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Abstrat

We study the existene and uniqueness of strong solutions for the equations of

nonhomogeneous asymmetri uids. We use an iterative approah and we prove that

the approximate solutions onstruted by this method onverge to the strong solution

of these equations. We also give onvergene rate bounds.

1 Introdution

In this paper, we study the equations of a nonhomogeneous visous inompressible asym-

metri uid. These equations are onsidered in a bounded domain 
 � IR

3

, with boundary

�, in a time interval [0; T ℄. Let u(x; t) 2 IR

3

; w(x; t) 2 IR

3

; �(x; t) 2 IR and p(x; t) 2 IR,

denote respetively, the veloity, the angular veloity of internal rotation, the density and

the pressure at a point x 2 
 and at time t 2 [0; T ℄. Then, the governing equations are

�

�u

�t

+ �(u � r)u� (�+ �

r

)�u+rp = 2�

r

rotw + �f;

div u = 0; (1.1)

�

�w

�t

+ �(u � r)w � (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)r div w + 4�

r

w = 2�

r

rot u+ �g;

��

�t

+ (u � r)� = 0;

in 
� (0; T ), with the following boundary and initial onditions

u(x; t) = 0; w(x; t) = 0 on �� (0; T );
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u(x; 0) = u

0

(x); w(x; 0) = w

0

(x); in 
; (1.2)

�(x; 0) = �

0

(x) in 
:

Here f(x; t) and g(x; t) are densities of linear and angular momentum, respetively.

The positive onstants �; �

r

; 

0

; 

a

; 

d

haraterize isotropi properties of the uid; � is

the usual Newtonian visosity; �

r

; 

0

; 

a

; 

d

are new positive visosities related to the

asymmetry of the stress tensor and in onsequene related to the appearane of the �eld

of internal rotation w; these onstants satisfy 

0

+ 

d

> 

a

. The expressions r; �; div and

rot denote, the gradient, Laplaian, divergene and rotational operators respetively (we

also denote

�u

�t

by u

t

); the i

th

omponent of (u � r)v in artesian oordinates is given by

[(u � r)v℄

i

=

P

3

j=1

u

j

�v

i

�x

j

; also u � r� =

P

3

j=1

u

j

��

�x

j

.

For the derivation and physial disussion of equations (1.1)-(1.2) see D.W. Condi�

and J.S. Dahler (1964), L.G. Petrosyan (1984) and the reent book of G. Lukaszewiz

(1999). We observe that this model of uids inludes as a partiular ase the lassial

Navier-Stokes equations, whih has been thoroughly studied (see for instane the lassial

books of O. Ladyzhenskaya (1969), J.L. Lions (1969) and R. Temam (1979) and the

referenes there in).

It also inludes the redued model of the nonhomogeneous Navier-Stokes equations,

whih has been less studied than the previous ases (see for instane, S. Antontsev, A.

Kazhikov and V. Monakhov (1990), J. Simon (1990), J. Kim (1987), O. Ladyzhenskaya

and V. Solonnikov (1976), R. Salvi (1991), J.L. Boldrini and M.A. Rojas-Medar (1992),

(1997) and P.L. Lions (1996).

Conerning the generalized model of an asymmetri uid, onsidered in this paper,

G. Lukaszewiz (1990) established the existene of loal weak solutions for (1.1)-(1.2)

under ertain assumptions, using linearization and an almost �xed point theorem. In

the same paper Lukaszewiz remarked the possibility of proving the existene of strong

solutions (under the hypothesis that the initial density is separated from zero) by the

tehniques used in Lukaszewiz (1988) and (1989) (linearization and �xed point theorems;

Lukaszewiz (1988) and (1989) assume onstant density).

The �rst result on the existene and uniqueness of strong solution (loal and global)

for problem (1.1)-(1.2) was proved by J.L. Boldrini and M.A. Rojas-Medar (1998) using

the spetral semi-Galerkin method and ompatness arguments. The onvergene rate of

this method was established by J.L. Boldrini and M.A. Rojas-Medar (1996).

In this work, we use another approah to obtain the existene and uniqueness of a

strong solution. We use here an iterative proess, onsidering a sequene of linear problems.

For eah linear problem it is easy to show the existene and uniqueness of a strong solution

(for instane, using the spetral Semi-Galerkin method as in J.L. Boldrini and M.A. Rojas-

Medar (1998)). Then, we obtain a priori estimates for the sequene generated by the

iterative proess. In the next step we show that the sequene is a Cauhy sequene in an
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appropriate Banah spae, and onsequently, we obtain strong onvergene. With these

onvergenes, the strong solution for the full original nonlinear problem is easily obtained.

As by-produt we obtain bounds for the onvergene rate of the method.

We hope that the tehniques developed here ould be adapted to the ase where full

disretization is used. This question is presently under investigation.

We remark that, from the tehnial point of view, the hyperboli harater of the

transport equation in (1.1) and the extra nonlinearities of the problem make the tehnial

arguments more elaborated than those used in the ase of onstant density (ompare with

Ortega-Torres and Rojas-Medar (1997)).

This paper is organized as follows: in Setion 2, we state some preliminary results that

will be useful in the rest of the paper; we desribe the approximation method and state the

result of existene and uniqueness of a strong solution and the bound for the onvergene

rate. In Setion 3, we derive some a priori estimates that form the theoretial basis in this

problem. In Setion 4, we stablish that the solutions of a sequene of linearized problems

is a Cauhy sequene and we prove our main result. In Setion 5, we give error estimates

for the pressure.

Finally, as it is usual in this ontext, in order to simplify the notation we will denote

by ; C

1

; :::; M; M

1

; ::: generi positive onstants depending only on the domain and the

�xed data of the problem.
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2 Preliminaries

Let 
 be a bounded domain in IR

3

with a smooth boundary �
; T > 0 an arbitrary real

number. The funtions in this paper are either IR or IR

3

-valued, and sometimes we will

not distinguish between them in our notation. This be will lear from the ontext. We

will onsider the usual Sobolev spaes

W

m;q

(D) = f f 2 L

q

(
) = k�

�

fk

L

q

(D)

) <1; j�j � m g;

for m 2 IN; 1 � p <1 D = 
 or D = 
� (0; T ), with the usual norm. When q = 2 we

denote H

m

(D) =W

m;2

(D) and H

m

0

(D) = losure of C

1

0

(D) in H

m

(D). We put

C

1

0;�

(
) = fv 2 C

1

0

(
)= div v = 0 in 
g
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H = losure of C

1

0;�

(
) in L

2

(
);

V = losure of C

1

0;�

(
) in H

1

(
):

It is possible to show that

V = fv 2 H

1

0

(
) = div v = 0 in 
g:

We denote by V

�

the dual spae of V and by H

�1

the dual spae of H

1

0

(
).

We reall the Helmholtz deomposition of vetor �elds L

2

(
) = H � G, were G =

f� = � = rp; p 2 H

1

(
)g.

Throughout the paper P will denote the orthogonal projetion from L

2

(
) onto H.

Then, the operator A : D(A) ,! H �! H given by A = �P� with domain D(A) =

V \ H

2

(
) is alled the Stokes Operator. It is well known that A is a positive de�nite,

self-adjoint operator and it is haraterized by the relation

(Aw; v) = (rw;rv); 8w 2 D(A); v 2 V:

When 
 is of lass C

1;1

the norms kuk

H

2
and kAuk are equivalent in D(A) (see

C. Amrouhe and V. Girault (1991)). We assume known other properties of A, see for

instane, O. Ladyzhenskaya (1969), J.L. Lions (1969) or R. Temam (1979). The same

remark is valid for the Laplaian operator B = �� with Dirihlet boundary onditions

and domain D(B) = H

1

0

(
) \H

2

(
).

