(x);d(x; 0) = d

0

(x); x 2 
;

d(x; t) = d

0

(x); (x; t) 2 @
 � (0; T ):

Concerning the existence of solutions for equations (2.1), they can be obtained by

using a semi-Galerkin approximation. That is, we consider a Galerkin approximation

v

n

(x; t) =

n

X

i=1

C

in

(t)'

i

(x)

for the velocity and an in�nite dimensional approximation d

n

(x; t) for the optical

director satisfying the following equations:

d

n

t

+ v

n

� rd

n

= (4d

n

� f(d

n

)) for (x; t) 2 
� (0; T );

(v

n

t

; ') + (v

n

� rv

n

; ') + �(rv

n

;r') = ��(r � (rd

n

}rd

n

);')

for 0 < t < T; 8' 2 V

n

; (4)

v

n

(0) = P

n

v

0

(x); d

n

(x; 0) = d

0

(x); x 2 
;

d

n

(x; t) = d

0

(x); (x; t) 2 @
 � (0; T ):

It can be proved that (v

n

;d

n

) converges in the appropriate sense to a solution

(v;d) of (2.1). As we said in the Introduction, we are interested in deriving error

bounds, that is, estimates for jjv(t)� v

n

(t)jj; jjd(t)� d

n

(t)jj in terms of powers of

1

�

n+1

: These errors estimates will be derived in the following Section and we will

based on the next result.

We assume the data for problem (2.1) satisfy

(A1) d

0

2 H

3

(
)
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(A2) v

0

2 D(A)

(A3) f = rF (d); for some smooth, bounded function F : IR

n

! IR:

Under these hypotheses, we proved the following result [17]:

Theorem 1 We assume (A1); (A2) and (A3). The dimension of 
 may be 2 or

3. There exists to 0 < T

0

� T such that the problem (2.2) (or (2.3)) has a unique

strong solution that satis�es

v 2 L

1

([0; T

0

]; D(A));

v

t

2 L

1

([0; T

0

];H) \ L

2

(0; T

0

;V );

d 2 L

1

([0; T

0

];H

3

(
));

d

t

2 L

1

([0; T

0

];H

1

(
)) \ L

2

([0; T

0

]; H

2

(
));

d

tt

2 L

2

([0; T

0

];L

2

(
)):

Moreover, there holds the following estimates uniformly in n for the approxima-

tions:

kv

n

t

(t)k

2

+

Z

t

0

krv

n

t

(� )k

2

d� � 	

1

(t);

sup

t

kAv

n

(t)k

2

� 	

2

(t);

krd

n

t

(t)k

2

+

Z

t

0

kd

n

tt

(� )k

2

d� � 	

3

(t);

sup

t

kd

n

(� )k

2

H

3

� 	

4

(t);

Z

t

0

k4d

n

t

(� )k

2

d� � 	

5

(t);

the functions on the right sides depend on their argument t; T

0

and kv

0

k

H

2

(
)

,

kd

0

k

H

3

(
)

: On the interval under consideration these functions are continuosly dif-

ferentiable with respect to t:

Remark 1 Actually it is possible to prove that the strong solution of Theorem 2.1

is global either if n = 2 or if we take small enough initial data when n = 3 (Rojas-

Medar and Ferreira [17]).

Lemma 2 Let v 2 V: Then the following estimate holds (see [7])

kvk

L

3

� Ckvk

1=2

krvk

1=2

:

6



Moreover, if u 2 V \H

2

(
) (see [4])

kvk

L

1

� Ckrvk

1=2

kAvk

1=2

:

The following result can be found in Rautmann [15].

Lemma 3 If v 2 V , then

kv � P

n

vk

2

�

1

�

n+1

krvk

2

:

Also, if v 2 V \H

2

(
) , we have

kv� P

n

vk

2

�

1

�

2

n+1

kAvk

2

;

krv�rP

n

vk

2

�

1

�

n+1

kAvk

2

:

3 L

2

-error estimates for velocity and H

1

-error es-

timates for optical director

From now on, as a matter of notation, we will denote T

0

simply by T . The sizes of

the viscosity constants �; ; � do not play important roles in the following and we

shall therefore assume, for simplicity, that � =  = � = 1:

In this section we give the L

2

-error estimate for the velocity and H

1

-error esti-

mate for density.

