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Abstract. We discuss the Schur complement formula for quaternionic matrices, M , and give
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1. Introduction. Much of the spectral theory of complex matrices does not ex-

tend to quaternion matrices without further modi�cations [1, 2, 3]. In particular, the

determinant cannot be de�ned, and the eigenvalues [4] have several possible extensions

which do not necessarily respect the fundamental theorem of algebra [5, 6, 7].

Quaternionic mathematical structures have recently appeared in the physical

litterature mainly in the context of quantum mechanics [8, 9, 10] and group the-

ory [11, 12]. The relevance of quatenionic calculus to several iussues in theoretical

phycis has rekindled the interest in quaternionic linear algebra. A usefull thecnical

procedure in approaching quaternionic applications in physics has been the replace-

ment of quaternionic matrices by complex matrices of double size [13, 14], and the

consequent spectral analysis of the latter matrix [4, 15, 16]. This indirect procedure,

usually, su�ces to solve the problem at hand, but it sheds little light on the structure

of quaternionic matrices.

We aim to discuss inversion and determinant for quaternionic matrices in view of

new classi�cations of quaternionic groups and possible applications in grand uni�ca-

tion theory [17, 18]. The main results of this paper can be summarized by

Inversion. The formula M

�1

= Adj[M ]=det[M ] cannot be generalized for quater-

nionic matrices. Nevertheless, the Schur complement formula provides an e�cient

method to calculate the matrix inverse.

Determinant. The determinat for n� n quaternionic matrices, M , cannot be de-

�ned in a consistent way. Instead, the non-negative number jdet[M ]j can be extended

to quaternionic matrices by the functional D[M ] de�ned in terms of quaternionic

M -entries.

2. Notation. Quaternions, introduced by Hamilton [19], can be represented

by four real quantities

q = a+ i b+ j c+ k d ; a; b; c; d 2 R ;(1)

and three imaginary units i; j; k satisfying

i

2

= j

2

= k

2

= ijk = �1 :

�
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We will denote by

Re[q] := a and Im[q] := q � a = i b+ j c+ k d ;

the real and imaginary parts of q.

The quaternion skew-�eld H is an associative but non-commutative algebra of

rank 4 over R, endowed with an involutory operation, called quaternionic conjugation,

�q = a� i b� j c� k d = Re[q]� Im[q] ;

satisfying

pq = q p ; q; p 2 H :

The quaternion norm jqj is de�ned by

jqj

2

= q�q = a

2

+ b

2

+ c

2

+ d

2

:

Among the properties of the norm, to be used in subsequent sections, we mention

here the following

jpqj = jqpj = jqj jpj and j1� pqj = j1� qpj :

Every nonzero quaternion q has a unique inverse

q

�1

= �q=jqj

2

:

Two quaternions p and q are similar if

q = s

�1

p s ; s 2 H :

By replacing s by u = s=jsj; we may always assume s to be unitary. The usual

complex conjugation in C may be obtained by choosing s = j or s = k. A necessary

and su�cient condition for the similarity of p and q is given by

Re[q] = Re[p] and jIm[q]j = jIm[p]j :

An equivalent condition is Re[q] = Re[p] and jqj = jpj: Every similarity class contains

a complex number, unique up to conjugation. Namely, every quaternion q is similar

to

Re[q]� i jIm[q]j :

Since Re[q] = Re[�q] and Im[q] = Im[�q], the quaternions q and �q are similar. In fact, it

can be seen that for s 2 H to satisfy

q = s

�1

�q s ;

given q 2 H , it is necessary and su�cient that

Re[qs] = Re[s] = 0 :

However, there exists no single s 2 H such that q = s

�1

�q s for all q 2 H .
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3. Matrix inversion. Let R be an associative ring. Denote by R

n� n

the ring

of n-dimensional matrices over R and by I

n

the identity matrix in R

n � n

. A matrix

M 2 R

n � n

is called invertible if MN = NM = I

n

for some N 2 R

n� n

, which is

necessarily unique. It is possible to show [16] that for quaternionic matricesMN = I

n

implies NM = I

n

.