Using the properties of P , we an reformulate the problem (1.1)-(1.2) as follow:

Find u; w; � in suitable spaes (whih will be de�ned later on), satisfying

P (�u

t

) + (�+ �

r

)Au+ P (�u � ru) = 2�

r

P (rotw) + P (�f); (2.1)

�w

t

+ (

a

+ 

d

)Bw + �u � rw � (

0

+ 

d

� 

a

)r div w + 4�

r

w

= 2�

r

rotu+ �g; (2.2)

�

t

+ u � r� = 0; (2.3)

u(x; 0) = u

0

(x); w(x; 0) = w

0

(x); �(x; 0) = �

0

(x) in 
: (2.4)

We onsider the following iterative proess for the approximate solution of problem

(2.1)-(2.4). Setting

u

1

(t) = e

�t(�+�

r

)A

u

0

; w

1

(t) = e

�t(

a

+

d

)B

w

0

; �

1

(x; t) = �

0

(x)

where e

�t(�+�

r

)A

and e

�t(

a

+

d

)B

are the semigroup generated by the Stokes and Laplae

operator, respetively. And if u

n

; w

n

and �

n

are given, we de�ne u

n+1

; w

n+1

and �

n+1

as

the unique solution of the following system of linear equations,
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P (�

n

u

n+1

t

) + (�+ �

r

)Au

n+1

+ P (�

n

u

n

� ru

n+1

) = 2�

r

P (rotw

n

) + P (�

n

f); (2.5)

�

n

w

n+1

t

+ (

a

+ 

d

)Bw

n+1

+ �

n

u

n

� rw

n+1

� (

o

+ 

d

� 

a

)r div w

n+1

+ 4�

r

w

n+1

= 2�

r

rot u

n

+ �

n

g; (2.6)

�

n+1

t

+ u

n+1

� r�

n+1

= 0; (2.7)

u

n+1

(x; 0) = u

0

(x); w

n+1

(x; 0) = w

0

(x); �

n+1

(x; 0) = �

0

(x) in 
: (2.8)

For simpliity, from now on we onsider u

0

(x) = 0 and w

0

(x) = 0. Let �rst present

the following results obtained for the approximate solutions. In this ase, it is lear that

the �rst iterate is (u

1

; w

1

; �

1

) = (0; 0; �

0

).

Lemma 2.1 Let assume that �

0

2 C

1

(
) and 0 < � � �

0

(x) � �, for all x 2

�


. If

f; g 2 L

2

(0; T ;L

2

(
)) are suÆiently small in the sense of the L

2

(Q) norm, then, for

eah n, the problem (2.5)-(2.8), has a unique strong solution (u

n

; w

n

; �

n

). Furthermore,

we have u

n

2 L

1

(0; T ;V )\L

2

(0; T ;D(A)); w

n

2 L

1

(0; T ;H

1

0

(
))\L

2

(0; T ;D(B)), �

n

2

L

1

(0; T ;L

1

(
)), u

n

t

2 L

2

(0; T ;H); w

n

t

2 L

2

(0; T ;L

2

(
)), Au

n

2 L

2

(0; T ;L

2

(
)), Bw

n

2

L

2

(0; T ;L

2

(
)), and all these sequenes are uniformly bounded in the respetive spaes.

Lemma 2.2 If the hypotheses of Lemma 2.1 are veri�ed and assuming that f; g 2

L

2

(0; T ;H

1

(
)) and f

t

; g

t

2 L

2

(0; T ;L

2

(
)), then the solution (u

n

; w

n

; �

n

) of the problem

(2.5)-(2.8) satis�es u

n

2 L

1

(0; T ;D(A)); w

n

2 L

1

(0; T ;D(B)) and u

n

t

2 L

1

(0; T ;H) \

L

2

(0; T ;V ), w

n

t

2 L

1

(0; T ;L

2

(
))\L

2

(0; T ;H

1

0

(
)), for eah n. Moreover, we obtain the

following estimates uniformly in n:

sup

t

(ku

n

t

(t)k

2

+ kw

n

t

(t)k

2

) � C;

Z

t

0

(kru

n

t

(�)k

2

+ krw

n

t

(�)k

2

)d� � C;

sup

t

(kAu

n

(t)k

2

+ kBw

n

(t)k

2

) � C;

Z

t

0

(kru

n

(�)k

2

L

1

+ krw

n

(�)k

2

L

1

)d� � C;

sup

t

kr�

n

(t)k

2

L

1

� C;

sup

t

k�

n

t

(t)k

2

L

1

� C;

sup

t

�(t)(kru

n

t

(t)k

2

+ krw

n

t

(t)k

2

) � C;

Z

t

0

�(�)(ku

n

tt

(�)k

2

+ kw

n

tt

(�)k

2

)d� � C;
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Z

t

0

�(�)(kAu

n

t

(�)k

2

+ kBw

n

t

(�)k

2

)d� � C;

for all t 2 [0; T ℄, where C > 0 is a onstant independent of n and �(t) = minf1; tg.

Theorem 2.3 Let the onditions of Lemmas 2.1 and 2.2 be satis�ed. Then the approximate

solutions (u

n

; w

n

; �

n

) onverge to the limiting element (u;w; �) in the following senses

u

n

�! u strongly in L

1

(0; T ;V \H

2

(
));

w

n

�! w strongly in L

1

(0; T ;H

1

0

(
) \H

2

(
));

u

n

t

�! u

t

strongly in L

1

(0; T ;H);

w

n

t

�! w

t

strongly in L

1

(0; T ;L

2

(
));

u

n

t

�! u

t

weakly in L

2

(0; T ;V ) \ L

2

("; T ;V \H

2

(
)); 8 " > 0;

u

n

tt

�! u

tt

weakly in L

2

("; T ;H); 8 " > 0;

w

n

t

�! w

t

weakly in L

2

(0; T ;H

1

0

(
)) \ L

2

("; T ;H

1

0

(
) \H

2

(
)); 8 " > 0;

w

n

tt

�! w

tt

weakly in L

2

("; T ;L

2

(
)); 8 " > 0:

The limiting element (u;w; �) is the unique solution of problem (2.1)-(2.4) and

sup

t

fkru

n

(t)�ru(t)k

2

+ krw

n

(t)�rw(t)k

2

� M

(M

1

T )

n�1

(n� 1)!

;

Z

t

0

(ku

n

t

(�)� u

t

(�)k

2

+ kw

n

t

(�)� w

t

(�)k

2

)d� � M

(M

1

T )

n�1

(n� 1)!

;

Z

t

0

(kAu

n

(�)�Au(�)k

2

+ kBw

n

(�)�Bw(�)k

2

)d� � M

(M

1

T )

n�1

(n� 1)!

;

sup

t

k�

n

(t)� �(t)k

2

L

1

� M

(M

1

T )

n�1

(n� 1)!

;

sup

t

�(t)(ku

n

t

(t)� u

t

(t)k

2

+ kw

n

t

(t)� w

t

(t)k

2

) � M

(M

1

T )

n�2

(n� 2)!

;

Z

t

0

�(�)(kru

n

t

(�)�ru

t

(�)k

2

+ krw

n

t

(�)�rw

t

(�)k

2

)d� � M

(M

1

T )

n�2

(n� 2)!

;

sup

t

�(t)(kAu

n

(t)�Au(t)k

2

+ kBw

n

(t)�Bw(t)k

2

) � M

(M

1

T )

n�2

(n� 2)!

;

sup

t

�(t)(ku

n

(t)� u(t)k

2

L

1

+ kw

n

(t)� w(t)k

2

L

1

) � M

(M

1

T )

n�2

(n� 2)!

;

Z

t

0

�(�)(kru

n

(�)�ru(�)k

2

L

1

+ krw

n

(�)�rw(�)k

2

L

1

)d� � M

(M

1

T )

n�2

(n� 2)!

:
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Moreover,

u 2 C

1

([0; T ℄;H) \ C([0; T ℄;D(A));

w 2 C

1

([0; T ℄;L

2

(
)) \ C([0; T ℄;D(B));

� 2 C

1

(
� (0; T )):

3 A priori estimates

In this setion, we will prove uniform a priori estimates in n for the approximate solutions.

3.1 Proof of Lemma 2.1

The existene of a unique strong solution for the linear system (2.5)-(2.8), for eah n,

an be proved using the spetral Galerkin method (see for instane Boldrini and Rojas-

Medar (1998)). The regularity asserted for the approximate solution in the lemma are

�rstly obtained for Galerkin approximations and then obtained for (u

n

; w

n

; �

n

) by taking

the limit. We will only prove the estimates, uniform in n, for the approximate solutions

(u

n

; w

n

; �

n

).

>From the method of harateristis applied to the ontinuity equation (2.7) it follows

immediately that whenever �

n

exists, it satis�es 0 < � � �

n

� �, then

f�

n

g is uniformly bounded in L

1

(0; T ;L

1

(
)): (3.1)

>From (2.7), we have also that (�

n

t

v; v) = �(div (�

n

u

n

)v; v) = 2(�

n

u

n

� rv; v) and

onsequently

1

2

d

dt

k

p

�

n

vk

2

=

1

2

(�

n

t

v; v) + (�

n

v

t

; v) = (�

n

u

n

� rv; v) + (�

n

v

t

; v); 8 v 2 H

1

0

; v

t

2 L

2

(
):

With this identity in mind, multiply (2.5) by u

n+1

and (2.6) by w

n+1

, to obtain

respetively:

1

2

d

dt

k

p

�

n

u

n+1

k

2

+ (�+ �

r

)kru

n+1

k

2

= 2�

r

(rotw

n

; u

n+1

) + (�

n

f; u

n+1

); (3.2)

1

2

d

dt

k

p

�

n

w

n+1

k

2

+ (

a

+ 

d

)krw

n+1

k

2

+ (

0

+ 

d

� 

a

)kdiv w

n+1

k

2

+ 4�

r

kw

n+1

k

2

= 2�

r

(rot u

n

; w

n+1

) + (�

n

g; w

n+1

): (3.3)

We observe that for u 2 H

1

0

(
), we have
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krot uk � kruk; kuk

L

4
� 2

1=2

kuk

1=4

kruk

3=4

and kuk

2

� �

�1

kruk

2

; (3.4)

where � is the smallest eigenvalue of the Laplae operator B = �� (see for instane

Ladyzhenskaya (1969)).