Let (v;d) be the strong solution of problem (2.2) (or (2.3)) given by Theorem

2.1 and (v

n

;d

n

) the approximate solution of problem (2.4).

We de�ne

w

n

= P

n

v � v

n

; �

n

= d� d

n

; �

n

= v � P

n

v:

With these notations, we observe that v

n

and �

n

satisfy the following equations

(w

n

t

; �) + (rw

n

;r�) = �(w

n

� rv

n

; �)� (�

n

� rv

n

; �)� (v � rw

n

; �)

�(v

n

� r�

n

; �)� (4�

n

rd

n

; �)� (4dr�

n

; �);

7



w

n

(0) = 0 (5)

�

n

t

�4�

n

= �w

n

� rd� �

n

� rd� v

n

� r�

n

� (f(d)� f(d

n

))

�

n

(0) = 0

�

n

(x; t) = 0 for (x; t) 2 
� (0; T )

To obtain our �rst estimate, we will need the following Proposition.

Proposition 4 Under the hypotheses of Theorem 2.1, we have

kw

n

(t)k

2

+ kr�

n

(t)k

2

+

Z

t

0

(krw

n

(s)k

2

+ k4�

n

(s)k

2

)ds �

G

1

(t)

�

2

n+1

; (6)

for any t 2 [0; T ]: The continuous function G

1

of the variable t depends on T

and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. Setting � = w

n

(t) in (3.1), we get

1

2

d

dt

kw

n

k

2

+ krw

n

k

2

= �(w

n

� rv

n

;w

n

) + (�

n

� rv

n

;w

n

)� (v

n

� r�

n

;w

n

)

�(4�

n

rd

n

;w

n

)� (4dr�

n

;w

n

)

By using H�older's inequality and Sobolev imbedding H

2

,! L

1

, H

1

,! L

6

,

H

1

,! L

3

and Lemma 2.2, we obtain the following estimates

j(w

n

� rv

n

;w

n

)j � kw

n

kkrv

n

k

L

6

kw

n

k

L

3

� C

"

kAv

n

k

2

kw

n

k

2

+ "krw

n

k

2

j(�

n

� rv

n

;w

n

)j � k�

n

k

L

2

krv

n

k

L

6

kw

n

k

L

3

� C

"

kAv

n

k

2

k�

n

k

2

+ "krw

n

k

2

;

j(v

n

� r�

n

;w

n

)j = j(v

n

� rw

n

; �

n

)j

� kv

n

k

L

1

krw

n

kk�

n

k

2

� C

"

kAv

n

k

2

k�

n

k

2

+ "krw

n

k

2

;

j(4�

n

rd

n

;w

n

)j � k4�

n

kkrd

n

k

L

6

kw

n

k

L

3

� C

�

krd

n

k

2

L

6

krw

n

kkw

n

k+ �k4�

n

k

2

� C

";�

kd

n

k

4

H

2

kw

n

k

2

+ "krw

n

k

2

+ �k4�

n

k

2

;

8



j(4dr�

n

;w

n

)j � k4dkkr�

n

k

L

6

kw

n

k

L

3

� Ck4dkk4�

n

kkw

n

k

1=2

krw

n

k

1=2

� C

�

k4dk

2

kw

n

kkrw

n

k+ �k4�

n

k

2

� C

";�

kd

n

k

4

H

2

kw

n

k

2

+ "k4w

n

k

2

+ �k4�

n

k

2

:

By using the above estimates, we obtain

1

2

d

dt

kw

n

k

2

+ krw

n

k

2

� (C

"

kAv

n

k

2

+ C

";�

kdk

4

H

2

)kw

n

k

2

+ C

"

kAv

n

k

2

k�

n

k

2

+5"krw

n

k

2

+ 2�k4�

n

k

2

: (7)

Multiplying equation (3.1)

iii

by �4�

n

and integrating over 
, we have

1

2

d

dt

kr�

n

k

2

+ k4�

n

k

2

= (w

n

� rd;4�

n

) + (�

n

� rd;4�

n

) + (v

n

� r�

n

;4�

n

)

