
MANIFOLDS WITH MINIMAL RADIAL CURVATURE

BOUNDED FROM BELOW AND BIG VOLUME

Valery Marenich

To appear in Transactions of AMS

Abstract. We prove that a convergence in the Gromov-Hausdor� distance

of manifolds with minimal radial curvature bounded from below by 1 to the

standard sphere is equivalent to a volume convergence.

0. Introduction

A riemannian manifolds M

n

has a minimal radial curvature K

min

o

(with a base point o) bounded from

below by k, K

min

o

� k if for an arbitrary point p and every minimal geodesic (t); 0 � t � r connecting o and

p the sectional curvature of M

n

is not less than k in all two-dimensional directions which contain the vector

_(r). The class of manifolds with minimal radial curvature bounded from below is much bigger than the class

of manifolds with sectional curvature bounded from below, but has many properties similar to this class or

to the class of manifolds of Ricci curvature bounded from below. Some well-known results on geometry of

riemannian manifolds of nonnegative sectional curvature such as Toponogov comparison theorem, estimates

on diameter and radius, or sphere theorem can be generalized to manifolds with non-negative minimal radial

curvature, see [M1], [M2], and [MS]. For instance, in our previous paper [MM] we obtained the following sphere

theorem for such manifolds.

Theorem A. Let M

n

be a complete compact riemannian manifold without boundary of minimal radial cur-

vature K

min

o

� 1 and rad(M

n

) � � � �. Then

1) for � su�ciently small M

n

is homeomorphic to S

n

(M

n

is a twisted sphere); and

2) for the Gromov-Hausdor� distance between M

n

and the standard sphere S

n

of constant curvature 1 we

have:

d

GH

(M

n

; S

n

) � C(�)

for some function C(�)! 0 as �! 0.

This gives a generalization of corresponding results for manifolds of sectional curvature bounded from below,

see [GS] and [GP]. For some other results see Corollaries B, C and D of the last theorem in [MM]. Easy to see,

that according to Theorem A a Gromov-Hausdor� convergence of manifolds with K

min

o

� 1 to the standard

sphere is equivalent to the convergence rad(M

n

) ! rad(S

n

). In the present paper we prove that the same

convergence is equivalent to the convergence of volumes. This paper naturally continues [MM], so we preserve

its notations and numeration of results. Our main results are the following.
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Theorem E. Let M

n

be a complete compact riemannian manifold without boundary of minimal radial curva-

ture K

min

o

� 1 and d

GH

(M

n

; S

n

) < �. Then vol(S

n

)�C(�) � vol(M

n

) � vol(S

n

) for some function C(�)! 0

as �! 0.

Theorem F. Let M

n

be a complete compact riemannian manifold without boundary of minimal radial cur-

vature K

min

o

� 1 and vol(M

n

) � vol(S

n

) � �. Then d

GH

(M

n

; S

n

) < C(�) for some function C(�) ! 0 as

�! 0.

Again as in [MM], we would like to stress that above we do not require that sectional curvatures of

the manifolds under consideration are bounded from below. Due to Yamaguchi with this extra condition

Gromov-Hausdor� convergence d

GH

(M

n

; S

n

) ! 0 in Theorem E by itself implies Lipschitz convergence

d

Lip

(M

n

; S

n

)! 0, see [Y2]; while Theorem F has the following corollary.

Corollary G. Let M

n

be a complete compact riemannian manifold without boundary of minimal radial cur-

vature K

min

o

� 1, vol(M

n

) � vol(S

n

)� � and sectional curvature bounded from below sec(M

n

) � �k

2

. Then

for � su�ciently small M

n

is di�eomorphic to S

n

, and for the Lipschitz distance between M

n

and the standard

sphere S

n

we have d

Lip

(M

n

; S

n

) < C(�; k) for some function C(�; k)! 0 as �! 0.

Corollary G was previously obtained in [MS] together with the fact that M

n

is homeomorphic to S

n

if the

volume of M

n

is bigger than 3/4 of the volume of S

n

. We obtain our Theorem F only slightly improving at

one point arguments from [MS] in order to avoid a condition sec(M

n

) � �k

2

used there.

Theorem F and Corollary G generalize the well-known result by Otsu, Shiohama and Yamaguchi (see

[OSY]) when sec(M

n

) � 1. It is also interesting to note that the equivalence of the Gromov-Hausdor�

convergence and volume convergence which we prove is the same equivalence under the lower Ricci curvature

bounded; i.e., changing in Theorems E and F above our condition on the minimal radial curvature K

min

o

� 1

to the corresponding condition on the Ricci curvature Ric(M

n

) � (n� 1) we arrive at the celebrated results

by Colding, see [Cl1-Cl3]. This similarity of results for two classes of manifolds (despite the fact that our

technique is quite di�erent from the technique developed by Colding) we already mentioned in our previous

paper [MM].

Note, that due to our Theorem A a manifold M

n

is homeomorphic to S

n

if M

n

is su�ciently close to

S

n

in the Gromov-Hausdor� distance. Thus, proving both Theorems E and F we can assume that M

n

is

homeomorphic to S

n

.

Briey the proof of Theorem E could be presented as follows. Take some � << � << � playing a role of

di�erent geometric scales. First (see {4) we construct a �-partition of the sphere S

n

into small domains

�

B

�

,

and measure volumes of them by introducing in every

�

B

�

distance coordinates

�

D

�

:

�

B

�

! R

n

such that maps

�

D

�

are quasi-isometries on our sets

�

B

�

. Due to this construction the volume of S

n

almost equals the sum

of volumes of

�

D

�

(

�

B

�

). Second (see {3) we de�ne for our manifold M

n

with d

GH

(M

n

; S

n

) < � a continuous

map V

�

: S

n

!M

n

almost inverse (on a �-scale) to the partially de�ned quasi-isometry V :M

n

! S

n

from

[MM] (see {2).

1

Then the family of sets B

�

= V

�

(

�

B

�

) provides an almost partition of M

n

such that the

volume ofM

n

almost equals the sum of volumes of B

�

. By construction B

�

are close in the Gromov-Hausdor�

distance to

�

B

�

so that there exists a family of volume contracting maps D

�

: B

�

! R

n

similar to the family

of maps

�

D

�

above and such that

�

D

�

(

�

B

�

) and D

�

(B

�

) are �-close. Because the map V

�

is continuous B

�

is

homeomorphic to

�

B

�

, both are topological balls, and simple homotopy arguments show that the closeness in

the Gromov-Hausdor� distance d

GH

(

�

B

�

; B

�

) < � implies that the set D

�

(B

�

) covers a substantial part of

�

D

�

(

�

B

�

) yielding an inequality vol(B

�

) > (1 � �(�))vol(

�

B

�

) for some �(�) ! 0 as � ! 0, which due to our

1

The construction of V

�

heavily relies on the "comparison angle almost non-increasing deformation" introduced in [MM],

which we are slightly generalizing here.
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choice � << � << � leads to the conclusion of Theorem E: vol(M

n

) > vol(S

n

) � C(�) for some C(�) ! 0 as

�! 0.

