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Abstract

We study the existence and uniqueness of strong solutions for the equations of
nonhomogeneous asymmetric fluids. We use an iterative approach and we prove that
the approximate solutions constructed by this method converge to the strong solution
of these equations. We also give convergence rate bounds.

1 Introduction

In this paper, we study the equations of a nonhomogeneous viscous incompressible asym-
metric fluid. These equations are considered in a bounded domain Q C IR?, with boundary
I, in a time interval [0, 7). Let u(z,t) € IR3, w(z,t) € IR?, p(z,t) € IR and p(z,t) € R,
denote respectively, the velocity, the angular velocity of internal rotation, the density and
the pressure at a point z €  and at time ¢t € [0,T]. Then, the governing equations are

0
pa_z + pu- V)u — (1 + pr)Au + Vp = 2p,rot w + pf,
div u =0, (1.1)
pa—ltu + p(u - V)w — (¢g + cg) Aw — (co + ¢qg — ¢4)V div w + 4p,w = 2p,rot u + pg,
dp
op V) =0

in Q x (0,7), with the following boundary and initial conditions

u(z,t) =0, w(z,t) =0 on I' x (0,7,



u(z,0) = ug(z), w(z,0) =wo(z), in 2, (1.2)
p(z,0) = po(z) in .

Here f(x,t) and g(x,t) are densities of linear and angular momentum, respectively.
The positive constants u, ., co, ¢q, ¢q characterize isotropic properties of the fluid; u is
the usual Newtonian viscosity; pr, cg, cq, ¢4 are new positive viscosities related to the
asymmetry of the stress tensor and in consequence related to the appearance of the field
of internal rotation w; these constants satisfy cy +cq > ¢4. The expressions V, A, div and
rot denote, the gradient, Laplacian, divergence and rotational operators respectively (we

also denote % by u;); the it component of (u - V)v in cartesian coordinates is given by

[(u-V)v]; = 2?21 uj% ;alsou-Vp= 2?21 UJ;—;]

For the derivation and physical discussion of equations (1.1)-(1.2) see D.W. Condiff
and J.S. Dahler (1964), L.G. Petrosyan (1984) and the recent book of G. Lukaszewicz
(1999). We observe that this model of fluids includes as a particular case the classical
Navier-Stokes equations, which has been thoroughly studied (see for instance the classical
books of O. Ladyzhenskaya (1969), J.L. Lions (1969) and R. Temam (1979) and the
references there in).

It also includes the reduced model of the nonhomogeneous Navier-Stokes equations,
which has been less studied than the previous cases (see for instance, S. Antontsev, A.
Kazhikov and V. Monakhov (1990), J. Simon (1990), J. Kim (1987), O. Ladyzhenskaya
and V. Solonnikov (1976), R. Salvi (1991), J.L. Boldrini and M.A. Rojas-Medar (1992),
(1997) and P.L. Lions (1996).

Concerning the generalized model of an asymmetric fluid, considered in this paper,
G. Lukaszewicz (1990) established the existence of local weak solutions for (1.1)-(1.2)
under certain assumptions, using linearization and an almost fixed point theorem. In
the same paper Lukaszewicz remarked the possibility of proving the existence of strong
solutions (under the hypothesis that the initial density is separated from zero) by the
techniques used in Lukaszewicz (1988) and (1989) (linearization and fixed point theorems;
Lukaszewicz (1988) and (1989) assume constant density).

The first result on the existence and uniqueness of strong solution (local and global)
for problem (1.1)-(1.2) was proved by J.L. Boldrini and M.A. Rojas-Medar (1998) using
the spectral semi-Galerkin method and compactness arguments. The convergence rate of
this method was established by J.L. Boldrini and M.A. Rojas-Medar (1996).

In this work, we use another approach to obtain the existence and uniqueness of a
strong solution. We use here an iterative process, considering a sequence of linear problems.
For each linear problem it is easy to show the existence and uniqueness of a strong solution
(for instance, using the spectral Semi-Galerkin method as in J.L. Boldrini and M.A. Rojas-
Medar (1998)). Then, we obtain a priori estimates for the sequence generated by the
iterative process. In the next step we show that the sequence is a Cauchy sequence in an



appropriate Banach space, and consequently, we obtain strong convergence. With these
convergences, the strong solution for the full original nonlinear problem is easily obtained.
As by-product we obtain bounds for the convergence rate of the method.

We hope that the techniques developed here could be adapted to the case where full
discretization is used. This question is presently under investigation.

We remark that, from the technical point of view, the hyperbolic character of the
transport equation in (1.1) and the extra nonlinearities of the problem make the technical
arguments more elaborated than those used in the case of constant density (compare with
Ortega-Torres and Rojas-Medar (1997)).

This paper is organized as follows: in Section 2, we state some preliminary results that
will be useful in the rest of the paper; we describe the approximation method and state the
result of existence and uniqueness of a strong solution and the bound for the convergence
rate. In Section 3, we derive some a priori estimates that form the theoretical basis in this
problem. In Section 4, we stablish that the solutions of a sequence of linearized problems
is a Cauchy sequence and we prove our main result. In Section 5, we give error estimates
for the pressure.

Finally, as it is usual in this context, in order to simplify the notation we will denote
by ¢, Ci, ..., M, My, ... generic positive constants depending only on the domain and the
fixed data of the problem.
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2 Preliminaries

Let © be a bounded domain in IR? with a smooth boundary 02, T' > 0 an arbitrary real
number. The functions in this paper are either IR or IR3-valued, and sometimes we will
not distinguish between them in our notation. This be will clear from the context. We
will consider the usual Sobolev spaces

WD) ={ f € LUQ) / 0% fllLap)) < o0, laf <m },
formeIN, 1<p<ooD=QorD=Qx(0,7), with the usual norm. When ¢ = 2 we
denote H™(D) = W™?2(D) and HJ*(D) = closure of C§°(D) in H™(D). We put

Cop() ={v e Cg°(2)/ dive=0 in Q}



H = closure of C{,(f2) in L*(),
V = closure of C§,(2) in H'(Q).

It is possible to show that
V={ve€H}Q) /divv=0 in Q}.

We denote by V* the dual space of V and by H ! the dual space of H} ().

We recall the Helmholtz decomposition of vector fields L2(Q2) = H @ G, were G =
{6/ 6="p, pe H@)}.

Throughout the paper P will denote the orthogonal projection from L?(Q2) onto H.
Then, the operator A : D(A) — H — H given by A = —PA with domain D(A) =
V N H%(Q) is called the Stokes Operator. It is well known that A is a positive definite,
self-adjoint operator and it is characterized by the relation

(Aw,v) = (Vw,Vv), Ywe D(A), velV.