By H�older, Young and (3.4) inequalities, we get from (3.2) and (3.3) the following

di�erential inequalities

d

dt

k

p

�

n

u

n+1

k

2

+ (�+ �

r

)kru

n+1

k

2

�

8�

2

r

�+ �

r

kw

n

k

2

+

2�

2

�

�1

�+ �

r

kfk

2

;

d

dt

k

p

�

n

w

n+1

k

2

+ (

a

+ 

d

)krw

n+1

k

2

+ 2(

0

+ 

d

� 

a

)kdiv w

n+1

k

2

�

4�

2

r



a

+ 

d

ku

n

k

2

+

�

2

8�

r

kgk

2

:

Therefore, adding both inequalities and integrating both sides from 0 to t, we get the

following integral inequality (reall that u

0

= w

0

= 0):

�(ku

n+1

(t)k

2

+ kw

n+1

(t)k

2

) + (�+ �

r

)

Z

t

0

kru

n+1

(�)k

2

d�

+(

a

+ 

d

)

Z

t

0

krw

n+1

(�)k

2

d� + 2(

0

+ 

d

� 

a

)

Z

t

0

kdiv w

n+1

(�)k

2

d�

�

8�

2

r

�+ �

r

Z

t

0

kw

n

(�)k

2

d� +

4�

2

r



a

+ 

d

Z

t

0

ku

n

(�)k

2

d� +

2�

2

�

�1

�+ �

r

kfk

2

L

2

(Q)

+

�

2

8�

r

kgk

2

L

2

(Q)

Then, there exist onstants M and C suh that

ku

n+1

(t)k

2

+ kw

n+1

(t)k

2

+

�+ �

r

�

Z

t

0

kru

n+1

(�)k

2

d� +



a

+ 

d

�

Z

t

0

krw

n+1

(�)k

2

d�

� C

Z

t

0

(ku

n

(�)k

2

+ kw

n

(�)k

2

)d� +M: (3.5)

Choose, for example

C = maxf

8�

2

r

�(�+ �

r

)

;

4�

2

r

�(

a

+ 

d

)

g and M =

2�

2

�

�1

�(�+ �

r

)

kfk

2

L

2

(Q)

+

�

2

8��

r

kgk

2

L

2

(Q)

:

Thus, setting '

n

(t) = ku

n

(t)k

2

+ kw

n

(t)k

2

, the last inequality implies

'

n+1

(t) �M + C

Z

t

0

'

n

(�)d�:

8



Observing that '

1

(t) = 0, a straightforward indution argument shows that, for all n,

'

n

(t) � M

n�1

X

k=0

(Ct)

k

k!

� M exp(Ct):

We onlude that for all n we have

sup

t2[0;T ℄

( ku

n

(t)k

2

+ kw

n

(t)k

2

) � sup

t2[0;T ℄

M exp(Ct) =M exp(CT ) �M

1

: (3.6)

Notie thatM

1

does not depend on n and it an be made as small as needed, assuming

that kfk

2

L

2

(Q)

and kgk

2

L

2

(Q)

are small enough.

Combining (3.5) and (3.6), we get

ku

n+1

k

2

L

2

(0;T ;V )

�

�M

1

�+ �

r

and kw

n+1

k

2

L

2

(0;T ;H

1

0

(
))

�

�M

1



a

+ 

d

(3.7)

where the bounds are independent of n.

Multiplying (2.5) by Æ Au

n+1

, and then by u

n+1

t

and integrating in 
, we obtain

respetively

Æ(� + �

r

)kAu

n+1

k

2

= �Æ (�

n

u

n+1

t

; Au

n+1

) + 2�

r

Æ (rotw

n

; Au

n+1

)

+Æ (�

n

f;Au

n+1

)� Æ(�

n

u

n

:ru

n+1

; Au

n+1

) (3.8)

and

k

p

�

n

u

n+1

t

k

2

+

�+ �

r

2

d

dt

kru

n+1

k

2

= 2�

r

(rotw

n

; u

n+1

t

) + (�

n

f; u

n+1

t

)

�(�

n

u

n

:ru

n+1

; u

n+1

t

): (3.9)

Then, sine � � �

n

� �; we get

�ku

n+1

t

k

2

+

�+ �

r

2

d

dt

kru

n+1

k

2

+ Æ(�+ �

r

)kAu

n+1

k

2

� jÆ (�

n

u

n+1

t

; Au

n+1

)j+ j2�

r

Æ (rotw

n

; Au

n+1

)j+ j2�

r

(rotw

n

; u

n+1

t

)j+ j(�

n

f; u

n+1

t

)j

+jÆ (�

n

f;Au

n+1

)j+ jÆ(�

n

u

n

:ru

n+1

; Au

n+1

)j+ j(�

n

u

n

:ru

n+1

; u

n+1

t

)j: (3.10)

Now, using the H�older, Young's inequalities and (3.4), we get

9



jÆ(�

n

u

n

:ru

n+1

; Au

n+1

)j � Æ �ku

n

k

L

4
kru

n+1

k

L

4
kAu

n+1

k

� Æ �

p

2 ku

n

k

1=4

kru

n

k

3=4

kru

n+1

k

L

4
kAu

n+1

k

� Æ �

p

2�

�1=8

kru

n

kkru

n+1

k

L

4
kAu

n+1

k: (3.11)

Sine H

2

(
) ,!W

1;4

(
), for u 2 D(A), we have

kruk

L

4
� kuk

W

1;4
� C




kuk

H

2
� C




M

3

kAuk; (3.12)

where C




and M

3

are positive onstants, independent of u. Thus, from (3.11) and (3.12),

we obtain

jÆ(�

n

u

n

:ru

n+1

; Au

n+1

)j � Æ �

p

2 �

�1=8

C




M

3

kru

n

kkAu

n+1

k

2

: (3.13)

Similarly,

j(�

n

u

n

:ru

n+1

; u

n+1

t

)j � � ku

n

k

L

4
kru

n+1

k

L

4
ku

n+1

t

k

� Æ �

p

2 �

�1=8

C




M

3

kru

n

kkAu

n+1

k

2

+

�

p

2 �

�1=8

C




M

3

4Æ

kru

n

kku

n+1

t

k

2

: (3.14)

Therefore, with these estimates in (3.10), and for any � > 0, we obtain

(�+ �

r

)

d

dt

kru

n+1

k

2

+ 2

�

�� 3� �

� 2

1=2

�

�1=8

C




M

3

4Æ

kru

n

k

�

ku

n+1

t

k

2

+2Æ

�

(�+ �

r

)�

3Æ �

2

4�

� � 2

3=2

�

�1=8

C




M

3

kru

n

k

�

kAu

n+1

k

2

� (

8�

2

r

�

�

2

+

2�

2

r

�

)krw

n

k

2

+ (2� +

�

2

2�

)kfk

2

:

Integrating from 0 to t the last inequality, (reall that u

0

= 0) we obtain

(�+ �

r

)kru

n+1

(t)k

2

+ 2

Z

t

0

�

�� 3� �

� 2

1=2

�

�1=8

C




M

3

4Æ

kru

n

(�)k

�

ku

n+1

t

(�)k

2

d�

+2Æ

Z

t

0

�

(�+ �

r

)�

3Æ �

2

4�

� � 2

3=2

�

�1=8

C




M

3

kru

n

(�)k

�

kAu

n+1

(�)k

2

d�

� (

8�

2

r

�

�

2

+

2�

2

r

�

)

Z

t

0

krw

n

(�)k

2

d�

+

(2� +

�

2

2�

)kfk

2

L

2

(Q)

� (

4�

�

2

+

1

�

)

2�

2

r

�M

1



a

+ 

d

+ (2� +

�

2

2�

)kfk

2

L

2

(Q)

:
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Then, hoosing � =

�

4

and Æ =

�(�+ �

r

)

4�

2

, we have

(�+ �

r

)kru

n+1

(t)k

2

+ 2

Z

t

0

�

�

4

�

�

3

2

1=2

�

�1=8

C




M

3

�(�+ �

r

)

kru

n

(�)k

�

ku

n+1

t

(�)k

2

d�

+

�(�+ �

r

)

2�

2

Z

t

0

�

�+ �

r

4

� � 2

3=2

�

�1=8

C




M

3

kru

n

(�)k

�

kAu

n+1

(�)k

2

d�

� 2(�

2

+ 4�

2

)

�

2

r

�

2

(

a

+ 

d

)

M

1

+

1

2�

(�

2

+ 4�

2

)kfk

2

L

2

(Q)

(3.15)

The right hand side an be made smaller than any "

2

, hoosing kfk

2

L

2

(Q)

and kgk

2

L

2

(Q)

suÆiently small.