It is my pleasure to thank the referee for suggestions and careful reading. I also would like to express my

sincere gratitude to Sergio J. X. Mendon�ca for attracting author's attention to the class of manifolds with

minimal radial curvature bounded from below and cooperation.

I. Proof of Theorem E

We begin with some notations and results established in previous papers.

1. Basic facts and notations. Comparison Theorems. Denote by 

pq

a geodesic in M

n

joining p and

q. For a triangle 4

pqr

in M

n

let 4�p�q�r be a triangle in the sphere S

2

or S

n

of constant curvature 1 with the

same lengths, called the comparison triangle of 4

pqr

. By ]qpr or simply by ]p we denote the angle at p of the

triangle 4

pqr

. The corresponding angle in 4�p�q�r, which we call comparison angle, denote by

~

]qpr or simply

by

~

]p. As was proved in [M2] for a manifold M

n

of minimal radial curvature K

min

o

� 1 with a base point o

Toponogov Comparison theorem is valid for triangles 4

opq

in M

n

if one vertex is a base point o and all sides

are minimal geodesics. As before in [MM] we shall use this fact referring to it as Proposition 1, see [MM].

Proposition 1. Let M

n

be a complete manifold with K

min

o

� c and 4

opq

be a triangle of minimal geodesic

segments in M

n

. Then there exists a comparison triangle 4�p�q�r in the sphere S

2

of constant curvature 1, and

it holds that ]o �

~

]o, ]p �

~

]p and ]q �

~

]q.

(see Proposition 2 in [MM] for Alexandrov-Toponogovmonotonicity of a comparison angle property and Propo-

sition 3 establishing the original Toponogov comparison theorem for manifolds of minimal radial curvature

bounded from below.)

In a standard way as simple consequences of Proposition 1 we have diam(M

n

) � � and dist(o; p)+dist(o; q)+

dist(p; q) � 2� for arbitrary points o; p; q of M

n

. In [MS] it is proved that the equality in any of these

inequalities implies that M

n

is isometric to S

n

(see also our Corollary 1 in [MM]).

The radius rad(M

n

) of the manifold M

n

is de�ned as inf

x2M

sup

y2M

dist(x; y), where by dist we denote

the riemannian distance of M

n

. In other words, rad(M

n

) is the in�mum of the values of the radius of balls

that containM . Again an easy application of Proposition 1 yields rad(M

n

) � � for manifolds with K

min

o

� 1,

where rad(M

n

) = � implies that M

n

is isometric to S

n

.

In the same way easy to note, that for manifolds of minimal radial curvature K

min

o

� k is valid the

Bishop-Gromov volume comparison theorem for balls with a center at the base point o, see [MS].

Proposition 4. Let M

n

be the manifolds of minimal radial curvature K

min

o

� k and B(o; r) be a metric ball

in the manifold M

n

with a center at the base point o and radius r. Correspondingly, let B(�o; r) be r-ball in the

manifold of constant curvature k. Then the function vol(B(o; r))=vol(B(�o; r)) is a monotone non-increasing.

To prove this statement it is su�cient to repeat the arguments of the proof of the Bishop-Gromov comparison

theorem. Volume comparison and diam(M

n

) � � lead to the inequalities

(1.1) vol(B(o; r)) � vol(B(�o; r))

and

(1.2) vol(M

n

) � vol(S

n

):

Gromov-Hausdor� distance. Recall that the Gromov-Hausdor� distance d

GH

(M

n

; S

n

) < � between M

n

and S

n

if there exists some metric space Z and isometric embeddings I

M

n

: M

n

! Z and I

S

n

: S

n

! Z
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such that the Hausdor� distance d

H

between I

M

n

(M

n

) and I

S

n

(S

n

) in Z is less than �, where for two subsets

A;B � Z

d

H

(A;B) = sup

a2A

inf

b2B

fdist(a; b)g+ inf

a2A

sup

b2B

fdist(a; b)g:

Below we �x Z, I

M

n

: M

n

! Z, I

S

n

: S

n

! Z and identify I

M

n

(M

n

) with M

n

, and I

S

n

(S

n

) with S

n

. We

say that the set A is close (or d-close) to the set B if d

GH

(A;B) is small (d

GH

(A;B) < d).

Below we are assuming that M

n

is �=2-close to S

n

and the base point o is �=2-close to �o. Then for an

arbitrary point x of M

n

there exists a point �x of S

n

such that dist

Z

(x; �x) < �=2, and for the point ��x

antipodal to �x in the sphere S

n

, there exists some x

�

of M

n

with dist

Z

(x

�

;��x) < �=2. Due to the triangle

inequality this provides us for an arbitrary point x ofM

n

with a point x

�

such that dist(x; x

�

) > ���, proving

in particular that

(1.3) rad(M

n

) > � � �:

x

�

always denotes the point (which could be not unique) such that dist(x; x

�

) attains its maximum. Below by

�

j

i

we denote the j's constant in i's Lemma, and in all considerations below all geodesics are parameterized

by an arc-length if it is not stated otherwise.

Again, as in [MM], we introduce together with � three more parameters �, � and � such that � <<

� << � << � as � ! 0, and which will play together with � the roles of di�erent scales for our argu-

ments. Among many possible choices we take � = �

3

= �

9

= �

27

for de�niteness. By �(x) we denote

maxfdist(o; x); dist(o

�

; x)g. It is usually assumed that �(x) � �.

2. Map V :M

n

! S

n

.

Inequality (1.3) allows us to use the following results and constructions from our previous paper [MM].

Lemma 1, [MM]. If M

n

is a manifold of minimal radial curvature K

min

o

� 1 and rad(M

n

) > � � �, then

for an arbitrary point x of M and a point x

�

such that dist(x; x

�

) > � � � the angle

~

](xox

�

) � � � �

1

(�); and

~

]oxo

�

� � � �

1

(�)

for some function �

1

(�)! 0 as �! 0, if �(x) � �.

Lemma 2, [MM]. Let x and y be two arbitrary points in M

n

and ~x and ~y be two points in S

2

such that

dist(�o; ~x) = dist(o; x), dist(�o; ~y) = dist(o; y) and ](xoy) = ](~x�o~y). If �(x); �(y) > � then jdist(~x; ~y) �

dist(x; y)j < �

2

(�) for some function �

2

(�)! 0 as �! 0.

Below we shall need also the following estimate.

Lemma 3

2

. If 4

oxy

is some triangle in M

n

such that � < dist(o; x); dist(o; y) < � � � and 4

�o�x�y

its

comparison triangle in S

n

, then angles of 4

oxy

are �

3

(�)-close to the corresponding angles of 4

�o�x�y

for some

function �

3

(�)! 0 and having order � as �! 0. For instance,

0 � \(xoy)� \(�x�o�y) � �

3

(�);

for some �

3

(�)! 0 of order � as �! 0.