When Q is of class CY! the norms |lu||y2 and ||Au|| are equivalent in D(A) (see
C. Amrouche and V. Girault (1991)). We assume known other properties of A, see for
instance, O. Ladyzhenskaya (1969), J.L. Lions (1969) or R. Temam (1979). The same
remark is valid for the Laplacian operator B = —A with Dirichlet boundary conditions
and domain D(B) = H}(Q) N H%(Q).

Using the properties of P, we can reformulate the problem (1.1)-(1.2) as follow:

Find u, w, p in suitable spaces (which will be defined later on), satisfying

P(puy) + (b + pr)Au + P(pu - Vu) = 2p, P(rot w) + P(pf), (2.1)
pwy + (cq + cqg)Bw + pu - Vw — (co + ¢g — ¢)V div w + 4p,w

= 2u,rotu + pg, (2.2)
pr+u-Vp=0,
u(z,0) = up(z), w(z,0) =wo(z), p(r,0) = po(z) in Q. (2.4)

We counsider the following iterative process for the approximate solution of problem
(2.1)-(2.4). Setting

ul(t) = e ridyg, wl(t) = e MeatedlBuyyg pl(z,t) = po(z)

where e t1tir)A gnd e~Heatca)B yre the semigroup generated by the Stokes and Laplace
operator, respectively. And if ", w™ and p" are given, we define «"*!, w"*! and p"t! as
the unique solution of the following system of linear equations,



P(p"uf ™) 4 (p + pr) Au™ T+ P(p"u™ - Vu™ ) = 2, P(rot w™) + P(p"f),  (2.5)
P w4 (cq 4 cg) Bw™ T 4 p"u™ - VT — (¢, + ¢ — ca)V div w4 dp0 T

= 2u,rotu” + p"g, (2.6)
p?«+1 + un+1 . vpn+1 — 0’ (27)
"z, 0) = up(z), W (x,0) =wo(x), p"(z,0) = po(x) in Q. (2.8)

For simplicity, from now on we consider ug(z) = 0 and wo(z) = 0. Let first present

the following results obtained for the approximate solutions. In this case, it is clear that
the first iterate is (u!, w', p') = (0,0, pp).
Lemma 2.1 Let assume that py € C1(2) and 0 < a < po(z) < B, for all v € Q. If
f, g € L*0,T;L*(Q)) are sufficiently small in the sense of the L?(Q) norm, then, for
each n, the problem (2.5)-(2.8), has a unique strong solution (u"™,w™, p"). Furthermore,
we have u™ € L>®(0,T;V)NL?(0,T; D(A)), w™ € L*(0,T; H}(Q)) N L*(0,T; D(B)), p" €
L>®(0,T; L®(2)), uf € L*(0,T; H), w} € L*(0,T; L*()), Au™ € L*(0,T; L*(2)), Buw" €
L?(0,T; L*()), and all these sequences are uniformly bounded in the respective spaces.

Lemma 2.2 If the hypotheses of Lemma 2.1 are verified and assuming that f, g €
L?(0,T; HY()) and fi, g; € L*(0,T; L*(Y)), then the solution (u™,w™, p") of the problem
(2.5)-(2.8) satisfies u™ € L>®(0,T;D(A)),w"™ € L*(0,T;D(B)) and up € L>(0,T;H) N
L2(0,T;V), wi € L>®(0,T; L*(Q))N L2(0,T; H}(Q)), for each n. Moreover, we obtain the
following estimates uniformly in n:

St;p(HU?(t)HerHw?(t)||2) < C,

t
/0(IIVU?(T)||2+HVw?(T)HQ)dT < G,
sgp(HAU"(t)HQ+||Bw"(t)||2) < G,

t

/0(IIVU”(T)H%«»+!|Vw”(7)!|%oo)dT < G,
sgpIIVP”(t)II%oo < C,
sgpllp?(t)llioo < C,
sgpa(t)(HVU?(t)!F+||Vw?(t)||2) < C,

t
/0U(T)(HUZ:(T)H2+Hw?t(T)H2)d7 < G,



t
/0 o(T)(|Auf (7)|* + || Bwi () I)dr < C,
for all t € [0,T], where C > 0 is a constant independent of n and o(t) = min{1,¢}.

Theorem 2.3 Let the conditions of Lemmas 2.1 and 2.2 be satisfied. Then the approzimate
solutions (u™,w™, p") converge to the limiting element (u,w, p) in the following senses

u" — u strongly in L®(0,T;V N H?(Q)),

w" — w strongly in L°°(0,T; H} (Q) N H*(Q)),

uy — up strongly in L*°(0,T; H),

wl — wy strongly in L™®(0,T; L*(2)),

ult — uy weakly in L*(0,T;V)N L%, T;V N H*(Q)), Ve >0,

upy — uy weakly in L*(e,T;H), Ve >0,

wy — wy weakly in L*(0,T; Hy (Q)) N L% (e, T; Hy () N H*(Q)), Ve >0,
wiy — wy weakly in L*(e,T; L*(Q)), Ve > 0.

The limiting element (u,w, p) is the unique solution of problem (2.1)-(2.4) and

sup {74 (1) = Vu(O? + [V () - Vo < AT

n—1

[ ) — )P+ ) — e < G

0 (n—1)!

t n—1

[0 ) - aun P + 18w ) - ButniPer < AT

0 n .

n—1

sup 0"(1) = p(O)F < M%

n—2

sup ()1 () = (W) + [ (0) ~ wi ) < 2

n—2

[ @ U7 ) ~ I + 190 () - Funlr) P < Mi(i‘ffg)!,
n—2

supo(t) (| 4u™ (1) — Au(®)[? + | Bu™ (1) - Bu(®)|) < M%

n—2

sup o (1) (1u" (6) — w(®) e + 0" (1) — w(®)3) < ML

t (n —2)!

t n—2
[ oIV ) = V)l + 1907 0) - Vur) g < G



Moreover,

ue CH[0, T H) N C([O, ] (A))
w e CH([0,TT]; (%))
peCHQ x(0,T)).

D
E“
Z

3 A priori estimates

In this section, we will prove uniform a priori estimates in n for the approximate solutions.

3.1 Proof of Lemma 2.1

The existence of a unique strong solution for the linear system (2.5)-(2.8), for each n,
can be proved using the spectral Galerkin method (see for instance Boldrini and Rojas-
Medar (1998)). The regularity asserted for the approximate solution in the lemma are
firstly obtained for Galerkin approximations and then obtained for (u™,w", p™) by taking
the limit. We will only prove the estimates, uniform in n, for the approximate solutions
(u", w", p").

i From the method of characteristics applied to the continuity equation (2.7) it follows
immediately that whenever p" exists, it satisfies 0 < a < p" < G, then

{p"} is uniformly bounded in L*°(0,7"; L*>°(R2)). (3.1)

;From (2.7), we have also that (pfv,v) = —(div (p"u™)v,v) = 2(p"u" - Vv,v) and
consequently

m”“ ol = ( prv,0) + (001, 0) = (0" - Vo,0) + (p"vi,0), Yo € Hy, vy € L*().
With this identity in mind, multiply (2.5) by u”*! and (2.6) by w"*!, to obtain
y y y y
respectively:

: dturu““u? ()| = 2, (ot 0" w4 (o ), (3.2

VP 4 (ca + ca) [V + (co + ca — ca) ldiv ™| + dpy w12

= 2pur (rotu”, w1 + (p"g, w" ). (3:3)

2dt|

We observe that for u € H} (), we have



lrotwll < [Vall, [ullpe <22 [ull*[Vul** and |lul® < A7 Vul?, (3-4)

where A is the smallest eigenvalue of the Laplace operator B = —A (see for instance
Ladyzhenskaya (1969)).

