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Abstract. In this paper we present an extension of the Minkowski embedding
theorem, showing the existence of an isometric embedding between the class F.(X')
of compact-convex and level-continuous fuzzy sets on a real separable Banach
space X and C([0,1] x B(X™*)), the Banach space of real continuous functions
defined on the cartesian product between [0,1] and the unit ball B(X*) in the
dual space X*. Also, by using of this embedding, we give some applications to
the characterization of relatively compact subsets of F.(X'). In particular, an
Ascoli-Arzeld type theorem is proved and applied to solving the Cauchy problem

on F.(X).
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1. INTRODUCTION

Let FL(X) be the class of level-Lipschitz fuzzy sets on X'. This space has been
exhaustively studied and used by many authors in the last years. For instance,
the concept of Gaussian fuzzy random variables, limit theorems and fuzzy mar-
tingales was defined and studied by Puri&Ralescu in [15-21-22-23], respectively;
while Kaleva [11-12] introduced the concept of fuzzy differential equation obtain-
ing some results of existence and uniqueness on F,(X). On the other hand, the
space F.(X) has been studied and used by the authors in recent papers, including
Rojas&Bassanezi&Romén [26] (embedding theorems), Rojas&Romén [24] (con-
vergence of fuzzy sets), Romdan-Flores [25] (compactness of spaces of fuzzy sets)
and Roman&Rojas [27] (differentiability of fuzzy mappings).

In particular, Puri&Ralescu in [15-21-23] showed that there is an embedding
J: FrL(X) — C([0,1] x B(X*)) which is an additive and positively homogeneus

isometry. For the finite-dimensional case, Rojas&Bassanezi&Romén in [26], by

using multivalued Bernstein polynomials and its properties, proves that Fp(X') =
F.(X) and extend j to F.(X).
Our purpose here, roughly speaking, is to present an extension of this last

results to the infinite-dimensional case and to show some applications to the char-



acterization of relative compact subsets of F.(X) , via demonstration of an Ascoli-
Arzeld type theorem on F.(X'). Also, some examples are presented and, finally,

we discuss some aspects of the Cauchy problem on F(X).

2. DEFINITIONS AND BASIC RESULTS

In the sequel, X will denote a real separable Banach space with norm || || and

with dual X*. We will also use the notation
K(X)={A C X/ Anonempty, compact and convex}.
A linear structure in IC(X') is defined by

A+B = {a+b/lac Abe B}

A = {)la/a € A}
for all A,B € K(X), Ae R
The Hausdorff metric H on IC(X) is defined by
H(A,B)=inf{e >0/ AC N(B,e) and B C N(A,¢)}

where N(A,¢) = {z/ d(z, A) < €} and d(z, A) :i161£|| r—all.



It is well known that (K(X'), H) is complete and separable metric space (see
[2-14-25)).
The norm of A € K(X) is defined by || A ||= H(A, {0}).

For any A € K(X), the support function s4 of A is defined on X* as

sa(x*) =sup z*(a), Va* € X*.
acA

PROPOSITION 2.1. If A, Ay, B, B;,C € K(X) then
i) H(A,AB) = AH (A, B), for all A > 0.

ii) H(A+ B, A1 + B)) < H(A, Ay) + H(B, By)

iii) HA+C,B+C) =H(A,B)

iv) H(A,B) = sup | sa(z*) — sp(a*) |

l|lwx(]<1

v) For any x* € X*

Sarp(x*) = sa(x*) + sp(a*).

For details see [1-10].



If we denote by B(X*) = {z* € A*/ || 2* ||< 1} the unit ball in the dual
X*, then it is well known that B(X™*) endowed with the weak*-topology is compact
and metrizable. Denote by p a metric which induces the weak*-topology on B(X*).
Also let C(B(X™*)) denote the Banach space of functions f : B(X*) — R which
are continuous with respect to the weak*-topology in B(X™*).

As a direct consequence of Proposition 2.1 and properties of support functions

we obtain the following result:

COROLLARY 2.2. The application o : K(X) — C(B(X*)), 0(A) = sa, is such

that

i) o is an isometry (i.e., H(A,B) = sup | sa(z*)— sp(z*)|)
z*eB(X*)
ii) o(A+ B) =0(A) +0(B)

iii) o(AA) = Aa(A4), VA > 0.

For details see [15-23].

THEOREM 2.3. (Bernstein approximation). Let F': [0,1] — K(X) be contin-

wous. Define the nth Bernstein approximant B, F of F by



n n

B,F(t) =3 (1 —t)"TF(j/n).
Jj=0 j

Then lim B,F = F uniformly in [0,1], i.e., H(B,F(t), F(t)) — 0 uniformly

n— 00

in [0,1] as n — oo.

