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1 Introdu
tion

The main purpose of this work is to investigate the existen
e of multiple solutions

of the 
riti
al superlinear problem

(1.1) ��u = �u+ u

2

�

�1

+

+ f(x) in 
; u = 0 on �
;

where 2

�

=

2N

N�2

; N � 3 is the 
riti
al Sobolev exponent, and � > 0 is a 
onstant.

u

+

denotes the positive part of u : u

+

(x) = maxfu(x); 0g.

This problem belongs to a 
lass of problems whi
h are known as the Ambrosetti-

Prodi type. Due to the important role of the Ambrosetti-Prodi result [2℄ in sub-

sequent resear
h and for 
ompleteness we state it next. Let g : R ! R be a

C

2

-fun
tion su
h that g

00

(s) > 0 for all s 2 R and

0 < lim

s!�1

g

0

(s) < �

1

< lim

s!+1

g

0

(s) < �

2

;

where �

1

and �

2

are the �rst and se
ond eigenvalues of (��; H

1

o

(
)). They 
onsider

the following boundary value problem

(1.2) ��u = g(u) + f(x) in 
; u = 0 on �
;

where 
 is a bounded domain in R

N

with a C

2;�

boundary �
. Then, there is a

C

1

manifold M in C

0;�

(

�


), whi
h splits the spa
e into two open sets O

o

and O

2

with the following properties

(i) if f 2 O

o

, problem (1.2) has no solution

(ii)if f 2M , problem (1.2) has exa
tly one solution

(iii) if f 2 O

2

, problem (1.2) has exa
tly two solutions.

Typeset by A

M

S-T

E

X

1
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A solution here means a fun
tion u 2 C

2;�

(

�


):

After this work, several authors have extended this result in di�erent dire
tions.

The literature on this problem is quite extensive; even risking the possibility of

omitting some important work, we mention the following papers [1℄, [3℄, [4℄, [12℄,

[17℄, [18℄ et
.

The above result shows the role that the lo
ation of the limits

(1.3) g

�

= lim

s!�1

g(s)

s

; g

+

= lim

s!+1

g(s)

s

with respe
t to the spe
trum of (��; H

1

o

(
)) plays in the question of existen
e of

solutions for problem (1.2). Indeed, this 
onstrasts with the well-known fa
t that

if g

�

are stri
tly between two 
onse
utive eigenvalues, or both g

�

are stri
tly less

than �

1

, then problem (1.2) is solvable for all f . (We are assuming that f is lo
ally

Lips
hizian, and then solutions are in C

2;�

(
) \ C

0

(

�


)). So the interesting 
ases

are when the interval (g

�

; g

+

) 
ontains eigenvalues. Problems with this feature are


alled problems of the Ambrosetti-Prodi type, or problems with jumping nonlinear-

ities in a terminology introdu
ed by Fu�
ik, see [17℄. These Ambrosetti-Prodi type

of problems 
an be seen as a question of 
hara
terizing (or at least, des
ribing part

of) the range of a perturbation of a linear operator (say,��) by some nonlinear

operator (say Nu := �g(x; u), whi
h in our 
ase is g(x; u) := �u+ u

2

�

�1

+

). We 
an

distinguish three di�erent types of Ambrosetti-Prodi problems.

In type I, we have g

�

< �

1

< g

+

, where g

�


ould be �1, and g

+


ould be +1.

We write f = t�

1

+ h, where t 2 R; �

1

is a �rst eigenfun
tion of (��; H

1

o

(
)) with

�

1

> 0 and

R




�

2

1

dx = 1, and

R




h�

1

dx = 0. Then we 
an prove that in this 
ase

there is a t

o

su
h that if t < t

o

, problem (1.2) has at least one solution. Su
h a

result holds under more general assumptions. Namely g 
an depend also on x, and

the �rst limit in (1.3) 
an be repla
ed by limsup. Similarly the se
ond limit 
an be

repla
ed by liminf. See, for instan
e, the survey paper [16℄.

Type II is when g

�

and g

+

are �nite, with the interval (g

�

; g

+

) 
ontaining

eigenvalues. These problems are asymptoti
ally linear. They have been extensively

studied by Lazer-M
Kenna, see for instan
e [20℄. In the treatment of this problem,

via Topologi
al and Variational Methods, it has appeared in an essential way the

so-
alled Fu�
ik spe
trum, [17℄.

Type III is when g

�

is between two 
onse
utive eigenvalues and g

+

= +1. these
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are superlinear problems with a 
rossing of all but a �nite number of eigenvalues.

In this 
ase one 
an prove that there is a t

o

2 R su
h that problem (1.2) with

f = t�

1

+ h has a negative solution for t > t

o

. These problems have been treated

in [25℄, and [15℄.

We remark that existen
e of a �rst solution for problems of type I and III does

not require any growth at �1. So sub
riti
al, 
riti
al or super
riti
al problems are

treated. Observe that the reason is that:(i) in type I, one 
an �nd a subsolution and

a supersolution, so a solution of problem (1.2) 
omes either by the Monotone Itera-

tion Method if, for instan
e, the derivative of g is bounded, or by some Variational

Methods after an appropriate trun
ation of the nonlinearity; (ii) in the 
ase of type

III we trun
ate the nonlinearity g for s > 0, getting a fun
tion ~g in su
h a way that

g

�

and lim

s!+1

~g(s)

s

are between the same pair of 
onse
utive eigenvalues.

The importan
e of the growth of g at in�nite 
omes when one tries to get a

se
ond solution. The reason being that in order to have the fun
tional asso
iated

to Equation (1.2)

I(u) =

1

2

Z




jruj

2

dx�

Z




G(u) dx�

Z




fu dx

well de�ned in H

1

o

(
), one has to require that

jg(s)j � Cjsj

p

+ C;

where 1 � p � 2

�

� 1: The sub
riti
al 
ase p < 2

�

� 1 has been dis
ussed by several

authors mentioned before. Re
ently, Deng [13℄ 
onsidered problem (1.2) with a

nonlinearity of the type g(u) = juj

2

�

�1

+ k(u), where k is a lower perturbation of

the expression with the 
riti
al exponent. This problem belongs to an Ambrosetti-

Prodi problem of type I. In this 
ase, the variational tool is the Mountain Pass

Theorem.