The Schur complments procedure [20] is a powerful computational tool in calcu-

lating inverses of matrices over rings. Let us write a generic n-dimensional matrix M

in block form

M =

�

A B

C D

�

:

Assuming that A 2 R

k � k

is invertible, one has

M =

�

I

k

0

CA

�1

I

n�k

��

A 0

0 A

S

��

I

k

A

�1

B

0 I

n�k

�

;

with

A

S

:= D � CA

�1

B :

The invertibility of A ensures that the matrix M is invertible if and only if D

S

is

invertible, and the inverse is given by

M

�1

=

�

I

k

�A

�1

B

0 I

n�k

��

A

�1

0

0 A

S

�1

��

I

k

0

�CA

�1

I

n�k

�

:(2)

The inversion of an n-dimensional matrix is thus reduced to inversion of two smaller

matrices,

A 2 R

k � k

and A

S

2 R

(n � k) � (n� k)

:

We shall call A

S

the Schur complement of A in M .

To invert n-dimensional quaternionic matrices we may apply the following pro-

cedure. Let us consider a quaternionic matrix M 2 H

n� n

M =

�

a B

C D

�

:

If H 3 a 6= 0, we can apply directly Eq. (2). Otherwise, we perform a column/row

permutation by constructing a new matrix

P

1

MQ

1

=

�

a

1

B

1

C

1

D

1

�

; H 3 a

1

6= 0 :

By using Eq. (2) and applying recursively the column/row permutations, P

m

and Q

m

,

we �nd

M

�1

= L
U ;(3)
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where


 = a

1

� : : :� a

n

;

L =

n�1

Y

m=1

�

I

m�1

� P

m

�

1 �a

�1

m

B

m

0 I

n�m

��

U =

n�1

Y

m=1

�

I

m�1

�

�

1 0

�C

m

a

�1

m

I

n�m

�

Q

m

�

:

4. Determinant. The identity det[MN ] = det[M ] det[N ], and the fact that M

is invertible if and only if det[M ] 6= 0, are central in the study of complex matrices.

For two-dimensional quaternionic matrices, at �rst glance, one could introduce four

di�erent de�nitions

ab� cd ; ab� dc ; ba� cd ; ba� dc :(4)

However, (4) has little to do with invertibility. For example, for the invertible matrix

1

p

2

�

1 i

j k

�

;(5)

two expressions in (4) vanish and the other two are non-zero. Another example is the

invertible matrix

1

p

2

�

i j

j i

�

;(6)

whose four \determinants", calculated by (4), are all zero. In fact, as shown below,

the complex functional

det : C

n� n

! C ;

cannot extend to quaternions. More precisely, there is no functional

d : H

n� n

! H ;

which is multiplicative, d[MN ] = d[M ] d[N ], for all M ; N 2 H

n � n

, and such that

d [�

n

i=1

z

i

] =

Q

n

i=1

z

i

for all z

i

2 C . As a counter-example, consider the 2� 2 matrices

M =

�

1 + i 0

0 i

�

; N =

�

1 + i 0

0 �i

�

; S =

�

1 0

0 j

�

:

Since SM = NS, we conclude that d[S] d[M ] = d[N ] d[S] ; hence d[M ] and d[N ]

should be similar. This is a contradiction because obviously Re fd[M ]g 6= Re fd[N ]g.

Nevertheless, the real functional

jdet[M ]j : C

n� n

! R

+
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can be extended to quaternionic matrices.

Theorem 4.1. There exists a unique non trivial functional

D

n

: H

n� n

! R

+

;

which is multiplicative, i.e.

D

n

[MN ] = D

n

[NM ] = D

n

[M ]D

n

[N ] :(7)

This functional has the following properties:

I. D

n

��

A B

C D

��

= D

k

[A]D

n�k

[D�CA

�1

B] as long as A 2 H

k � k

and D

k

[A] 6= 0;

II. D

n

[I +MN ] = D

n

[I +NM ];

III D

n

[M ]D

n

[M

�1

] = 1 if N invertible, D

n

[M ] = 0 otherwise.

Proof. For n = 1 we de�ne

D

1

[q] = jqj ; q 2 H :

Obviously Eq. (7) and properties II-III are trivially satis�ed. For n � 2 we use

induction to de�ne D

n

. Assume that D

k

has been de�ned for all k < n. For all

0 < i ; j < n, set

M

[i;j]

= fM 2 H

n� n

: M

ij

6= 0g :

We de�ne the functional D

ij

n

: M

[i;j]

! R

+

by

D

ij

n

[M ] := jM

ij

j D

n�1

[M

ij;S

] ;

where M

ij;S

2 H

(n� 1) � (n� 1)

is the Schur complement of M

ij

in M . We claim that

all the n

2

functionals D

ij

n

, 0 � i; j � n, are compatible, namely

D

ij

n

[M ] = D

kl

n

[M ] ; 8M 2

�

M

[i;j]

\M

[k;l]

	

:(8)

There are four cases to check:

Case 1) i = k, j = l: Trivially true.