By Holder, Young and (3.4) inequalities, we get from (3.2) and (3.3) the following
differential inequalities

—||W
Kt pr

d :
IV 4 (ca + ca) [V P + 2(co + ca — ca)|div wn+ly|2

d
IV = () [V < ||f||2

4M2 /32
< ——lu"|” + —lg]I*.
Cq +Cd iy

Therefore, adding both inequalities and integrating both sides from 0 to ¢, we get the
following integral inequality (recall that ug = wg = 0):

o[l O + lw T O) + (o + pr) /Ot IVu*(r)|*dr

t t
+(ca+ cd)/ V™ (7)[2dr + 2(co + cq — ca)/ |div w™t (r)|2dr

87 / 4py 262/\ ! 62 >
dr + ——1— / " dr + —
Sy [[w™ (7)]|? P lu™ (7)1 o “f“L2 * 8 190122

Then, there exist constants M and C' such that

+ t Cq t+C t
@+ o @ + B [ vt ) 2+ S g () ar

t
< C [ Q@) + " (7) |2)dr + M. (35)
0
Choose, for example
8M2 4,&2 262)\ 1 62 )
C = max r_ r and M =
{a(u+ur) a(Ca-i-Cd)} a(p + p )“f”L gaMngHU(Q)

Thus, setting ¢, (t) = ||[u™(¢)]|? + [|w"(t)||?, the last inequality implies

t
puia() M +C [ pu(rydr.
0



Observing that ;(t) = 0, a straightforward induction argument shows that, for all n,

n—1 k

Ct

en(t) < MZ ( k')

k=0
< M exp(Ct)
We conclude that for all n we have
sup ( Hun(t)H2 + Hwn(t)||2) < sup Mexp(Ct) = M exp(CT) = M,. (3.6)
t€[0,T t€[0,T

Notice that M; does not depend on n and it can be made as small as needed, assuming
that ||f||%2(Q) and ||g||%Z(Q) are small enough.
Combining (3.5) and (3.6), we get

O[Ml
Cq tCq

O[Ml

n+12 n+1
[u ||L2(0,T;V) < 1+

and [0 G000y < (3.7)

r

where the bounds are independent of n.
Multiplying (2.5) by d Au™*!, and then by u}'™' and integrating in ©, we obtain
respectively

S(p + pr) | Au™ T2 = =6 (p"ufth, Au™T) 4 24, 6 (rot w™, Au™T)
+6 (p" f, Au™ ) — §(p"u" Vu T Ayt (3.8)

and

+pp d
IVEmuy 2+ ESEE SV = 2ue (ot w up ) + (0 £ up )
—(p"u". VT . (3.9)

Then, since a < p" < 3, we get

+py d
alluy P 4+ ESEEZ IV 4 8 ) AP

2
<18 (pMupth, Au™H)] 4 (20 6 (ot w”, A+ 24 (rot w w4 | (0" f up )|
+16 (0" f, AuTH) | 4 15 (p"u. VT Au™ )| 4 | (p"u™ Vu T ). (3.10)

Now, using the Holder, Young’s inequalities and (3.4), we get



[6(p" " Vut Au ] <8 Bl || V|| Aut T
< BV PV | Au |
< 5 AVRATYE VU [V pal| Au . (3.11)

Since H?(Q) — WhH%(Q), for u € D(A), we have

IVullps < lullwrs < Callullgz < CaMs||Aul], (3.12)

where Cq and Mj are positive constants, independent of w. Thus, from (3.11) and (3.12),
we obtain

0(p"u"™ Vu T Au™ )| < 6 V2 A YECo M|V ||| Aum |2 (3.13)
Similarly,

|(p"u™ Vut upth)| B ™| Ll Vu™ | polug |
§ B2 X~ VBCoMs||Vul|||| Aum |2

+5 V2 A 18CoM;
46
Therefore, with these estimates in (3.10), and for any 1 > 0, we obtain

V7™ | 1% (3.14)

A8 Co My
45

4 p2”
s+ 1) 9 + 2= 3 -

30
+20((0+ ) - 55— 22 1/809M3||Vu"||) JAu

Iva )i

Bpurn 20y n
< 57"2 n’")HVw I + (277+ )||f||2

Integrating from 0 to ¢ the last inequality, (recall that ug = 0) we obtain

322 \~1/8Cq My

(e i 9 O +2 [ (=30 IV ()] 1 ()

46
! 30 3 3/2 y—1/8 n n+1 2
+20 (M'l‘ﬂr)—v—ﬁ? A CQM3||VU (Ol 1 Aw™" ()] "dr
8 T' 2 T'
< e 1 22) [ 9uro)lPar (2n-+ )1 )

477 1 ZMTaMl

<
_(/62 1N Cq+¢q

+ (2n+ %)“f“%%cg)

10



Then, choosing n = % and 6 = o+ pr) we have

4 462

o 5321/2 1/80 M. " .
IV @ +2 [ (§ = S v o)) o) P

N % /0 (%_gzw A—l/SOQMguwn(r)H)llAu”“(T)H?dT

2
1
< 2(a® +48%) =T My + —(a® + 48| £]1%. 3.15
(@ +48%) g oMy 5 (@ 400 (3.15)
The right hand side can be made smaller than any £2, choosing ||f||%2(Q) and ||g||%Z(Q)
sufficiently small.
Setting n = 1 in (3.15) and using that u! = 0, we get

e alptp) [P ptp
(-4 i) IV (@)? 42 [ Gl o)+ SEZ [ BT ) Par < €2,

then, for all ¢t € [0, T, we have

€
(1 + ,Ur)l/Z .
Supposing that this inequality is valid for some n, that is,

IVu?(#)] < (3.16)

&
(:U + ,UT)I/Z7

we can prove it for n + 1, given that the coefficients inside both integral in (3.15) are
positives. Or, if we suppose the inequality valid for that n, we need simply to prove that

IVu" (@) <

321/2 )\—1/8 M.
o b ColMse o an > 0,
4 a(p+ Nr)3/2 4 (n+ Nr)l/Q

which is clearly true for ¢ sufficiently small. Therefore, for all n, we have proved that

4 H + e B2B2ATYCoMse

€

sup [V ()]l < ————75- 3.17
te[0,17] | @l (p + pup)t/2 ( )
From (3.15) and (3.17), we have
391/2 \~1/8¢1, M.
(G- )l
ap + pr)3/?
T / (Iu +pur 232 A_I/SCQM:),‘S) ntl( (2 2
_ <2
" 262 Jo 4 (i + o) 172 [Au" T (7)|"dT < e

11



Therefore, we conclude that there exists a constant C', independent of n, such that

t t
/ | (1) |2dr +/ |Au™t (1) |[2dr < C. (3.18)
0 0

Similarly, for all n, we obtain

(cat IV O+ [ 1B (0P +a [ uf OlPar< e, (319)

and the proof is complete.

