QUATERNIONIC MATRICES: INVERSION AND DETERMINANT*

NIR COHENT AND STEFANO DE LEOf

Abstract. We discuss the Schur complement formula for quaternionic matrices, M, and give
an efficient method to calculate the matrix inverse. We also introduce the functional D[M] which
extends to quaternionic matrices the non-negative number |det[M]].
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1. Introduction. Much of the spectral theory of complex matrices does not ex-
tend to quaternion matrices without further modifications [1, 2, 3]. In particular, the
determinant cannot be defined, and the eigenvalues [4] have several possible extensions
which do not necessarily respect the fundamental theorem of algebra [5, 6, 7].

Quaternionic mathematical structures have recently appeared in the physical
litterature mainly in the context of quantum mechanics [8, 9, 10] and group the-
ory [11, 12]. The relevance of quatenionic calculus to several iussues in theoretical
phycis has rekindled the interest in quaternionic linear algebra. A usefull thecnical
procedure in approaching quaternionic applications in physics has been the replace-
ment of quaternionic matrices by complex matrices of double size [13, 14], and the
consequent spectral analysis of the latter matrix [4, 15, 16]. This indirect procedure,
usually, suffices to solve the problem at hand, but it sheds little light on the structure
of quaternionic matrices.

We aim to discuss inversion and determinant for quaternionic matrices in view of
new classifications of quaternionic groups and possible applications in grand unifica-
tion theory [17, 18]. The main results of this paper can be summarized by

Inversion. The formula M~ = Adj[M]/det[M] cannot be generalized for quater-
nionic matrices. Nevertheless, the Schur complement formula provides an efficient
method to calculate the matrix inverse.

Determinant. The determinat for n X n quaternionic matrices, M, cannot be de-
fined in a consistent way. Instead, the non-negative number |det[M]| can be extended
to quaternionic matrices by the functional D[M] defined in terms of quaternionic
M -entries.

2. Notation. Quaternions, introduced by Hamilton [19], can be represented
by four real quantities

(1) g=a+ib+jc+kd, a,b,c,de R,

and three imaginary units ¢, j, k satisfying
iP=j2 =k =ijk=—-1.
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We will denote by
Relg]:=a and Im[gl:=¢—a=ib+jc+kd,

the real and imaginary parts of q.
The quaternion skew-field H is an associative but non-commutative algebra of
rank 4 over R, endowed with an involutory operation, called quaternionic conjugation,

g=a—1ib—jc—kd=Re[g] — Im[q],
satisfying
pg=4p, ¢,peH.
The quaternion norm |g| is defined by
g =qq=a* +b*+c* +d*.

Among the properties of the norm, to be used in subsequent sections, we mention
here the following

lpgl = lgpl = lgllpl ~ and |1 —pg| =[1—gp| .
Every nonzero quaternion g has a unique inverse
¢ =q/ld* .
Two quaternions p and ¢ are similar if
qg=s"'ps, seH.

By replacing s by u = s/|s|, we may always assume s to be unitary. The usual
complex conjugation in C may be obtained by choosing s = j or s = k. A necessary
and sufficient condition for the similarity of p and ¢ is given by

Re[g] = Re[p] ~ and  |Im[q]| = [Im[p]| .

An equivalent condition is Re[g] = Re[p] and |q| = |p|. Every similarity class contains
a complex number, unique up to conjugation. Namely, every quaternion ¢ is similar
to

Re[g] + i [Im[g]| .

Since Re[g] = Re[g] and Im[g] = Im][g], the quaternions ¢ and ¢ are similar. In fact, it
can be seen that for s € H to satisfy

—1 =

q=s ¢s,
given ¢ € H, it is necessary and sufficient that
Relgs] = Re[s] =0 .

However, there exists no single s € H such that ¢ = s ¢ s for all ¢ € H.
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3. Matrix inversion. Let R be an associative ring. Denote by R™ * ™ the ring
of n-dimensional matrices over R and by I, the identity matrix in R™*™. A matrix
M € R™*™ is called invertible if MN = NM = I, for some N € R™*", which is
necessarily unique. It is possible to show [16] that for quaternionic matrices M N = I,,
implies NM = I,.