Case 2) i = k, j 6= l: We shall only consider the case i = k = j = 1 and l = 2.

All other cases follow by row/column permutations. So, we have

M =

0

@

a b E

C D F

G H J

1

A

; a; b 2 H ; ab 6= 0 :
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The two relevant Schur complements are

M

11;S

=

�

D F

H J

�

�

�

C

G

�

a

�1

�

b E

�

;

and

M

12;S

=

�

C F

G J

�

�

�

D

H

�

b

�1

�

a E

�

:

It is easy to see that

M

11;S

=M

12;S

�

�a

�1

b �a

�1

E

0 I

�

; D

n�1

��

�a

�1

b �a

�1

E

0 I

��

= ja

�1

bj :

Therefore, using eq. (7) for D

n�1

, which holds by induction, we have

D

11

n

[M ] = jaj D

n�1

[M

11;S

] = jaj D

n�1

[M

12;S

] ja

�1

bj = jbj D

n�1

[M

12;S

]

= D

12

n

[M ] ;

as required.

Case 3) i 6= k, j = l: This case is treated along similar lines.

Case 4) i 6= k, j 6= l: We shall only consider the case i = j = 1 and k = l = 2.

All other cases follow by row/column permutations. So, we have

M =

0

@

a b E

c d F

G H J

1

A

; a; b; c; d 2 H ; ad 6= 0 :

We want to prove that D

11

n

[M ] = D

22

n

[M ]. For b 6= 0 or c 6= 0, by using the results in

2) and 3),

D

11

n

(M) = D

12

n

(M) = D

22

n

(M) or D

11

n

(M) = D

21

n

(M) = D

22

n

(M) ;

trivially holds. Let us consider the only remaining case, b = c = 0:

M =

0

@

a 0 E

0 d F

G H J

1

A

; a; d 2 H ; ad 6= 0 :

The functional D

11

n

is given by

D

11

n

[M ] = jaj D

11

n�1

��

d F

H J �Ga

�1

E

��

= jaj jdj D

n�2

[J �Ga

�1

E �Hd

�1

F ] :

Similar calculations for the functional D

22

n

lead to

D

22

n

[M ] = jdj D

11

n�1

��

a E

G J �Hd

�1

F

��

= jaj jdj D

n�2

[J �Hd

�1

F �Ga

�1

E] :

6



Consequently, D

11

n

[M ] = D

22

n

[M ], the compatibility (8) has been estabilished, and we

may thus speak unambiguously of D

n

[M ].

� Proof of Property I. We shall use induction on k. The case k = 1 is equivalent

to (8) and has just been proved. For k � 2 we consider

M =

�

A B

C D

�

2 H

k � k

;

and assume without loss of generality that a = A

11

6= 0. Then,

D

n

��

A B

C D

��

= D

n

2

4

0

@

a B

A

B

1

C

A

D

A

B

2

C

1

C

2

D

1

A

3

5

:

By Schur complements, the invertibility of A implies that of A

S

= D

A

� C

A

a

�1

B

A

.

By the induction hypothesis, we get

D

n

��

A B

C D

��

= jaj D

n�1

��

D

A

� C

A

a

�1

B

A

B

2

� C

A

a

�1

B

1

C

2

� C

1

a

�1

B

A

D � C

1

a

�1

B

1

��

= jaj D

k�1

[D

A

� C

A

a

�1

B

A

] D

n�k

[X ]

= D

k

[A]D

n�k

[X ] ;

where X is a Schur complement de�ned by

X = D � C

1

a

�1

B

1

� (C

2

� C

1

a

�1

B

A

) (D

A

� C

A

a

�1

B

A

)

�1

(B

2

� C

A

a

�1

B

1

)

= D �

�

C

1

C

2

�

�

1 �a

�1

B

A

0 I

� �

a

�1

0

0 a

�1

S

� �

1 0

�C

A

a

�1

I

� �

B

1

B

2

�

= D � CA

�1

B :

With this, Property I is proved.