Proof. Obviously, proving the claim of the lemma we can assume that all comparison angles of the triangles

4

oxy

and 4

oyx

�

are bigger than � and less than ���. In a comparison sphere S

2

we construct a comparison

triangle 4

�o�x�y

of the triangle 4

oxy

and denote by r = dist(o; y), r

1

= dist(o; x

�

) and r

2

= dist(�o;��x) for x

�

2

see also Lemma 12 of [MM].
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in M

n

such that dist(x; x

�

) > �� �. Let us construct also a comparison triangle 4

�o�y�x

�

in S

2

not overlapping

4

�o�x�y

. Denote by d

1

= dist(y; x

�

) and d

2

= dist(�y;��x). Then

(1.4) jr

1

� r

2

j < 3�

and

(1.5) d

1

� d

2

� �:

Indeed,

r

1

� r

2

= dist(�o; �x

�

)� dist(�o;��x) = dist(�o; �x

�

)� (� � dist(�o; �x)) =

(1.6) (dist(o; x) + dist(o; x

�

)� dist(x; x

�

)) + (dist(x; x

�

)� �):

From �� � < dist(x; x

�

) < � and inequality dist(o; x) + dist(o; x

�

) + dist(x; x

�

) � 2� following from Proposi-

tion 1 we �nd

dist(o; x) + dist(o; x

�

)� dist(x; x

�

) � 2�;

so that (1.6) gives (1.4), while (1.5) follows from

d

1

= dist(�y; �x

�

) = (dist(�x; �x

�

)� dist(�x; �y)) + (dist(�x; �y) + dist(�y; �x

�

)� dist(�x; �x

�

)) �

� � �� dist(�x; �y) = dist(�y;��x)� � = d

2

� �:

Because

~

](xoy) = ](�x�o�y) = ��](�y�o(��x)) the claim of Lemma will follow if only we prove that �

1

< �

2

+�

3

(�)

where we denote �

1

= ](�y�o�x

�

) and �

2

= ](�y�o(��x)). Both triangles 4

�y�o�x

�

and 4

�y�o(��x)

have common side

�o�y, according to (1.4) almost equal sides �o�x

�

and �o(��x), while due to (1.5) the side �y�x

�

is almost bigger than

the corresponding side �y(��x). Now denote by ~x the point of intersection of a geodesic 

�y(��x)

with a geodesic



�o�x

�

or its continuation, i.e., ~x = 

�y(��x)

\  where by  we denote a geodesic connecting in S

2

two antipodal

points �o and ��o and containing �x

�

. First consider the case when ~x belongs to the continuation of 

�o�x

�

. In

this case the point �x

�

belongs to the interior of the triangle 4

�o�y(��x)

, and because it is convex we have

d

1

+ r

1

� d

2

+ r

2

which due to (1.4) and (1.5) immediately gives

jd

1

� d

2

j � 3�:

Now �nd a point �z on a geodesic  such that dist(�o; �z) = dist(�o;��x). Due to (1.4) this point is close to �x

�

,

dist(�x

�

; �z) � 3�. Hence, for d

3

= dist(�y; �z) we have

(1.7) jd

2

� d

3

j � 6�:

Consider two triangles: 4

�y�o��x

and 4

�y�o�z

. They have common side �y�o and �o � �x equals �o�z. Thus from the

cosine formula we deduce

(1.8) cos(d

2

)� cos(d

3

) = sin(r)sin(r

2

)(cos(�

2

)� cos(�

1

)):

Applying (1.7) to the last formula when �; � ! 0 due to our conditions � < r; r

2

; �

1

; �

2

< � � � we easily

verify that (�

2

� �

1

) is of order � as � ! 0 thus obtaining the claim of our Lemma.

3

In the case when the

point ~x belongs to the continuation of 

�o�x

�

we apply the same arguments to the triangles 4

�y��o��x

and 4

�y��o�z

.

Then an estimate

jR

1

�R

2

j � 3�

for R

1

= dist(��o; �x

�

) and R

2

= dist(��o;��x) which follows from (1.4) yields the claim of the Lemma. The

Lemma 3 is proved.

3

See similar estimates in Lemma 7 below.
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Remark 1. All constants �

i

(�); i = 1; 2; 3 above are at least of order � as � ! 0. We veri�ed this for �

3

(�)

in Lemma 3, for i = 1; 2 see [MM]. Below, see Lemma 9, we apply Lemmas 1{3 estimates to triangles 4

oxy

which are far from being extremal, i.e., such that for at least one vertex y of this triangle �(y) is close to �=2

and the angle

~

](xoy) is close to �=2. In this case the arguments of Lemmas 1{3 (look at (1.8)) implies that

corresponding constants �

1

9

(�) and �

2

9

(�) are of order �.

In order to apply Lemmas 1{3 we consider below, if it is not stated otherwise, only points from the set

M

n

(�) =M

n

n(B(o; �) [ B(o

�

; �)), i.e., satisfying the condition �(x) > �.

Map V : M

n

(�) ! S

n

. From Lemma 1 it follows that the angle between any two minimal geodesics

connecting o and the point x 2 M

n

(�) is not bigger than 2�

1

(�) (for the proof, let x

�

be some point of M

n

such that dist(x; x

�

) > � � � and

�

Z

�

be a unit vector of direction of some minimal geodesic connecting o and

x

�

. Then due to Lemma 1 all minimal geodesics from o to x have angles with

�

Z

�

bigger than � � �

1

(�), or

every angle between two of them is not bigger than 2�

1

(�)). Thus, using the same arguments as in the proof

of the Isotopy lemma 1.4 from [C] we see that for every constant � there exists a continuous map sending the

point x to some unit vector Z(x) such that the angle between Z(x) and a direction of an arbitrary minimal

geodesic from o to x is less than 2�

1

(�) + �. Take � = �

1

(�), so that this angle is always less than 3�

1

(�).

Denote by

�

V (x) = dist(o; x)Z(x). Then our map V :M

n

(�)! S

n

is given by

V (x) = exp

�o

� I �

�

V (x);

where �o is some �xed point of S

n

and I some �xed isometry between T

o

M

n

and T

�o

S

n

.

For the map V :M

n

(�)! S

n

the following was proved.

Lemma 4, [MM].

jdist(V (x); V (y))� dist(x; y)j < �

4

(�)

for some function �

4

(�)! 0 as �! 0.

Again �

4

(�) is of order � as �! 0.

Comparison angle almost nonincreasing deformation. As follows from our Theorem A (see Lem-

mas 8{11), for �! 0 their exists some �

0

(�)! 0 (depending also on dimension n), such that for an arbitrary

vector v of T

o

M

n

their exists some point p of � = fp 2 M

n

jdist(p; o) = �=2g and a minimal geodesic 

op

with a direction at o having an angle with v less than �

0

(�). Take arbitrary z and �nd such p for v equals

the direction of some minimal geodesic 

oz

. Due to Proposition 1 in the comparison triangle 4

�o�p�z

the angle

\(�p�o�z) is not bigger than �

0

(�) and in the case dist(o; z) � dist(z; p) this leads to an estimate:

(1.9) \(pzo) � \(�p�z�o) � � � 2�

0

(�):