Our problem stated in the beginning of this Introdu
tion is of type I if � < �

1

and of type III if � > �

1

. In order to get a se
ond solution, we have to re
ourse to a

Linking Theorem. Both the geometry of fun
tional asso
iated to equation (1.2) and

the determination of the levels where a (PS) 
ondition fails are mu
h more involved

in type III than in type I. All along this paper we write the non-homogeneous term

in the form f = t�

1

+h, where h ? �

1

in the L

2

-sense. Let (0 <)�

1

< �

2

� �

3

� :::

be eigenvalues of �� subje
t to Diri
hlet data, with 
orresponding eigenfun
tions

�

1

; �

2

; �

3

; :::: In Se
tion 2, we prove the following result.



4 DJAIRO G. DE FIGUEIREDO AND YANG JIANFU

Theorem 1.1. (I)(Existen
e of a negative solution)

(i) If 0 < � < �

1

and given h 2 L

2

, then there exists a t

o

= t

o

(h) < 0 su
h that

if t < t

o

, Problem (1.1) has a negative solution u

t

.

(ii) If � > �

1

, and given h 2 L

2

, su
h that h 2 ker(��� �)

?

in the 
ase that �

is an eigenvalue, then there exists t

o

= t

o

(h) > 0 su
h that if t > t

o

, Problem (1.1)

has a negative solution u

t

.

(II)(Existen
e of a se
ond solution) If, in addition to either of the hypotheses

above, one assumes that � is not an eigenvalue of (��; H

1

o

(
)) and the dimension

N > 6, Problem (1.1) has a se
ond solution.

Although the methods used here are essentially the same as for problems of

Br�ezis-Nirenberg type namely

(1.4) ��u = juj

2

�

�2

u+ g(x; u) in 
; u = 0 on �
;

where g(x; 0) = 0 and g is some perturbation of lower order of the 
riti
al power, the

te
hni
alities have some new features. Indeed, for problem (1.4) the �rst solution

is u � 0, and from there one builds up the variational approa
h. In 
ase of (1.2),

the �rst solution u

t

6= 0 and the translation of the fun
tional to be 
entered at u

t

introdu
es nonhomogeneities whi
h are deli
ate to handle.

When one of the limits g

�

or g

+

is equal to an eigenvalue, we have a resonant

problem. The solvability of (1.2) in this situation requires usually some additional


onditions on g, like the Landesman-Lazer 
ondition, see [20℄. In Se
tion 3 we

dis
uss a 
ase of resonan
e at � = �

1

, where su
h a 
ondition does not hold.

Namely, the following result is proved.

Theorem 1.2. Suppose � = �

1

. Then there is an � > 0 su
h that if kfk

L

2

< �,

then (1.1) has a solution.

Finally in Se
tion 4, we dis
uss lo
al bifur
ation at � = �

k

; k > 1: Using the

theory of bifur
ation for variational problems as developed by B�ohme [5℄ and Marino

[21℄, we 
an handle eigenvalues of any algebrai
 multipli
ity, and prove the next

result.

Theorem 1.3. Let h 2 ker(�� � �

k

)

?

with k > 1. In the spa
e R � H

1

o

(
),

let (�; u

t

(�)) for � near �

k

be the line of negative solutions of (1.1) obtained in

Theorem 1.1. Then (�

k

; u

t

(�

k

)) is a point of bifur
ation.



CRITICAL SUPERLINEAR AMBROSETTI-PRODI PROBLEMS 5

2 The Proof of Theorem 1.1

We write f(x) = t�

1

(x)+h(x), where �

1

is the �rst eigenfun
tion of ��, �

1

?h in

L

2

-sense. We �rst prove that (1.1) has a negative solution u

t

. Indeed, all negative

solutions of (1.1) satis�es

(2.1) ��u = �u+ t�

1

+ h:

If � is an eigenvalue of (��; H

1

o

(
)), we suppose that h 2 ker(�� � �)

?

. Then

the problem

(2.2) ��u = �u+ h in 
; u = 0 on �


has a unique solution u

o

. Consequently, the fun
tion w = u

t

�u

o

, where u

t

is some

solution of (2.1), is a solution of

(2.3) ��w = �w + t�

1

in 
; w = 0 on �
:

Problem (2.3) has a unique solution w = ��

1

where � = t=(�

1

� �). Sin
e we look

for u

t

� 0, it follows that: (i) for � < �

1

, we obtain su
h u

t

for t < 0 and large,

whi
h 
omes from a negative �; (ii) for � > �

1

, we obtain su
h u

t

for t > 0 and

large, whi
h 
omes also from a negative �.

To �nd a se
ond solution u of (1.1), we set u = v + u

t

, and then v satis�es

(2.4) ��v = �v + (v + u

t

)

2

�

�1

+

in 
; v = 0 on �
:

So the se
ond solution of (1.1) is obtained by �nding a nontrivial solution v of (2.4).

Using variational methods we look for a 
riti
al point of the fun
tional

I(v) =

1

2

Z




(jrvj

2

� �v

2

) dx�

1

2

�

Z




(v + u

t

)

2

�

+

dx

de�ned in E = H

1

o

(
). We use a Linking Theorem without Palais-Smale 
ondition,

see Theorem 4.3 in [22℄, or Theorem 5.1 in [14℄.

Suppose � > 0 is not an eigenvalue of (��; H

1

o

(
)). We assume � 2 (�

k

; �

k+1

)

from now on. The other 
ase 0 < � < �

1


an be treated in a similar and simpler

way, using Mountain Pass Theorem. Let us denote

E

�

=

�

; if � 2 (0; �

1

);

spanf�

1

; :::�

k

g; otherwise:
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and

E

+

= (E

�

)

?

:

Let

S

�

= �B

�

\E

+

and

Q = [0; Re℄� (

�

B

r

\E

�

); e 2 E

+

;

where � > 0; R > 0 and r > 0 will be determined later and in a way that

(2.5) I j

S

�

� � > 0; � < R;

(2.6) I j

�Q

< �;

(2.7) max

�

Q

I <

1

N

S

N

2

;

where S is the best Sobolev 
onstant. Inequalities (2.5) - (2.6) will give the geometry

of the fun
tional I required by the Linking Theorem of Rabinowitz [24℄. We will

use it in the version without the assumption of Palais-Smale, see Theorem 4.3 in

[22℄ or Theorem 5.1 in [14℄. For that matter, 
ondition (2.7) is used to prove that

the solution obtained as a weak limit of a (PS)-sequen
e at the minimax level is

not a trivial one.