For more details on properties of Bernstein approximants see [4-30].

Now, we wil give the basic concepts and results on fuzzy sets theory which
will be used in the rest of the paper.

A fuzzy set in X is a function u : X — [0, 1] (see [31]). We denote by L,u =
{z € X Ju(z) > a} for 0 < a < 1, the a-level of u, and Lyu = cl{x € X Ju(z) >
0} = supp(u) is called the support of u.

As an extension of C(X) we define the space F(X) of fuzzy sets u : X —

[0, 1] with the following properties:
i) wis normal, i.e., {x € X/ u(z) =1} # 0;
ii) w is fuzzy-convex, i.e., for all z,y € X and A € [0, 1] we have

u(Ar + (1 — N)y) > min{u(z), u(y)};



iii) w is upper semicontinuous;

iv) Lou is compact.

A linear structure in F(X) is defined by

(u+v)(x) = yj—gEx min{u(y),v(z)}

u(x/A) if X#0
(Au)(z) = o/

X{o}(x) if A=0
where u,v € F(X) and A € R
With these definitions we obtain L,(u + v) = Lau + L,v and L,(Au) =
ALqu, for all u,v € F(X), a € [0,1] and A € R (see [18-22-26-27-28-29]).

We can be extend the Hausdorff metric to F(X) by mean

D(u,v) = sup H(Lyu, Lyv), Yu,v € F(X).
a€[0,1]

We note that (F(X'), D) is complete (see [22]) but is not separable (see [3-24-
25]).

The norm of u € F(X) is defined as || u ||= D(u, x{0) :asel[l()l,)l}H Lou || .

It is clear that A € IC(X) implies x4, € F(X) and || A ||=]| x4 || -
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Also, the support function of u € F(X) is defined as

Sy 1 [0,1] x X* = R s, (a0, x%) = spu(z¥).

More details on properties and applications of support functions s, can be

found in [3-13-26].

PROPOSITION 2.4. If u,v,w € F(X) then

i) D(Au, Av) = AD(u,v), for all X > 0.

ii) D(u+w,v+w) = D(u,v)

iii) For any x* € X*

Suto (%) = sy (@) + s, (%).

For details see [3-26].

Define F,,(X) as the espace of fuzzy sets u € F(X) with the property that the
function a — Lyu is Lipschitz with respect to the Hausdorff metric, i.e., there

exists a constant M > 0 such that

H(Lqu,Lgu) <M |a— |

8



for every «, 3 € [0,1].

Analogously, we define F.(X) as the space of fuzzy sets u € F(X') with the
property that the function o — L,u is H-continuous on [0, 1].

It is clear that Fj,(X) C F.(X).

Also let C([0,1] x B(X*)) denote the Banach space of functions f : [0, 1] x
B(X*) — R which are continuous with respect to the product of the topology in

R and the weak*-topology in B(X'*).

THEOREM 2.5 ([15-21-23)). The application j : Fr(X) — C([0, 1] x B(X™)),

J(u) = sy, is such that:
i) j is an isometry (i.e., || j(u) — j(v) [|= D(u,v)
i) j(u+v) =ju)+jv)

iii) j(Au) = Aj(u), A > 0.

3. DENSITY OF F,(X) IN F,(X)

The aims of this section is to show that Fr(X) = F.(X) and, consequently,

the isometric embedding j in Th.2.5 can be extended to F.(X). Also, we want



to remark that in [26] the authors obtain an analogous result in the setting of

finite-dimensional spaces.

THEOREM 3.1. (F.(X), D) is a complete metric space.

Proof. Let (u,) a D-Cauchy sequence in F.(X). Then, because the space
(F(X), D) is complete, we deduce that there is u € F(X) such that u, =

In continuation, we prove that u € F.(X). In fact, given € > 0 there is

N € N such that D(u,,u) < €/3 for all p > N. For a fixed py > N because

Up, € F(X), we have that there exist 6 = d(e, pp) > 0 such that

| — B |< § = H(Lyup,, Lguy,) < €/3. (1)

Consequently, for | o — 3 |< § we have

H(Lau7 Lﬂu) < H(Lau7 Laupo) + H(Laupov Lﬁupo) + H(Lﬁupoa Lﬂu)

< D(u,up,) + €/3 + D(uy,, u) (by (1)

10



So, u € F.(X) and the proof is complete.