�((f(d)� f(d

n

));4�

n

);

since �

n

t

= 0 on @
: Estimating, as usual, we have

j(v

n

� r�

n

;4�

n

)j � kv

n

k

L

1

kr�

n

kk4�

n

k

� C

�

kAv

n

k

2

kr�

n

k

2

+ �k4�

n

k

2

;

j(w

n

� rd;4�

n

)j � kw

n

k

L

3

krdk

L

6

k4�

n

k

� C

�

kw

n

kkrw

n

kkdk

2

H

2

+ �k4�

n

k

2

� C

";�

kdk

4

H

2

kw

n

k

2

+ "krw

n

k

2

+ �k4�

n

k

2

;

j(�

n

� rd;4�

n

)j � k�

n

kkrdk

L

1

k4�

n

k

2

� C

�

kdk

2

H

3

k�

n

k

2

+ �k4�

n

k

2

;

j(f(d)� f(d

n

);4�

n

)j � kf(d)� f(d

n

)kk4�

n

k

� C

�

kf(d)� f(d

n

)k

2

+ �k4�

n

k

2

� C

�

krF (d)�rF (d

n

)k

2

+ �k4�

n

k

2

� C

�

kr�

n

k

2

+ �k4�

n

k

2

:

Thus, we have

9



1

2

d

dt

kr�

n

k

2

+ k4�

n

k

2

� C

";�

kdk

4

H

2

kw

n

k

2

+ C

�

kdk

2

H

3

k�

n

k

2

(8)

+(C

�

+ C

�

kAv

n

k

2

)kr�

n

k

2

+ "krw

n

k

2

+ 3�k4�

n

k

2

:

Adding the inequalities (3.3) and (3.4), taking " > 0 and � > 0 su�ciently small,

after of integrate in t , we get

kw

n

(t)k

2

+ kr�

n

(t)k

2

+

Z

t

0

(krw

n

(s)k

2

+ k4�

n

(s)k

2

)ds

�

Z

t

0

g

1

(s)(kw

n

(s)k

2

+ kr�

n

(s)k

2

)ds+

Z

t

0

g

2

(s)(k�

n

(s)k

2

ds;

where g

1

(s) = C(kd(s)k

4

H

2

+C + kAv

n

(s)k

2

); g

2

(s) = C(kAv

n

(s)k

2

+ kd(s)k

2

H

3

); we

observe that from Theorem 2.1 g

1

, g

2

2 L

1

(0; T ):

By using Gronwall's inequality and recalling the content of Lemma 2.3, we obtain

estimate (3.2) with

G

1

(t) = sup

t

	

2

(t)(	

2

(t) + 	

4

(t))� exp(t(	

2

(t) + 	

4

(t)

2

)):

Theorem 5 Suppose the assumptions of Theorem 2.1 hold. Then, the approxima-

tions v

n

and d

n

satisfy

jjv(t)� v

n

(t)jj

2

�

1

�

2

n+1

G

2

(t); (9)

jjrd(t)�rd

n

(t)jj

2

+

Z

t

0

jj4d(s)�4d

n

(s)jj

2

ds �

1

�

2

n+1

G

1

(t); (10)

for any t 2 [0; T ]. The continuous function G

2

(t) of the variable t depends on T

and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. We have from Lemma 2.3 and Proposition 3.1,

jjv(t)� v

n

(t)jj

2

� jjw

n

(t)jj

2

+ jj�

n

(t)jj

2

� (G

1

(t) + kAvk

2

)

1

�

2

n+1

�

1

�

2

n+1

G

2

(t):

10



The estimate (3.6) is direct from Proposition 3.1.

4 H

1

-error estimates for velocity and H

2

-error es-

timates for optical director

Proposition 6 Under the hypotheses of Theorem 2.1, we have

krw

n

(t)k

2

+

Z

t

0

kAw

n

(� )k

2

d� �

G

3

(t)

�

n+1

; (4.11)

for any t 2 [0; T ]. The continuous function G

3

(t) of the variable t depends on T

and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. Setting � = Aw

n

(t) in (3.1 ), we obtain

1

2

d

dt

krw

n

k

2

+ kAw

n

k

2

= �(w

n

� rv

n

; Aw

n

)� (�

n

� rv

n

; Aw

n

)� (v

n

� rw

n

; Aw

n

)

(4.12)

�(v

n

� rw

n

; Aw

n

)� (4�

n

rd

n

; Aw

n

)� (4dr�

n

; Aw

n

):

