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We relate the study of complex geometry of full 
ag manifold F (n) and harmonic

maps into F (n) with the tournament theory. In particular, we will sketch the proof

that the usual Killing form metric on F (n) is (1; 2)-symplectic if and only if n � 3.

1 Introduction

This is concerned with questions arising from the intimate relationship between

almost complex structures on 
ag manifolds and the tournament theory.

We follow Burstall-Salamon [3] and establish a one-to-one correspondence

between tournaments and almost complex structures on F (n). We describe the

score vector characterization of the tournaments. We derive the holomorphic

map equations.

In the late 1960, Calabi [4], Chern [5] and Eells [6] published many papers

which are the modern basis for the study of harmonic maps. Then physicists

Glaser-Stora and Din-Zakerewski complexi�ed the problem and called the at-

tention that the tight problem should be to study harmonic maps in CP

n

instead of RP

n

.

Inspired by these ideas, Eells-Wood [7] gave a complete classi�cation for

harmonic maps from CP

1

� S

2

to CP

n�1

and some important partial results

for arbitrary genus.

Then Chern-Wolfson and independently Burstall-Wood, classi�ed the set

of harmonic maps � : S

2

! G

k

(C

n

) for k = 2; 3; 4; 5 and 6 in terms of full

holomorphic maps between such manifolds. More generally, Uhlenbeck [14]

classi�ed harmonic maps � : S

2

! G

k

(C

n

) for an arbitrary value of k in terms

of holomorphic data.

We derive here the harmonic map equations for maps � : M

2

! F (n).

According to the theorem of Sacks-Uhlenbeck [13] each homotopy class in
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�

2

(F (n))

�

=

Z� � � � � Z

| {z }

n-times

has a harmonic representative. But according to Lich-

nerowicz's theorem [9] one possible way, is to �nd (1; 2)-symplectic metrics on

F (n).

We will give an idea of the fact that the usual Killing metric of F (n) is

(1; 2)-symplectic if and only if n � 3.

2 Almost complex structures on F (n)

We consider full complex 
ag manifold

F (n) = f(L

1

; : : : ; L

n

); dimL

i

= 1; �

n

i=1

L

i

= C

n

g: (2.1)

Algebraically, F (n) = U(n)=T , where

U(n) = fA 2M(n� n;C) =: C

n

; A

�

A

t

= AA

�

= Ig (2.2)

and T is the maximal torus of U(n), i.e.

T = U(1)� � � � � U(1)

| {z }

n-times

: (2.3)

Let p denote the tangent space of F (n) at the identity coset, then

u(n) = fX 2 C

n

; X +X

�

= 0g = p� u(1)� � � � � u(1)

| {z }

n-times

: (2.4)

We now discuss invariant almost complex structures J : p ! p; J

2

= �I .

Borel-Hirzebruch in [2] showed that there are 2

(

n

2

)

such structures.

Example 2.1 Consider n = 3 and J : p! p de�ned by

J

2

4

0 a

12

a

13

��a

12

0 a

23

��a

13

��a

23

0

3

5

=

2

4

0 "

1

p

�1a

12

"

2

p

�1a

13

"

1

p

�1�a

12

0 "

3

p

�1a

23

"

2

p

�1�a

13

"

3

p

�1�a

23

0

3

5

;

where "

i

= �1, i = 1; 2 and 3. There are 2

(

3

2

)

invariant almost complex

structures.

Such choice of an almost complex structure clearly de�nes a tournament

�

J

with n players f1; 2; : : : ; ng. More precisely, if

J(a

ij

) = (a

0

ij

); (2.5)
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then �

J

is determined by

i! j(i < j) , a

0

ij

=

p

�1a

ij

; or (2.6)

j ! i(i < j) , a

0

ij

= �

p

�1a

ij

: (2.7)

Example 2.2 If J is the almost complex structure de�ned by

J

2

4

0 a

12

a

13

��a

12

0 a

23

��a

13

��a

23

0

3

5

=

2

4

0

p

�1a

12

�

p

�1a

13

p

�1�a

12

0

p

�1a

23

�

p

�1�a

13

p

�1�a

23

0

3

5

;

then the associated tournament �

J

is:

2

1 3

De�nition 2.3 a) Let T

1

and T

2

be two tournaments. A map � : T

1

! T

2

is

said to be a homomorphism if

i! j , �(i)! �(j) or �(i) = �(j): (2.8)

b) We de�ne the canonical tournament �

n

in the following way:

i! j , i < j: (2.9)