To show the density of Fp(X) in F.(X), we will use the Kuratowski limits and
its connections with H-convergence.
If (Ag)qen is a sequence of subsets of X', we define the upper and lower limits

in the Kuratowski sense as

qli_}rgo supAd, = {reX/z= ]lirgoxqj, Tq € Ag }
- N(U+)
g=1 \m2>q
and,
qll)rgo infA, = {reX/x= qlggloxq, T, € Ayt
-n(U).
H \meH

respectively, where the last intersection is over all sets H cofinal in N (we recall

that H is a cofinal subset of N if for all n € N there is h € H such that h > n).

11



We say that the sequence (A;) converges to A, A C X, in the Kuratowski
sense, if lim inf A, = lim sup A, = A; in this case, we write A = lim A, or
q—00 q— 00 q— 00
Ay % A, and we say that A, K-converges to A.

The Kuratowski limits are closed sets. Moreover, the following relations are

true:

lim inf A, C lim sup 4,

q— 00 q—o0
lim inf A, = liminfA, and
q—00 q—00
lim supA, = lim sup A,.
q—0 q—0

The following result is very useful (see [8-9-26]).

LEMMA 3.2. A sequence (A,) CX converges to a compact set A respect to the
Hausdorff metric if and only if there is K compact in X such that A; C K for all

q and

lim inf A, = lim sup 4, = A.
q—00

q— 00
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We now state the following density result.

THEOREM 3.3. F(X) = F.(X).

Proof. Let u € F.(X), then the set-valued function F : [0, 1] — K(X') given by
F(a) = Lyu is H-continuous on [0, 1]. Now, if we consider the nth Bernstein poly-
nomial B, F' associated with F' then, due Theor. 2.3, we have that B, F' converges
uniformly to F'in H-metric on [0, 1].

We observe that B, F(a) € K(X) for each n € N and « € [0,1]. Now, we
will verify the hypothesis of the Representation Theorem given by Negoita and
Ralescu [19] to show that the family N, = B, F(«), for each n € N, define an
unique fuzzy set u, € F(X).

In fact, if @« < 3, then F(«) D F(f3) and, consequently, B, F(«) O B, F(f3) (see
Vitale [30, p. 312]. So, we only have to prove that, ifa; < ap <--- <y ST a#0

as [ — oo, then

B,F(a) =) BuF (o). (2)

We observe that « — B, F(«) is a H-continuous set-valued function (moreover,

13



this map is H-Lipschitz as we will proves below) and, consequently, for each n,

we have

BoF(a)) 3 BF(a) as | — .

So, because (B, F(«)); € K(X) is an decreasing sequence we deduce, from
Lemma 3.2, that B, F(«) 5 B,F(a) as | — oc.

Moreover, B, F(a;) Niz; BoF (oy) which implies that (2) is verified.

This completes the hypothesis of the Negoita-Ralescu Theorem.

We want to remark that the uniform convergence of B, F' to F on [0, 1] ensures
Up = U.

Finally, we want to prove that (u,) C F(X) and, for this, it is sufficient to
show that o — B, F(«a) is a Lipschitzian application, for each n € N . In fact,

due Proposition 2.1 iii) it is sufficient to show that

Sup |$B,1(e) (27) = sB,1(5) (27)| < Clar = f|
z*||<1

with C' > 0 independent of o and /3.

As the support function of Bernstein approximant of F' is given by

14



n

SB,r(a)(T7) = < ; ) o (1= )" I sp(jmy ()

=0

with z* € B(X*), we have that

|5, () X)-5B,F(3)(x")| < ( » ) |55y ()] |0 (1-0) 77 — B (1-6)77|
§=0
< seoylloo Y < n ) 0 (1-a)7 — [7(1-5)17]
j=0
S C|Oé - ﬂ|7

Since F(0) D F(j/n) 2 F(1) for all 0 < j < ¢, then

for all z* € B(X™). This completes the proof.

THEOREM 3.4. The application j : F.(X) — C([0,1] x B(X*)) defined by

15



j(u) = s, is an additive and positively homogeneous isometry.

Proof. Since F,(X) is dense in F.(X) then the isometry j in Theorem 2.5 has
a unique uniformly continuous extension to F.(X') and it is easy to show that this

extension is also an isometry (see [5]).

COROLLARY 3.5. D(u,v) = sup | su(a, 2*)—s,(a,z*) |, for all u,v €
(a,z%)€[0,1] X B(X*)

Fo(X).

COROLLARY 3.6. (F.(X), D) is a separable metric space.

Proof. 1t is well known that if M, N are metric spaces, M compact and
N separable, then the space of continuous functions C(M, N), endowed with the
uniform metric, is separable (see [17, p. 276]. Thus, because [0,1] x B(X™*) is

| | xweak* compact then C([0, 1] x B(X™*)) is separable.