For another arbitrary minimal geodesic 

0

connecting z and o the comparison triangle of the triangle consisting

of 

op

, 

zp

and 

0

equals the previous one. Hence all minimal geodesics from the point z to o have an angle

with the direction of 

zp

bigger than � � 2�

0

(�), or the angle between directions of arbitrary two minimal

geodesics from z to o is not bigger than 4�

0

(�). For z with � � dist(o; z) � ��� similar estimates follows from

Lemma 1: all minimal geodesics from z to o have an angle with direction of an arbitrary minimal geodesic

connecting z with o

�

which is bigger than � � �

1

(�). Taking �

5

(�) = maxf4�

0

(�); 2�

1

(�)g we conclude that

for arbitrary point z with dist(o; z) � � � � for directions X

1

and X

2

at the point z of arbitrary minimal

geodesics 

1

and 

2

connecting z with o the following is true

(1.10) ](X

1

; X

2

) � �

5

(�)
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for some �

5

(�) ! 0 as � ! 0. This allows us to construct the vector �eld X on M

n

n(fog [ B(o

�

; �)) in

the following way. Take inj = minf�; r

in

(M

n

)g and for an arbitrary point z in inj-neighborhood of o let

�X(z) equals the direction of a unique minimal geodesic 

zo

. For a point z from M

n

nfB(o; inj) \ B(o

�

; �)g

choose arbitrarily a vector X(z) equals the direction of some minimal geodesic 

zo

and for arbitrary � < inj

de�ne a vector �eld X

z;�

depending on a parameter � on �-neighborhood B(z; �) of the point z as follows:

for x 2 B(z; �) the vector X

z;�

(x) at the point x equals the parallel transport of X(z) along unique minimal

geodesic from z to x. Here the parameter � may depend on z. BecauseM

n

nfB(o; inj)[B(o

�

; �)g is compact

the covering [B(z; �(z)) contains some �nite subcovering [B(z

i

; �(z

i

)), and choosing some partition of unity

f

i

: B(z

i

; �) ! R; f

i

> 0;

P

f

i

(x) � 1 associated with this subcovering, we de�ne the smooth vector �eld

X

�

(x) =

P

f

i

(x)X

z

i

;�(z

i

)

, where we denote by � = maxf�(z

i

)g.

Denote by x(s) the integral trajectory of the constructed vector �eld X

�

. When dist(o; x(s)) � inj this

trajectory coincides with some unique minimal geodesic issuing from the point o. If dist(o; x(s)) � inj applying

the formula (6.5) of [MM] for the derivative of the distance function we conclude from (1.10) that the distance

function dist(o; x(s)) is a strictly increasing function. Hence, every trajectory x(s) is a union of two smooth

curves belonging correspondingly to B(o; inj) and M

n

nfB(o; inj) [ B(o

�

; �)g, and such that the following is

true.

Lemma 5. Let x(s); 0 � s � s

0

be the maximal integral trajectory of the vector �eld X

�

. The distance

function dist(o; x(s)) is a strictly increasing function. For their left derivatives the following is true:

dist

0

(o; x(s)) � cos(�

5

(�));

and x(s

0

) belongs to @B(o

�

; �).

Proof. See arguments from [MM] leading to Lemma 6 of [MM].

From the last lemma we see that the distance �(s) = dist(o; x(s)) could be considered as a continuous

(almost every where di�erentiable) parameter on x(s) such that

j�(s) � sj � �(1� cos(�

5

(�)):

It follows also that s could be considered as an almost natural parameter on x(s), for the length of x(s) the

following is true (see also Lemma 6 of [MM]).

Lemma 6. Let x(s); 0 � s � s

0

be the maximal integral trajectory of the vector �eld X

�

. Then for the length

L(s

1

; s

2

) of an arbitrary interval x(s); s

1

� s � s

2

the following is true:

jL(s

1

; s

2

)� (s

2

� s

1

)j � �

6

(�)

for some �

6

(�)! 0 as �! 0.

Denote by �

�

:M

n

nB(o

�

; �)!M

n

nB(o

�

; �) the shift on the parameter � along integral trajectories x(s),

i.e., the map sending the point x(s) to the point x(s + �) when s+ � � s

0

or to x(s

0

) when s+ � � s

0

. The

most important property of this deformation is the following "comparison angle almost non-increasing". For

previous version see Lemma 7 of [MM].

Lemma 7. Let z(s) be the integral trajectory of the vector �eld X

�

, x be some �xed point, �(s) =

~

](xoz(s))

and  (s) =

~

](xz(s)o) denote correspondingly the comparison angles o and z of the triangle 4

xoz(s)

. Then

1) if �=2 �  (s) � �� �, then �(s) is almost nonincreasing function on s, i.e., for their left derivative the

following is true:

�

0

�

(s) � �

1

7

(�);
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for some function �

1

7

(�)! 0 as �! 0 and arbitrary � > 0.

2) If � �  (s) � �=2, then

�

0

�

(s) �

1� dist

0

�

(o; z(s))

dist(o; z(s))

ctg( (s)) + �

2

7

(�)

for some �

2

7

(�)! 0 as �! 0 and arbitrary � > 0.

Proof

4

. For dist(o; z(s)) � inj the trajectory z(s) coincides with a minimal geodesic issuing from a base point

o, and the claim of the lemma coincides with a monotonicity property of a comparison angle, see Proposition 2

in [MM]. Therefore, below we are assuming that dist(o; z(s)) > inj. First we consider the case when the

comparison angle  =

~

](xzo), i.e., the angle �z of the comparison triangle 4

oxz

is not less than �=2.

Denote by r(s) = dist(o; z(s)), d(s) = dist(x; z(s)) and z = z(s), and let 4

�x�o�z

be the comparison triangle

in the sphere S

2

, and ~z(s") for s" % s denote the point on a geodesic segment 

�o�z

connecting �o and �z such

that dist(�o; ~z(s")) = dist(o; z(s")), i.e., dist(~z(s"); �z) = (s� s")r

0

�

(s)) + o(js� s"j). The left derivative of the

distance function d(s) between x and the point z(s) of the integral trajectory of the vector �eld X

�

equals

d

0

�

(s) = �maxf(X

�

(z);�)j� 2 O

zx

g

see (6.5) in [MM], where O

zx

denotes the set of directions of all minimal geodesics from z to x. By de�nition

X

�

(z) = f

i

(z)X

z

i

;�

(z), where

P

i

f

i

= 1 and X

z

i

;�

(z) are parallel transports of directions of some minimal

geodesics connecting points z

i

with the point o, where z

i

tends to z if �! 0. Because of this as �! directions

X

z

i

;�

(z) tend to directions X

i

of some minimal geodesics from z to o. Hence,

(1.11) d

0

�

(s)! �maxf(f

i

X

i

;�)j� 2 O

zx

g as �! 0:

Due to the Proposition 1 the angle between arbitrary minimal geodesic connecting z with x and every direction

X

i

(of some minimal geodesic from z to o) is not less than the angle  =

~

](xzo) - angle �z of the comparison

triangle 4

�o�x�z

. Therefore, due to  � �=2

(1.12) d(s") = d(s) + d

0

�

(s)(s� s") + o(js� s"j) � d(s)� (s� s")cos( + !

1

(�)) + o(js� s"j):

for some !

