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Abstrat

Let i : H !W be the lassial Wiener spae , whereH is the Cameron-

Martin spae and W=f� : [0; 1℄! R ontinuous with � (0) = 0g. We ex-

tend the anonial isometry H ! l

2

to a linear isomorphism � : W ! V �

R

1

whih pushes forward the Wiener struture into the abstrat Wiener

spae i : l

2

! V . The Wiener integration assumes a new interesting fae

when it is taken in this spae.

Key words and phrases: Wiener and Cameron-Martin spae, spae of se-

quenes, Fourier series.
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1 Introdution

In this artile we are interested in a representation of the Wiener spae (i.e.

the spae of trajetories of the Brownian motion) in the spae of sequenes of

real numbers. The Wiener spae is the anonial example of the probabilisti

struture so alled abstrat Wiener spae, abbreviated AWS. Before we state

well known properties in this struture we reall that an AWS is a ontinuous

linear injetion with dense range i : H ! B where B is a Banah spae endowed

with a Gaussian probability measure � on the Borel � -algebra, H is a Hilbert

spae and i radoni�es the measure �, i.e. if F is a �nite dimensional spae

and S : B ! F is a surjetive linear map then the indued measure S

�

� on F is

Gaussian with respet to the inner produt pushed forward by the omposition

S Æ i : H ! F .

�
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The anonial Wiener spae (W;F ;W ) in the interval [0; T ℄ is the Banah

spae of ontinuous funtions:

W = f! : [0; T ℄! R ontinuous with ! (0) = 0g

with the uniform norm endowed with the �-algebra F generated by �nite di-

mensional ylinders and the Gaussian probability measure W suh that the

anonial proess assoiated to this probability spae is a homogeneous Markov

proess with transition probabilities given by the heat kernel

P

t

(x; dy) =

1

p

2�t

e

�

jy�xj

2

2t

dy:

The �-algebra F oinides with the Borel �-algebra. The following theorem

guarantees that Gaussian measures on Banah spaes generate an AWS stru-

ture (see e.g. Watanabe (1984), Bogahev (1996) or Gross (1970) and the

referenes therein).

Theorem 1 (Segall, Kallianpur, Gross) Let (B;G; �) be a Banah spae

with a stritly positive Gaussian probability measure �. Then there exists a

unique (up to isometry) separable Hilbert spae and a ontinuous linear injetion

i : (H; jj�jj

H

)! B whih radoni�es �:

Note that B

�

; the dual spae of B is ontained in L

2

(B;�); so that the

Hilbert spae H is the L

2

-losure of B

�

: Moreover if l 2 B

�

(� H

�

' H) then

l

�

(�) is a Gaussian N (0; jjljj

H

)on the real line. Among other interesting prop-

erties in this struture, we remark the Cameron-Martin formula: let T

b

:B ! B

be the translation T

b

(x) = x+ b for x 2 B , then the indued measure (T

b

)

�

�

on B is quasi-invariant with respet to the original � if and only if b 2 i (H) ;

moreover, writing b = i (h), the Radon-Nikodyn derivative is given by:

d (T

b

)

�

�

d�

(!) = e

�

jjhjj

2

H

2

�hh;!i

s

where hh; �i

s

: B ! R is a Gaussian random variable given by the Wiener

integral (see setion 3). A proof of this formula an be done as an appliation

of the Girsanov theorem, see e.g. Revuz and Yor (1991). It is well known that

the Hilbert spae whih radoni�es the anonial Wiener spae is the Cameron-

Martin spae de�ned by

H =

�

h (t) =

Z

t

0

h

0

(s) ds, with h

0

2 L

2

([0; T ℄)

�

with the inner produt inherited by L

2

([0; T ℄) ; i.e. hh; gi

H

= hh

0

; g

0

i

L

2

, (see

e.g. Watanabe (1984)).