Setting n = 1 in (3.15) and using that u

1

= 0, we get

(�+ �

r

)kru

2

(t)k

2

+ 2

Z

t

0

�

4

ku

2

t

(�)k

2

d� +

�(�+ �

r

)

2�

2

Z

t

0

�+ �

r

4

kAu

2

(�)k

2

d� � "

2

;

then, for all t 2 [0; T ℄, we have

kru

2

(t)k �

"

(�+ �

r

)

1=2

: (3.16)

Supposing that this inequality is valid for some n, that is,

kru

n

(t)k �

"

(�+ �

r

)

1=2

;

we an prove it for n + 1, given that the oeÆients inside both integral in (3.15) are

positives. Or, if we suppose the inequality valid for that n, we need simply to prove that

�

4

�

�

3

2

1=2

�

�1=8

C




M

3

"

�(�+ �

r

)

3=2

> 0 and

�+ �

r

4

�

� 2

3=2

�

�1=8

C




M

3

"

(�+ �

r

)

1=2

> 0;

whih is learly true for " suÆiently small. Therefore, for all n, we have proved that

sup

t2[0;T ℄

kru

n

(t)k �

"

(�+ �

r

)

1=2

: (3.17)

From (3.15) and (3.17), we have

2

Z

t

0

�

�

4

�

�

3

2

1=2

�

�1=8

C




M

3

"

�(�+ �

r

)

3=2

�

ku

n+1

t

(�)k

2

d�

+

�(�+ �

r

)

2�

2

Z

t

0

�

�+ �

r

4

�

� 2

3=2

�

�1=8

C




M

3

"

(�+ �

r

)

1=2

�

kAu

n+1

(�)k

2

d� � "

2

:
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Therefore, we onlude that there exists a onstant C, independent of n, suh that

Z

t

0

ku

n+1

t

(�)k

2

d� +

Z

t

0

kAu

n+1

(�)k

2

d� � C: (3.18)

Similarly, for all n, we obtain

(

a

+ 

d

)krw

n+1

(t)k

2

+ 

2

Z

t

0

kBw

n+1

(�)k

2

d� + �

Z

t

0

kw

n+1

t

(�)k

2

d� � C; (3.19)

and the proof is omplete.

3.2 Proof of Lemma 2.2

Now, di�erentiating (2.5) with respet to t, we obtain

P (�

n

t

u

n+1

t

) + P (�

n

u

n+1

tt

) + (�+ �

r

)Au

n+1

t

= 2�

r

P (rotw

n

t

) + P (�

n

t

f) + P ((�

n

f

t

)� P (�

n

t

u

n

� ru

n+1

)

�P (�

n

u

n

t

� ru

n+1

)� P (�

n

u

n

� ru

n+1

t

): (3.20)

The multipliation of (3.20) by u

n+1

t

results in:

1

2

d

dt

k

p

�

n

u

n+1

t

k

2

+ (�+ �

r

)kru

n+1

t

k

2

= �

1

2

(�

n

t

u

n+1

t

; u

n+1

t

) + 2�

r

(rotw

n

t

; u

n+1

t

) + (�

n

t

f; u

n+1

t

) + (�

n

f

t

; u

n+1

t

))

�(�

n

t

u

n

� ru

n+1

; u

n+1

t

)� (�

n

u

n

t

:ru

n+1

; u

n+1

t

)� (�

n

u

n

� ru

n+1

t

; u

n+1

t

))

=

1

2

(div (�

n

u

n

)u

n+1

t

; u

n+1

t

) + 2�

r

(w

n

t

; rot u

n+1

t

)� (div (�

n

u

n

)f; u

n+1

t

))

+(�

n

f

t

; u

n+1

t

) + (div (�

n

u

n

)u

n

:ru

n+1

; u

n+1

t

)� (�

n

u

n

t

� ru

n+1

; u

n+1

t

))

�(�

n

u

n

� ru

n+1

t

; u

n+1

t

) (3.21)

sine from (2.3), �

n

t

= �div (�

n

u

n

).

Now, let obtain bounds for eah one of the right hand side terms of (3.21), beginning

with the �rst one:

1

2

(div (�

n

u

n

)u

n+1

t

; u

n+1

t

) = �(�

n

u

n

� ru

n+1

t

; u

n+1

t

)

� k�

n

k

L

1

ku

n

k

L

4
kru

n+1

t

kku

n+1

t

k

L

4

12



� �kru

n

kkru

n+1

t

kku

n+1

t

k

1=4

kru

n+1

t

k

3=4

� C kru

n+1

t

k

7=4

ku

n+1

t

k

1=4

� C

�

ku

n+1

t

k

2

+ �kru

n+1

t

k

2

:

The seond one is simply

2�

r

(w

n

t

; rot u

n+1

t

) � C

�

kw

n

t

k

2

+ �kru

n+1

t

k

2

: (3.22)

For the third one, integrating by parts:

�(div (�

n

u

n

)f; u

n+1

t

) = (�

n

u

n

:rf; u

n+1

t

) + (�

n

u

n

� ru

n+1

t

; f)

� �ku

n

k

L

4
krfkku

n+1

t

k

L

4
+ �ku

n

k

L

4
kru

n+1

t

kkfk

L

4

� C kfk

H

1
kru

n+1

t

k � C

�

kfk

2

H

1

+ �kru

n+1

t

k

2

:

For the fourth term, an obvious bound gives:

(�

n

f

t

; u

n+1

t

) � C

�

kf

t

k

2

+ �kru

n+1

t

k

2

: (3.23)

The �fth term, again integrating by parts:

(div (�

n

u

n

)u

n

� ru

n+1

; u

n+1

t

) =

X

i;j;k

Z




�

�x

i

(�

n

u

n

i

)u

n

j

(

�

�x

j

u

n+1

k

)u

n+1

k;t

dx

= �

X

i;j;k

Z




�

n

u

n

i

(

�

�x

i

u

n

j

)(

�

�x

j

u

n+1

k

)u

n+1

k;t

dx

�

X

i;j;k

Z




�

n

u

n

i

u

n

j

(

�

�x

i

�

�x

j

u

n+1

k

)u

n+1

k;t

dx

�

X

i;j;k

Z




�

n

u

n

i

u

n

j

(

�

�x

j

u

n+1

k

)(

�

�x

i

u

n+1

k;t

)dx

� C � ku

n

k

L

6
kru

n

k

L

6
kru

n+1

kku

n+1

t

k

L

6

+C �ku

n

k

2

L

6

kAu

n+1

kku

n+1

t

k

L

6

+C �ku

n

k

2

L

6

kru

n+1

k

L

6
kru

n+1

t

k

� C kAu

n

kkru

n+1

t

k+C kAu

n+1

kkru

n+1

t

k

� C

�

(kAu

n

k

2

+ kAu

n+1

k

2

) + 2 �kru

n+1

t

k

2

:

The sixth term:
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(�

n

u

n

t

� ru

n+1

; u

n+1

t

) � �ku

n

t

kkru

n+1

k

L

3
ku

n+1

t

k

L

6

� C ku

n

t

kkAu

n+1

kku

n+1

t

k

H

1

� C

�

ku

n

t

k

2

kAu

n+1

k

2

+ �kru

n+1

t

k

2

:

And the seventh one:

(�

n

u

n

� ru

n+1

t

; u

n+1

t

) � �ku

n

k

L

6
kru

n+1

t

kku

n+1

t

k

L

3

� Ckru

n+1

t

kku

n+1

t

k

1=2

kru

n+1

t

k

1=2

� C

�

ku

n+1

t

k

2

+ �kru

n+1

t

k

2

:

With all these bounds we an transform (3.21) in the following inequality:

1

2

d

dt

k

p

�

n

u

n+1

t

k

2

+ (�+ �

r

)kru

n+1

t

k

2

� C

�

ku

n+1

t

k

2

+ C

�

kw

n

t

k

2

+ C

�

kfk

2

H

1

+ C

�

kf

t

k

2

+ C

�

kAu

n

k

2

+C

�

kAu

n+1

k

2

+ C

�

ku

n

t

k

2

kAu

n+1

k

2

+ C

�

ku

n+1

t

k

2

+ 8� kru

n+1

t

k

2

:

Choosing � =

�+ �

r

16

, we get

d

dt

k

p

�

n

u

n+1

t

k

2

+ (�+ �

r

)kru

n+1

t

k

2

� C ku

n+1

t

k

2

+ C kw

n

t

k

2

+ C kfk

2

H

1

+C kf

t

k

2

+ C kAu

n

k

2

+ C kAu

n+1

k

2

+C ku

n

t

k

2

kAu

n+1

k

2

+C : (3.24)

In order to get a bound for kAu

n+1

k

2

, multiply (2.5) by Au

n+1

. We obtain

(�+ �

r

)kAu

n+1

k

2

= �(�

n

u

n+1

t

; Au

n+1

) + 2�

r

(rotw

n

; Au

n+1

) + (�

n

f;Au

n+1

)

�(�

n

u

n

:ru

n+1

; Au

n+1

)

and sine

j(�

n

u

n

:ru

n+1

; Au

n+1

)j � � ku

n

k

L

4
kru

n+1

k

L

4
kAu

n+1

k

� C kru

n+1

k

1=4

kAu

n+1

k

7=4

� C

Æ

kru

n+1

k

2

+ ÆkAu

n+1

k

2

;

14



we get, using obvious bounds for the remaining terms:

(�+ �

r

)kAu

n+1

k

2

� C

Æ

ku

n+1

t

k

2

+ C

Æ

krw

n

k

2

+ C

Æ

kfk

2

+C

Æ

kru

n+1

k

2

+ 4 Æ kAu

n+1

k

2

:

Then, taking Æ > 0 suÆiently small, from the last inequality, we obtain the bound:

kAu

n+1

k

2

� C ku

n+1

t

k

2

+ C: (3.25)

Thus, rewriting (3.24), we obtain now

d

dt

k

p

�

n

u

n+1

t

k

2

+ (�+ �

r

)kru

n+1

t

k

2

� C ku

n+1

t

k

2

+ C kw

n

t

k

2

+ C kfk

2

H

1

+C kf

t

k

2

+ C kAu

n

k

2

+ C kAu

n+1

k

2

+C ku

n

t

k

2

ku

n+1

t

k

2

+ C ku

n

t

k

2

+ C:

Integrating from 0 to t

�ku

n+1

t

(t)k

2

+ (�+ �

r

)

Z

t

0

kru

n+1

t

(�)k

2

d�

� C

Z

t

0

(ku

n+1

t

(�)k

2

+ kw

n

t

(�)k

2

+ kf(�)k

2

H

1

+ kf

t

(�)k

2

)d�

+C

Z

t

0

(kAu

n

(�)k

2

+ kAu

n+1

(�)k

2

)d� + C

Z

t

0

ku

n

t

(�)k

2

d�

+C

Z

t

0

ku

n

t

(�)k

2

ku

n+1

t

(�)k

2

d� + �ku

n+1

t

(0)k

2

+ Ct:

>From the equation (2.5), we an easily bound the rightmost term ku

n+1

t

(0)k

2

. In fat,

ku

n+1

t

(t)k

2

is non dereasing at t = 0, beause on that time, ru

n+1

t

(0) = 0. Applying

(3.18), (3.19) and the hypotheses on f and f

t

, we get

ku

n+1

t

(t)k

2

+

Z

t

0

kru

n+1

t

(�)k

2

d� � C + C

Z

t

0

ku

n

t

(�)k

2

ku

n+1

t

(�)k

2

d�:

If we denote '(t) = ku

n+1

t

(t)k

2

, the above inequality an be written as

'(t) � C + C

Z

t

0

ku

n

t

(�)k

2

'(t) d�

whih, by Gronwall's lemma, tell us that

'(t) � C exp(C

Z

t

0

ku

n

t

(�)k

2

d�):

15



Therefore, again using (3.18) we onlude that

ku

n+1

t

(t)k

2

+

Z

t

0

kru

n+1

t

(�)k

2

d� � C: (3.26)

Moreover, from (3.25) we have for all n

sup

t

kAu

n+1

(t)k

2

� C: (3.27)

Similarly, for all n, we prove

kw

n+1

t

(t)k

2

+

Z

t

0

krw

n+1

t

(�)k

2

d� � C and sup

t

kBw

n+1

(t)k

2

� C: (3.28)

>From (2.5), we have

(�+ �

r

)Au

n+1

= P (F ) (3.29)

where

F = 2�

r

rotw

n

+ �

n

f � �

n

u

n+1

t

� �

n

u

n

� ru

n+1

:

We observe that from the estimates given in the Lemma 2.1, together with the esti-

mates (3.26) and (3.27), we have F 2 L

2

(0; T ;L

6

(
)) and onsequently by the Amrouhe-

Girault's results (1991), we obtain u

n

2 L

2

(0; T ;W

2;6

(
)) uniformly in n. Also, by using

the Sobolev embedding, u

n

2 L

2

(0; T ;W

1;1

(
)) uniformly in n.

The estimate for the density �

n

is obtained from the Ladyzhenskaya-Solonnikov's

results [(1968), see Lemma 1.3, page 705℄.

Now, multiplying (3.20) by u

n+1

tt

, using (3.1), (3.17), Lemma 2.1, the above estimates,

the H�older and Young's inequalities, we obtain

� ku

n+1

tt

k

2

+

�+ �

r

2

d

dt

kru

n+1

t

k

2

� C

"

ku

n+1

t

k

2

+ C

"

krw

n

t

k

2

+ C

"

kfk

2

+ C

"

kf

t

k

2

+C

"

kAu

n+1

k

2

+ C

"

kru

n

t

k

2

kAu

n+1

k

2

+C

"

kru

n+1

t

k

2

+ 7"ku

n+1

tt

k

2

:

Choosing " =

�

14

and observing (3.26)-(3.27), we have

� ku

n+1

tt

k

2

+ (�+ �

r

)

d

dt

kru

n+1

t

k

2

�  krw

n

t

k

2

+  kfk

2

+  kf

t

k

2

+  kru

n

t

k

2

+ kru

n+1

t

k

2

+ 
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and multiplying by �(t) = minf1; tg, result

��(t)ku

n+1

tt

k

2

+ (�+ �

r

)

d

dt

(�(t)kru

n+1

t

k

2

)

� (�+ �

r

)�

0

(t)kru

n+1

t

k

2

+  �(t)(kru

n

t

k

2

+ krw

n

t

k

2

)

+ �(t)(kfk

2

+ kf

t

k

2

) +  �(t)(kru

n+1

t

k

2

+ 1): (3.30)

In view of (3.26), there exists a sequene "

k

�! 0, suh that "

k

kru

n+1

t

("

k

)k

2

� C.

Therefore, sine �(t) � 1 and �

0

(t) � 1 a.e. in [0; T ℄, observing (3.26)-(3.28) and

integrating (3.30) from "

k

to t, we �nd

�

Z

t

"

k

�(�)ku

n+1

tt

(�)k

2

d�+(�+�

r

)�(t)kru

n+1

t

(t)k

2

� + (�+�

r

)�("

k

) kru

n+1

t

("

k

)k

2

+C

and letting "

k

�! 0, for all n, result in

Z

t

0

�(�)ku

n+1

tt

(�)k

2

d� + �(t)kru

n+1

t

(t)k

2

� C:

Analogously, for all n,

Z

t

0

�(�)kw

n+1

tt

(�)k

2

d� + �(t)krw

n+1

t

(t)k

2

� C:

To prove the last estimate given in Lemma 2.2, we observe from (3.20) that

(�+ �

r

)

Z

t

0

�(�)kAu

n+1

t

(�)k

2

d� �

Z

t

0

�(�)kG

n

(�)k

2

d�

where

G

n

= 2�

r

rotw

n

t

+ �

n

t

f + �

n

f

t

� �

n

t

u

n+1

t

� �

n

u

n+1

tt

� �

n

t

u

n

� ru

n+1

��

n

u

n

t

:ru

n+1

� �

n

u

n

� ru

n+1

t

:

We observe that the above estimates imply that �

1=2

(t)G

n

2 L

2

(0; T ;L

2

(
)) uni-

formly in n. Analogously, we prove the estimate for w

n

.