� Proof of Property II. Let us introduce the following matrix

�

I

1

N

M I

2

�

2 H

2n � 2n

:

By using property I and Schur complements with respect to I

1

and I

2

, we have

D

2n

��

I

1

N

M I

2

��

= D

n

[I

1

]D

n

[I

2

�MI

�1

1

N ] ;

and

D

2n

��

I

1

N

M I

2

��

= D

n

[I

2

]D

n

[I

2

�NI

�1

1

M ] ;

and the result follows immediately.
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� Proof of Property III. We begin by considering M invertible and constructing

the matrix

�

M I

�I 0

�

2 H

2n� 2n

:

We �nd,

D

n

[I ]D

n

[�I ] = D

2n

��

M I

�I 0

��

= D

n

[M ]D

n

[IM

�1

I ] ;

and noting that D

n

[I ] = D

n

[�I ] = 1 the �rst part of property III is demonstrated.

To complete the proof we show that

D

n

(M) 6= 0 , M invertible :

We move by induction on n. The case n = 1 is trivial, so assume M 2 H

n � n

, n � 2.

If M � 0, we know that M is not invertible and D

n

[M ] = 0 by de�nition. Otherwise,

we may assume without loss of generality that

M =

�

a B

C D

�

; a 2 H ; a 6= 0 :

Now,

D

n

[M ] = jaj D

n�1

[D � Ca

�1

B] = jaj D

n�1

[a

S

] ;

hence, using the induction hipothesis,

D

n

[M ] 6= 0 , D

n�1

[a

S

] 6= 0 , a

S

invertible , M invertible :

� Proof of the Multiplicative Property. Let us prove eq. (7). If D

n

(M) = 0 then M

is not invertible, MN is not invertible, hence D

n

(MN) = 0. Otherwise, consider

�

M

�1

�I

N 0

�

2 H

2n� 2n

:

Schur complements with respect to M

�1

gives

D

2n

��

M

�1

�I

N 0

��

= D

n

[M

�1

]D

n

[NM ] = D

n

[NM ] =D

n

[M ] :

Now Schur complements with respect to �I gives

D

2n

��

M

�1

�I

N 0

��

= D

n

[�I ]D

n

[N ] = D

n

[N ] :

In conclusion

D

n

[MN ] = D

n

[NM ] = D

n

[M ]D

n

[N ] :
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4.1. Remarks. We discuss additional properties of the functional D. By using

the results of the previous section it is immediate to show that

IV. For triangular matrices D

n

[M ] =

Q

n

i=1

jM

ii

j;

Next, we calculate D in terms of singular values. The singular values decomposi-

tion, SVD, for complex matrices extends to quaternionic matrices in a straightforward

way. A matrix U 2 H

n� n

is called unitary if U

+

U = I , where (U

+

)

ij

= U

ij

. Every

n� n quaternionic matrix, M , has the SVD M = U�V where U and V are unitary,

� = �

1

� 0, �

1

= �

1

� : : :� �

k

, where �

1

� �

2

� : : : �

k

� 0 are the singular values of

M [13, 21, 22, 23]. In these terms the following holds:

V. D

n

[U ] = 1 if U is unitary;

VI. D

n

[M ] =

Q

n

i=1

�

i

;

VII. D

n

[M

+

] = D

n

[M ].

It can be seen that the uniqueness claim in theorem (4.1) follows from property VI.

Indeed, every non-trivial multiplicative functional L : H

n � n

! R

+

should satisfy

L (�

n

i=1

�

i

) =

Q

n

i=1

�

i

and L (U) = 1 for U unitary. Using the SVD, it then follows

that L = D.

A weak version of the Jordan canonical form extends to quaternionic matrices.

Namley, every matrix M 2 H

n� n

is similar, over the quaternions, to a complex Jor-

dan matrix J , de�ning a set of n complex eigenvalues. However the eigenvalues �

i

2 C

are determined only up to complex conjugation. For further discussion see [13]. The

Jordan canonical form is associated with right eigenvalues M =  q,  2 H

n� 1

,

q 2 H , which are determined only up to quaternionic similarity. This is further dis-

cussed in [4, 15]. Thus, D has the additional property

VIII. D

n

[M ] =

Q

n

i=1

j�

i

j if �

i

2 C are the right eigenvalues associated with M .

Let us denote by Z [M ] the complexi�cation [13, 14] of the quaternionic matrix

M , i.e.

Z [M ] :=

�

M

1

�M

�

2

M

2

M

�

1

�

; M =M

1

+ j M

2

; M

1;2

2 C

n� n

:

It has been shown in [13] that if J is the complex Jordan form ofM then J�J

�

is the

Jordan form of Z [M ]. Consequently the spectrum of Z [M ] is f�

1

; �

�

1

; : : : ; �

n

; �

�

n

g.