1

(�)! 0 as �! 0. By the same reasoning

r

0

�

(s)! �maxf(f

i

X

i

;�)j� 2 O

zo

g;

or, because of j(f

i

X

i

;�)j �

P

i

f

i

= 1 we have

(1.13) r(s") � r(s) � (s� s"):

Now, construct in the sphere S

2

the comparison triangle 4

�o�x�z(s")

to the triangle 4

oxz(s")

and such that the

point �z(s") belongs to the same hemisphere relative to the geodesic 

�o�x

as z(s), i.e., �z(s")! �z(s) as s"% s.

Then from (1.12)

(1.14) dist(�x; �z(s")) � d(s)� (s� s")cos( + !

1

(�)) + o(js� s"j);

4

Here we go back to our original simple geometric arguments instead of rather long and somewhat analytical proof which we

choose in [MM].
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and from (1.13)

(1.15.) dist(�z(s); �z(s")) � (s� s") + o(js� s"j):

By de�nition the angle ](�x�z~z) =  , and because for the point ~z from (1.13) we have

(1.16,) dist(�z(s); ~z(s")) � (s� s") + o(js� s"j):

we conclude

(1.17) dist(�x; ~z(s")) = d(s)� dist(�z(s); ~z(s"))cos( ) + o(js� s"j) � d(s)� (s� s")cos( ) + o(js� s"j)

due to  � �=2. Inequalities (1.14), (1.17) show that the point �z(s") having the same distance to �o as the point

~z(s") at the same time has distance to �x almost bigger than the point ~z(s") which belongs to the geodesic

interval 

�o�z

,

dist(�x; �z(s"))� dist(�x; ~z(s")) � (s� s")(cos( + !

1

(�))� cos( )) + o(js� s"j)

(1.18) � �(s� s")!

1

(�) + o(js� s"j)

for some function !

1

(�) ! 0 as � ! 0. Therefore, the point �z(s") belongs to the exterior of the comparison

triangle 4

�o�x�z

, or belongs to the interior of this triangle, but has a distance less than (s� s")(sin( ))

�1

!

1

(�)

to the side 

�o�z

. Indeed, consider in S

2

a circle of points having distance r(s") to the point �o. Both �z(s") and

~z(s") belong to this circle, and the angle between 

�x~z(s")

and this circle tends to  ��=2 as s"% s. Thus the

�rst variation formula gives:

(1.19) jdist(�x; �z(s"))� dist(�x; ~z(s"))j = dist(�z(s"); ~z(s"))sin( ) + o(dist(�z(s"); ~z(s"))):

Because dist(�o; �z) � inj this easily implies that the angle ](�x�o�z(s")) is almost bigger than ](�x�o~z(s")) =

](�x�o�z(s)), i.e., for some constant �

(1.20) ](�x�o~z(s)) � ](�x�o�z(s")) + �

(s� s")

inj sin( )

!

1

(�):

For the proof consider the triangle 4

�o~z(s")�z(s")

. It has sides 

�o~z(s")

and 

�o�z(s")

of order inj, while the third

side 

~z(s")�z(s")

is of order (s� s")(sin( ))

�1

!

1

(�) ! 0 as � ! 0. Applying to this triangle sphere geometry

from  � � � � we arrive at (1.20), which obviously leads to the claim of the lemma when �=2 �  � � � �:

�

0

�

(s) � �

1

7

(�);

where we denote by �

1

7

(�) = �(inj)

�1

(sin( ))

�1

!

1

(�)! 0 as �! 0 and for arbitrary � > 0.

When � �  � �=2, then instead of (1.12) we have

d(s") � d(s)� (s� s")cos( + !

2

(�)) + o(js� s"j)

for some !

2

(�)! 0 as �! 0, and accordingly

(1.21) dist(�x; �z(s")) � d(s)� (s� s")cos( + !

2

(�)) + o(js� s"j):
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Instead of (1.13) we use

(1.22) dist(z(s); z(s")) � r

0

�

(s)(s� s") + o(js� s"j):

Then ](�x�z~z) =  yields in the case  � �=2 the following inequality

(1.23) dist(�x; ~z(s")) = d(s)� dist(�z(s); ~z(s"))cos( ) + o(js� s"j) � d(s)� r

0

�

(s)(s� s")cos( ) + o(js� s"j):

Now inequalities (1.21) and (1.23) in the same way as above show that the point �z(s") having the same

distance to �o as the point ~z(s") at the same time has distance to �x almost bigger than the point ~z(s") which

belongs to the geodesic interval 

�o�z

,

(1.24) dist(�x; �z(s"))�dist(�x; ~z(s")) � j1�r

0

�

(s)j(s�s")cos( )+(s�s")(cos( +!

2

(�))�cos( ))+o(js�s"j):

Considering the triangle 4

�o�z(s")~z(s")

we see that the estimate (1.24) as above leads to the following estimate

on its side 

�z(s")~z(s")

:

dist(�z(s"); ~z(s")) � (s� s")

1� r

0

�

(s)

r(s)

ctg( ) + (s� s")�

2

7

(�)) + o(s� s");

which in turn implies the following estimate on the derivative of the comparison angle �(s) = ](�x�o~z(s))

�

0

�

(s) �

1� r

0

�

(s)

r(s)

ctg( ) + �

2

7

(�)

for some �

2

7

(�)! 0 as �! 0 for arbitrary � > 0. Lemma 7 is proved.

Lemma 8. For arbitrary trajectory z(s) and a point x such that dist(o; z(s)) � dist(o; x) � sin(�)dist(o; x),

where � < �=2 the comparison angle �(s) =

~

](xoz(s)) is almost non-increasing function:

�

0

�

(s) � �

1

7

(�);

for some function �

1

7

(�)! 0 as �.

Proof. For the proof compare the triangle 4

oxz(s)

with a plane triangle 4

o

0

x

0

z

0

(s)

with the same sides. Then

conditions dist(o; z(s)) � dist(o; x) � sin(�)dist(o; x) and � < �=2 lead to ](o

0

) < �=2 and  

0

= ](z

0

(s)) >

�=2. Applying Proposition 1 we have  (s) �  

0

> �=2, and the claim follows from Lemma 7.

3. Almost isometry V

�

: S

n

!M

n

.

Let �o be some point of S

n

which is �=2-close to the base point o of M

n

. Take some n-cross f

�

P

i

; i = 1; :::; ng

in the equatorial sphere S

n�1

of S

n

considering �o as a pole, i.e., the set of points such that

dist(�o;

�

P

i

) � �=2; dist(

�

P

i

;

�

P

j

) � �=2 for i 6= j;

and �nd some points P

i

in M

n

which are �=2-close to them. Due to Lemmas 2 and 3 we see that angles

](P

i

oP

j

) are almost equal to ](

�

P

i

�o

�

P

j

), i.e., for some constant �

1

9

(�) of order �, see Remark 1 above, we have

j](P

i

oP

j

)� ](

�

P

i

�o

�

P

j

)j � �

1

9

(�):
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Therefore, their exists an isometry I : T

�o

S

n

! T

o

M

n

such that for unit directions �e

i

of minimal geodesics



�o

�

P

i

in S

n

connecting points �o and

�

P

i

and unit vectors e

i

of directions of arbitrary minimal geodesics 

oP

i

in

M

n

connecting points o and P

i

the following is true

](e

i

; I(�e

i

)) � �

2

9

(�);

for some �

2

9

(�) ! 0 of order � as � ! 0. In particular, e

i

is a base of a tangent plane T

o

M

n

for � small

enough. Now, let ~x be some point of S

n

and x an arbitrary point of M

n

which is �=2-close to it and such that

dist(�o; ~x); dist(��o; ~x) and dist(o; x); dist(o

�

; x) are bigger than �.