Remark. Using arguments of ompatness and the estimates given in Lemma 2.1 and

Lemma 2.2, it is possible to prove that the approximate solutions (u

n

; w

n

; �

n

) onverge

to a unique strong solution of the problem (1.1)-(1.2). This an be done in exatly the

same way as in Boldrini and Rojas-Medar (1998). In the next setion, we will prove the

onvergene of the approximate solutions by other arguments.
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4 Proof of Theorem 2.3

For n; s � 1; let

u

n;s

(t) = u

n+s

(t)� u

n

(t); w

n;s

(t) = w

n+s

(t)� w

n

(t) and �

n;s

(t) = �

n+s

(t)� �

n

(t):

With these notations, we observe that u

n;s

; w

n;s

and �

n;s

satisfy the following equa-

tions

P (�

n�1+s

u

n;s

t

) + (�+ �

r

)Au

n;s

= 2�

r

P (rotw

n�1;s

) + P (�

n�1;s

f)� P (�

n�1;s

u

n

t

)

�P (�

n�1+s

u

n�1+s

� ru

n;s

)� P (�

n�1+s

u

n�1;s

� ru

n

)

�P (�

n�1;s

u

n�1

� ru

n

) (4.1)

�

n�1+s

w

n;s

t

+ (

a

+ 

d

)Bw

n;s

� (

0

+ 

d

� 

a

)r div w

n;s

+ 4�

r

w

n;s

= 2�

r

(rot u

n�1;s

) + �

n�1;s

g � �

n�1;s

w

n

t

� �

n�1+s

u

n�1+s

� rw

n;s

��

n�1+s

u

n�1;s

� rw

n

� �

n�1;s

u

n�1

� rw

n

(4.2)

�

n;s

t

+ u

n;s

� r�

n+s

+ u

n

� r�

n;s

= 0: (4.3)

The following lemma will be fundamental in order to obtain error estimates.

Lemma 4.1 Let 0 � �

1

(t) �M for all t 2 [0; T ℄ and assume that for all n � 2; n 2 N ,

we have the following inequality

0 � �

n

(t) � C

Z

t

0

�

n�1

(�)d�

where C > 0 is a onstant independent of n. Then,

�

n

(t) �M

(Ct)

n�1

(n� 1)!

�M

(CT )

n�1

(n� 1)!

for all t 2 [0; T ℄ and n � 2. Therefore, �

n

(t) �! 0 as n �!1; 8 t 2 [0; T ℄.

Lemma 4.2 Under the hypotheses of Lemma 2.2, for 2 � r � 6, we have

k�

n;s

(t)k

2

L

r

� C

Z

t

0

kru

n;s

(�)k

2

d�:

Proof.

For a bounded domain 
, it is known that L

r

(
) ,! L

6

(
), for 2 � r � 6, then we

only need to prove the result in the ase r = 6.

Multiplying (4.3) by (�

n;s

)

5

and integrating over 
, we obtain

18



1

6

d

dt

Z




j�

n;s

j

6

dx = �

Z




u

n;s

� r�

n+s

(�

n;s

)

5

dx�

1

6

Z




u

n

� r(�

n;s

)

6

dx

�

Z




ju

n;s

jjr�

n+s

jj�

n;s

j

5

dx+

1

6

Z




div u

n

(�

n;s

)

6

dx

� kr�

n+s

k

L

1

(0;T ;L

1

(
))

Z




ju

n;s

jj�

n;s

j

5

dx

� C

�

Z




ju

n;s

j

6

dx

�

1=6

�

Z




j�

n;s

j

6

dx

�

5=6

:

This implies

1

6

d

dt

k�

n;s

k

6

L

6

� C ku

n;s

k

L

6
k�

n;s

k

5

L

6

but,

1

6

d

dt

k�

n;s

k

6

L

6

= k�

n;s

k

5

L

6

d

dt

k�

n;s

k

L

6
;

then, sine H

1

(
) ,! L

6

(
), we obtain

d

dt

k�

n;s

k

L

r

� C kru

n;s

k:

Integrating from 0 to t the last inequality and applying the Cauhy-Shwartz inequal-

ity, we have

k�

n;s

(t)k

L

r

� C

Z

t

0

kru

n;s

(�)kd� � 

�

Z

t

0

kru

n;s

(�)k

2

d�

�

1=2

: (4.4)

Lemma 4.3 Under the hypotheses of Lemma 2.2, we have:

sup

t

fkru

n+s

(t)�ru

n

(t)k

2

+ krw

n+s

(t)�rw

n

(t)k

2

� M

(M

1

T )

n�1

(n� 1)!

;

Z

t

0

(ku

n+s

t

(�)� u

n

t

(�)k

2

+ kw

n+s

t

(�)� w

n

t

(�)k

2

)d� � M

(M

1

T )

n�1

(n� 1)!

;

Z

t

0

(kAu

n+s

(�)�A

n

u(�)k

2

+ kBw

n+s

(�)�Bw

n

(�)k

2

)d� � M

(M

1

T )

n�1

(n� 1)!

;

sup

t

k�

n+s

(t)� �

n

(t)k

2

L

1

� M

(M

1

T )

n�1

(n� 1)!

;
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Z

t

0

(kru

n+s

(�)�ru

n

(�)k

2

+ krw

n+s

(�)�rw

n

(�)k

2

)d� � M

(M

1

T )

n

n!

;

for 2 � r � 6 sup

t

k�

n+s

(t)� �

n

(t)k

2

L

r

� M

(M

1

T )

n

n!

;

sup

t

�(t)(ku

n+s

t

(t)� u

n

t

(t)k

2

+ kw

n+s

t

(t)� w

n

t

(t)k

2

) � M

(M

1

T )

n�2

(n� 2)!

;

Z

t

0

�(�)(kru

n+s

t

(�)�ru

n

t

(�)k

2

+ krw

n+s

t

(�)�rw

n

t

(�)k

2

)d� � M

(M

1

T )

n�2

(n� 2)!

;

sup

t

�(t)(kAu

n+s

(t)�Au

n

(t)k

2

+ kBw

n+s

(t)�Bw

n

(t)k

2

) � M

(M

1

T )

n�2

(n� 2)!

;

sup

t

�(t)(ku

n+s

(t)� u

n

(t)k

2

L

1

+ kw

n+s

(t)� w

n

(t)k

2

L

1

) � M

(M

1

T )

n�2

(n� 2)!

;

Z

t

0

�(�)(kru

n+s

(�)�ru

n

(�)k

2

L

1

+ krw

n+s

(�)�rw

n

(�)k

2

L

1

)d� � M

(M

1

T )

n�2

(n� 2)!

:

Proof. Multiplying (4.1) by ÆAu

n;s

, integrating over 
 and estimating as usual, we obtain,

Æ(�+ �

r

)kAu

n;s

k

2

� �ku

n;s

t

k

2

+ �krw

n�1;s

k

2

+ �k�

n�1;s

k

2

L

6

kfk

2

L

3

+�k�

n�1;s

k

2

L

6

kru

n

t

k

2

+ �kru

n;s

k

2

+�kru

n�1;s

k

2

+ �k�

n�1;s

k

2

L

6

+

1

4�

Æ

2

CkAu

n;s

k

2

: (4.5)

Similarly, multiplying (4.1) by u

n;s

t

, we get

�ku

n;s

t

k

2

+

�+ �

r

2

d

dt

kru

n;s

k

2

� C

�

krw

n�1;s

k

2

+C

�

k�

n�1;s

k

2

L

6

kfk

2

L

3

+C

�

k�

n�1;s

k

2

L

6

kru

n

t

k

2

+C

�

kru

n;s

k

2

+ C

�

kru

n�1;s

k

2

+ C

�

k�

n�1;s

k

2

L

6

+ 6�ku

n;s

t

k

2

: (4.6)

>From (4.2), we have

�

n�1+s

w

n;s

t

+ Lw

n;s

+ 4�

r

w

n;s

= 2�

r

(rot u

n�1;s

) + �

n�1;s

g � �

n�1;s

w

n

t

� �

n�1+s

u

n�1+s

� rw

n;s

��

n�1+s

u

n�1;s

� rw

n

� �

n�1;s

u

n�1

� rw

n

(4.7)

where Lw

n;s

= (

a

+ 

d

)Bw

n;s

� (

0

+ 

d

� 

a

)r div w

n;s

.