A quaternionic matrix H is called hermitian if H

+

= H . Obviously for hermitian

quaternionic matrices, the eigenvalues are uniquely determined and real. This follows

from the fact that Z [M ] is also hermitian. In this case we can de�ne the following

real determinant

jH j

r

=

n

Y

i=1

�

i

:

9



It is easy to show that H is positive de�nite, i.e. x

+

Hx > 0 for all non zero x 2 H

n� 1

,

if and only if all the eigenvalues are positive, if and only if all the real determinants

of the principal minors are positive.

We conclude this section by comparing the functionals D[M ] and jH j

r

, introduced

in this paper, with the q-determinant [16] de�ned by

jM j

q

= det fZ [M ]g :

From previous considerations, we have

jM j

q

=

n

Y

i=1

j�

i

j

2

= D[M

+

]D[M ] = D

2

[M ] = jM

+

M j

r

:

5. The case of 2�2matrices. In this last section, we discuss inversion, adjoint

and determinant for 2� 2 quaternionic matrices.

� Inversion. Let

M =

�

a b

c d

�

be an invertible 2� 2 matrix with quaternionic entries. When a, b, c, d are all non-

zero, four parallel applications of the Schur complement formula lead to a concrete

description of the inverse:

M

�1

=

�

~a

~

b

~c

~

d

�

;(9)

where

~a = (a� bd

�1

c)

�1

;

~

b = (c� db

�1

a)

�1

;

~c = (b� ac

�1

d)

�1

;

~

d = (d� ca

�1

b)

�1

:

(10)

What happens if some of the entries is zero? Assume for example that a = 0. The

invertibility of M implies that b; c 6= 0. Consequently, the element d � ca

�1

b has

in�nite modulus. In this case, we can de�ne

~

d := lim

a!0

(d� ca

�1

b)

�1

:

A simple calculation,

j

~

dj := lim

a!0

1

jd� ca

�1

bj

= lim

a!0

1

jcj jc

�1

d� a

�1

bj

= lim

a!0

jaj

jcj jac

�1

d� bj

= lim

a!0

jaj

jcj jbj

= 0 ;

shows that

~

d = 0. Thus,

�

0 b

c d

�

�1

=

�

~a

~

b

~c 0

�

; ~a = �c

�1

db

�1

;

~

b = c

�1

; ~c = b

�1

:

We conclude that Eqs. (10) remain valid under appropriate conventions, when some

entries in M are zero. We do not have a clear generalization of this phenomenon for

n > 2.
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� Adjoint. Eqs. (9, 10) are valid in every associative ring R. In case R is also

commutative, Eqs. (9,10) reduce to the well known formula

M

�1

=

Adj[M ]

det[M ]

:(11)

In calculating the inverse of real and complex matrices, (11) is of great theoretical

importance. So far, we have failed to generalize this formula to quaternion matrices.

At �rst sight, it might make sense to conjecture a non-commuting generalization of

the general form,

M

�1

= P Adj[M ]Q ;(12)

with

P = diag[p

1

; p

2

] and Q = diag[q

1

; q

2

] ;

quaternionic diagonal matrices. Nevertheless, the constraints

p

1

= ~aq

1

d

�1

; p

2

= �~cq

1

c

�1

;

p

1

= �

~

bq

2

b

�1

; p

2

=

~

dq

1

a

�1

;

which, for commuative �elds, are satis�ed if

P =

I

det[M ]

and Q = I ;

are not always satis�ed in the quaternionic world. It is easily checked that the uni-

tary matrix (5) cannot be written in the form (12). Whether a further weakening,

beyond (12), of formula (11) is valid for quaternionic matrices remains an open

problem. Even the de�nition of Adj[M ], M 2 H

n� n

, n > 2, is not clear.

� Determinant. . For n = 2, an application of theorem (4.1) yields

D

2

��

a b

c d

��

= jaj jd� ca

�1

bj = jbj jc� db

�1

aj = jcj jb� ac

�1

dj = jdj ja� bd

�1

cj :

From this de�nition, the functional D

2

for the matrix (5,6) is

D

2

�

1

p

2

�

1 i

j k

��

= D

2

�

1

p

2

�

i j

j i

��

= 1 ;

as required by unitarity. For hermitian quaternionic matrices, the real determinant

is given by

�

�

�

�

�

� q

�q �

�

�

�

�

�

r

= �

1

�

2

= �� � jqj

2

; � ; � 2 R ; q 2 H :
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