Now, we estimate the hand-right side of the above inequality of the following

manner:

j(w

n

� rv

n

; Aw

n

)j � C

"

kAv

n

k

2

krw

n

k

2

+ "kAw

n

k

2

;

j(�

n

� rv

n

; Aw

n

)j � C

"

kAv

n

k

2

kr�

n

k

2

+ "kAw

n

k

2

;

j(v � rw

n

; Aw

n

)j � C

"

kAvk

2

krw

n

k

2

+ "kAw

n

k

2

;

j(v

n

� r�

n

; Aw

n

)j � C

"

kAv

n

k

2

kr�

n

k

2

+ "kAw

n

k

2

;

j(4�

n

rd

n

; Aw

n

)j � C

"

k4�

n

kk�

n

k

H

3

kd

n

k

2

H

2

+ "kAw

n

k

2

;

j(4dr�

n

; Aw

n

)j � C

"

k4�

n

kkr�

n

kkdk

2

H

3

+ "kAw

n

k

2

:

The above estimates together with (4.2) imply the following di�erential inequal-

ity

11



1

2

d

dt

krw

n

k

2

+ kAw

n

k

2

� (CkAvk

2

+ CkAv

n

k

2

)krw

n

k

2

+(CkAvk

2

+ CkAv

n

k

2

)kr�

n

k

2

+Ck4�

n

kk�

n

k

H

3

k4d

n

k

2

+ Ck4�

n

kkr�

n

kkdk

2

H

3

:

Which, upon Integration from 0 to t, yields

jjrw

n

(t)jj

2

+

Z

t

0

jjAw

n

(s)jj

2

ds �

Z

t

0

h

1

(s)krw

n

(s)k

2

ds

+

Z

t

0

h

1

(s)jjr�

n

(s)jj

2

ds (4.13)

+

Z

t

0

Ck4�

n

kk�

n

k

H

3

k4d

n

k

2

ds

+

Z

t

0

Ck4�

n

kkr�

n

kkdk

2

H

3

ds;

where h

1

(s) = CkAvk

2

+ CkAv

n

k

2

: We observe that h

1

2 L

1

(0; T ):

On other hand,

Z

t

0

Ck4�

n

kk�

n

k

H

3

k4d

n

k

2

ds �

G

4

(t)

�

n+1

; (4.14)

where

G

4

(t) = C(G

1

(t))

1=2

(	

4

(t) + 2(	

4

(t))

1=2

)t

1=2

;

and

Z

t

0

Ck4�

n

kkr�

n

kkdk

2

H

3

ds �

G

5

(t)

�

n+1

; (4.15)

where

G

5

(t) = C

Z

t

0

(G

1

(�))

1=2

d�(	

4

(t) + 2(	

4

(t))

1=2

):

By using the Lemma 2.3 and estimates (4.3), (4.4) and (4.5), we get

12



jjrw

n

(t)jj

2

+

Z

t

0

jjAw

n

(s)jj

2

ds �

Z

t

0

h

1

(s)krw

n

(s)k

2

ds

+

1

�

n+1

(	

2

(t))

2

+

G

4

(t)

�

n+1

+

G

5

(t)

�

n+1

;

and Gronwall inequality implies the desired result with

G

3

(t) = (

1

�

n+1

	

2

(t)

2

+

G

4

(t)

�

n+1

+

G

5

(t)

�

n+1

)� exp(2C	

2

(t)t):

Theorem 7 Under the hypotheses of Theorem 2.1, we have

jjr(v � v

n

)(t)jj

2

�

G

6

(t)

�

n+1

: (4.16)

for any t 2 [0; T ]. The continuous function G

6

(t) of the variable t depends on T

and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. We have from Lemma 2.3 and Proposition 4.1,

jjrv(t)�rv

n

(t)jj

2

� jjrw

n

(t)jj

2

+ kr�

n

(t)k

2

�

1

�

n+1

kAu(t)k

2

+

G

3

(t)

�

n+1

:

Thus, we obtain (4.6) with G

6

(t) = G

3

(t) + 	

2

(t):

Corollary 8 Under the hypotheses of the Theorem 2.1, we have

Z

t

0

kv

t

(�)� v

n

t

(� )k

2

d� �

G

7

(t)

�

n+1

; (4.17)

Z

t

0

kAv(�)� Av

n

(�)k

2

d� �

G

8

(t)

�

n+1

: (4.18)

for any t 2 [0; T ]. The continuous functions G

7

(t); G

8

(t) of the variable t depend

on T and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. To prove the estimate (4.7), we observe that

13



Z

t

0

jjv

n

t

(�)� v

n

t

(�)jj

2

d� �

Z

t

0

(jjw

n

t

(�)jj

2

+ k�

n

t

(�)k

2

)d� :

Thus, it is su�cient estimate the integral of the right-hand side in order to

obtain the estimate desired.