3.2 Proof of Lemma 2.2

Now, differentiating (2.5) with respect to ¢, we obtain

P(pfup*t) + P(pup™) + (o + pr) Aug ™
= 2 pr P(rotwi’) + P(pf f) +P(( "fi) = P(pfu" - Vut)
—P(p"u} - Vu" ) — P(p"u™ - V). (3.20)

The multiplication of (3.20) by u}*! results in:

S IV + () [V

1
= =5 (pruy ™) + 2y (ot ) + (of £ruy ) + (0 fru )
—(P?Un X Vun+1 un—l—l) o (pnu?‘vun+l un—l—l) ( Vun-i—l n-l—l))

1
= 5 (div (p"u")u ™ ) + 2w ot ) — (div (p"u") f )
+(p ”ft, uf ™)+ (div (p"u)u Vu T u ) = (g Vutt )

_( vun+1 n+1) (321)

since from (2.3), pf = —div (p"u").
Now, let obtain bounds for each one of the right hand side terms of (3.21), beginning
with the first one:

1
S(@iv () ) = (T )

IN

1" HLooIIU”IIL4IIW?HHIIUt“Hm

12



1 1y1/4 1)3/4
< BIV IV g
< CIVa T gt
< Cylluf TP+l Ve T2
The second one is simply
2y (wit, rot uf ) < Cyllwp | + | Vup 2. (3.22)

For the third one, integrating by parts:

—(div (p"u") frup ) = (P V) 4 (M - VPt f)
Bl eIV A o+ Bl | Va1 £ e

<
< Clflm IV < Gyl f Il +allVur 1%

For the fourth term, an obvious bound gives:

(0" fesui ™) < Collfell® + nl Vg ™% (3.23)

The fifth term, again integrating by parts:

: n,.n n n n,.n n a
(div (p"u™)u™ - Vu “,u?“) = E /Q— (p"u; )Uj(—ax,“ZH)UZIIdI
; j

—Z/Qp u; uj(a—%uzﬂ)(a?u’;;l)dx
1,9,k !

C B [|u™ | o[V u | o Ve g+ s
+C Bllu ol Au™ g | 2o

+C Bl 76 Vu" | o[V |
CllAu || Vuy ™| + C [ Au" | Vg |
Co(llAu™|[* + | Au"H) + 20 Vu HH 12,

IN

IN N

The sixth term:

13



(P up - Vu T ufthy < Bl [V pellup | pe
< Clup A Juf ) g
< Cyllup P Au I + | Vup 2.
And the seventh one:
(p"u™ - Vup Tt up ™) < Bl e[V T lup ) e
< OIVur gt Va2
< Cyllup ™M1 + 9l Vug 12,

With all these bounds we can transform (3.21) in the following inequality:

1d
S IV 4 G+ o) [V )2
< Cyllaf 2 + Gyl I + Cyll £l + Cyll il + Cy | Au”
O AR + Oyl |2 4w 2 + G2 + 81 [V

pt

Choosing n = 16 " we get

d
VPR + () [V

<Ot + C f I + C I3 + C I+ C 4w + O | 4w+
O P Aum 2 4 C (3.24)

In order to get a bound for || Au"*!(|?, multiply (2.5) by Au™*!. We obtain

(i + )l AP = = (", Aum) 4 2, (rot w”, Au™tY) 4 (p" f, Aum )
_(pnun'vun+1jAun+l)

and since

|(p"u™ V", Aut T Blu" Ll Vu" | pall Au

C Va4 Aa T < Oy VT + 6| w2

ININ

14



we get, using obvious bounds for the remaining terms:

(4 po) | A" P < Colluf ™M + Coll V™ |2 + G517 + Csl| V" TH|* + 4.6 | Au™ 2.

Then, taking 6 > 0 sufficiently small, from the last inequality, we obtain the bound:

| Au"T? < Clul ™) + C. (3.25)

Thus, rewriting (3.24), we obtain now

d
IV A (g [V
< Clluf™M P + Clwf I? + ClIf il + C Al + CllAu™ | + C | Au™ 2
+C [luf *[lui H* + C [luf |I* + C.

Integrating from 0 to ¢

P + (o) [ 190570 P
<0 [ U O + 1 OIF + 1) + LIdr
+0 [ 4w @) P + 4w )ar +0 [ (7)1
+0 [ I @I ™ )l dr + i O + 0,

;From the equation (2.5), we can easily bound the rightmost term ||u}**(0)||%. In fact,

|u?*()||? is non decreasing at ¢t = 0, because on that time, Vu?*'(0) = 0. Applying

(3.18), (3.19) and the hypotheses on f and f;, we get
t t
HU?H(t)llZJr/0 IVug™ (7)|dr < C+C/O g (P) 1 |ug (7).

If we denote @(t) = ||uf ™! (¢)]|?, the above inequality can be written as

o) <0+ [ (nlPple) dr

which, by Gronwall’s lemma, tell us that
t
plt) < Cexp(C [ ui (7)1 dr).

15



Therefore, again using (3.18) we conclude that

t
g+ (1)1 +/0 IVufHH(r)|Pdr < C. (3.26)

Moreover, from (3.25) we have for all n

sup [Au" T (@)]” < C. (3.27)
Similarly, for all n, we prove
i O + [ IVar OlPdr < C and swplBut O <0 (329
;From (2.5), we have
(4 + i) Au™ = P(F) (3.29)

where
F = 2pu,rot w™ + p" f — p"uf Tt — pty™ - vyt

We observe that from the estimates given in the Lemma 2.1, together with the esti-
mates (3.26) and (3.27), we have F' € L?(0,T; L%(f2)) and consequently by the Amrouche-
Girault’s results (1991), we obtain u™ € L?(0,T; W%°(Q)) uniformly in n. Also, by using
the Sobolev embedding, u™ € L?(0,T; W1>((2)) uniformly in n.

The estimate for the density p™ is obtained from the Ladyzhenskaya-Solonnikov’s
results [(1968), see Lemma 1.3, page 705].

Now, multiplying (3.20) by u™, using (3.1), (3.17), Lemma 2.1, the above estimates,
the Holder and Young’s inequalities, we obtain

+ py d
allufy P+ ESEEZ IV P < Cullap T+ G|V | + LI + G il

+Cel| Au™ [ + Cc | Vi I Au™
+Ce |V | o+ Teug .