The Schur complments procedure [20] is a powerful computational tool in calcu-
lating inverses of matrices over rings. Let us write a generic n-dimensional matrix M

in block form
A B
M_<C D) |

Assuming that A € R* ** is invertible, one has
M= I 0 A 0 I, A'B
CA—* Ik 0 As 0 I ’

As:=D—-CA'B.

with

The invertibility of A ensures that the matrix M is invertible if and only if Dy is
invertible, and the inverse is given by

_ I, —-A'B At 0 Iy, 0

1 _

@ M _< 0 I ) < 0 A > ( —CA™ I, > :

The inversion of an n-dimensional matrix is thus reduced to inversion of two smaller
matrices,

AeR*®  and AgeRC-Bx—h

We shall call Ag the Schur complement of A in M.
To invert n-dimensional quaternionic matrices we may apply the following pro-
cedure. Let us consider a quaternionic matrix M € H™*™

w-(28)

If H 5 a # 0, we can apply directly Eq. (2). Otherwise, we perform a column/row
permutation by constructing a new matrix

B
131]\4—le<cé§1 D11>, Haaﬁéo.

By using Eq. (2) and applying recursively the column/row permutations, P, and @,
we find

(3) M =LQU,
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where

Q0

Il
3 8

1D...Day,
—1
1 —a'B
o (o 700 )]

B (IR I]

= mQy, In_m

L

s 3
L=

4. Determinant. The identity det[M N] = det[M]det[N], and the fact that M
is invertible if and only if det[M] # 0, are central in the study of complex matrices.
For two-dimensional quaternionic matrices, at first glance, one could introduce four
different definitions

4) ab—cd, ab—dc, ba—cd, ba—dc.

However, (4) has little to do with invertibility. For example, for the invertible matrix

® (5 4)

two expressions in (4) vanish and the other two are non-zero. Another example is the
invertible matrix

© =(51)

whose four “determinants”, calculated by (4), are all zero. In fact, as shown below,
the complex functional

det : C"*" > C,
cannot extend to quaternions. More precisely, there is no functional
d: H**" - H,

which is multiplicative, d[M N] = d[M]d[N], for all M, N € H"*", and such that
d[®l 7] =TI, 2 for all z; € C. As a counter-example, consider the 2 x 2 matrices

[ 1+i O _(14+¢ 0 (10
=t 1) = (e )= (o d)
Since SM = NS, we conclude that d[S]d[M] = d[N]d[S] , hence d[M] and d[N]
should be similar. This is a contradiction because obviously Re {d[M]} # Re {d[N]}.
Nevertheless, the real functional
|det[M]| : C**™ = R,
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can be extended to quaternionic matrices.
THEOREM 4.1. There ezists a unique non trivial functional

Dy : H"*™ 5 R, ,
which is multiplicative, i.e.

This functional has the following properties:

I.D, K é IB; >] = Dy[A] Dp—i[D—CAB] as long as A € H"* ** and Dy[A] # 0;
II. Du[I + MN] =D,[I + NM];
III Dy[M]Dy[M~'] =1 if N invertible, Dp[M] = 0 otherwise.

Proof. For n =1 we define
Dilg)=lq|, q€H.

Obviously Eq.(7) and properties II-III are trivially satisfied. For n > 2 we use
induction to define D,,. Assume that Dj; has been defined for all ¥ < n. For all
0<i,j<n,set

M[z,]] :{MEH"X" . M”#O} .
We define the functional DY : Mj; j — R, by
D [M] := |Myj| Dy [Myjs]

where M;; s € H™ =™~ ig the Schur complement of M;; in M. We claim that
all the n” functionals D}/, 0 < i,5 < n, are compatible, namely

(8) DJj[M] =D}'[M], VM € {My ;0 My} -
There are four cases to check:
Case 1) ¢ =k, j = [: Trivially true.

Case 2) i =k, j # [: We shall only consider the case i =k =j =1 and [l = 2.
All other cases follow by row/column permutations. So, we have

a b FE
M=| C D F , a,beH , ab#0.
G H J



The two relevant Schur complements are

and

M12,5:<g Z;)—(Z)bl(a E).

It is easy to see that

_ —lb _ —1E _ —1b _ —1E
My =My, < ao “I ) , Du_, K ao aI >] =|a~'b| .

Therefore, using eq. (7) for D,,_,, which holds by induction, we have

D, [M] = |a| Dy, [My,s] = |a] Dp—y [Mys,5] la™b] = [b] Dy, [Mi2,5]
=D, [M],

as required.

Case 3) i # k, j = [: This case is treated along similar lines.