COROLLARY 3.7. If uy,u € F.(X) then u, - iff su, = su uniformly on

[0,1] x B(X*).

The following result shows that F.(X) is the maximal domain of j in F(X).

16



THEOREM 3.8. If u € F(X)\F.(X) then j(u) ¢ C([0, 1] x B(X™)).

Proof. The | | xweak*—topology on [0, 1] x B(X*) can be metrizable by mean

d((e, %), (B,y")) = maz{[ o= B |, p(z",y") }

(see, for instance, [5, p. 75], [6, p. 207]).

Let j(u) € C([0,1] x B(X*)) be, then for all € > 0 there exists 6 > 0 such that

d((a,27),(B,y7) <6 = | jlu)(a,z7) = j(u)(B,y") [<e (3)

Now, if we suppose that u ¢ F.(X') with j(u) € C([0, 1]xB(X*)), then we have
that the map a — L,u is not continuous; consequently there exists ¢y > 0 such

that for all 6 > 0 we can to choose «, f € [0,1] with | & —  |<  and

H(Lau, Lgu) = sup | j(u)(a,z") = j(u)(f,2%) [> €.
z*eB(X*)

Thus, due to compactness of ([0, 1] x B(X™*), p) and the continuity of j(u) there
exists x§ € B(X™) such that | j(u)(a, zf) — j(u)(B, xj) |> € which contradicts (3)
and the proof is complete.
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4. RELATIVE COMPACTNESS IN F,(X)

We recall that if M, N are metric spaces then E C C(M, N) is equicontinuous
in a € M if Ve > 0 there exists § > 0 such that d(z,a) < ¢ in M implies
d(f(z), f(a)) <ein N, for every f € E. We say that E is equicontinuous if E is

equicontinuous in a € M, Va € M.

THEOREM 4.1. (Ascoli-Arzeld). Let E C C(M,N) be, M compact. Then E is

relatively compact if and only if

i) E equicontinuous

ii) for every a € M, the set E(a) ={f(a)/f € E} is relatively compact in N.

(see [17, Prop. 16, p. 244]).

By using the isometric embedding j : F.(X) — C([0,1] x B(X*)) and | |
xweak*—compactness of [0,1] x B(X*), we want to give an characterization of

the relatively compact subsets of F.(X).

REMARK 4.2. It is clear that A is relatively compact in F.(X) if and only if
j(A) is relatively compact in C([0,1] x B(X*)).
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In fact, if A relatively compact then j(A) is compact. So, because j(A) C
j(A), we have j(A) C j(A) and, therefore, j(A) is compact.
Conversely, if j(A) is relatively compact, because A = j~! (](A)) and 77! :

j (Fe(X)) — F.(X) is continuous, then A is compact.

DEFINITION 4.3. A subset A C F.(X) is said compact-supported if there ezists

a compact K C X such that Lou C K, Yu € A.

DEFINITION 4.4. A subset A C F.(X) is said level-equicontinuous in oy €

[0, 1], if Ve > O there exists § > 0 such that
a—p|< 0= H(Lyu, Ly,u) <€, Yu € A.

A is equicontinuous on [0, 1] if A is equicontinuous in «, for all o € [0, 1].

THEOREM 4.5. Let A be a compact-supported subset of F.(X). Then are

equivalent:

i) A is a relatively compact subset of (F.(X), D)
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ii) A is level-equicontinuous on [0, 1].

Proof. i)—ii). Because A is relatively compact in F.(X) then j(A) is relatively

compact in C([0,1] x B(X™*)) (Remark 4.2), i.e.,

a) Y(a,z*) € [0,1] x B(X™), the set j(A)(a,z*) = {s,(a,2*)/u € A} is rela-

tively compact,
b) j(A) is equicontinuous.

Therefore, given any («y,xj) € [0, 1] x B(X*) and € > 0, there exists an open

ball

B((aw, xp), 1) = {((e, 2%) € [0,1] x B(X")/d (e, &%), (a0, 25)) <7}

such that

(a, ) € B((aw, xp), 1) =| sula, x™) — sy, xp) |< €, Yu € A. (4)

Now, if we suppose that A is not level-equicontinuous then there exists @ €

[0,1] and € > 0 such that V§ > 0 there is 3 € [0, 1] with

|@ — f|< d and H(Lgu, Lgu) > €, for some u € A. (5)

20



Due H(Lau, Lgu) = sup | sp..(2*) — spzu(®) | (Prop. 2.1) and weak*-
llwx(|<1

compactness of B(X*), there exists y* € B(X™*) such that

| SLEu(y*) - SLBu(y*) |:| Su(aa y*) - Su(ﬂa y*) > €. (6)