Choosing € = % and observing (3.26)-(3.27), we have

d
orllugg P+ (ot ) IV < elIVep P+ el FIP + el fill” + e[V

-I-c||Vu?+1||2 +c

16



and multiplying by o(¢) = min{1, ¢}, result
n+1(12 d n+1(12
ao@luly™ I + (1 + pr) 2 (@O Vur ™)

< (1 + pe)o' IV + co @) (Ve |* + |V |?)
+ea@IFIP + 1Fll®) + co@([Vur T +1). (3.30)

In view of (3.26), there exists a sequence g, — 0, such that g, [|[Vu? ™! (e;)]|? < C.
Therefore, since o(t) < 1 and o'(t) < 1 a.e. in [0,7], observing (3.26)-(3.28) and
integrating (3.30) from e to ¢, we find

t
a/ o (D)™ (D)Pd7 + (4 ) o ()| Va T (O < et (ptpr)o(en) [Vui ™ (ex) [ +C

€k

and letting e — 0, for all n, result in
[ o @)1+ o9 01 <
Analogously, for all n,
/OtU(T)Hw,@“(T)II?dT +o(b)|[Vwp ™ (@)]* < C.

To prove the last estimate given in Lemma 2.2, we observe from (3.20) that

¢ n+1 2 ! n 2
() [ o)A () Par < [ o(r)GM ()l Par
where

G" = 2urotw} + ppf + p"fr — pfup Tt — pruptt — ppu - V!
_pnu?‘vun+l _ pnun . vu?-l-l.

We observe that the above estimates imply that o'/2(t)G™ € L?(0,T;L*()) uni-
formly in n. Analogously, we prove the estimate for w"™.

Remark. Using arguments of compactness and the estimates given in Lemma 2.1 and
Lemma 2.2, it is possible to prove that the approximate solutions (u",w™, p") converge
to a unique strong solution of the problem (1.1)-(1.2). This can be done in exactly the
same way as in Boldrini and Rojas-Medar (1998). In the next section, we will prove the
convergence of the approximate solutions by other arguments.
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4 Proof of Theorem 2.3
For n, s> 1, let

WS (t) = a" () — (1), W () = w(E) — w(t) and p7(E) = P O(E) — P ().

S S

With these notations, we observe that v™*, w™?® and p™® satisfy the following equa-

tions

P(p" ™ u®) + (i + pr) Au™* = 241y P(rot w"™5) + P(p" 10 f) = P(p" ™ uf)
_P(pn—l—l—sun—l-i-s X Vun,S) _ P(pn—l-i-sun—l,s X vun)

—P(p" S vu) (4.1)
PS4 (e + cg) Bu™® — (co + g — ¢0)V div w™® + dp,w™*
= 2, (rot u™10) 4 p" g — pt b — ph SIS g
_pn71+sun71,s V" — pnfl,sunfl - V™ (42)
p?,s + LI vpn+s + u - Vpn,S =0. (43)

The following lemma will be fundamental in order to obtain error estimates.
Lemma 4.1 Let 0 < ¢1(t) < M for allt € [0,T] and assume that for alln > 2, n € N,
we have the following inequality

t
0< gult) <C / G (7)dr

where C' > 0 is a constant independent of n. Then,

(Ct)n—l (CT)n—l
-1 =M m o

Pn(t) <M

for all t € [0,T] and n > 2. Therefore, ¢,(t) — 0 as n — oo, Vt € [0,T].
Lemma 4.2 Under the hypotheses of Lemma 2.2, for 2 < r < 6, we have
t
o™ @Ol < C [ 1w () ar,
Proof.
For a bounded domain 2, it is known that L"(2) < L%((2), for 2 < r < 6, then we

only need to prove the result in the case r = 6.
Multiplying (4.3) by (p™*)° and integrating over €2, we obtain

18



1
/|pn5| dr = —/un’s-v,()n+s(pn’s)5d$——/un-V(pn’s)6dJL‘
6dt Q 6 /o
n,s el 7,5 ]' 3 n 7,5
[ o+ 5 [ div (o) e

van+s||L°°(0,T;L°°(Q))/Q|u ’

1/6 5/6
C (/ |u”’s|6d:1:> (/ |pn’s|6d:v> .
Q Q

IN

IN

IN

This implies

1d

Gl 8 < Ol oo™ s

but,

1d
sl = o

||p

then, since H'(Q) — L5(£2), we obtain

Lol < ClIvn

Integrating from 0 to ¢ the last inequality and applying the Cauchy-Schwartz inequal-
ity, we have

t t 1/2
@l < ¢ [ Ivar @i < of [ 1vas@ipar) (4.4

Lemma 4.3 Under the hypotheses of Lemma 2.2, we have:

sup{[| V(1) = Vu (1) |2 + [V (1) = V" ()]* - < M%

n—1

[ ) — @ + i) —wp e < S

0 (n—1)

t n—1
[ A5 () = Amu(r) P + [ Bur(r) = But(n)]P)dr - < 7%1?1)!,
n—1

supllo™ () = Ol <
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[ U9 ) = v @l + 19w ) - vur )P <
for2<r<s sl -l < M
sup o 9 () O + () —wp o)) < L
[ o9 @) = T I + 190 (1) - Vap o) < B
sgpo(t)(HAu"*'s(t)—Au”(t)||2—l—||Bw”+s(t)—Bwn(t)||2) < M%»
sup ()" (1)~ (O + 00— O) < T
[ @ Iva ) = Ve + 190 0) = Vo) < T

Proof. Multiplying (4.1) by 6 Au™*, integrating over € and estimating as usual, we obtain,

O(p+ pr) [ Au™ 1> < pllu P+ 0l Vw21 4l el N
+llo" 26V I + nl Vu™|?

_ _ 1
il Va2 + 0" e + E5ZCIIAU”’SIIZ- (4.5)

Similarly, multiplying (4.1) by u;"*, we get

n,s 2 N+NT d n,5(|2
) _ v 3
ollup*||* + B2 Vu
< CyllVu™ 112+ Cyllp™ P NZs I F s + Cyll™ 126 IV |12
FC V™12 4+ Cy[[Vu™ 1|1 + Cyllp™ (126 + 6l (4.6)

JFrom (4.2), we have

pn—l—l—sw?,s +Lwn,s _l_4'urwn,s
_ 2Hr(r0t un—l,S) 4 pn—l,sg o pn—l,sw? o pn—l-i—sun—l—l—s B VAT
_pn—l—l—sun—l,s V" — pn—l,sun—l - V™ (47)
where Lw™® = (¢q + ¢q) Bw™* — (¢o + ¢q — ¢)V div w™*.
Since L is a strongly elliptic operator (see Ladyzhenskaya-Solonnikov-Uralceva, 1968
page 70), there exists a constant Ny > 0 (N only depending of ¢, + ¢4, ¢o + cqg — ¢ and