2

3

2

31

�

3

= �

4

=

4

1

Proposition 2.4 ([10]) Tournaments enjoy the following two basic and im-

portant properties:

1) If two tournaments T

1

and T

2

are isomorphic, then they have the same

score vector (i.e., the vector each of whose components is equal to the

number of games won by each player). For example, the following tour-

nament has score vector (1; 1; 2; 3; 3).
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3

4

5

1

2

2) If a tournament T has a circuit i

1

! i

2

! � � � ! i

r

! i

1

, then it has a

3-cycle.

i k

j

An almost complex manifold (F (n); J) is said to be a complex manifold if J

is integrable. In this case, each transfer map between local complex coordinate

systems is holomorphic.

F (n)

U

V

�

V

�1

� �

U

holomorphic

C

n

C

n

�

U

�

V

Theorem 2.5 ([3], [10]) There is a one-to-one correspondence between invari-

ant almost complex structures J on F (n) and n-tournaments �

J

such that J

is integrable if and only if �

J

contains no 3-cycles.
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3 Harmonic and holomorphic maps

Let � : U(n) ! F (n) = U(n)=T be the canonical projection and consider

� : M

2

! F (n), where M

2

denotes a closed Riemann surface. We consider

the lift map

~

� : M

2

! U(n) of �; i.e., � = � �

~

�. Set

�

j

=

~

�E

j

~

�

�

; (3.1)

where E

j

denotes the matrix which has 1 in the (j; j)-position and zero else-

where. Then we see that

�

j

:M

2

! C

n

(3.2)

satis�es that

�

2

i

= �

i

; �

i

� �

j

= 0; i 6= j: (3.3)

Put A

ij

z

= �

i

(@�

j

=@z). For V 2 �(�

�

T (F (n))), we set q = �

�

�(V ), where

�

�

� : �

�

(TF (n))!M � u(n) (3.4)

is the pull-back of the Maurer-Cartan form. De�ne the following variation of

�:

�

t

(x) := �(exp(�tq)

~

�): (3.5)

We denote the associated objects by �

j

(t); A

ij

z

(t); : : :. Then we have

Lemma 3.1 1) [@�

j

(t)=@t]

t=0

= [�

j

; q].

2) @[�

j

; q]=@z = [@�

j

=@z; q] + [�

j

; @q=@z].

3) [@A

ij

z

(t)=@t]

t=0

= [A

ij

z

; q]� �

i

(@q=@z)�

j

.

Proof. 1) By (3.1) we get

�

j

(t) = e

�tq

�

j

e

tq

: (3.6)

Hence

[@�

j

(t)=@t]

t=0

= �q�

j

+ �

j

q = [�

j

; q]: (3.7)

2) It is clear.

3) Using 1) and 2), we have

[@A

ij

z

(t)=@t]

t=0

= f@[�

i

(t)(@�

j

=@z)]=@tg

t=0

= [@�

i

(t)=@t]

t=0

� @�

j

=@z + �

i

@([@�

i

(t)=@t]

t=0

)=@z

= [�

i

; q]@�

j

=@z + �

i

@[�

j

; q]=@z

= [�

i

; q]@�

j

=@z + �

i

([@�

j

=@z; q] + [�

j

; @q=@z])

= [A

ij

z

; q]� �

i

(@q=@z)�

j

; (3.8)
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since �

i

� �

j

= 0 whenever i 6= j. Q.E.D.

We can de�ne the usual Killing form inner product on C

n

by

hA;Bi := tr(AB

�

); A;B 2 C

n

: (3.9)

It is easy to check that hA;Bi = hB;Ai and

hA; [B;C]i = h[B

�

; A]; Ci: (3.10)

This inner product induces a natural invariant Riemannian metric on F (n) =

U(n)=T via the projection on the Killing inner product. We call such a metric

Killing metric.

De�nition 3.2 Consider � = (�

1

; : : : ; �

n

) : M

2

! F (n). We de�ne the

energy of � by

E(�) =

Z

M

X

i; j

jA

ij

z

j

2

v

g

: (3.11)

De�nition 3.3 Consider

� = (�

1

; : : : ; �

n

) : (M

2

; g)! (F (n);Killing metric): (3.12)

We say that � is harmonic if [dE(�

t

)=dt]

t=0

= 0 for any variation �

t

of �.