Lemma 2.1. There exist �

o

> 0 and a fun
tion � > 0; � : [0; �

o

℄! R su
h that

I(v) � �(�) for all v 2 S

�

= �B

�

\E

+

:

Expli
itly, we have

�

o

= fS

N

N�2

(1�

�

�

k+1

)g

N�2

4

; �(�) =

1

2

(1�

�

�

k+1

)�

2

�

1

2

�

S

�

N

N�2

�

2

�

and the maximum value of �(�)

�̂ =

1

N

S

N

2

(1�

�

�

k+1

)

N

2

is assumed at

�̂ = (1�

�

�

k+1

)

N�2

4

S

N

4

:
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Proof. Using the fa
t that u

t

< 0 and the variational 
hara
terization of �

k+1

we

get

I(v) �

1

2

(1�

�

�

k+1

)

Z




jrvj

2

dx�

1

2

�

Z




v

2

�

+

dx:

By Sobolev imbedding we obtain

I(v) �

1

2

(1�

�

�

k+1

)

Z




jrvj

2

dx�

1

2

�

S

�

N

N�2

(

Z




jrvj

2

dx)

2

�

=2

=

1

2

(1�

�

�

k+1

)�

2

�

1

2

�

S

�

N

N�2

�

2

�

:

The result follows by maximizing the fun
tion de�ned by the last equality. �

The best Sobolev 
onstant S used above is de�ned by

(2.8) S = inffkruk

2

2

=kuk

2

2

�

: u 6= 0; u 2 H

1

(R

N

)g

whi
h is assumed by the fun
tions

(2.9)  

�

(x) =

�

�

p

N(N � 2)

�

2

+ jxj

2

�

N�2

2

; � > 0:

Let � 2 C

1

o

(R

N

) be a fun
tion su
h that �(x) = 1 on B

1

2

(0), �(x) = 0 on R

N

nB

1

(0)

and 0 � �(x) � 1 on R

N

. We may assume B

1

(0) � 
. Let �

�

(x) = �(x) 

�

(x), then

we have following estimates.

Lemma 2.2. ([8℄)

(2.10) kr�

�

k

2

2

= S

N

2

+ o(�

N�2

)

(2.11) k�

�

k

2

�

2

�

= S

N

2

+ o(�

N

)

(2.12) k�

�

k

2

2

=

�

K

1

�

2

+ o(�

N�2

) if N � 5;

K

1

�

2

jlog�

2

j+ o(�

2

) if N = 4:

(2.13) k�

�

k

1

� K

2

�

N+2

2

and

(2.14) k�

�

k

2

�

�1

2

�

�1

� K

3

�

N�2

2

;

where K

1

> 0; K

2

> 0 and K

3

> 0 are 
onstants.

Denote by P

�

the orthogonal proje
tions of E onto E

�

respe
tively. Using

arguments as in [11℄, we 
an prove the following lemma.
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Lemma 2.3.

(2.15) j

Z




[(P

+

�

�

)

2

�

� �

2

�

�

℄ dx j� C�

N�2

;

(2.16) j

Z




(jr�

�

j

2

� jr(P

+

�

�

)j

2

) dx j� C�

N�2

;

(2.17) kP

+

�

�

k

2

�

�1

2

�

�1

� C�

N�2

2

(2.18) kP

+

�

�

k

1

� C�

N+2

2

and

(2.19) kP

�

�

�

k

1

� C�

N�2

2

:

De�ne for any �xed K > 0 the set 


�;K

= fx 2 
 : P

+

�

�

(x) > Kg. By (2.19)

we know that

P

+

�

�

(0) = �

�

� P

�

�

�

(0) � C�

�

N�2

2

� kP

�

�

�

k

1

� C�

�

N�2

2

whi
h implies P

+

�

�

(0) ! +1 as � ! 0. By the 
ontinuity of P

+

�

�

, there exists

Æ > 0 su
h that B

Æ

(0) � 


�;K

. Therefore we have a result as follows.

Lemma 2.4.

(2.20)

Z




�;K

jP

+

�

�

j

2

�

dx =

Z




j�

�

j

2

�

dx+O(�

N�2

);

(2.21)

Z




�;K

jP

+

�

�

j

2

�

�1

dx =

Z




�

2

�

�1

�

dx+ O(�

N+2

2

);

and

(2.22)

Z




�;K

jP

+

�

�

j dx =

Z




�

�

dx+O(�

N

):
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Lemma 2.5. Let u; v 2 L

p

(
) with 2 � p � 2

�

. If ! � 
 and u + v > 0 on !,

then

(2.23) j

Z

!

(u+ v)

p

dx�

Z

!

juj

p

dx�

Z

!

jvj

p

dx j� C

Z

!

(juj

p�1

jvj+ jujjvj

p�1

) dx;

where C depends only on p.

Proof. By the Fundamental Theorem of Cal
ulus the left side of (2.23) is equal to

j p

Z

1

0

d�

Z

!

[jv + �uj

p�2

(v + �u)� j�uj

p�2

�u℄u dx j;

whi
h by its turn is equal to, using the mean value theorem

p(p� 1) j

Z

1

0

d�

Z

!j�u+ v�(x)j

p�2

uv dx j; 0 < �(x) < 1:

This last expression 
an be estimated by

C

Z

1

0

d�

Z

!

(�

p�2

juj

p�1

jvj+ jujjvj

p�1

) dx � C

Z

!