Therefore, given if § > 0 we can to choose 3, u and y* verifying (5) and
(6), and taking the open ball B((a, y*), d) we obtain that (3, y*) € B((a,y*),d) but |

sy (@, y*) — su(B,y*) > € which contradicts (4).

ii)—1). Suppose that A is level-equicontinuous on [0, 1]. Then given € > 0, there

exists 0 > 0 such that

a—ay|<d= H(Lyu, Ly,u) < €/2, Yu € A. (7)

On the other hand, we can to define another distance p, on B(X*) by

po(x*,y*) =sup| (x* — y*,a) |
acK

and note that p, is continuous in the weak*-topology, therefore given € >
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0 there exists 6 > 0 such that

p(x™,y") <8 = pyla*,y") <e/2 (8)

(see [23, p. 119)).

Because A is compact-supported then j(A)(a, z*) is relatively compact, V(«, 2*) €
[0,1] x B(X™).

Now, if we suppose that A is not relatively compact then j(A) is not relatively
compact and, therefore, there exists (g, xg) € [0,1] x B(X*) and € > 0 such that

for every open ball B((«y, xj),d) we have

| su(a, ") = su(ao, ) [> € (9)

for some u € A and («, z*) € B((ag, x5),0).
Thus, due (9), taking § = 1/n we can to found sequences {(ay,, %)} in [0, 1] X

B(X*) and {u,} in A such that

d ((on, @), (a0, x5)) < 1/m, Vn, (10)
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and

| $u, (Qn, 7)) — Su, (0, 25) |> €, Vn. (11)

Consequently, due (11) we obtain
SLagtn (Tn) = SLagun (€0) | + | SLagun (20) = SLagu, (23) [> € Vn,
and this implies that
H (Lo, tn; Lagtn)+ | 8Loyu, (T3) = SLagu, (Tp) [> € Vn. (12)
Also, a straightforward calculus show that
St (03 = Sty (08) 1S90 05— 55,00 |= (o), (13)
and, due (8) and (10), we have

po(xr, xy) < €/2, for every n sufficiently large. (14)
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Consequently, due (10), (12), (13) and (14) we conclude that

o, —ap |< 1/nand H(La, U, Layuy,) > €/2, Vn,

which contradicts (7), i.e., A is not level-equicontinuous and the proof is

complete.

REMARK 4.6. Recently, in the setting of X = R, Greco [9, Th.2.3] proves an
analogous result to Th.4.5 for the class Fy.(R") = {u € F(R")/send(u) convex},
which is a proper subclass of F,(R"). In fact, if f € F,(R*) then {f > a} = {f >
a} for all a € (0,1) (see [9]), and this implies that f € F.(R") (see [26]). On the
other hand, taking u € F(R") defined by

z? if xe|0,1]
u(x) =

0 if x¢]l0,1]

then we have that u € F.(R") \ Fs(R").

We recall that send(u) = (supp(u) x [0,1]) N {(z,a) € R* x [0,1]/u(z) > a}.
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EXAMPLE 4.7. Define A = {f,,},>1 where:

S|

if xel0,1]

0 if x¢]o,1].

Then A is a compact-supported subset of F.(R). Furthermore,

[0, 1] if a<l-—12
Lafn:
ne—1)+1,1] if 1-2<a<l.

Now, let 0 < ¢ < 1, @« =1 and § > 0. We observe that if | 1 — 8 |< 4, there

exists n € N, such that § <1 — % < 1. Thus,
H(Lifn, Lgfn) = H{1},[0,1]) =1 > e.

Therefore, A is not level-equicontinuous and, consequently, A is not relatively

compact in F,(R).
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ExAaMPLE 4.8. For t € [0,1), define

0 of 0<x<t
w(z) =9 2= if t<z<1

1-t

0 elsewhere.

Then it is clear that family {u;} is compact-supported. Moreover
Louy = [a(l —t) +¢,1].

Consequently,

H(Lauy, Lyuw) = H(lo(1=1) + 6,1, [8(1 = 1) +¢,1])
= [1-t|[a=7]

< Ja=p31.

Thus, given € > 0 we take 6 = ¢ and we obtain

a— 0 |<d= H(Lyus, Lguy) < €,
B

for every t.
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This implies that A = {u;/ t € [0,1)} is a level-equicontinuous subset of

F:(R) and therefore, by Theor. 4.5, A is relatively compact.

EXAMPLE 4.9. Let K be a compact subset of X and consider

I?:{X{l,}/:rEK}.

Then K is relatively compact in F,(X).

In fact, it is clear that K is compact-supported. Moreover,

H(Lax gy LX) = H({2}, {2}) = 0, Vo € K.