012) such that
(Lw™*, Bw™*) > (cq + cg)|| Bw™*||> = No||Vw™*||%. (4.8)
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Now, multiplying (4.7) by 6 Bw™?, using (4.8) and estimating as usual, we have

0(ca + ca)| Bw™ 2+ ¢llom b

¢l B2 s [V |2 + V™| + ¢l
0°C
4

Multiplying (4.2) by w;”* and estimating as usual, we obtain

|2 llgllZs

2S00V P+ Cllwp|1P + I Vut T

"M + 1 Bw™ . (4.9)

Co+cqgd 9 Cot+cg—cqd .
_ v n,s _ d n,s
> VeI y  a v

< CelVurb 112 + Cellp™ 21 2s gl e + Cello™ 176 IV} |1®
+C[Vw™ | + C[ Va4 |17 + Ccllp™ " II76 + 6¢[lwy 7. (4.10)

allwi”|I? + °

d
2 n,8
2 5
MrdtHw

Adding (4.5) and (4.6), we get

p e d
ot IV 4 6 + ) A 2

< 20, Vw2 + 20, 10" 6| £l s + 2Cy " 176 V|
+2C, | VU™ |2 4 2C, [[Vum =12 4 2Cy |~ 176 + 6mup*||”
Cé6?
AT

allu*[|* +

1Au™2|?.

2

o)
Choosing n = % and 0 > 0 such that (4 p,)0 — . > 0, we have
1

d
aHU?:SHZ + (,u + HT)%HV’U,”’SW + Cl||Aun,s“2

< OV 2 4+ Cllp" s fl12s + Clle™ I sl Vaf |
+C|IVu™* | + C|[ Va2 + Cllp" [ (4.11)

with positive constants ¢;, C independent of n
Adding (4.9) and (4.10), we get

Co+cqgd
2 dt
cotcg—ce d .. d
f“yldw w™*||? + 2pr o |lw
<AC Va2 4 2C¢ 1p™ 076 g7 + 2Cc o™ 0|76 [ Vap |12

Co?
Buw™* 2.
5 IBu

2

allwi”1? + IVw™*||? + 6(cq + ca) | Bw™*

n,s “2

+(0 + )C[ V™ |* + 2C|p" (I + 6¢]|w}”*|1* +
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Now, choosing ( = % and 0 = %

2
, and noting ¢y = %, we get

aljw;”

d d
2+ (ca + ca) L IVO™ I 4 ol Bw™ P + (eo + ca = ca) - [div o™
d _ _ -
apr w1 < CIVU 2+ Cllp™ sl Zs + Cllp™ ™ I1Ls [ V|
+C|[ V™ |? + Cllo" I 2s. (4.12)
Adding (4.11) and (4.12), integrating from 0 to ¢, we obtain
t
(1 + u) [Va™* (@)1 + (cq + ca) [ V™ (@)]I* + a/o (Il (DI + [l (7)) dr
t t
fo [ 4w (@) Pdr -+ [ 1B ()]s + oo + ca — o) |div ()
0 0
t
<0 [ (Ivam ()| + [V b () P)ar
0
¢ -1 2 2 2
+C/O o™ =5 (DI zs (N (DIze + g (T e )dr
t
+C/O 1" =2 (O Zs (Vg (DI + [ Vwp (7)) d7
t t
+0/ (IVu™ (n)|* + [Vw™* (1)) dr + 0/ lo" =2 (1) [ Zodr.  (4.13)
0 0
JFrom (4.4), with r =6,V 7 € (0,%), 0 <t <T, we have
T t
I @l <0 [ Vet @) Par < ¢ [ vunt e P
0 0
and replacing this last inequality in (4.13), we obtain
t
es(|Vu™* @) + [Vu™ ()]*) + 03/0 (> (DI + e (7)) dr
t
+03/ (lAu™(7)|? + | Bw™ (7)|*)d7 + c3]|div w™* (¢)]
0
t
< C/ (Va5 (D)2 + Vw2 (7)[*)dr
0
t t
+C [ 1w @olFdn @I + o) [F)dr
t t
+C [ Ivur e @lFdn [V + [V () )

t t
+C/ (IVu™* (1) + [ Vo™ (7)|2)dr + CT/ Va5 () |2 dr.
0 0
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where ¢3 = min{ p + p,, cq +cq, @, c1, ¢ }.
Then,

t t
IVu™ (@)% + [ Vw™* (&) +/0 (g (D) + " (7)) dr +/0 [ Au™*(7)|2dr
t t
+/ |Bw™* (7)|[*dr < C/ (Va5 ()2 + [V =2 (7)|*)dr
0 0
t
+C/ (IVu™* (D) |* + [Vw™* ()][*)dr.
0

Applying the Gronwall’s inequality (see Varhorn (1994), Lemma 3.10 page 122), we
get

IVu™ @ + [Vw™ @)]* + /Ot (lur* (O + lwy* (1) 1*)dr + /Ot [Aw™* () |?dr
+ [ B @R < iy [V SO Ve @R (414)
Thus, we have
IVu™*(@)]* + [ Vw™ (#)[|* < M /Ot (IVu=b () + [V =52 (1) |?)dr.

Since [|[Vu™*(t)]|? + [|[Vw™*(t)||* < M, Vn,s and t € [0,T], using the Lemma 4.1, we

obtain
(Mlt)nfl < (MIT)nfl

var @+ [vurs o) < < QIT g
We observe that
¢ n—1,s n—1,s ! (MIT)n72 (Mlt)nil
T A T T
(4.16)
Therefore, from (4.14) and (4.16), we have
t n,s n,s (A]Mlt)n_1 (-]MlT)n_1
L R e
n—1 n—1
[+ gpore @ < 0 <D )

Now, from (4.3), we have

p?,s + un.vpn,s — _un,s . vpn-i-s
p(0) = 0.
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Let z™(z,t,7) be the solution of the Cauchy problem

4 = w)
Z" = g for T =1

Then, using the characteristic method, we have

P (z,t) = — /Ot u”’s(z”(T),T).Vpn+s (2" (7), T)dT.