(juj

p�2

jvj+ jujjvj

p�1

) dx:

�

Lemma 2.6. let A;B;C and � be positive numbers. Consider the fun
tion

�

�

(s) =

1

2

s

2

A�

1

2

�

s

2

�

B + s

2

�

�

�

C; s > 0:

Then

s

�

=

�

A

B � 2

�

�

�

C

�

1

2

�

�2

is the point where �

�

a
hieves its maximum. Write s

�

= (1 + t

�

)s

o

, where s

o

=

(

A

B

)

1

2

�

�2

is the point at whi
h �

o

a
hieves its maximum. Then

t

�

= O(�

�

)

and

�

�

(s) � �

�

(s

�

) =

1

2

�

A

N

B

N�2

�

1

2

+ O(�

�

):

Proof. It is 
lear that �

�

a
hieves its maximum at s

�

and s

�

satis�es

(2.24) s

�

A� s

2

�

�1

�

B + 2

�

C�

�

s

2

�

�1

�

= 0:
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This implies

(2.25) s

�

� s

o

:

Writing s

�

= (1 + t

�

)s

o

, we derive from (2.24) that

(2.26) s

�

! s

o

; t

�

! 0 as �! 0

and

(2.27) (1 + t

�

)s

o

A� (1 + t

�

)

2

�

�1

s

2

�

�1

o

B + 2

�

C�

�

(1 + t

�

)

2

�

�1

s

2

�

�1

o

= 0:

That is

(

A

2

�

�1

B

)

1

2

�

�2

[(1 + t

�

)� (1 + t

�

)

2

�

�1

℄ + 2

�

C�

�

(1 + t

�

)

2

�

�1

s

2

�

�1

o

= 0:

Expanding for t

�

we obtain

(2.28) [

4

N � 2

t

�

+ o(t

�

)℄(

A

2

�

�1

B

)

1

2

�

�2

= 2

�

C�

�

(1 + t

�

)

2

�

�1

s

2

�

�1

o

:

Hen
e

(2.29) t

�

= O(�

�

):

�

Our aim is to 
hoose Q and � su
h that (2.5), (2.6) and (2.7) hold. So 
hoose e

as a fun
tion of �: e

�

= P

+

�

�

.

Lemma 2.7. There exist r

o

> 0; R

o

> 0; and �

o

> 0 su
h that for r � r

o

; R � R

o

and 0 < � � �

o

we have

Ij

�Q

< �;

where � > 0 is determined in Lemma 2.1.

Proof. We may write �Q = �

1

\ �

2

\ �

3

with

�

1

=

�

B

r

\E

�

;

�

2

= fv 2 E : v = w + se

�

; w 2 E

�

; kwk = r; 0 � s � Rg;

�

3

= fv 2 E : v = w + Re

�

; w 2 E

�

\B

r

(0)g:
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We will show that on ea
h �

i

, we have Ij

�

i

< �; i = 1; 2; 3:

For any v 2 E

�

we have

(2.30)

Z




jrvj

2

dx � �

k

Z




v

2

dx:

So for v 2 �

1

I(v) =

1

2

(1�

�

�

k

)

Z




jrvj

2

dx�

1

2

�

Z




(v + u

t

)

2

�

+

dx � 0:

For v 2 �

2

, we distinguish two 
ases.

De�ne Æ

2

= sup

0<��1

R




jre

�

j

2

dx. If 0 � s � s

o

:=

p

2�̂

Æ

, then

I(v) �

1

2

(1�

�

�

k

)r

2

+

1

2

s

2

Z




jre

�

j

2

dx�

1

2

�

Z




(w + se

�

+ u

t

)

2

�

+

dx

�

1

2

s

2

Æ

2

< �̂:

If s � s

o

=

p

2�̂

Æ

, denote

K = supfk

w + u

t

s

k

L

1

: s

o

� s � R; kwk

E

= r; w 2 E

�

g:

K is independent of R. Sin
e P

+

�

�

(0)!1 as �! 0, there exists �

0

o

> 0 su
h that

for all �; 0 < � < �

0

o

and s � s

o




�

= fx 2 
 : e

�

(x) > Kg 6= ;:

When
e by Lemma 2.5

(2.31)

Z




(e

�

+

w + u

t

s

)

2

�

+

dx =

Z




�

(e

�

+

w + u

t

s

)

2

�

dx

�

Z




�

je

�

j

2

�

dx+

Z




�

j

w + u

t

s

j

2

�

dx� C

Z




�

(je

�

j

2

�

�1

j

w + u

t

s

j+ je

�

jj

w + u

t

s

j

2

�

�1

) dx

�

Z




�

je

�

j

2

�

dx+

Z




�

j

w + u

t

s

j

2

�

dx� C(ke

�

k

2

�

�1

L

2

�

�1

(


�

)

+ ke

�

k

L

1

(


�

)

):

By Lemmas 2.2, 2.3 and 2.4 and (2.31) we obtain

(2.32) I(v) �

1

2

(1�

�

�

k

)r

2

+

1

2

s

2

S

N

2

�

s

2

�

2

�

S

N

2

+Cs

2

�

�

N�2

2

:=

1

2

(1�

�

�

1

)r

2

+�

�

(s):

Applying Lemma 2.6 to �

�

(s), we obtain

I(v) �

1

2

(1�

�

�

k

)r

2

+

1

N

S

N

2

+ O(�

N�2

2

):



12 DJAIRO G. DE FIGUEIREDO AND YANG JIANFU

We may 
hoose r > 0 su
h that I(v) < 0. This determines r

o

.

For v 2 �

3

we have v = w + Re

�

; w 2 E

�

\B

r

(0) and

I(v) �

1

2

(1�

�

�

k

)kwk

2

E

+

1

2

R

2

Z




jre

�

j

2

dx�

1

2

�

R

2

�

Z




(e

�

+

u

t

+ w

R

)

2

�

+

dx:

By the boundedness of w and u

t

, there exists K > 0 su
h that

kw + u

t

k

L

1

(
)

� K:

Again sin
e P

+

�

�

(0)! +1 as �! 0, there exists �

o

> 0 (take �

o

< �

0

o

) su
h that if

0 < � < �

o

; P

+

�

�

(0) > 2K. Given � > 0; 0 < � < �

o

, there exist R

o

= R

o

(�); � = �(�)

su
h that

j fx 2 
 : e

�

+

w + u

t

R

> 1g j� � > 0

for all R > R

o

. Hen
e we �nd �

o

; R

o

> 0 su
h that if � < �

o

, and R > R

o

, we have

I(v) � 0 for v 2 �

3

.

�

Lemma 2.8.