Therefore, K is a level-equicontinuous and, consequently, K is a relatively

compact subset of F.(X).

EXAMPLE 4.10. Let m > 0 and consider (see [7-11-12-16]):

En={ue F(X)/ H(Lqu,Lgu) <m |a—p|}.

Because FE,, is not compact-supported then E,, is not relatively compact in
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Fo(X).

Nevertheless, if K is a compact suset of X and

EK,m = {U € Em/ L()U g K},

then Ek ., is a relatively compact subset of F.(X). In fact, it is clear that

Ek  is compact-supported and given € > 0 we can to choose § = €¢/m, obtaining

|a— B |<d=H(Lyu,Lgu) <m|a—p|<e Yu € Eg .

That is, A is level-equicontinuous and, consequently, relatively compact in

Fo(X).

5. A NOTE ON THE CAUCHY PROBLEM IN F(&X)

For simplicity, let 7' = [a,b] C R be a compact interval and consider the Cauchy

problem

i(t) = f(t,x(t), x(a)=0, (15)

where f: T x F(X) — F(X) is a continuous mapping and 0 = X{o}-

This problem have been studied by several authors, including Diamond&Kloeden
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[3], Friedman et al. [7], Kaleva [12] and Kloeden [16].

In general, it is well known that the mere continuity of f is not sufficient for
to assure the existence of solutions for (15). Hence, additional conditions must
be satisfies by f (see [16]). In this direction, recently Nieto in [20, Th. 3.1],
assuming that f is continuous and bounded and X = R", proves an existence
theorem for (15) and, for this, he proves that, under this conditions, the operator

F:C(T,F(R")) — C(T, F(R")) defined by
¢
Flal(t) = / F(s,2(s))ds, Vt €T, Va € C(T, F(RY)), (16)
is compact, i.e.,
A CC(T,F[R")) bounded = F(A) relatively compact in C(T, F(R")).

This result is essential for the existence of at least one fixed point of F, which
is solution of (15) (see [20]).
We remark that :

a) C(T', F(X)) denote the class of all continuous mapping from 7" to F(X') equiped
with the metric d(z,y) =sup D(z(t),y(t)). It is well known that (C(T, F(X)),d)

teT
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is a complete metric space (see [11]).
b) The integral used in (16) is the integral defined by Puri&Ralescu [22] for

fuzzy random variables (for details see [3-12-22-26]).

Our purpose in this section is, on the one hand, to show that this conditions
on f are not sufficients for to ensure the compactness of F' when X is an infinite
dimensional Banach space (in other words, if X is an infinite dimensional Banach
space, then it is possible to construct a continuous and bounded function f such
that the induced operator F'in (16)) is not compact), and on the other, to found

sufficient conditions on f to assure the compactness of the operator F.

LEMMA 5.1. Let X be an infinite dimensional Banach space and B = B(X) =
{x € X/ ||z|| < 1}, the unit ball in X. Then B = {Xz1/ © € B} is not relatively

compact in F(X).

Proof. Suppose that B is relatively compact in F(X) and let (z,,) be a sequence
in B(X). Then (xy,,,) is a sequence in B, therefore there exists a subsequence
(X{a,,y) and v € F(X) such that xy,, , B was p — 0.

This implies that (xy,, ;) is D-Cauchy and, because D((X(s, }> X{z,,}) =
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H({wn,},{7n,}) = 0 asp,q — oo, we have that ({z,,}) is a H-Cauchy sequence in
IC(X). Thus, due completeness of K(X), there exists K € K(X) such that
{#n,} — K as p — oo. But then, given ¢ > 0 there exists p, such that
H({wy,}, K) < € for all p > po, and this implies that X C N({w,,},¢€) for all
p > po, and this implies that diam(K) =0, i.e., K = {z} for some z € X.

Thus, {z,,} — {r} and, therefore, z,,, — z. Finally, we observe that ||z| <
|z, || + |2 — 2n,|| <1+ € forall p > po, and this implies that = € B(X). Hence,

we can to conclude that B(X) is sequencially compact, which is impossible.

COUNTEREXAMPLE 5.2. Let X be an infinite dimensional Hilbert space and
consider B = B(X), the unit ball in X. Then B is a closed and convex and,
because X is an Hilbert space, then we know that for each x € X there exists
an unique ry = Pg(x) € B such that ||z — x| :;g]fg |z — y|| (Pp is called the
projection operator on B (see [5]). It is well known that Pp : X — X is uniformly

continuous. Moreover,
1Pp(x) = Pp(y)|| < llo —yll, Yo,y € X. (17)

If u € F(X) then, by using the level-family of u, we define P : F(X) —
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F(X) as L,P(u) = coPg(Lyu), for all « € [0,1]. It is clear that the family
(€0Pp(Lau)) epo,1) Verifies the hypothesis of Negoita&Ralescu Representation The-
orem (see [19]) and, consequently, there exists an unique v = P(u) € F(X') such
that Lov = coPg(Lau), Ya € [0,1].