Proposition 3.4 Consider

� = (�

1

; : : : ; �

n

) : (M

2

; g)! (F (n);Killing metric): (3.13)

Then � is harmonic if and only if @A

z

=@�z = 0 if and only if @A

x

=@�x +

@A

y

=@�y = 0, where A

x

=

P

�

i

(@�

j

=@x) and A

y

=

P

�

i

(@�

j

=@y).

Idea of the proof. Use Lemma 3.1 and the Stokes theorem. See [10] and

[12] for more details. Q.E.D.

As we notice, for � to be harmonic, it must satisfy a set of non-linear partial

di�erential equations of second order known as the Euler-Lagrange equations.

The modern theory of harmonic maps is basically due to Calabi [4], Chern

[5], Eells [7] and Uhlenbeck [13].
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We will now consider the following �bration in the sense of Serre:

U(1)� � � � � U(1)

| {z }

n-times

! U(n)! F (n): (3.14)

Using the homotopy long exact sequence, we have

� � � ! �

2

(U(1)� � � � � U(1))! �

2

(U(n))! �

2

(F (n))

! �

1

(U(1)� � � � � U(1))! �

1

(U(n))! �

1

(F (n))! � � � : (3.15)

But we know that �

1

(F (n)) = 0; �

1

(U(n))

�

=

Z and �

2

(U(n)) = 0 (we can see

these for n large enough simply by using the Bott periodicity). In any case we

obtain that �

2

(F (n)) = Z� � � � � Z

| {z }

(n�1)-times

.

According to the theorem of Sacks-Uhlenbeck [13] we can �nd harmonic

maps representing each homotopy class in �

2

(F (n)) which is isomorphic to

H

2

(F (n);Z) by Hurewicz's theorem. This theorem can be seen as a general-

ization of the Hodge theorem for di�erentiable forms.

4 (1; 2)-symplectic metrics and consequences

De�nition 4.1 An almost complex manifold (F (n); J; h ; i) is said to be Her-

mitian if hJX; JY i = hX;Y i for all X;Y 2 p.

De�nition 4.2 a) We de�ne the Keahler 2-form for an arbitrary almost com-

plex Hermitian manifold (M;J; h ; i) as


(X;Y ) := hX; JY i; X; Y 2 TM: (4.1)

b) Such a manifold is said to be almost Keahler if d
 = 0. If it is integrable,

then an almost Keahler manifold is said to be Keahler.

Remark 4.3 (F (n); J; h ; i) is not an almost Keahler manifold. However,

there are in�nite number of Hermitian metrics h such that (F (n); J; h) is a

Keahler manifold. See [10] or [12] for details about this fact.

De�nition 4.4 a) A map � : (M;J

1

) ! (F (n); J) is J-holomorphic if d� �

J

1

= J � d�; i.e., if � satis�es the Cauchy-Riemann equations.

b) An almost Hermitian manifold (F (n); J; h ; i) is said to be (1; 2)-symp-

lectic if d


(1;2)

� 0, where d


(1;2)

denotes the (1; 2)-component of d
.
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Theorem 4.5 ([9]) Let � : (M

2

; J

1

; g) ! (F (n); J; h ; i) be a J-holomorphic

map and we also assume that the target manifold is (1; 2)-symplectic. Then �

is harmonic.

Hence we can combine the theorem of Sacks-Uhlenbeck [13] with the above

one proved by Lichnerowicz in order to obtain harmonic representatives for

elements in �

2

(F (n))

�

=

H

2

(F (n);Z) simply by considering holomorphic maps.

Nevertheless, we have the following result.

Theorem 4.6 The Killing metric on F (n) is (1; 2)-symplectic if and only if

n � 3.

Idea of the proof. We can see that ([10])

(1=4)d
 =

X

i<j<k

C

ijk

	

ijk

: (4.2)

Hence, ds

2

�=(�

ij

)

is (1; 2)-symplectic if and only if d


(1;2)

= 0 if and only if

C

ijk

= 0 whenever 	

ijk

2 C

1;2

�C

2;1

: (4.3)

But we can show that C

ijk

= "

ij

� "

ik

+ "

jk

6= 0. Hence (4.3) is equivalent

to 	

ijk

2 C

0;3

�C

3;0

for any i < j < k. But we can prove that the number

of 3-cycles in the tournament �

J

is equal to

�

n

3

�

. It is impossible because, if

n > 3, using Gale's inequality [8], [11], we have that the number of 3-cycles in

�

J

is less than or equal to (1=24)(n

2

� n) if n is odd or (1=24)(n

3

� 4n) if n is

even. Q.E.D.
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