(2.33) max

�

Q

I <

1

N

S

N

2

:

Proof. Let us �x � < �

o

, so that the geometry of the Linking Theorem holds. For

w + se

�

2 Q, we have

(2.34)

I(w+se

�

) =

1

2

Z




(jrwj

2

��w

2

) dx+

1

2

s

2

Z




(jre

�

j

2

��e

2

�

) dx�

1

2

�

Z




(w+se

�

+u

t

)

2

�

+

dx:

With the same notations and arguments as in the proof of Lemma 2.7, if s < s

o

we

have

(2.35) I(w + se

�

) �

1

2

s

2

Z




jre

�

j

2

dx =

1

2

s

2

Æ

2

<

1

N

S

N

2

:

If s � s

o

, using (2.31) we dedu
e as (2.32) that

(2.36)

I(w + se

�

) �

1

2

s

2

Z




(jre

�

j

2

� �e

2

�

) dx�

1

2

�

s

2

�

Z




�

e

2

�

�

dx+ Cs

2

�

�

N�2

2

:= �

�

(s):

An appli
ation of Lemma 2.6 to �

�

(s) yields

I(w + se

�

) =

1

N

�

Z




(jre

�

j

2

� �e

2

�

) dx

�

N

2

�

Z




�

e

2

�

�

dx

�

�

N�2

2

+ O(�

N�2

2

):
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Using the estimates in Lemmas 2.2, 2.3 and 2.4 on e

�

we get

I(w + se

�

) �

1

N

S

N

2

�

1

2

�

�

O(�

2

); ifN � 5

O(�

2

jlog�

2

j); ifN = 4

+ O(�

N�2

2

):

If N > 6; i:e:2 <

N�2

2

, the result follows by 
hoosing � > 0 suÆ
iently small.

�

Proof of Theorem 1.1. It remains to prove the existen
e of a se
ond solution of

(1.1), i.e. a nontrivial solution of (2.4). Using the Linking Theorem, Lemmas 2.1

and 2.7, there exists fv

n

g � E su
h that

(2.37) I(v

n

) =

1

2

Z




(jrv

n

j

2

� �v

2

n

) dx�

1

2

�

Z




(v

n

+ u

t

)

2

�

+

dx = 
+ o(1);

(2.38) < I

0

(v

n

); � >=

Z




(rv

n

r�� �v

n

�) dx�

Z




(v

n

+ u

t

)

2

�

�1

+

� dx = o(1)k�k

E

;

where 
 is the minimax level in the Linking Theorem with e

�

= P

+

�

�

, and � < �

o

suÆ
ientlly small in order to have the validity of Lemmas 2.7 and 2.8, and Q as

above.

First we prove that fv

n

g is bounded in E. It follows from (2.37) and (2.38)

1

N

Z




(v

n

+ u

t

)

2

�

+

dx�

1

2

Z




(v

n

+ u

t

)

2

�

�1

+

u

t

dx � 
+ �

n

kv

n

k

E

+ o(1)

where �

n

!1 as n!1. It implies

(2.39)

Z




(v

n

+ u

t

)

2

�

+

� 
+ �

n

kv

n

k

E

+ o(1)

sin
e u

t

� 0. Writing v

n

= v

+

n

+ v

�

n

, with v

�

n

2 E

�

we get from (2.37) - (2.38),

using H�older and Young inequalies that

(1�

�

�

k+1

)kv

+

n

k

2

E

�

Z




(v

n

+ u

t

)

2

�

�1

+

v

+

n

dx+ �kv

+

n

k

� �(

Z




jv

+

n

j

2

�

dx)

2

2

�

+ C

�

(

Z




(v

n

+ u

t

)

2

�

+

dx)

2(2

�

�1)

2

�

+ �

n

kv

+

n

k

E

� �(

Z




jv

+

n

j

2

�

dx)

2

2

�

+ C

�

+ �

n

(kv

n

k

N+2

N

E

+ kv

+

n

k

E

):

So we obtain

kv

+

n

k

2

E

� C + �

n

(kv

n

k

N+2

N

E

+ kv

+

n

k

E

):
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In the same way, we have

kv

�

n

k

2

E

� C + �

n

(kv

n

k

N+2

N

E

+ kv

�

n

k

E

):

Consequently,

kv

n

k

E

� C:

Hen
e we may assume

(2.40)

v

n

! v weakly in H

1

o

(
); v

n

! v in L

q

(
) 2 � q < 2

�

; v

n

! v a.e. in 
;

as n!1. It follows that v is a weak solution of

(2.41) ��v = �v + (v + u

t

)

2

�

�1

+

whi
h implies

(2.42)

Z




(jrvj

2

� �v

2

) dx�

Z




(v + u

t

)

2

�

+

dx+

Z




(v + u

t

)

2

�

�1

+

u

t

dx = 0:

By Br�ezis - Lieb Lemma [7℄

(2.43)

Z




(v

n

+ u

t

)

2

�

+

dx =

Z




(v

n

� v)

2

�

+

dx+

Z




(v + u

t

)

2

�

+

dx+ o(1):

Hen
e, using (2.43)

(2.44) I(v

n

) = I(v) +

1

2

Z




jr(v

n

� v)j

2

dx�

1

2

�

Z




(v � v

n

)

2

�

+

dx+ o(1);

and similarly by (2.41)

(2.45)

< I

0

(v

n

); v

n

>=

Z




jr(v

n

� v)j

2

dx�

Z




(v

n

� v)

2

�

+

dx�

Z




(v

n

� v)

2

�

�1

+

u

t

dx+ o(1):

Sin
e

R




(v

n

� v)

2

�

�1

+

u

t

dx! 0 as n!1, it yields

(2.46)

Z




jr(v

n

� v)j

2

dx =

Z




(v

n

� v)

2

�

+

dx+ o(1):

Let w

n

= v

n

� v and

(2.47) lim

n!1

Z




jrw

n

j

2

= k � 0:
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If k = 0, then v

n

! v strongly in H

1

o

(
) as n ! 1, then � � 
 = I(v); v is a

nontrivial solution of (2.4).

If k > 0, we 
laim that v 6= 0. Indeed, using (2.46) and the Sobolev inequality

we obtain

(2.48)

kw

n

k

2

H

1

o

� S(

Z




jw

n

j

2

�

dx)

2=2

�

� S(

Z




(w

n

)

2

�

+

dx)

2=2

�

� S[

Z




jrw

n

j

2

dx+ o(1)℄

2=2

�

whi
h gives

(2.49) k � Sk

N�2

N

i:e: k � S

N

2

:

>From (2.44), (2.46) and (2.49), if v � 0 we have


+ o(1) =

k

N

�

1

N

S

N

2

:

It 
ontradi
ts to the statement of Lemma 2.8. Therefore v 6� 0. By (2.41) we know

v is not negative.