From Lemma 3 we conclude that for an arbitrary minimal geodesic 

ox

between o and x and i we have

j]( _

ox

; e

i

)� ]( _

�o~x

; �e

i

)j � �

3

9

(�);

for some �

3

9

(�)! 0 of order � as �! 0. Because every unit vector of T

o

M

n

is determined by angles with the

base vectors e

i

we are able to prove the following statement.

Lemma 9. Let ~x be some point of S

n

and x an arbitrary point of M

n

which is �=2-close to it and such that

dist(�o; ~x); dist(��o; ~x) and dist(o; x); dist(o

�

; x) are bigger than �. Then for an arbitrary minimal geodesic 

ox

between o and x

]( _

ox

; I( _

�o~x

) � �

9

(�)

for some �

9

(�) of order � as �! 0.

Now we de�ne the map V

�

: S

n

! M

n

. Without loss of generality we may assume that �

9

(�) � 2�.

According to Lemma 7 there exists � in the de�nition of the �eld X

�

so small that

(1.25) ��

1

7

(�) < � < �

9

(�):

De�nition 1. For a point ~x = exp

�o

(d�v) of S

n

, where �v is a unit vector we denote by V

�

(~x) the point

(1.26) V

�

(~x) = �

s(d)

(exp

o

(inj I(�v))) for s(d) = d� inj � 4��

9

(�):

Or V

�

(~x) = �

s(d)

(x

�

) where d equals the distance between �o and ~x, and x

�

is the point of M

n

very near to the

base point o and such that the unique minimal geodesic from o to x

�

has direction I(�v) where �v is the direction

of a minimal geodesic from �o to ~x.

Remark 2. We can not control a behavior of an arbitrary geodesic  issuing from o if  is not minimal, e.g.,

for such  the "comparison angle almost non-increasing" property proved in Lemma 7 above could be wrong.

This is the reason why we are using our deformation �

s

instead of an exponential map.

Lemma 10. For all points ~x from S

n

with � < dist(�o; ~x) < � � � we have dist(~x; V

�

(~x)) < �

10

(�) for some

�

10

(�) of order � as �! 0.

Proof. For a point ~x �nd some point x of M

n

which is �=2 close to it. Due to the last Lemma

](

ox

; I( _

�o~x

) < �

9

(�);

or for the point x

�

= exp

o

(injI( _

�o~x

))) belonging to a geodesic issuing from o with a direction I(�v) where �v is

the direction of 

�o~x

we have

](

ox

�

; _

ox

) < �

9

(�):
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Take the trajectory x

�

(s); inj � s � s(d) of the vector �eld X

�

issuing from the point x

�

= x

�

(inj) and

consider the comparison angle �(s) =

~

](xox

�

(s)). Because of the last estimate

dist(o; x)sin(](

ox

�

; _

ox

)) < ��

9

(�) < � � � < dist(o; x) � dist(o; x

�

(inj))

for � su�ciently small because �

9

(�) is of order �. Thus due to Lemma 8 at the initial moment �

0

(inj) � �

1

7

(�).

Now, if [inj; s

1

] denote the maximal interval, such that

(1.27) �(s) � 3�

9

(�) for all 0 � s � s

1

we obtain from our de�nition (1.26)

dist(o; x)sin(](

ox

�

(s)

; _

ox

)) < 3��

9

(�) < (d� s(d));

implying that for all inj � s � s

1

conditions of Lemma 8 are satis�ed. Hence, applying Lemmas 7{8 we

conclude that for all inj � s � s

1

�(s) � �(inj) + ��

1

7

< 2�

9

(�);

or that s

1

is not a maximal value unless s

1

= s(d). Hence (1.27) is true for all 0 � s � s(d). Therefore,

]( _

ox

�

(s(d))

; _

ox

) < 3�

9

(�);

or

(1.28) ]( _

oV

�

(~x)

; _

ox

) < 3�

9

(�);

where �

9

(�) is of order � when �! 0. Consider the triangle 4

oxV

�

(~x)

. From Lemma 6 we see that it is almost

equilateral:

(1.29) jdist(o; x)� dist(o; V

�

(~x))j � �

6

(�) + (d� s(d))

and due to (1.28) has small angle at the vertex o. Thus using Proposition 1 we conclude that its side 

xV

�

(~x)

is small:

(1.30) dist(x; V

�

(~x)) < �

10

(�);

where �

10

(�) is of the same order � as �! 0. Lemma 10 is proved.

4. Nearly cube partition of the sphere. Fix some point �o of the sphere S

n

, and denote by f�

1

; :::; �

n

g,

where 0 � �

1

� 2� and 0 � �

i

� �; i = 2; :::; n a system of polar "coordinates" on S

n

such that �o has

zero coordinates. If Sing denotes the set of points of the sphere S

n

where some of these coordinates equal

zero, then S

n

nSing is a cell, and the map sending the point p to its coordinates f�

1

(p); :::; �

n

(p)g provides a

di�eomorphism � : (S

n

nSing)! � between S

n

nSing and an open cube � = (0; 2�)�(o; �)�(0; �)�:::�(0; �).

Denote by �

�

= (�; 2� � �) � (�; � � �) � (�; � � �)� :::� (�; � � �) the set of all interior points of � having

distance bigger than � to the boundary of �. In what follows � ! 0, and without loss of generality we may

assume below, that the number �=� is integer. For �-partitions � = �

1

i

< �

2

i

< ::: < �

N

i

of the intervals

(�; � � �) for i > 1 and (�; 2� � �) for i = 1 correspondingly, we denote by

�(k

1

; k

2

; :::; k

n

) = (�

k

1

1

; �

k

1

1

+ �)� (�

k

2

2

; �

k

2

2

+ �)� :::� (�

k

n

n

; �

k

n

n

+ �)
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the cubes of the corresponding partition of �

�

, which are products of the partitions of the intervals described

above. Denote by � = fk

1

; :::; k

n

g the multiindex of the cube of this partition and corresponding cube by �

�

.

Using the coordinate map � : (S

n

nSing)! � we de�ne S

n

�

= �

�1

(�

�

) and its partition by

�

B

�

= �

�1

(�

�

).

By

�

B

�

�

we denote the subset of

�

B

�

consisting of all interior points with a distance at least � to a boundary

@

�

B

�

of

�

B

�

. In every set

�

B

�

�

choose some point �z

�

and the orthonormal base e

�

i

; i = 1; :::; n at this point.