Sine L is a strongly ellipti operator (see Ladyzhenskaya-Solonnikov-Uraleva, 1968

page 70), there exists a onstant N

0

> 0 (N

0

only depending of 

a

+ 

d

; 

0

+ 

d

� 

a

and

�
) suh that

(Lw

n;s

; Bw

n;s

) � (

a

+ 

d

)kBw

n;s

k

2

�N

0

krw

n;s

k

2

: (4.8)
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Now, multiplying (4.7) by �Bw

n;s

, using (4.8) and estimating as usual, we have

�(

a

+ 
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Multiplying (4.2) by w

n;s

t

and estimating as usual, we obtain
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Adding (4.5) and (4.6), we get
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with positive onstants 

1

; C independent of n

Adding (4.9) and (4.10), we get
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Now, hoosing � =
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Adding (4.11) and (4.12), integrating from 0 to t, we obtain
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>From (4.4), with r = 6, 8 � 2 (0; t); 0 < t < T , we have
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and replaing this last inequality in (4.13), we obtain



3

(kru

n;s

(t)k

2

+ krw

n;s

(t)k

2

) + 

3

Z

t

0

(ku

n;s

t

(�)k

2

+ kw

n;s

t

(�)k

2

)d�

+

3

Z

t

0

(kAu

n;s

(�)k

2

+ kBw

n;s

(�)k

2

)d� + 

3

kdiv w

n;s

(t)k

2

� C

Z

t

0

(kru

n�1;s

(�)k

2

+ krw

n�1;s

(�)k

2

)d�

+C

Z

t

0

kru

n�1;s

(t

1

)k

2

dt

1

Z

t

0

(kf(�)k

2

L

3

+ kg(�)k

2

L

3

)d�

+C

Z

t

0

kru

n�1;s

(t

1

)k

2

dt

1

Z

t

0

(kru

n

t

(�)k

2

+ krw

n

t

(�)k

2

)d�

+C

Z

t

0

(kru

n;s

(�)k

2

+ krw

n;s

(�)k

2

)d� + CT

Z

t

0

kru

n�1;s

(�)k

2

d�:

22



where 
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Applying the Gronwall's inequality (see Varhorn (1994), Lemma 3.10 page 122), we

get
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Thus, we have
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We observe that
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Therefore, from (4.14) and (4.16), we have
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Now, from (4.3), we have
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Let z

n

(x; t; �) be the solution of the Cauhy problem
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Bearing in mind properties of z
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(see Ladyzhenskaya and Solonnikov (1978), p. 93-96),

we get
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Hene, applying the Cauhy-Shwartz's inequality and observing (4.18), we have
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Integrating from 0 to t the inequality (4.15), we obtain
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Also, from (4.4) and (4.20), for 2 � r � 6, we have
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At this point we have proved the �rst six bounds of Lemma 4.3 whih orrespond to

(4.15), (4.17-21). The following bounds in the lemma require some tehnial manipula-

tion. Let di�erentiate (4.1) with respet to t, multiply the result multiplying by u
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integrate on 
. We get
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Let group the terms ontaining �
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Multiplying this equation by �(t) = minf1; tg and integrating the result from 0 to t,
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Now, we estimate the right-hand side of the above equation. From the fat that
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as a onsequene of (4.17).

It is easy to show that
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For eah term in h
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(t), using (4.3) and integration by parts, we an obtain the same

kind of bound. In fat,
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Taking respetively  = f ,  = u
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d�:

Now, using (4.15), (4.20) and (4.21), we obtain

H

2

(t) �M

(M

1

T )

n�2

(n� 2)!

+

�+ �

r

4

Z

t

0

�(�)kru

n;s

t

(�)k

2

d�: (4.26)

Therefore, arrying (4.24) and (4.26) in (4.22), we obtain

�(t)ku

n;s

t

k

2

+

Z

t

0

�(�)kru

n;s

t

(�)k

2

d� �M

(M

1

T )

n�2

(n� 2)!

: (4.27)

whih orrespond to the bounds for u

n;s

t

in Lemma 4.3 (seventh and eighth bounds in-

equalities in lemma). For w

n;s

t

the arguments are similar.

The ninth bound in lemma is diretly obtained from the �rst bound. Similarly, the

tenth bound is onsequene of the previous bound, beause of the Sobolev embedding

L

1

(
) � H

2

(
).

Finally, the last bound of Lemma 4.3 is obtained, repeating the same argument used

in Lemma 2.2 (see equation 3.29). That is, from (4.1) write

(�+ �

r

)Au

n;s

= P (F )

where

F = 2�

r

rot w

n�1;s

+ �

n�1;s

f � �

n�1;s

u

n

t

� �

n�1+s

� ru

n;s

��

n�1+s

u

n�1;s

� ru

n

� �

n�1;s

u

n�1

� ru

n

� �

n�1+s

u

n;s

t

:

Verify then that F 2 L

2

(0; T ;L

6

(
)) and apply the Amrouhe-Girault result (1991).

This ompletes the proof of Lemma 4.3.

Now, we are ready to prove Theorem 2.3.

Firstly, we observe that L

1

(0; T ;V ) \ L

2

(0; T ;H

2

(
) \ V ) is a Banah spae and

onsequently the Lemma 4.3 implies that there exists u 2 L

1

(0; T ;V )\L

2

(0; T ;H

2

(
)\

V ) suh that

u

n

�! u strongly in L

1

(0; T ;V ) \ L

2

(0; T ;H

2

(
) \ V ): (4.28)

26



Analogously, the Lemma 4.3 implies that there exists w 2 L

1

(0; T ;H

1

0

(
)) \ L

2

(0; T ;

H

2

(
) \H

1

0

(
)) and � 2 L

1

(0; T ;L

1

(
)) suh that

w

n

�! w strongly in L

1

(0; T ;H

1

0

(
)) \ L

2

(0; T ;H

2

(
) \H

1

0

(
));

�

n

�! � strongly in L

1

(0; T ;L

1

(
)):

Also, the Lemma 4.3 implies that there exists v 2 L

2

(0; T ;H) suh that

u

n

t

�! v strongly in L

2

(0; T ;H):

By standard arguments, (4.28) implies that v = u

t

.

Similarly, w

n

t

�! w

t

strongly in L

2

(0; T ;L

2

(
)). Moreover, from Lemma 4.3, for

every � > 0, we get

u

n

t

�! u

t

strongly in L

1

(�; T ;H) \ L

2

(�; T ;V );

w

n

t

�! w

t

strongly in L

1

(�; T ;L

2

(
)) \ L

2

(�; T ;H

1

0

(
));

u

n

�! u strongly in L

1

(�; T ;H

2

(
) \ V ) \ L

2

(�; T ;W

1;1

(
) \ V );

w

n

�! w strongly in L

1

(�; T ;H

2

(
) \H

1

0

(
)) \ L

2

(�; T ;W

1;1

(
) \H

1

0

(
)):

Now, the next step is to take limit. But, one the above onvergenes have been

established, this is a standard proedure, and we obtain

Z

T

0

h � u

t

+ � u � ru� � f � 2�

r

rotw � (�+ �

r

)�u; v i�(t) dt = 0;

Z

T

0

h �w

t

+ � u � rw � � g � 2�

r

rotu+ 4�

r

w � (

a

+ 

d

)�w

�(

0

+ 

d

� 

a

)rdivw; z i (t) dt = 0;

for all z; v 2 L

2

(
) and �;  2 L

1

(0; T ).

These equalities together with the Du Bois - Reymond's Theorem imply

h � u

t

+ � u � ru� � f � 2�

r

rotw � (�+ �

r

)�u; v i = 0;

h �w

t

+ � u � rw � � g � 2�

r

rotu+ 4�

r

w � (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)rdivw; z i = 0;

a. e. in [0; T ℄, for every v 2 H; z 2 L

2

(
).

These two last equalities, imply

P ( � u

t

+ � u � ru� � f � 2�

r

rotw � (�+ �

r

)�u ) = 0 and
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�w

t

+ � u � rw � � g � 2�

r

rot u+ 4�

r

w � (

a

+ 

d

)�w � (

0

+ 

d

� 

a

)rdivw = 0:

For the density, we observe from Lemma 4.3 that

u

n

�! u strongly in L

2

(0; T ;L

2

(
));

�

n

t

�! �

t

; and r�

n

�! r� weakly in L

2

(0; T ;L

2

(
));

Thus, when n!1 in the approximated ontinuity equation, we obtain

�

t

+ u � r� = 0 in the L

2

(0; T ;L

2

(
))� sense:

Now, we prove the ontinuity established in Theorem 2.3 for solution (u;w; �). �rstly,

given that u 2 L

1

(0; T ;D(A)) and u

t

2 L

2

("; T ;D(A)), then by interpolation (see Temam

(1979), p. 260) u is a.e. equal to a ontinuous funtion from ["; T ℄ into D(A), i.e.,

u 2 C(["; T ℄;D(A)) 8 " > 0:

On the other hand, sine u

t

2 L

2

("; T ;D(A)); u

tt

2 L

2

("; T ;H), by interpolation we

have

u

t

2 C(["; T ℄;V ); 8 " > 0:

Therefore,

u 2 C

1

(["; T ℄;V ) \C(["; T ℄;D(A)); 8 " > 0:

Analogously, we prove that

w 2 C

1

(["; T ℄;H

1

0

(
)) \ C(["; T ℄;D(B)); 8 " > 0:

To prove the ontinuity in t = 0, we proeed as follows.