Bearing in mind properties of 2" (see Ladyzhenskaya and Solonnikov (1978), p. 93-96),
we get

t t

o7 Wl < 196 sy [ I @ledr < [ 4]
Hence, applying the Cauchy-Schwartz’s inequality and observing (4.18), we have
Mlt)nfl M(MIT)nfl

t
Ol < [ l4u @) Par <

(n—1"! — (n—1)! "~ (4.19)
Integrating from 0 to ¢ the inequality (4.15), we obtain
/0 LIV ()2 + [T () [2)dr < M(le) < M(M;,T)". (4.20)
Also, from (4.4) and (4.20), for 2 < r < 6, we have
ooyl < a DT (421)

At this point we have proved the first six bounds of Lemma 4.3 which correspond to
(4.15), (4.17-21). The following bounds in the lemma require some technical manipula-

tion. Let differentiate (4.1) with respect to ¢, multiply the result multiplying by w;”* and
integrate on 2. We get

5 IR o ) [V

= —%(ﬂ? ) + 2 (rob w7 ) + (" f )
—(p" g, u”*) — (o~ HSU” HE T up)
(pn 1+s n 1+s vuns ) ( n—1+s n71+s_vu?,s,u?,5)
T T ) — (P )
(pn 1+snls vutvut ) (pn lsnlvu ut )
="V, ul”) + (o) )
—(pt 1,sut7ut )= Pttt v Jup )
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Let group the terms containing p?_l , namely

1, R 1, , 1, ,
ho = (pp " fou®) — (pf P, u™®) — (o T Va up®),

and denote by Al the remaining terms. Then, we have

SIS 2 () IV = 2+ 2o

Multiplying this equation by o(¢) = min{1,¢} and integrating the result from 0 to ¢,

we get
t
o)l P~ (@u O + 2 (1 + pr) /0 o(T)| V" (7)|[*dr

_ /0 L Ol )l () [Pdr 4 2 Ha () + 2 Hot)  (4.22)

where H,(f) = /0 "o(r)hy(r)dr and Ha(t) = / o (F) ha(r) dr.

0
Now, we estimate the right-hand side of the above equation. From the fact that
0<0o'(t)<la. e in tel0,T], we have

[ Ot < 6 [ e

(MlT)n 1
as a consequence of (4.17).
It is easy to show that
M T n—2 + t
Hi(t)<c ((nl—)Z)! + £ 4“’° /0 o (7)||Vup® (1) ||*d. (4.24)

For each term in ho(t), using (4.3) and integration by parts, we can obtain the same
kind of bound. In fact,

(or 2ty = (W Vg ) — (W Vg, )
= (@ VT ) + (o Ve, )

NPT R
= 7 P70 0 R e P
Hlo ™ o ™ e [V [y o
Hlo" ™ s = oo [V 1] o
< CIve" Il Vg "N el Vug |
< GylIVe P90 + Cyllo" s 9117 + 20l V|17, (4.25)
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Taking respectively 1 = f, 1 = ul and ¢ = u™ 1 Vu?, choosing n = , we have

t t
Hot) < e [ IVar @RI e [0 @l () dr
t t
ve [V @lEdr e [l 0l IV () dr

t _ + t
te [ @)+ B [ o) Vu () ar.
0 0
Now, using (4.15), (4.20) and (4.21), we obtain

M:T n—2 + t
Hy(t) < M((nl_)2)! + £ 4,u,n /0 o (7)||Vup® (1) ||*d. (4.26)
Therefore, carrying (4.24) and (4.26) in (4.22), we obtain
(M T)"
()| +/ DIV (7)|dr < MW. (4.27)

which correspond to the bounds for u;"* in Lemma 4.3 (seventh and eighth bounds in-
equalities in lemma). For w;”® the arguments are similar.

The ninth bound in lemma is directly obtained from the first bound. Similarly, the
tenth bound is consequence of the previous bound, because of the Sobolev embedding

L>®(Q) C H%(Q).
Finally, the last bound of Lemma 4.3 is obtained, repeating the same argument used
in Lemma 2.2 (see equation 3.29). That is, from (4.1) write
(4 + 1) Au™ = P(F)

where

F = 2#7‘ rot wnfl,s _l_pnfl,Sf pnfl,s no__ pn71+s -Vt
_pn—l-l—sun—l,s X vun pn 1,s v 1 Vu n 1+su?,s‘
Verify then that F € L?(0,7; L5(Q)) and apply the Amrouche-Girault result (1991).
This completes the proof of Lemma 4.3.
Now, we are ready to prove Theorem 2.3.

Firstly, we observe that L*°(0,7;V) N L?(0,T; H*(2) N V) is a Banach space and
consequently the Lemma 4.3 implies that there exists u € L>(0,7; V)N L%(0,T; H*(Q) N
V') such that

u" — u strongly in  L*®(0,T; V)N L*(0,T; H*(Q) NV). (4.28)
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Analogously, the Lemma 4.3 implies that there exists w € L™ (0,T; H(2)) N L?(0,T;
H?(Q)N H}(Q)) and p € L®(0,7; L>°()) such that

w" — w strongly in L0, T; H}(Q)) N L0, T; H*(Q) N HE(Q)),
p" — p strongly in L>(0,7; L>(2)).

Also, the Lemma 4.3 implies that there exists v € L?(0,7’; H) such that
ul' —s v strongly in L?(0,T; H).

By standard arguments, (4.28) implies that v = wuy.

Similarly, w? — w; strongly in  L?(0,7; L?(2)). Moreover, from Lemma 4.3, for
every € > 0, we get

ul! — ug strongly in  L®(e, T; H) N L*(¢, T; V),

w — wy  strongly in  L™®(e, T; L*(2)) N L?(e, T; Hy (),

u" —s u strongly in  L®(e, T; HX(Q) N V) N L (e, T; W (Q) N V),

w" — w  strongly in  L™®(e, T; H*(Q) N HY () N L (e, T; WH®(Q) N H (2)).

Now, the next step is to take limit. But, once the above convergences have been
established, this is a standard procedure, and we obtain

T
/ (pur+pu-Vu—pf—2protw— (1 + pr)Au,v)p(t) dt =0,
0
T
/ (pwi+pu-Vw—pg—2urotu + 4 p, w— (cq + cq) Aw
0
—(co 4+ cqg — ca)Vdivw, z )p(t) dt =0,

for all z, v € L%(Q) and ¢, ¢ € L*>(0,T).
These equalities together with the Du Bois - Reymond’s Theorem imply

(put+pu-Vu—pf—2protw— (u+ pr)Au,v) =0,

(pwe+pu-Vw—pg—2p,rotu + 4 pr w — (cq + cg) Aw — (cp + ¢4 — ¢o)Vdivw, z) =0,
a. e. in [0, 7], for every v € H, z € L?(1).
These two last equalities, imply

P(lpur+pu-Vu—pf—2protw— (u+ p,)Au) =0 and
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pwi+pu-Vw—pg—2protu+4p, w— (cq + cg)Aw — (co + ¢g — ¢g) Vdivw = 0.

For the density, we observe from Lemma 4.3 that

u" — u strongly in  L*(0,T; L*(9)),
P — p, and Vp" — Vp weakly in L?(0,T; L*(52)),

Thus, when n — oo in the approximated continuity equation, we obtain
pt+u-Vp=0 inthe L*0,T;L*(Q)) — sense.

Now, we prove the continuity established in Theorem 2.3 for solution (u,w, p). firstly,
given that u € L>(0,7; D(A)) and u; € L?(e,T; D(A)), then by interpolation (see Temam
(1979), p. 260) u is a.e. equal to a continuous function from [e,T] into D(A), i.e.,

u € C([e, T]; D(A)) Ve>D0.