Case 4) i # k, j # I: We shall only consider the case i = j =1 and k =1 = 2.
All other cases follow by row/column permutations. So, we have

a b E
M = c d F , a,byec,de H, ad#0.
G H J

We want to prove that D} [M] = D2*[M]. For b # 0 or ¢ # 0, by using the results in
2) and 3),

Dy (M) =Dy (M) = Dy (M) or Dy(M) = Dy (M) = Dy’ (M)

trivially holds. Let us consider the only remaining case, b = ¢ = 0:

a 0 E
M = 0 d F , a,deH, ad#0.
G H J

The functional D, is given by

11 11 [ d F ] -1 —1
DY [M] = |a| DX, ( 0 Can ) = |a||d| Dy_»]J — Ga™'E — Hd"'F] .

Similar calculations for the functional D?? lead to

G J—-Hd'F

D2[M] = |d| DAL, < a E ) = la||d| Dy—s [J — Hd"'F — Ga™"E] .
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Consequently, D;'[M] = D2[M], the compatibility (8) has been estabilished, and we
may thus speak unambiguously of D, [M].

e Proof of Property I. We shall use induction on k. The case k = 1 is equivalent
to (8) and has just been proved. For k > 2 we consider

A B k X k
w=(28) eme

and assume without loss of generality that a = A,, # 0. Then,

a B, B,
o (4 2)=n (& B0 B
c, C, D

By Schur complements, the invertibility of A implies that of A = D, — C,a 'B,

By the induction hypothesis, we get
_ -1 _ -1
D, A B — 4| D» D, CAa_1 B, B, C’Aa_1 B,
C D Cy—Cia B, D—-C,a B,
= |a| Dk—1 [DA — Aa’lBA] Dn—k [X]

=Dy [A] Dp— [X] ,

where X is a Schur complement defined by

X=D-Ca'B, - (C,—Cia'B,)(D,—Cra'B,)"" (B, —C,a'B,)
_ 1 —a'B, at 0 1 0 B
=D — ( 01 Cz ) ( 0 I ) < 0 a;l > ( _CAa—l I ) < B

=D-CA'B.

[y

)

)

With this, Property I is proved.

e Proof of Property Il. Let us introduce the following matrix

I N 2n X 2n
(M 12> € H¥

By using property I and Schur complements with respect to I, and I,, we have

Dy [( o yﬂ — Dy[L] Dall, — MI-'N]

and

Dy [( o ;Vﬂ — DulL] Doll, — NI-'M]

and the result follows immediately.



e Proof of Property Ill. We begin by considering M invertible and constructing

the matrix
M I 20 X 20
( I 0 ) eH .

We find,

DolI] Do[~1] = D [( vl )} — DL [M] Da[IM1]

and noting that Dy, [I] = Dy[—I] = 1 the first part of property III is demonstrated.
To complete the proof we show that
Dn(M)#0 < M invertible .

We move by induction on n. The case n = 1 is trivial, so assume M € H" * ", n > 2.
If M =0, we know that M is not invertible and D,[M] = 0 by definition. Otherwise,
we may assume without loss of generality that

MZ(Z'IB;)’ a€H, a#0.
Now,
Dp[M] = |a| Dp—s [D — Ca ™' B] = |a| Dy-1[as] ,
hence, using the induction hipothesis,

DnM]#0 < D, 1fas]#0 <& as invertible < M invertible .

e Proof of the Multiplicative Property. Let us prove eq. (7). If D, (M) = 0 then M
is not invertible, M N is not invertible, hence D, (M N) = 0. Otherwise, consider

M- -1 2n X 2n
() e,

Schur complements with respect to M ~* gives

Dap K ]\fv_ _OI >] =D, [M~D,[NM] = D,[NM]/D,[M] .

Now Schur complements with respect to —I gives
M-t -1
Dap [( N 0 >] = Dy[-I|Dyp[N] = D,[N] .

In conclusion



4.1. Remarks. We discuss additional properties of the functional D. By using
the results of the previous section it is immediate to show that

IV. For triangular matrices D, [M] = [T}, [Myl;

Next, we calculate D in terms of singular values. The singular values decomposi-
tion, SVD, for complex matrices extends to quaternionic matrices in a straightforward
way. A matrix U € HH™ * " is called unitary if UTU = I, where (U*)ij = U;;. Every
n X n quaternionic matrix, M, has the SVD M = UXV where U and V are unitary,
Y=%,90,% =0,P...00k, where 0, > 0, > ...0 > 0 are the singular values of
M [13, 21, 22, 23]. In these terms the following holds:

V. D,[U] = 1if U is unitary;
VI. Dp[M] =TI, 03
VII. D,[M*] = D,[M].

It can be seen that the uniqueness claim in theorem (4.1) follows from property VI.
Indeed, every non-trivial multiplicative functional £ : H"*" — R, should satisfy
L (i 03) =[], 0i and L(U) = 1 for U unitary. Using the SVD, it then follows
that £ = D.