�

3. Existen
e of solutions for the 
ase � = �

1

We 
onsider

(3.1)

8

<

:

��u = �

1

u+ u

2

�

�1

+

+ f in 


u = 0 on �
:

A ne
essary 
ondition for the solvability of (3.1) is given by

(3.2)

Z




f�

1

dx < 0;

where �

1

is the �rst eigenfun
tion of ��. Although one expe
ts that (3.2)would

be a suÆ
ient 
ondition for the solvability of (3.1), we have not been able to prove

it. Indeed, we require in addition that f has small L

2

�norm. Let E

�

= spanf�

1

g

and E

+

= (E

�

)

?

. For any u 2 E there are t 2 R and v 2 E su
h that u = t�

1

+ v.

The fun
tional I : E ! R asso
iated with equation (3.1) 
an be written as

I(u) =

1

2

Z




[jrvj

2

� �

1

v

2

℄ dx�

1

2

�

Z




(v + t�

1

)

2

�

+

dx�

Z




f(v + t�

1

) dx;

where u = v + t�

1

; t =

R




u�

1

dx.
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Lemma 3.1. For any given v 2 E

+

, the fun
tional I is bounded above in E

�

.

Proof. Given v 2 E

+

, let us de�ne the real-valued fun
tion

(3.3) g(t) = I(v + t�

1

):

For t < 0 we have

g(t) �

1

2

Z




[jrvj

2

� �

1

v

2

℄ dx+ kfk

L

2

kvk

L

2

:

For t > 0, we 
laim

(3.4) lim

t!+1

f

1

2

�

Z




(v + t�

1

)

2

�

+

dx+

Z




f(v + t�

1

) dxg = +1

whi
h 
ompletes the proof, sin
e g is 
ontinuous.

To prove (3.4) we pro
eed as follows: let a = maxf�

1

(x) : x 2 
g. Choose




o

�� 
 su
h that �

1

(x) >

a

2

for x 2 


o

. By Lusin's theorem, given any Æ > 0

(
hoose Æ =

1

2

j


o

j) there exists a 
ontinous fun
tion h(x) in 


o

su
h that

measfx : h(x) 6= v(x)g < Æ:

So the set G = fx : h(x) = v(x)g has measure greater than j


o

j � Æ. Let M =

supfjv(x)j : x 2 Gg. Then, for x 2 G we have

�

1

(x) +

v(x)

t

�

a

2

�

M

t

�

a

4

if t � t

o

:=

4M

a

. So there is � > 0 su
h that

Z




(�

1

+

v

t

)

2

�

+

dx � � for t � t

o

:

Then the �rst term in (3.4) is larger than Ct

2

�

whi
h proves the 
laim.

�

Next we 
laim that, for ea
h v 2 E

+

, there is a unique t(v) su
h that

(3.5) g(t(v)) = maxfg(t) : t 2 Rg:

At a point t

o

of maximum we have g

0

(t

o

) = 0, i.e.

(3.6) g

0

(t

o

) = �

Z




(t

o

�

1

+ v)

2

�

�1

+

�

1

dx�

Z




f�

1

dx = 0:
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If t � t

o

; g

0

(t) � g

0

(t

o

) and if t � t

o

; g

0

(t) � g

0

(t

o

), hen
e

g(t

o

) = max

ft2Rg

g(t); i:e: I(t�

1

+ v) � I(t

o

�

1

+ v):

The se
ond derivative of g is given by

g

00

(t) = �

Z




(t�

1

+ v)

2

�

�2

+

�

2

1

dx � 0

whi
h says that g is 
on
ave. So the set of maxima is a 
losed interval, and we show

it is a single point. At a point t

o

of maximum g

00

(t

o

) 
an not be 0. Indeed, if this

were the 
ase, then (t

o

�

1

+v)

+

= 0, whi
h would imply by (3.6) that

R




f�

1

dx = 0,

a 
ontradi
tion. So g is stri
tly 
on
ave at t

o

. This also proves, as a 
onsequen
e

of the Impli
it Fun
tion Theorem that the mapping

v 2 E

+

! t(v) 2 R

is 
ontinuous and di�erentiable. Therefore

(3.7) I(t�

1

+ v) � I(t(v)�

1

+ v) if t 6= t(v)

and from (3.6) we have

(3.8)

Z




(v + t(v)�

1

)

2

�

�1

+

�

1

+

Z




f�

1

= 0; 8v 2 E

+

:

The relation (3.6) for v = 0 gives

(3.9)

Z




(t(0)�

1

)

2

�

�1

+

�

1

dx = �

Z




f�

1

dx

and the fun
tion g(t) in this 
ase is

(3.10) �

1

2

�

Z




(t�

1

)

2

�

+

dx� t

Z




f�

1

dx

whi
h shows that t(0) has to be greater than 0. So the relation (3.9) 
an be written

as

(3.11) t(0)

2

�

�1

Z




�

2

�

1

dx = �

Z




f�

1

dx:

Let us introdu
e the notations

(3.12) A = �

Z




f�

1

dx; B =

Z




�

2

�

1

dx:
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Our next step is to show that the fun
tional F : E

+

! R given by

F (v) = I(v + t(v)�

1

)

has a minimum in the interior of 
ertain ball B

�


entered at the origin.

It is easy to see that

(3.13) F (0) =

N + 2

2N

A

2N=(N+2)

B

(N�2)=(N+2)

;

and next we estimate F (v):

(3.14) F (v) =

1

2

Z




[jrvj

2

��

1

v

2

℄ dx�

1

2

�

Z




(v+t(v)�

1

)

2

�

+

dx�

Z




f(v+t(v)�

1

) dx:

Let

(3.15) M

1

=

1

N + 1

�

�

N

4

2

S

N

4

(

N

N + 2

)

N�2

4

(�

2

� �

1

)

N+2

4

;

(3.16) M

2

= minf(

2

N + 2

)

N+2

2N

S

N+2

4

; (

2

N + 2

)

N+2

2N

k�

1

k

2

�

[

N

N + 2

(1�

�

1

�

2

)S℄

N+2

4

g:

In addition to (3.2), we suppose that f satis�es

(3.17) kfk

2

�M

1

and �

Z




f�

1

dx < M

2

:

Lemma 3.2. Suppose (3.2) and (3.17), there is an � > 0 su
h that

(3.18) F (v) � � > F (0)

provide that kvk

E

= �

o

with �

o

= [

N

N+2

(1�

�

1

�

2

)℄

N�2

4

S

N

4

.