Now, define f: [0,1] x F(X) — F(X) by

f(t,u) = P(u), Y(t,u) € [0,1] x F(X).

We observe that

D(f(t,u), f(t',v) = D(P(u),P(v))
= Sel[lOpl] H (coPg(Lyu),c0Pg(Lyv))

< asel[lopu H(Pg(Lou), Pg(Lav)) (see [22])

< sup H(Lou,Lov)  (by (17))
a€(0,1]

= D(u,v)

Therefore, f is a continuous mapping. Besides, because coPg(L,u) C B for
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all a € [0,1], then

1t wl = 1P(w)]| = sup [[coPp(Lau)|| < ||Bl|, ¥(t,u) € [0,1] x F(X),

a€(0,1]

and this implies that f is bounded.

Now, we will prove that the integral operator F' induced by f and defined by

(16) is not compact.
For this, for each (t,z) € [0,1] x B, define §(,3(t) = Xy, (note that &gy -

[0,1] — F(X) is a constant function) and consider A = {y,,/ [lz[| < 1}. Since

d(€iays €y :tzﬁpu D(&3(8),En (1) = llz —yl| <2,

it is clear that A is a bounded subset of C(T, F(X)).

Now, taking ¢ = 1, we have that

ran - {f e (3)ds/ €y € 4l

= {[ st Il <1

= {x/ el <1} =B,
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which, by Lemma 5.1, is not relatively compact in F(X). Consequently, by

Th. 4.1, F'is not compact.

THEOREM 5.3. Let T = [a,b] C R be a compact interval, and assume that
[T X Fo(X) = Fo(X) is a compact and bounded mapping, i.e.,

a) If I C T and E C F(X) bounded = f(I x E) relatively compact in
Fo(X) (ie., due Th. 4.5, f(IxFE) is a compact-supported and level-equicontinuous
subset of F.(X)).

b) There exists a real positive constant r such that

1f (s, 2(s))| <7 on T x Fe(X) (18)

Then F : C(T,F.(X)) — C(T, F.(X)) is compact.

Proof. We remark that, due (18) and Ly, [\ f(s,2(s))ds = [ Lo f(s, 2(s))ds for
all @ € [0,1], we obtain that Fz|(t) = fjf(s,:c(s))ds € F(X) (see [22-23-26)).
Moreover, since z is continuous and [a, t] X x([a, t]) is compact in T x F,(X) then,

by hypothesis, f([a,t]xz([a,t])) is relavively compact in F.(X') and, consequently,
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by Th. 4.5, is level-equicontinuous. Thus, given € > 0, exists 0 > 0 such that
| — B |< 0= H(Lof(s,x(s"), Lgf(s,2(s))) <€, Vs € [a,t], Vs' € T. (19)

Now, if oy, — « then there exist py € N such that | o, — o |< 0 for every

p > po. Consequently, due (19),

t t t t
H(Lap/ f(s,x(s))ds,La/ f(s,x(s))ds) = H(/ Lapf(s,x(s))ds,/ Lo f(s,x(s))ds)
< /tH(Lapf(s,x(s)),Laf(s,x(s)))ds

< |b—ale, Vp>p,.

This shows that, actually, fatf(s,x(s))ds € F.(X) and, consequently, F' it is
well-defined.

Now, we will prove that F'is compact.

For this, we need to prove that if A is bounded in C(7', F.(X)), then F(A) is
relatively compact in C(7', F.(X)) and, due Th. 4.1 (Ascoli-Arzeld theorem), this

is equivalent to prove:

i) F(A) is an equicontinuous subset of C(T', F.(X))

it) F(A)(t) is relatively compact in F.(X), for each t € T
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In fact, if A is a bounded subset of C(T',F.(X)) and ¢ > 0 then, taking

| t1 — 12 [< £, we obtain

D (Fla](ty), Flz](t2)) < /t2||f(s,fv(8))||d8

= D(f(s,x(s)), X{03)ds

t1

< |t1—t2|7’<€,

for all x € A, and this proves that F(A) is an equicontinuous subset of
C(T, F.(X)).
Now, we will show that F(A)(t) is relatively compact in F.(X) and, due Th.
4.5, this is equivalent to prove that F'(A)(¢) is a level-equicontinuos and compact-
supported subset of F.(X).