On the other hand, since u; € L%(e,T; D(A)), uy € L%(e,T; H), by interpolation we
have

ug € C([e, T|; V), Ve >0.

Therefore,
u e CY([e,T); V)N C([e, T); D(A)), Ye> 0.

Analogously, we prove that
w € CY([e,T); Hy (2)) N C([e, T); D(B)), Ve >0.

To prove the continuity in £ = 0, we proceed as follows.
It is easy to show that

li t) —u(0)[| =0, lim ||Vu(t) — Vu(0)|| =0.
Jim [u(t) = u(0)] =0, lim |Vu(t) - Vu(O)]

We prove then that
lim ||Au(t) — Au(0)|| = 0.
t—0t

To prove this, we observe that is sufficient to show that
lim sup || Au(?)|| < ||Au
Timn sup | Au(®)] < | u|

as we already know that u(t) — ug in H(Q).
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Multiplying (2.5) by Au™' and integrating in 2, we have

A+ d
- %IIAU”“II2 + IV Vup T

2
= (o VL, AUt + 2 (rotw”, Auth) + (o7 f, Ault)
(V" Tt .

Then, integrating from 0 to ¢, we get

JAw T (@2 < [ Auol® + ——[(—p"(B)a"(t) - Vu' L (8) + 2u, ot w™ (2)

- Pt
" ()£ (), A (8)) = (=pu”(0) - Vit + 2, w0t
2

+p0£(0), Aul™H] + N(t

o1 (0), Au )] + N ()
uniformly in n and where
t
N(t) = /0 [(pfu™ - V™ + pmul - VT 4 pu™ - Vutt — 2p,rot w)

t
0 f = 0" fu A dr + [V Vg ar
t
< o [Tt Va4 1V )+ T+ 1+ ) dr < et/

by virtue of Holder’s inequality and the estimates given in Lemma 2.2.
(From this, we conclude

[Au(®)* < [ Auoll® + c[(=p(t)u(t) - Vu(t) + 2urrot w(t) + p(t) f (t), Au(t))
—(—pou(0) - Vg + 2ot wo + pof(0), Aug)] + ct'/2.

Since p(t)u(t)- Vu(t) — poug-Vug, p(t)f(t) — pof(0), rot w(t) — rot wg in L(£2)
and Au(t) — Aug weakly in L?(Q) as t — 07, we obtain the desired result. From this,
it is easy to show

Tim [Jun(t) = (0] = .
The results for w are proved in the same way.

We need only to argument the uniqueness of the solution in order to complete the
proof of Theorem 2.3. Suppose that there is another solution (u,w;,p1) of (1.1)-(1.2)
with the same regularity as stated in the Theorem. Define:
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U=y —u, W=w —wand R=p; —p.

These auxiliary functions verify a set of equations similar to (4.1)—(4.3). If we multiply
the first equation by U, the second by W and the third by R and repeat the argument
given in Lemma 2.1, we obtain for ¢(t) = |[U(#)||? + [[W(t)||? + ||R(t)||* an inequality of
the following type:

p(t) < C/Otw(T) dr

which, by Gronwall’s inequality, is equivalent to assert U =0, W =0 and R = 0.

5 Results on the pressure

Lemma 5.1 With the hypotheses of Lemma 2.1, for each n, there exists p" €
L2(0,T; HY(Q)/IR) such that (u™,w™,p",p"™) is an approzimate solution of the problem
(1.1)-(1.2), where (u™,w™, p") is given by Lemma 2.1.

With the hypotheses of Lemma 2.2, p™ € L>(0,T; H*(Q)/IR).

Proof. It is easily derived from (3.29) and the Amrouche-Girault’s results (1991).

Lemma 5.2 Under the hypotheses of the Lemma 4.3, we have

t (M T)" 1
n+s n 2 =)

) W) = Oyt < M
n—+s n 2 (MIT)n72

sup 7 (6) 9" () = " (Ol ) < Mis~ 57

for all t €10,T.

Proof. We denote p™* = p"*% —p" Vn > 1. Then, from (2.5) and (4.1), we have

—(p + pr) Au™® + Vp™* = J (5.1)
where J = 24, rOt ,wn—l,s + pn—l,Sf _ pn—l,su? _ pn—l—l—sun—l-i-s B VAT
_pn—l-l—sun—l,s LV — pn—l,sun—l SVau — pn—l—l—su?,s‘ (5‘2)

Moreover,

1717 < ellVa 1 4 cllp" 2 1 I £117s + cllo™ 2 s luf 17 + el Vu™ |
+e [ Va1 e[l e Vs + llug . (5.3)
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Now, (5.1)-(5.3) and the Amrouche-Girault’s results (1991), imply

1™ 51y < €I (5.4)
Q)/
and integrating from 0 to ¢, we get
(M T)nfl (MIT)nfl t

/ llp"™%( )HHl leT < CMsﬁ +CM6W/0 ||f(7)||%3d7

M- T n—1 t
(17/ IVl (7)) 2dr + ¢ Ms

0

(n—1)
(MlT)n—l

(n—1)
by virtue (4.16), (4.17), (4.20) and (4.21). Therefore,

(M T)"
n!

t " (MlT)n—l
/0 | Au (T)y|2d¢+cz\43W

+CM6

+CM6

(MIT)nfl

t
n,S 2 A
) 1™ ) s oyt < M

Also, from (5.2) and (5.4), with o(¢) = min{1, ¢}, we have

oMp™* inym < cllVo" 212 +cllp™ Ml F1* +ellp™
+e || Va2 + ¢l Vur P 4 ¢ Hp”‘l’s!lia +co(t)lu”
(M, T)"—2 oM, (M, T)"~ (M, T)" !
(n —2)! (n —2)! (n—1)!
(MlT)n 1 (MlT)n 1 (MlT)n 2
(n—1)! (n—1)! (n—2)!

|2

IN

¢ M ||f||2 +eMy

+c M> + ¢ Mg + ¢ Mg

by virtue (4.15), (4.19), (4.21) and (4.29).
Therefore, since by interpolation f € C([0,T]; L?(2)), of the last inequality, we con-

clude

(MlT)n_2

(n—2)! "~
Theorem 5.3 Under the hypotheses of Lemma 4.3, the approzimate pressure p" converge
to the limiting element p in L*(0,T; H(Q)/IR) and (u,w, p,p) is the unique solution of
(1.1)-(1.2), where (u,w,p) is the solution given in the Theorem 2.3. Moreover, we have
the following error estimate

a@®lp™ Ol )y m < Mis (5.5)

(MlT)n—l

/“p ”Hl )/RdTSMMW-
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Also, p™ converge to p in L= (e, T; H'(Q)/IR), for all € > 0 and is satisfied the following

error estimate
(MIT)n72

n 2
sup o ()" (#) = p(#)l[1()/m < Mis T
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