Proof. It follows from (3.6) and the inequality

Z




jrvj

2

dx � �

2

Z




v

2

dx; 8v 2 E

+

that

(3.19)

F (v) � I(v) =

1

2

Z




[jrvj

2

� �

1

v

2

℄ dx�

1

2

�

Z




v

2

�

+

dx�

Z




fv dx

�

1

2

(1�

�

1

�

2

)

Z




jrvj

2

dx�

1

2

�

Z




jvj

2

�

dx� kfk

2

kvk

2

:
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Using Sobolev inequality and (3.19) we obtain

(3.20) F (v) �

1

2

(1�

�

1

�

2

)��

1

2

�

S

�

N

N�2

�

2

�

� kfk

2

�

�

1

2

2

�;

where S is the best Sobolev 
onstant and � = (

R




jrvj

2

dx)

1

2

. Consider the real

fun
tion

k(�) =

1

2

a�

2

�

1

2

�

b�

2

�

� 
� := �j(�):

The maximum point � of j(�) on R

+

satis�es

j

0

(�

o

) =

1

2

a�

2

�

� 1

2

�

b�

2

�

�2

o

= 0:

Then we have

�

o

=

�

N

N + 2

(1�

�

1

�

2

)

�

N�2

4

S

N

4

and

(3.21) k(�

o

) = �

o

�

2

N + 2

(

N

(N + 2)b

)

N�2

4

a

N+2

4

� 


�

:

With a = 1 �

�

1

�

2

; b = S

�

N

N�2

and 
 = kfk

2

�

�

1

2

2

in (3.21) and by the assumption

(3.17) we obtain

(3.22) F (v) �

�

o

N + 2

[

N

(N + 2)b

℄

N�2

4

a

N+2

4

if kvk

E

= �

o

. (3.22) and (3.17) imply

F (v) > F (0)

provide that kvk

E

= �

o

. The proof is 
omplete. �

It follows from (3.17) that

(3.23) F (0) <

1

N

S

N

2

:

We 
onsider the problem

(3.24) m := minfF (v) : v 2 B

�

o

g:
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Lemma 3.3. Problem (3.1) has a nontrivial solution v

o

2 B

�

o

.

Proof. By (3.23) we have

(3.25) m <

1

N

S

N

2

:

Let fv

n

g be a minimizing sequen
e of (3.24). Sin
e kv

n

k

E

� �

o

we may assume

(3.26) v

n

! v

o

weakly in E; v

n

! v

o

in L

q

(
); 2 � q < 2

�

; v

n

! v

o

a:e: in 


as n!1. The weak 
ontinuity of norm gives

(3.27) kv

o

k

E

� lim

n!1

kv

n

k

E

� �

o

:

By the Ekeland's variational prin
iple, we may assume that

(3.28) F (v

n

)! m; F

0

(v

n

)! 0

as n!1. Be
ause of

(3.29) F

0

(v

n

)! 0() J

0

(v

n

+ t(v

n

)�

1

)! 0

as n!1, we have

(3.30)

1

2

Z




(jrv

n

j

2

� �

1

v

2

n

) dx�

1

2

�

Z




(v + t(v

n

)�

1

)

2

�

+

dx�

Z




f(v

n

+ t(v

n

)�

1

) dx

= m+ o(1)

and

(3.31)

Z




(jrv

n

j

2

� �

1

v

2

n

) dx�

Z




(v

n

+ t(v

n

)�

1

)

2

�

�1

+

v

n

dx�

Z




fv

n

dx = o(1):

By the weak 
onvergen
e we know that v

o

satis�es

(3.32) ��v = �

1

v + (v + t(v)�

1

)

2

�

�1

+

+ f;

and then

(3.33)

Z




(jrv

o

j

2

� �

1

v

2

o

� (v

o

+ t(v

o

)�

1

)

2

�

�1

+

v

o

� fv

o

) dx = 0;

(3.34)

Z




[(v

o

+ t(v

o

)�

1

)

2

�

�1

+

�

1

+ f�

1

℄ dx = 0:
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The proof will be 
omplete if we may show v

o

6� 0. First we 
laim that

(3.35) lim

n!1

t(v

n

) = t(v

o

):

If not, we would have lim

n

t(v

n

) = t

1

6= t(v

o

). By (3.6)

Z




(v

n

+ t(v

n

)�

1

)

2

�

�1

+

�

1

dx = �

Z




f�

1

dx =

Z




(v

o

+ t(v

o

)�

1

)

2

�

�1

+

�

1

dx;

it follows

Z




(v

o

+ t

1

�

1

)

2

�

�1

+

�

1

dx =

Z




(v

o

+ t(v

o

)�

1

)

2

�

�1

+

�

1

dx

giving a 
ontradi
tion. Letting w

n

= v

n

� v

o

. By (3.30), (3.31) and Br�ezis-Lieb

Lemma, we obtain

(3.36)

1

2

Z




jrw

n

j

2

dx�

1

2

�

Z




(w

n

)

2

�

+

dx+

1

2

Z




(jrv

o

j

2

� �

1

v

2

o

) dx

�

1

2

�

Z




(v

o

+ t(v

o

)�

1

)

2

�

+

dx�

Z




f(v

o

+ t(v

o

)�

1

) dx = m+ o(1);

i.e.

(3.37) F (v

o

) +

1

2

Z




jrw

n

j

2

dx�

1

2

�

Z




(w

n

)

2

�

+

dx = m+ o(1):

Similarly by (3.31), (3.34) and Br�ezis-Lieb Lemma we dedu
e

Z




jrw

n

j

2

dx�

Z




(w

n

)

2

�

+

dx�

Z




(v

o

+ t(v

o

)�

1

)

2

�

+

dx

+

Z




(jrv

o

j

2

� �

1

v

2

o

) dx�

Z




f(v

o

+ t(v

o

)�

1

) dx = o(1);

namely

(3.38)

Z




jrw

n

j

2

dx�

Z




(w

n

)

2

�

+

dx = o(1):

Let lim

n!1

R




jrw

n

j

2

dx = k � 0. If k = 0, we have done. If k > 0, by the Sobolev

inequality

(3.39)

Z




jrw

n

j

2

dx � S

�

Z




(w

n

)

2

�

+

dx

�

2=2

�

:

Taking the limit in (3.39) we obtain by (3.38) and (3.39) that

k � Sk

N�2

N

;
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i.e.