In this artile we intend to reate an isomorphism from the anonial Wiener

spae W to an AWS onstruted in the sequenes of real number, that is, to

push the whole AWS struture in some subspae of R

1

: This isomorphism

establishes a new framework whih depending on the problem onerning the
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Malliavin Calulus, it an provide a new point of view, for instane the Wiener

integration assumes a new interesting fae when it is taken in this spae (setion

3).

There are several di�erent ways of representingW as a sequene of real num-

bers but in general the assoiated Hilbert spae whih radoni�es the indued

measure is not trivial. Take for instane fq

i

g

i�1

� [0; T ℄ a dense ountable sub-

set, then, the map � : W ! l

1

given by (! (q

i

))

i�1

is an injetion. Obviously,

if we push the Wiener measure to l

1

, it would be a Gaussian measure over

an in�nite dimensional losed subspaes and by Theorem 1 there would exist a

Hilbert spae H � l

1

whih would provide an AWS i : H ! l

1

, however the

Hilbert spae H is not trivial.

The motivation to onstrut an isomorphism of AWS into a subspae V �

R

1

starts mainly in the fat that there is the anonial isometry � : H ! l

2

whih sends basis to basis. So, we look for an isomorphism of W whih extends

this isometry to � : W ! V: Hene, providing V with the indued norm from

W we will have the reprodution of the Wiener struture i : l

2

! V , with i

being the inlusion of l

2

� V. Note that, like in the anonial Wiener struture,

here the Hilbert spae l

2

has two topologies: the inherited norm (l

2

; jj�jj

V

) whih

respet to whih l

2

is dense in V; and (l

2

; < �; � >

l

2

) with respet to whih l

2

is

losed.

In the next setion we onstrut the isomorphism itself using Fourier series

tehni. In the setion 3 we onsider the probabilisti aspets of the Wiener

isomorphism and establish the Wiener integration in the spae of sequenes.

2 The Isomorphism

Our method is based on the Fourier series of eah trajetory of the Wiener

proess. In fat the isomorphism � : W ! R

1

is simply the oeÆients of a

formal derivative of the Fourier series; this proedure will guarantee that the

elements of the Cameron-Martin spae are mapped isomorphially into l

2

. We

shall divide the details and properties of these maps in two parts: �rstly the

Fourier series itself and seondly the formal derivative.

2.1 The Fourier Series

We shall write eah ontinuous funtion ! 2W in a Fourier series of sines. We

eliminate the osine omponent using the analytial trik of extending ! with

domain [0; T ℄ to a ontinuous ! with domain [0; 4T ℄. So, for a �xed trajetory

! : [0; T ℄! R let ! : [0; 4T ℄! R be the extension de�ned as follows:

! =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

! (t) if t 2 [0; T ℄

! (2T � t) if t 2 [T; 2T ℄

�!(t� 2T ) if t 2 [2T; 3T ℄

�! (4T � t) if t 2 [3T; 4T ℄
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If we extend ! periodially into the whole real line we would get an odd

ontinuous funtion hene the osine oeÆients of the Fourier series vanish.

There are several hoies for an odd extension of !, the extension ! de�ned

above has the advantage of symmetry (see the example at the end of setion

3). Now, writing

a

n

= a

n

(!) =

q

1

2T

4T

Z

0

! (s) sin

�

�n

2T

s

�

ds;

the Fourier analysis guarantees that the series

1

X

n=1

a

n

sin

�

�nt

2T

�

onverges to ! (t) in L

p

([0; 4T ℄) for 1 < p < 1, hene, restriting the domain,

it also onverges to ! (t) in L

p

([0; T ℄): The onvergene is uniform if ! belongs

to the subspae of bounded variation trajetories (of probability zero), in par-

tiular if ! is an element of the Cameron-Martin spae H, see e.g. Katznelson

(1976).

This proedure de�nes the linear isomorphism

� :W �! U � l

2

where, given ! 2 W , � (!) = (a

n

(!))

n�1

2 l

2

. The linear operator � is on-

tinuous, in fat it is the omposition of the ontinuous injetion

�

W; jj�jj

sup

�

!