In fact, fixing ¢ € T we see that F(A)(t) C F.(X) and, if u € F(A)(t), then
u = fjf(s,y(s))ds for some y € A. Since f([a,t] x A) is relatively compact in
F.(X) then, due Th.4.5, f([a,t] x A) is level-equicontinuous. Thus, given € > 0 we

have that there exists § > 0 such that

|a—B|<d=H(Lof(s,2(s)), Lgf(s,x(s))) <€, V(s,x) € [a,t] x A.
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In particular,

H(Lqu,Lgu) = H <La /atf(s,y(s))ds,Lg /atf(s,y(s))ds)
= it ([ Lataonis, [ Lastsuonas)
< [ H a0, Laf ) ds

< |t—ale<|b—ale,

for all | — 3 |< 6.
Therefore, F'(A)(t) is level-equicontinuous in F.(X).
Finally, due to relative compactness of f([a,t] x A), we have that there exists

a compact i C X such that Lof(s,z(s)) C K, VY(s,z) € [a,t] x A. Thus,

Ly /atf(s,:r(s))ds = /at Lof(s,x(s))ds C /at Kds = (t —a)K,

which proves that F'(A)(t) is compact-supported.

Thus, F'is a compact mapping.

COROLLARY 5.4. In the same conditions of Th. 5.3, the Cauchy problem (15)
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posseses at least one solution on T.

Proof. 1t is well known that « € C(T, F.(X)) is a solution of (15) if and only if
x is a fixed point of the operator F. Now, following Nieto [20, Th. 3.1], consider

m = (b — a)r and define

A={€ € C(T, FuX))/ (€ 0)) <m}.

We recall that {;y(t) = xqoy, Vt € T.
Then, we have that A is a convex subset of C(T, F.(X)). In fact, if £;,£, € A and
A € [0, 1] then, by using properties of H (Prop. 2.1) and the addition in F.(X'),we

obtain

d(AS1+(1-A)E2, €q0p) = sup DAL, (8)+(1-A)&,(t), £403 (1))

ter
= i‘el%) H(La[AE, () +(1-A)E(t)], La 1oy (t))
= sup[ sup H(ALa&q(6)4(1-A)La&y(t), {0})]
teT a€l0,1]
< sup[ sup H(ALL& (1), {0} +H((1-N)Lo&,(t), {0})]
teT a€l0,1]
= sup| A sup H(Ly&,(t), {0})+(1-A) sup H(L,&,(t),{0})]
teT a€l0,1] ae[o,l}
= S;él;[ AD(&,(t), E103(8))+(1-A) D(&,(t), €0y (1))]
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= Asup D(&;(t), §g0y(£))+(1-A) sup D(&,(t), &y (t))
teT teT

< Am+ (1 —=A)m=m.

Thus, A is closed and convex in C(7, F.(X')). Furthermore, we observe that

F(A) C A. In fact, if £ € A then

d(F(§), E03) = sup D(F(§)(1),&103(2))

teT

= sup D( f(S,f(S))dsaX{O})

te’T

= sup[sup H(L f $,Y(5))ds, LaX{o})
el ac|0,1]

= sup[sup H(L f s,y(s))ds,{0})
teT  a€0,1]

— sup [ sup ||L. / F(s,y(s))ds]

teT  ac[0,1]

= sup || f(say( ))ds]|
teT

a

IN

sup / 17 (s,y(s)) | ds

[N

(b —a)r =m.

Thus, by using of Schauder fixed point theorem for compact mappings (see

[6, Th. 3.2, p.415), we have that there exits © € A such that F(x) = x, which is
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a solution of (15).

6. CONCLUSION

If X is a Banach space and Fp (X)) is the class of level-Lipschitz fuzzy sets on
X then, by using of multivalued Bernstein polynomials and its properties, in
Section 3 we have proved that (FL(X),D) is dense in (F.(X), D), the class of
level-continuous fuzzy sets on X and, as a direct consequence of this result, we
obtain the existence of an isometric embedding j : F.(X) — C([0, 1] x B(X™)).

Now, by using of this isometry, in Section 4 we have proved an Ascoli-Arzela
type theorem for the characterization of relatively compact subsets in (F.(X), D),
in the setting of infinite-dimensional Banach spaces. Furthermore, several exam-
ples are presented.

In connection with these results, particular note should be given to the possi-
bilities of using this tools for the study of fuzzy abstract differential equations on
F(X). For instance, in Section 5 we used the above characterization for the study
of the Cauchy problem on F(X') and, by using the compactness of certain inte-

gral operator F,we obtain an extension of the Nieto results ([20]) on the existence
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of solutions for the Cauchy problem for fuzzy differential equations on F(R™) to

F(X).
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