A weak version of the Jordan canonical form extends to quaternionic matrices.
Namley, every matrix M € H" * " is similar, over the quaternions, to a complex Jor-
dan matrix J, defining a set of n complex eigenvalues. However the eigenvalues \; € C
are determined only up to complex conjugation. For further discussion see [13]. The
Jordan canonical form is associated with right eigenvalues My = 1pq, ¢ € H™*",
g € H, which are determined only up to quaternionic similarity. This is further dis-
cussed in [4, 15]. Thus, D has the additional property

VIII. D,[M] =[[;_, |\ if \; € C are the right eigenvalues associated with M.

Let us denote by Z[M] the complexification [13, 14] of the quaternionic matrix
M, ie.

M, —MZ .
Z[M]°:<M; M > , M=M+jM,, M,eC""".
1

It has been shown in [13] that if J is the complex Jordan form of M then J® J* is the
Jordan form of Z[M]. Consequently the spectrum of Z[M]is {A,, A, ..., An, AL}

A quaternionic matrix H is called hermitian if H+ = H. Obviously for hermitian
quaternionic matrices, the eigenvalues are uniquely determined and real. This follows
from the fact that Z[M] is also hermitian. In this case we can define the following
real determinant



It is easy to show that H is positive definite, i.e. ¥ Hx > 0 for all non zerox € H™ * ',
if and only if all the eigenvalues are positive, if and only if all the real determinants
of the principal minors are positive.

We conclude this section by comparing the functionals D[M] and |H|,, introduced
in this paper, with the g-determinant [16] defined by

M|, = det {Z [M]} .

From previous considerations, we have
n
M|, = [T INl* = DIM*]DIM] = D*[M] = |M* M|, .
i=1

5. The case of 2 x2 matrices. In this last section, we discuss inversion, adjoint
and determinant for 2 X 2 quaternionic matrices.

a b
(0 0)
be an invertible 2 X 2 matrix with quaternionic entries. When a, b, ¢, d are all non-

zero, four parallel applications of the Schur complement formula lead to a concrete
description of the inverse:

e Inversion. Let

L (a b
©) (28
where
(10) a=(a—>bd'c)?, l~)~: (c—db~'a)~',

¢=(b—actd)t, d=(d—-ca'bh)".

What happens if some of the entries is zero? Assume for example that a = 0. The
invertibility of M implies that b,c # 0. Consequently, the element d — ca~'b has
infinite modulus. In this case, we can define

d:=lim (d — ca™'b)™" .
a—0
A simple calculation,
. 1 1 la]
1 a0 |d — ca—1b| a0 le||e*d — a—1b) a0 le| |ac—d — b
N
a—0 |C| |b|

shows that d = 0. Thus,

(2a) -

We conclude that Egs. (10) remain valid under appropriate conventions, when some
entries in M are zero. We do not have a clear generalization of this phenomenon for
n > 2.

)

b
0

[STEEST

> L a=—ctdbt, b=ct, E=b".
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e Adjoint. Egs. (9, 10) are valid in every associative ring R. In case R is also
commutative, Egs. (9,10) reduce to the well known formula
_ Adj[M]
~ det[M]

(11) M

In calculating the inverse of real and complex matrices, (11) is of great theoretical
importance. So far, we have failed to generalize this formula to quaternion matrices.
At first sight, it might make sense to conjecture a non-commuting generalization of
the general form,

(12) M~ = PAj[M]Q,
with
P = diag[plap2] a‘nd Q = diag[qla q2] )

quaternionic diagonal matrices. Nevertheless, the constraints

b = ag.d* , p. = _§Q1071>
1

b = _EQZb_l , P = dg,a™* ,
which, for commuative fields, are satisfied if

I
P =
det[M]

and Q@Q=1,

are not always satisfied in the quaternionic world. It is easily checked that the uni-
tary matrix (5) cannot be written in the form (12). Whether a further weakening,
beyond (12), of formula (11) is valid for quaternionic matrices remains an open
problem. Even the definition of Adj[M], M € H" *™, n > 2, is not clear.

e Determinant. . For n = 2, an application of theorem (4.1) yields

D, K (CL Z >] =la||d —ca™'b| = |b| |c — db~'a| = |¢||b— ac™'d| = |d||a — bd"¢| .
From this definition, the functional D, for the matrix (5,6) is

oo (542l (G 1)) -

as required by unitarity. For hermitian quaternionic matrices, the real determinant

is given by
‘(g g) =N =af—|q?, a,B R, geH.

”
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