L

2

([0; T ℄) and the Fourier isometry L

2

([0; T ℄)! l

2

(Bessel-Parseval formula) .

Moreover, sine W is dense in L

2

([0; T ℄) it implies that �(W ) = U is dense in

l

2

:

We remark that if ! 2 H then its Fourier series onverges absolutely, that

is a

n

(!) 2 l

1

; preisely, there is the following inequality whih relates the three

norms assoiated to !:

jja

n

(!)jj

l

1

� jj!jj

L

1

[0;T ℄

+

 

2

1

X

n=1

1

n

2

!

2

jj!jj

H

See e.g. Katznelson (1976).

2.2 The Formal Derivative

If ! is an element in H, then its derivative !

0

2 L

2

([0; T ℄) and the derivative of

the extension (!)

0

2 L

2

([0; 4T ℄) : Now, if we extend periodially the derivative

(!)

0

to the whole real line we get an even funtion, hene its Fourier series is a

osine series

1

X

n=1

b

n

os

�

�nt

2T

�

where
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b

n

= b

n

(!) =

q

1

2T

4T

Z

0

(!)

0

(s) os

�

�n

2T

s

�

ds:

The integration by parts formula provides

b

n

=

q

1

2T

� ! (t) os

�

�n

2T

t

�

�

�

�

t=4T

t=0

+

�n

2T

�

q

1

2T

4T

Z

0

! (s) sin

�

�n

2T

s

�

ds

=

�n

2T

� a

n

;

whih shows that, independently of the uniform onvergene of the series of

term by term derivatives, if ! 2 H then the Fourier series of !

0

is given by term

by term derivation of the Fourier series of !:

Again, thinking of Fourier oeÆients as a sequene of real number, the

alulation above suggests the de�nition a formal derivative operator given by:

D : U � l

2

�! V � R

1

(a

n

)

n�1

7�!

�

2T

(n � a

n

)

n�1

:

Remark 1 This operator an also be see as the extension of the in�nitesimal

generator of the semigroup of ontrations T

t

: l

2

! l

2

given by the diagonal

operator T

t

(a

n

) =

�

a

n

e

�nt

�

: Its in�nitesimal generator A : Dom (A) ! l

2

is

given by A (a

n

) = (�na

n

) when (a

n

) 2 Dom (A) :

Finally we de�ne the isomorphism � : W �! V � R

1

by the omposition

� = D Æ �. We push the norm and the Gaussian measure by this linear map

from W to the subspae V to get the Gaussian struture (V; jj�jj

V

;�

�

(W )) : By

the isometries H � L

2

[(0; T )℄ � l

2

we have that D (� (H)) = l

2

: One easily

sees that the inlusion i : l

2

! (V; jj�jj

V

;�

�

(W )) is an AWS, hene � provides

an isomorphism (of AWS) between the lassial Wiener spae i : H ! W and

the new struuture onstruted in spae of sequenes, whih was the purpose

of this paper.

Note that, by the same argument we have used to onlude that �(H) � l

1

,

if ! 2 C

2

then � (!) 2 l

1

: We have that l

p

� V for all 1 � p � 1; hene

there is a �ltration of W in an inreasing sequene of lose subspae �

�1

(l

1

) �

�

�1

(l

2

) = H � �

�1

(l

3

) � : : : � �

�1

(l

1

) � V . It would be interesting to

have a haraterization of the subspaes of this �ltrations in terms of (maybe

smoothness of) the ontinuous funtions, however it is not our purpose in this

artile to go further in this analysis.