It is easy to show that

lim

t!0

+

ku(t) � u(0)k = 0; lim

t!0

+

kru(t)�ru(0)k = 0:

We prove then that

lim

t!0

+

kAu(t) �Au(0)k = 0:

To prove this, we observe that is suÆient to show that

lim

t!0

+

sup kAu(t)k � kAu

0

k

as we already know that u(t) �! u

0

in H

1

(
).
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Multiplying (2.5) by Au

n+1

t

and integrating in 
, we have

�+ �

r

2

d

dt

kAu

n+1

k

2

+ k

p

�

n

ru

n+1

t

k

2

= �(�

n

u

n

� ru

n+1

; Au

n+1

t

) + 2�

r

(rotw

n

; Au

n+1

t

) + (�

n

f;Au

n+1

t

)

�(r�

n

� ru

n+1

t

; u

n+1

t

):

Then, integrating from 0 to t, we get

kAu

n+1

(t)k

2

� kAu

0

k

2

+

2

�+ �

r

[(��

n

(t)u

n

(t) � ru

n+1

(t) + 2�

r

rotw

n

(t)

+�

n

(t)f(t); Au

n+1

(t))� (��

n

0

u

n

(0) � ru

n+1

0

+ 2�

r

rotw

n

0

+�

n

0

f(0); Au

n+1

0

)℄ +

2

�+ �

r

N(t)

uniformly in n and where

N(t) =

Z

t

0

j(�

n

t

u

n

� ru

n+1

+ �

n

u

n

t

� ru

n+1

+ �

n

u

n

� ru

n+1

t

� 2�

r

rotw

n

t

��

n

t

f � �

n

f

t

; Au

n+1

)j d� +

Z

t

0

j(r�

n

� ru

n+1

t

; u

n+1

t

)j d�

� 

Z

t

0

(kru

n+1

k+ kru

n

t

k+ kru

n+1

t

k+ krw

n

t

k+ kfk+ kf

t

k) d� �  t

1=2

by virtue of H�older's inequality and the estimates given in Lemma 2.2.

>From this, we onlude

kAu(t)k

2

� kAu

0

k

2

+  [(��(t)u(t) � ru(t) + 2�

r

rotw(t) + �(t)f(t); Au(t))

�(��

0

u(0) � ru

0

+ 2�

r

rotw

0

+ �

0

f(0); Au

0

)℄ +  t

1=2

:

Sine �(t)u(t)�ru(t) �! �

0

u

0

�ru

0

; �(t)f(t) �! �

0

f(0); rotw(t) �! rotw

0

in L

2

(
)

and Au(t) �! Au

0

weakly in L

2

(
) as t ! 0

+

, we obtain the desired result. From this,

it is easy to show

lim

t!0

+

ku

t

(t)� u

t

(0)k = 0:

The results for w are proved in the same way.

We need only to argument the uniqueness of the solution in order to omplete the

proof of Theorem 2.3. Suppose that there is another solution (u

1

; w

1

; �

1

) of (1.1)-(1.2)

with the same regularity as stated in the Theorem. De�ne:
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U = u

1

� u; W = w

1

� w and R = �

1

� �:

These auxiliary funtions verify a set of equations similar to (4.1){(4.3). If we multiply

the �rst equation by U , the seond by W and the third by R and repeat the argument

given in Lemma 2.1, we obtain for '(t) = kU(t)k

2

+ kW (t)k

2

+ kR(t)k

2

an inequality of

the following type:

'(t) � C

Z

t

0

'(�) d�

whih, by Gronwall's inequality, is equivalent to assert U = 0, W = 0 and R = 0.

5 Results on the pressure

Lemma 5.1 With the hypotheses of Lemma 2.1, for eah n, there exists p

n

2

L

2

(0; T ;H

1

(
)=IR) suh that (u

n

; w

n

; �

n

; p

n

) is an approximate solution of the problem

(1.1)-(1.2), where (u

n

; w

n

; �

n

) is given by Lemma 2.1.

With the hypotheses of Lemma 2.2, p

n

2 L

1

(0; T ;H

1

(
)=IR).

Proof. It is easily derived from (3.29) and the Amrouhe-Girault's results (1991).

Lemma 5.2 Under the hypotheses of the Lemma 4.3, we have

Z

t

0

kp

n+s

(�)� p

n

(�)k

2

H

1

(
)=IR

d� �M

14

(M

1

T )

n�1

(n� 1)!

;

sup

t

�(t)kp

n+s

(t)� p

n

(t)k

2

H

1

(
)=IR

�M

15

(M

1

T )

n�2

(n� 2)!

:

for all t 2 [0; T ℄.

Proof. We denote p

n;s

= p

n+s

� p

n

; 8n � 1. Then, from (2.5) and (4.1), we have

�(�+ �

r

)�u

n;s

+rp

n;s

= J (5.1)

where J = 2�

r

rotw

n�1;s

+ �

n�1;s

f � �

n�1;s

u

n

t

� �

n�1+s

u

n�1+s

� ru

n;s

��

n�1+s

u

n�1;s

� ru

n

� �

n�1;s

u

n�1

� ru

n

� �

n�1+s

u

n;s

t

: (5.2)

Moreover,

kJk

2

�  krw

n�1;s

k

2

+  k�

n�1;s

k

2

L

6

kfk

2

L

3

+  k�

n�1;s

k

2

L

6

ku

n

t

k

2

L

3

+  kru

n;s

k

2

+ kru

n�1;s

k

2

+  k�

n�1;s

k

2

L

6

kru

n

k

2

L

3

+  ku

n;s

t

k

2

: (5.3)
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Now, (5.1)-(5.3) and the Amrouhe-Girault's results (1991), imply

kp

n;s

k

2

H

1

(
)=IR

�  kJk

2

(5.4)

and integrating from 0 to t, we get

Z

t

0

kp

n;s

(�)k

2

H

1

(
)=IR

d� � M

5

(M

1

T )

n�1

(n� 1)!

+ M

6

(M

1

T )

n�1

(n� 1)!

Z

t

0

kf(�)k

2

L

3

d�

+M

6

(M

1

T )

n�1

(n� 1)!

Z

t

0

kru

n

t

(�)k

2

d� + M

5

(M

1

T )

n

n!

+M

6

(M

1

T )

n�1

(n� 1)!

Z

t

0

kAu

n

(�)k

2

d� + M

3

(M

1

T )

n�1

(n� 1)!

by virtue (4.16), (4.17), (4.20) and (4.21). Therefore,

Z

t

0

kp

n;s

(�)k

2

H

1

(
)=IR

d� �M

14

(M

1

T )

n�1

(n� 1)!

:

Also, from (5.2) and (5.4), with �(t) = minf1; tg, we have

�(t)kp

n;s

k

2

H

1

(
)=IR

�  krw

n�1;s

k

2

+  k�

n�1;s

k

2

L

1

kfk

2

+  k�

n�1;s

k

2

L

1

+ kru

n;s

k

2

+  kru

n�1;s

k

2

+  k�

n�1;s

k

2

L

6

+  �(t)ku

n;s

t

k

2

� M

2

(M

1

T )

n�2

(n� 2)!

+ M

4

(M

1

T )

n�2

(n� 2)!

kfk

2

+ M

4

(M

1

T )

n�1

(n� 1)!

+M

2

(M

1

T )

n�1

(n� 1)!

+ M

6

(M

1

T )

n�1

(n� 1)!

+ M

8

(M

1

T )

n�2

(n� 2)!

by virtue (4.15), (4.19), (4.21) and (4.29).

Therefore, sine by interpolation f 2 C([0; T ℄;L

2

(
)), of the last inequality, we on-

lude

�(t)kp

n;s

(t)k

2

H

1

(
)=IR

�M

15

(M

1

T )

n�2

(n� 2)!

: (5.5)

Theorem 5.3 Under the hypotheses of Lemma 4.3, the approximate pressure p

n

onverge

to the limiting element p in L

2

(0; T ;H

1

(
)=IR) and (u;w; �; p) is the unique solution of

(1.1)-(1.2), where (u;w; �) is the solution given in the Theorem 2.3. Moreover, we have

the following error estimate

Z

t

0

kp

n

(�)� p(�)k

2

H

1

(
)=IR

d� �M

14

(M

1

T )

n�1

(n� 1)!

:
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Also, p

n

onverge to p in L

1

("; T ;H

1

(
)=IR), for all " > 0 and is satis�ed the following

error estimate

sup

t

�(t)kp

n

(t)� p(t)k

2

H

1

(
)=IR

�M

15

(M

1

T )

n�2

(n� 2)!

:
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