(3.40) k � S

N

2

:

It yields by (3.37), (3.39) and (3.40)

1

N

S

N

2

> m � F (v

o

) +

1

N

k � F (v

o

) +

1

N

S

N

2

:

So F (v

o

) < 0 and v

o

6� 0. Sin
e F (v) � � > 0 if kvk

E

= �

o

, we have v

o

2 B

�

o

.

The proof is 
omplete.

�

4. Bifur
ations at � = �

k

In this se
tion we dis
uss the bifur
ation of the set of solutions of (1.1). Let

u

t

(�) = u

t

be the negative solution obtained in Se
tion 2. If f = t�

1

+ h and

h 2 ker(�� � �)

?

; u

t

(�) is well de�ned for all � 6= �

1

. In the 
ase � = �

k

; k 6= 1,

the set of solutions of (1.1) bifur
ating from (�

k

; u

t

(�

k

)) is equivalent to the set of

solutions of (2.4) bifur
ating from (�

k

; 0). Let

E

�

= spanf�

1

; :::; �

k

g; E

+

= (E

�

)

?

:

Now we state a bifur
ation result.

Proposition 4.1. Every eigenvalue �

k

of �� gives rise to a bifur
ation point of

(�

k

; 0) of (2.4). As a result, we obtain Theorem 1.3.

Proof. The 
on
lusion follows from an abstra
t bifur
ation theorem due to B�ohme[5℄

and Marino[21℄, see also Theorem 11.4 in [24℄. Let �(�) 2 C

1

(R;R) satisfy �(�) = 1

for j�j � 1; �(�) = 0 and j�j � 2, and 0 � �(�) � 1 for all �. De�ne

g(�; �) = �(�)(� + u

t

(�))

2

�

�1

+

+ (1� �(�)):

Then g 2 C

1

, and g(�; �) = o(j�j) for � bounded. Set

�(v) =

1

2

Z




jrvj

2

dx�

Z




G(�; v) dx

with u 2 E := W

1;2

o

(
), where G(�; v) =

R

v

0

g(�; t) dt. It is standard to show that

� 2 C

2

. A 
riti
al point u of � on the manifold M := fu 2 E :

R




juj

2

dx = r

2

g is

a weak solution of

��u� g(�; u) = 
u
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for some Lagrange multiplier 
. De�ne the operator L by

(Lv; �) =

Z




rvr� dx

and H by

H(v)� =

Z




g(�; v)� dx

for � 2 E. For any � satis�es 2 < � < 2

�

and ! := fx 2 
 : v(x) � 2g with v 2 E,

we have

Z




jvj

�

dx � 2

�

meas!:

Hen
e

j H(v)� j�

Z


=!

jvj

2

�

�1

j�j dx+

Z

!

j�j dx � Ckvk

�

k�k

E

:

It 
on
ludes

kH(v)k = o(kvk):

So by Theorem 11.4 in [24℄, ea
h eigenvalue of �� provides a bifur
ation point of

(4.1) ��v � g(�; v) = �v:

Sin
e g(�; v) = o(jvj) and � is bounded, it follows from (4.1) that

kvk

E

� Ckvk

L

2

(
)

= Cr:

Arguments from ellipti
 regularity theory [6℄ show if r is small enough, kvk

L

1

(
)

< 1

and g(�; v) = (v + u

t

(�))

2

�

�1

+

. The proof is 
omplete.

�

Next, we show that the bifur
ation bran
h bends lo
ally to the left.

Proposition 4.2. If (�; v(�)); v(�) 6= 0; is a solution of (2.4) su
h that � !

�

k

; k 6= 1; v(�) ! 0, then � < �

k

. Consequently, if h 2 ker(�� � �

k

)

?

and

(�; u(�)); u(�) 6= 0; is a solution of (1.1) su
h � ! �

k

; k 6= 1 and u(�) ! u

t

(�

k

),

then � < �

k

.

Proof. Let u = v +w be a solution of (2.4) with v 2 E

�

and w 2 E

+

. Multiplying

(2.4) by w � v and integrating by part, we obtain

(4.2)

Z

R

N

(jrwj

2

� jrvj

2

) dx

=

Z

R

N

[�u+ (u+ u

t

(�))

2

�

�1

+

℄ dx

=

Z

R

N

[�(w

2

� v

2

) + (v + w + u

t

(�))

2

�

�1

+

℄ dx:
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It follows

(4.3)

(1�

�

�

k+1

)

Z

R

N

jrwj

2

dx�(1�

�

�

k

)

Z

R

N

jrvj

2

dx �

Z

R

N

(v+w+u

t

(�))

2

�

�1

+

(w�v) dx:

By the 
onvexity of the fun
tion (v + w + u

t

(�))

2

�

�1

+

and sin
e u

t

is negative

(4.4)

Z

R

N

(v + w + u

t

(�))

2

�

�1

+

(w � v) dx =

Z

R

N

(v + w + u

t

(�))

2

�

�1

+

(2w � u) dx

�

Z

R

N

(2w + u

t

(�))

2

�

+

dx�

Z

R

N

(u+ u

t

(�))

2

�

+

dx

�

Z

R

N

(2w + u

t

(�))

2

�

+

dx �

Z

R

N

j2wj

2

�

dx � Ckwk

2

�

E

:

(4.3) and (4.4) imply

(4.5) [(1�

�

�

k+1

)� Ckwk

2

�

�2

E

℄kwk

2

E

� (1�

�

�

k

)kvk

2

E

� 0:

Suppose by 
ontradi
tion that � � �

k

. Sin
e

�

�

k

� 1 > 0 and u = v + w 6= 0 we

must have w 6= 0. Hen
e

(4.6) (1�

�

�

k+1

) � Ckwk

2

�

�2

E

� Ckuk

2

�

�2

E

:

It yields a 
ontradition when we let �! �

k

. �
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