3 The Wiener Integral

In this setion we turn to the probabilisti aspets of the problem. Firstly

we reall the onept of Wiener integral in a general AWS i : H ! B: Let
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fe

1

; e

2

; : : :g be a omplete orthonormal basis of H suh that e

i

2 B

�

(in

fat, sine H = L

2

-losure(B

�

) ; approximate any orthonormal basis f f

1

; f

2

;

: : :g for H by elements f

e

f

1

;

e

f

2

; : : :g � B

�

; then get fe

1

; e

2

; : : :g by Gram-

Shmidt orthonormalization). Denote by P

n

: H ! H the projetion P

n

(x) =

P

n

r=1

he

r

; xi e

r

for x 2 H and by

f

P

n

: B ! H the linear map given by

f

P

n

(b) =

P

n

r=1

e

r

(b) e

r

: Note that

f

P

n

Æ i = P

n

: Given an element v 2 H the Wiener

integral (with respet to v) is given by

hv; �i

s

= L

2

- lim

n!1

D

v;

f

P

n

(�)

E

H

:

One hv; �i

s

: B ! R is the L

2

-limit of Gaussian variables, it is also a Gaussian

r. v.. Note that jjhh; �i

s

jj

L

2

(B;�)

= jjhjj

H

, that is the linear map h 2 H 7�!

hv; �i

s

2 L

2

(B;�) is an isometry.

For the well known partiular ase of the lassial Wiener spae, given f 2

L

2

[0; T ℄, the Wiener integral is the Gaussian random variable on (W;F ;W )

denoted by

Z

T

0

f (x) W (dx)

whih is given by the limit in L

2

(W ) of the \white noise" integration of simple

funtions, i.e. if 1

(a;b)

is the harateristi funtion of the interval (a; b) � [0; 1℄

then

Z

T

0

1

(a;b)

(x) W (dx) = X (!) (1)

where X (!) = !(b) � ! (a) : See for instane Nualart (1996) or Ikeda and

Watanabe (1984).

Now, onsider the isomorphism � : W ! V � R

1

established in the last

setion and let � = �

�

(W ) be the probability measure indued on V. The

Wiener integration beomes quite simple in our AWS i : l

2

! (V; jj�jj

V

; �). In

fat, take the anonial orthonormal basis in l

2

given by fe

1

= (1; 0; 0; : : :); e

2

=

(0; 1; 0; : : :); : : :g suh that eah element e

i

belongs to V

�

; the dual spae of V. If

(a

n

)

n�1

2 V then e

i

�

(a

n

)

n�1

�

= a

i

, hene given an element v = (v

n

)

n�1

2 l

2

,

the Wiener integral is simply

hv; �i

s

= L

2

- lim

n!1

n

X

i=1

v

i

a

i

:

Similar to the Wiener integral in the spae of ontinuous funtions, here the

limit is taken neessarily in L

2

(V; �) one pointwisely it diverges a.s..

Example: The lassial Wiener integral in the formula (1) is alulated in the

spae of sequenes as follows. Given f 2 L

2

([0; T ℄) , let v = (v

n

)

n�1

2 l

2

be

the osine Fourier oeÆients of the extended funtion f2 L

2

([0; 4T ℄) suh that

f is an even funtion (aording to setions 2.1 and 2.2). The sequene v is

the image by the isomorphism � of the element in the Cameron-Martin spae

generated by f . The random variable

R

T

0

f dW equals the Wiener integral
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hv; �i

s

= L

2

- lim

n!1

n

X

i=1

v

i

a

i

:

in the sense that

�

R

T

0

f dW

�

(!) = hv; �i

s

(� (!)) with equality onsidered in

L

2

(W ):

A urious lass of examples appears when we take, for instane, f(x) =

p

2T os

�

�nx

2T

�

for x 2 [0; T ℄. The extended even funtion is f(x) =

p

2T os

�

�nx

2T

�

for x 2 [0; 4T ℄ : Hene the osine oeÆients in the Fourier series is the element

e

n

of the anonial basis in l

2

. In this ase the Wiener integral is simply the

ontinuous linear funtional

he

n

; �i

s

�

(a

n

)

n�1

�

= a

i

.

Note that a physial interpretation of the entries of the sequenes in V is that the

square of the n-th entry would represent the energy of (the formal) derivative

of the trajetories of the Brownian motion ontained in the frequeny n=2T :
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