Let �p

�

i

= exp

�z

�

(�e

�

i

) and de�ne by

�

d

�

i

(�z) = dist(�z; �p

�

i

) the distance from �z to the point �p

�

i

. By de�nition

�

B

�

; f�p

�

i

; i = 1; :::; ng belong to � + �-neighborhood of �z

�

, and for � + � << �=2 all functions

�

d

�

i

are smooth

on

�

B

�

, for an arbitrary �z 2

�

B

�

there exists for every i a unique minimal geodesic �

�z;i

connecting �z with �p

�

i

,

which direction

�

X

i

(�z) at the point �z is the gradient of

�

d

�

i

. Moreover, because

�

B

�

belongs to �-neighborhood

of �z

�

in all triangles 4

�z�z

�

�p

�

i

the side �z�z

�

has length less than � which is small compare to � - the length of

�z

�

�p

�

i

due to our choice of � = �

1=3

. Therefore, all triangles 4

�z�z

�

�p

�

i

are very thin, which easily leads to the

following statement.

Lemma 11. For an arbitrary �z of

�

B

�

the unitary vectors

�

X

i

(�z); i = 1; :::; n form an almost orthogonal base,

i.e.,

j(

�

X

i

(�z);

�

X

j

(�z))� �

ij

j � �

1

(�)

for some function �

1

(�)! 0 as �! 0 and not depending on �.

For a point �z of

�

B

�

denote by

�

D

�

the map sending �z to f

�

d

�

1

(�z); :::;

�

d

�

n

(�z)g. As a corollary of the last

Lemma we conclude that this map is an almost isometry and, in particular, deduce that the volumes of

�

B

�

and

�

D

�

(

�

B

�

) are almost equal. We sum up all volume inequalities in the following lemma.

Lemma 12. For some function �

2

(�)! 0 as �! 0

1) 1� �

2

(�) � jvol(

�

B

�

)=vol(

�

D

�

(

�

B

�

))j � 1 + �

2

(�),

2) jvol(S

n

)�

P

�

vol(

�

D

�

(

�

B

�

))j � �

2

(�)

3) vol(

�

B

�

�

) � (1 � �

2

(�))vol(

�

B

�

), where by

�

B

�

�

we denote the subset of

�

B

�

of all interior points having

distance bigger than � to the boundary of

�

B

�

.

Remark 3. Clearly, the same construction of a partition B

�

and maps D

�

: B

�

! R

n

similar to the

constructed above

�

D

�

:

�

B

�

! R

n

may be repeated for an arbitrary smooth manifold. In addition, if two such

manifolds M

n

i

; i = 1; 2 are close then their partitions and maps B

�

i

and D

�

i

also can be chosen close to each

other. This naturally provides the proof of the fact that the volume is a continuous function on the subset of

all manifolds with uniformly bounded from below injectivity radius, bounded diameter and absolute value of the

sectional curvature. Below we prove that the volume of a manifold M

n

is su�ciently close to the volume of

S

n

assuming only that K

min

o

� 1 and the Gromov-Hausdor� distance between M

n

and S

n

is small.

Volume comparison. Now note that on a subset B

�

in M

n

su�ciently close to

�

B

�

we could de�ne the

map D

�

: B

�

! R

n

similar to

�

D

�

:

�

B

�

! R

n

in the following way. Take some points p

�

i

in M

n

which

are �-close to �p

�

i

in S

n

and denote as before by D

�

the map sending a point z of B

�

to fd

�

1

(z); :::; d

�

n

(z)g

where d

�

i

(z) = dist

M

n

(z; p

�

i

)

5

. As above, functions d

�

i

(z) are almost everywhere di�erentiable and such that

their gradient �elds X

i

are unit ones almost everywhere. Therefore, the Jacobian of the map D

�

is almost

everywhere not bigger than 1, i.e., this map is volume contracting, and we arrive at the following statement.

Lemma 13. vol(B

�

) � vol(D

�

(B

�

)).

Proof. For almost all points z in B

�

a minimal geodesic 

z;i

in M

n

connecting z and p

�

i

is unique. The

distance function d

�

i

is di�erentiable at the point z and for its derivative in a direction X we have by the

5

another choice which is interesting to consider is d

�

i

(z) = dist

Z

(z; �p

�

i

)
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�rst variation formula Xd

�

i

= (X;X

i

), where we denote by X

i

the direction of 

z;i

at the point z, see (6.5) of

[MM]. Hence, taking some orthonormal base fE

i

; i = 1; :::; ng at the point z we see that the Jacobian of the

map D

�

has a matrix

(dD

�

)

ij

= (E

k

; X

i

):

Because all vectors X

i

have unit length the determinant of dD

�

is not bigger than 1. Lemma 13 is proved.

If the set B

�

is close to

�

B

�

its image D

�

(B

�

) is also close to the image

�

D

�

(

�

B

�

). Generally, this does not

guaranty that the volume D

�

(B

�

) is close to the volume of

�

D

�

(

�

B

�

). But this occurs if we de�ne sets B

�

in

a such way that their images would cover substantial parts of corresponding

�

B

�

. In order to do this we use

the above constructed map V

�

: S

n

!M

n

almost inverse to the map V :M

n

! S

n

.

De�nition 2. B

�

= V

�

((

�

B

�

)

2�

9

(�)

).

First note that due to Lemma 10 sets B

�

do not intersect. Therefore, the following is true.

Lemma 14.

vol(M

n

) �

X

�

vol(B

�

):

From the Lemma 10 and de�nitions of

�

D

�

and D

�

we also immediately deduce the following.

Lemma 15. dist(

�

D

�

(~x); D

�

� V

�

(~x)) < �

15

(�), for some �

15

(�) of order � as �! 0.

Next lemma shows by a simple topological reason that because the map V

�

is continuous the imagesD

�

(B

�

)

cover substantial parts of the corresponding images

�

D

�

(

�

B

�

).

Lemma 16. D

�

(B

�

) � (

�

D

�

((

�

B

�

)

2�

10

(�)

))

�

15

(�)

.

Proof. For every � images

�

D

�

((

�

B

�

)

2�

10

(�)

) and D

�

(B

�

) are images of a topological ball (

�

B

�

)

2�

10

(�)

under

correspondingly: a homeomorphism H

0

=

�

D

�

and a continuous map H

1

= D

�

� V

�

. By Lemma 15 these

maps are close

(1.31) dist(H

0

(�x); H

1

(�x)) � �

15

(�):

IfH

s

(�x) denotes the point of an interval connectingH

0

(�x) andH

1

(�x) in R

n

which divides this interval in a ratio

s : (1� s), then H

s

:

�

B

�

! R

n

will be a homotopy between H

0

and H

1

. From (1.31) it follows that the image

of the boundary @

�

B

�

of

�

B

�

under this homotopy H

s

does not intersect with the set (

�

D

�

((

�

B

�

)

2�

10

(�)

))

�

15

(�)

of

all interior points of H

0

((

�

B

�

)

2�

10

(�)

) =

�

D

�

((

�

B

�

)

2�

10

(�)

) having distance not less than �

15

(�) to its boundary,

which obviously implies that every point from (

�

D

�

((

�

B

�

)

2�

10

(�)

))

�

15

(�)

belongs also to H

1

((

�

B

�

)

2�

10

(�)

) =

D

�

� V

�

(B

�

). Lemma 16 is proved.