By using Lemma 2.3, we have

Z

t

0

jj�

n

t

(�)jj

2

d� �

1

�

n+1

Z

t

0

jjrv

n

t

(�)jj

2

�

	

1

(t)

�

n+1

;

where we used the estimate given in Theorem 2.1.

To estimate the other integral , we observe that equation (3.1)

i

implies

Z

t

0

jjw

n

t

(� )jj

2

d� � C(

Z

t

0

jjAw

n

(�)jj

2

+ jjw

n

(�) � rv

n

(�)jj

2

+ jj�

n

(� ) � rv

n

(� )jj

2

+jjv(� ) � rw

n

(�)jj

2

+ jjv

n

(�) � r�

n

(�)jj

2

+jj4�

n

(�)rd

n

(� )jj

2

+ jj4d(�)r�

n

(� )jj

2

)d�

� C(

Z

t

0

jjAw

n

(�)jj

2

+ jjrw

n

(�)jj

2

jjAv

n

(� )jj

2

(4.19)

+jjr�

n

(�)jj

2

jjAv

n

(� )jj

2

+ jjAv(�)jj

2

jjrw

n

(�)jj

2

+jjAv

n

(�)jj

2

jjr�

n

(� )jj

2

+ jj4�

n

(� )jj

2

jjd

n

(� )jj

2

H

3

+jjd(� )jj

H

3

jj4�

n

(�)jj

2

)d�

�

G

9

(t)

�

n+1

;

where G

9

(t) = G

3

(t) + 2	

2

(t)

Z

t

0

G

3

(� )d� + 2t(	

2

(t))

2

+ 2	

4

(t)

Z

t

0

G

1

(�)d� :

To prove the estimate (4.8) it is su�cient to comente the di�erence between

equations (2.3)

ii

and (2.4)

ii

and use the estimates already proved.

Theorem 9 Under the hypotheses of Theorem 2.1, we have

14



kd

t

(t)� d

n

t

(t)k

2

+

Z

t

0

jjrd

n

t

(�)�rd

n

t

(�)jj

2

d� �

G

10

(t)

�

n+1

; (4.20)

k4d(t)�4d

n

(t)k

2

d� �

G

11

(t)

�

n+1

; (4.21)

for any t 2 [0; T ]. The continuous functions G

10

(t); G

11

(t) of the variable t depend

on T and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. Di�erentiating equation (3.1)

iii

with respect to t after multiplication by

�

n

t

and integrating the result in 
; we obtain

1

2

d

dt

k�

n

t

k

2

+ kr�

n

t

k

2

= �(w

n

t

� rd;�

n

t

)� (w

n

� rd

t

; �

n

t

)

�(�

n

t

� rd; �

n

t

)� (�

n

� rd

t

; �

n

t

) (4.22)

�(v

n

t

� r�

n

; �

n

t

)� ((f(d)�f(d

n

))

t

; �

n

t

):

Now, we estimate the right-hand side of the above inequality as follows

j(�

t

� rd; �

n

t

)j � C

"

k�

t

k

2

kdk

2

H

2

+ "kr�

n

t

k

2

;

j(� � rd

t

; �

n

t

)j � C

"

kr�k

2

krd

n

t

k

2

+ "kr�

n

t

k

2

;

j(v

n

t

� r�

n

; �

n

t

)j � C

"

krv

n

t

k

2

kr�

n

k

2

+ "kr�

n

t

k

2

;

for � = �

n

or v

n

t

:

The last term in the equality (4.12) is treated of the following manner:

j((f(d)�f(d)

t

; �

n

t

)j � j(

@f(d)

@t

�

n

t

; �

n

t

)j+ j(

@d

n

@t

[

@f(d)

@t

�

@f(d

n

)

@t

]; �

n

t

)

� Ck�

n

t

k

2

+ C

"

kd

n

t

k

2

kr�

n

k

2

+ "k�

n

t

k

2

:

Now, choosing " > 0 su�ciently small, the above estimates imply the following

integral inequality

k�

n

t

k

2

+

Z

t

0

kr�

n

t

k

2

� C

Z

t

0

(kw

n

t

k

2

+ k�

n

t

k

2

+ kr�

n

k

2

+ kr�

n

k

2

kv

n

t

k

2

)ds;

where we used the estimates given in the Theorem 2.1. The above inequality implies

the result (from Lemma 2.3, Proposition 3.1, Theorem 2.1 and (4.9)), with
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G

10

(t) = G

9

(t) + 	

1

(t) + t sup

t

G

1

(t)(1 + 	

1

(t)):

To prove the estimate (4.11), we observe that the equality (3.1)

iii

implies

k4�

n

k

2

� C(krw

n

k

2

kdk

H

2

+ kr�

n

k

2

kdk

2

H

2

+ kAv

n

k

2

kr�

n

k

2

+k�

n

t

k

2

+ k�

n

k

2

):

From the estimates established in the Theorem 2.1, Lemma 2.3, Proposition 3.1

and (4.10) we get the result with

G

11

(t) = G

1

(t) +G

1

(t)	

2

(t) +G

3

(t)	

4

(t) +G

10

(t) + 	

2

(t)	

4

(t):

5 H

3

- error estimates for optical director

Theorem 10 Under the hypotheses of Theorem 2.1, we have

krd

t

(t)�rd

n

t

(t)k

2

+

Z

t

0

jjd

n

tt

(�)� d

n

tt

(� )jj

2

d� �

G

12

(t)

�

n+1

; (5.1)

kd(t)� d

n

(t)k

2

H

3

�

G

13

(t)

�

n+1

; (5.2)

for any t 2 [0; T ]: The continuous functions G

12

(t); G

13

(t) of the variable t depends

on T and the norms kv

0

k

H

2

(
)

, kd

0

k

H

3

(
)

:

Proof. Di�erentiating the equation (3.1)

iii

with respect to t, after multiplication

by �

n

tt

and integrating of result with respect to 
; we obtain

1

2

d

dt

kr�

n

t

k

2

+ k�

n

tt

k

2

= �(w

n

t

� rd;�

n

tt

)� (w

n

� rd

t

; �

n

tt

)

�(�

n

t

� rd; �

n

tt

)� (�

n

� rd

t

; �

n

tt

)

�(v

n

t

� r�

n

; �

n

tt

)� ((f(d)�f(d

n

))

t

; �

n

tt

):

Now, we estimate as is usual to obtain

16



1

2

d

dt

k�

n

t

k

2

+ kr�

n

t

k

2

� C(kw

n

t

k

2

+ k�

n

t

k

2

)kdk

2

H

3

+C(kr�

n

k

2

+ krw

n

k

2

)krd

t

kkd

t

k

H

2

+krv

n

t

k

2

kr�

n

kk4�

n

k+ CkAv

n

k

2

kr�

n

t

k

2

+k(f(d)�f(d

n

))

t

k

2

:

The above di�erential inequality impliesd the following integral inequality

kr�

n

t

(t)k

2

+

Z

t

0

jj�

n

tt

(� )jj

2

d� �

G

12

(t)

�

n+1

;

where

G

12

(t) = C	

4

(t)(	

1

(t) +G

9

(t)) + C(	

3

(t))

1=2

	

5

(t)(	

2

(t) +G

3

(t))

+C	

2

(t)G

10

(t) + C(G

11

(t)G

1

(t))

1=2

+G

10

(t) +G

9

(t)	

3

(t)t:

To obtain the estimate (5.2), we take r from the equation (3:1)

iii

; in order to

obtain

kr4�

n

k

2

� C(kr�

n

t

k

2

+ krw

n

rdk

2

+ kw

n

4dk

2

+ kr�

n

rdk

2

(5.3)

+k�

n

4dk

2

+ krv

n

r�

n

k

2

+ kv

n

4�

n

k

2

+ kr(f(d)�f(d

n

))

t

k

2

:

We observe that

k�

n

k

2

H

3

� Ckr4�

n

k

2

and estimating the second member of the inequality (5.3) as is usual and using the

estimates early proved, we get the desired result.

Remark 2 We observe that the estimates obtained in this work are local in time. In

another publication we will study the stability and error estimates uniform in time

for the model (2.1)-(2.4).
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