Now to complete the proof of Theorem E it is su�cient to note that because the constants �

10

(�) and

�

15

(�) are of order � when � ! 0, i.e., because of � << � they are smaller than the size � of

�

B

�

due to the

volume estimates of Lemmas 12 and 13 we see that the sum of volumes of (

�

D

�

((

�

B

�

2�

10

(�)

)

�

15

(�)

) tends to the

sum of volumes of

�

B

�

when �! 0, implying that

vol(M

n

) � vol(S

n

)� C(�)

for some C(�)! 0 as �! 0. Together with (1.2) this yields the claim of Theorem E. Theorem E is proved.
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II. Proof of Theorem F

As we already mentioned, the Theorem F follows from [MS] (see Lemma 3.3) with a one minor modi�cation.

For the reader's convenience, we are giving here a complete proof repeating arguments from [MS].

Let U � T

o

M

n

be a starshaped open disk domain whose boundary is the tangential cut locus to o. For

~

U = exp

o

(U) we see that M

n

n

~

U = cutlocus(o) has no interior points and

(2.1) vol(

~

U) = vol(M

n

):

De�ne a map W : S

n

nf�og ! M

n

by W (�x) = exp

o

� I � exp

�1

�o

(�x), where I : T

�o

S

n

! T

o

M

n

is some isometry.

Setting

�

U = exp

�o

�I

�1

(U), we see thatW is a di�eomorphism between

�

U and

~

U . Easy to see that Proposition 1

is equivalent to saying that W does not increase distances on

�

U . Therefore, for arbitrary subdomain

�

D of

�

U

we have

(2.2) vol(W (

�

D)) � vol(

�

D):

Because W is a di�eomorphism between

�

U and

~

U we have W

�1

(

~

UnW (

�

D)) =

�

Un(

�

D). Hence, due to (2.2)

(2.3) vol(

~

UnW (

�

D)) � vol(

�

Un

�

D):

Combining (2.1){(2.3) with the condition vol(S

n

) � � � vol(M

n

) � vol(S

n

) of the Theorem F we conclude

that for an arbitrary domain

�

D in S

n

(2.4) vol(

�

D)� � � vol(W (

�

D)) � vol(

�

D):

Denote by !(�) the volume of a ball of radius � in S

n

. Last inequality implies the following lemma.

Lemma 2.1, see Lemma 3.2, [MS]. Let vol(M

n

) � vol(S

n

)� �. Then

�

U is �(�)-dense in S

n

for �(�) such

that !(�(�)) = �.

Proof. If the ball B(�x; �) has no intersection with

�

U , then vol(

�

U) � vol(S

n

nB(�x; �)) = vol(S

n

) � !(�). Due

to vol(M

n

) � vol(S

n

)� � and (2.1), (2.2) !(�) � � and the claim of the Lemma follows.

Recall that a map f : X ! Y (does not necessary continuous) is said to be an �-approximation if the

image f(X) is �-dense in Y and for any x; y 2 X , it holds that jdist(f(x); f(y)) � dist(x; y)j < �. In an

equivalent way the distance d

GH

(X;Y ) can be de�ned as the in�mum of the values of � > 0 such that there

exist �-approximations f : X ! Y and g : Y ! X . Because in our case both M

n

and S

n

have diameters

uniformly bounded from above, diam(M

n

); diam(S

n

) � �; we see that the Gromov-Hausdor� convergence

d

GH

(M

n

; S

n

) <

~

C(�) for some

~

C(�) ! 0 as � ! 0 is equivalent to the existence of maps f : M

n

! S

n

and

g : S

n

!M

n

such that for some C(�)! 0 as �! 0 the following is true:

1� C(�) <

dist(f(x); f(y))

dist(x; y)

< 1 + C(�); 1� C(�) <

dist(g(�x); g(�y))

dist(�x; �y)

< 1 + C(�);

for arbitrary x; y 2 M

n

and �x; �y 2 S

n

such that dist(x; y); dist(�x; �y) > C(�). We call such maps also C(�)-

approximations. First we verify that the map W : S

n

!M

n

satis�es the last property.



16 VALERY MARENICH

Lemma 2.2, see Lemma 3.3 of [MS]. For two points �x and �y from

�

U such that dist(�x; �y) > �

1=2

(4�)

dist(W (�x);W (�y))

dist(�x; �y)

> 1� �

1=2

(4�):

Proof. For �x and �y in S

n

denote by 2�r = dist(�x; �y) for �r > �. The balls

�

B

1

= B(�x; �r) and

�

B

2

= B(�y; �r) are

disjoint. Setting

�

D = f

�

B

1

[

�

B

2

g \

�

U

we obtain that

vol(

�

D) � vol(

�

B

1

) + vol(

�

B

2

)� vol(S

n

n

�

U):

Because W is volume nonincreasing vol(

�

U) � vol(

~

U) = vol(M

n

) � vol(S

n

)� �, or

(2.5) vol(

�

D) � vol(

�

B

1

) + vol(

�

B

2

)� � = 2!(�r)� �;

and (2.4) implies

(2.6) vol(W (D)) � 2!(�r)� 2�:

Denote by x = W (�x), y = W (�y), by �z the midpoint of some minimal geodesic connecting x and y and

r = dist(x; y). Because W does not increase distances we see that W (

�

D) � D where

D = B(x; �r) [B(y; �r):

Because r � �r an intersection of B(x; �r) and B(y; �r) contains a ball B = B(z; �r�r). Without loss of generality

we can assume that z 2

~

U . (If z 62

~

U , i.e., z 2 cutlocus(o) we easily �nd z

0

2

~

U su�ciently close to z and

such that B(z

0

; r

0

) is in D for r

0

arbitrarily close to �r � r.) Because W is distance contracting the preimage

W

�1

(B(z; �r � r) \

~

U) contains B(�z; �r � r) \

�

U where �z = W

�1

(z). Because as above in (2.5) we have

vol(B(�z; �r � r) \

�

U) � vol(B(�z; �r � r)) � � from (2.4) we obtain

vol(B) � !(�r � r)� 2�

and

(2.7) vol(D) � 2!(r)� !(�r � r) + 2�:

Last inequality together with (2.6) leads to

0 � !(�r)� !(r) + !(�r � r) � 4�

from which we easily deduce

(2.8) 0 � �r � r � !

�1

(4�):

Therefore,

(2.9)

dist(W (�x);W (�y))

dist(�x; �y)

=

r

�r

> 1�

!

�1

(4�)

�r

> 1�

�

1=2

(4�)

�(4�)

= 1� �

1=2

(4�):

Lemma 2.2 is proved.

Because W does not increase distances last Lemma means that W is �

1=2

(4�)-approximation between S

n

and M

n

tending to isometry as �! 0. Clearly, the map

~

W :M

n

! S

n

which equals W

�1

on

~

U and sending

cutlocusfog to ��o provides an C(�)-approximation between M

n

and S

n

for C(�) = �

1=2

(4�)(1� �

1=2

(4�))

�1

.

Because C(�)! 0 as �! 0 this yields that d

GH

(M

n

; S

n

) <

~

C(�)! 0 for some

~

C(�)! 0 as �! 0. Theorem F

is proved.
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