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Abstra
t

Let i : H !W be the 
lassi
al Wiener spa
e , whereH is the Cameron-

Martin spa
e and W=f� : [0; 1℄! R 
ontinuous with � (0) = 0g. We ex-

tend the 
anoni
al isometry H ! l

2

to a linear isomorphism � : W ! V �

R

1

whi
h pushes forward the Wiener stru
ture into the abstra
t Wiener

spa
e i : l

2

! V . The Wiener integration assumes a new interesting fa
e

when it is taken in this spa
e.
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1 Introdu
tion

In this arti
le we are interested in a representation of the Wiener spa
e (i.e.

the spa
e of traje
tories of the Brownian motion) in the spa
e of sequen
es of

real numbers. The Wiener spa
e is the 
anoni
al example of the probabilisti


stru
ture so 
alled abstra
t Wiener spa
e, abbreviated AWS. Before we state

well known properties in this stru
ture we re
all that an AWS is a 
ontinuous

linear inje
tion with dense range i : H ! B where B is a Bana
h spa
e endowed

with a Gaussian probability measure � on the Borel � -algebra, H is a Hilbert

spa
e and i radoni�es the measure �, i.e. if F is a �nite dimensional spa
e

and S : B ! F is a surje
tive linear map then the indu
ed measure S

�

� on F is

Gaussian with respe
t to the inner produ
t pushed forward by the 
omposition

S Æ i : H ! F .

�
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The 
anoni
al Wiener spa
e (W;F ;W ) in the interval [0; T ℄ is the Bana
h

spa
e of 
ontinuous fun
tions:

W = f! : [0; T ℄! R 
ontinuous with ! (0) = 0g

with the uniform norm endowed with the �-algebra F generated by �nite di-

mensional 
ylinders and the Gaussian probability measure W su
h that the


anoni
al pro
ess asso
iated to this probability spa
e is a homogeneous Markov

pro
ess with transition probabilities given by the heat kernel

P

t

(x; dy) =

1

p

2�t

e

�

jy�xj

2

2t

dy:

The �-algebra F 
oin
ides with the Borel �-algebra. The following theorem

guarantees that Gaussian measures on Bana
h spa
es generate an AWS stru
-

ture (see e.g. Watanabe (1984), Boga
hev (1996) or Gross (1970) and the

referen
es therein).

Theorem 1 (Segall, Kallianpur, Gross) Let (B;G; �) be a Bana
h spa
e

with a stri
tly positive Gaussian probability measure �. Then there exists a

unique (up to isometry) separable Hilbert spa
e and a 
ontinuous linear inje
tion

i : (H; jj�jj

H

)! B whi
h radoni�es �:

Note that B

�

; the dual spa
e of B is 
ontained in L

2

(B;�); so that the

Hilbert spa
e H is the L

2

-
losure of B

�

: Moreover if l 2 B

�

(� H

�

' H) then

l

�

(�) is a Gaussian N (0; jjljj

H

)on the real line. Among other interesting prop-

erties in this stru
ture, we remark the Cameron-Martin formula: let T

b

:B ! B

be the translation T

b

(x) = x+ b for x 2 B , then the indu
ed measure (T

b

)

�

�

on B is quasi-invariant with respe
t to the original � if and only if b 2 i (H) ;

moreover, writing b = i (h), the Radon-Nikodyn derivative is given by:

d (T

b

)

�

�

d�

(!) = e

�

jjhjj

2

H

2

�hh;!i

s

where hh; �i

s

: B ! R is a Gaussian random variable given by the Wiener

integral (see se
tion 3). A proof of this formula 
an be done as an appli
ation

of the Girsanov theorem, see e.g. Revuz and Yor (1991). It is well known that

the Hilbert spa
e whi
h radoni�es the 
anoni
al Wiener spa
e is the Cameron-

Martin spa
e de�ned by

H =

�

h (t) =

Z

t

0

h

0

(s) ds, with h

0

2 L

2

([0; T ℄)

�

with the inner produ
t inherited by L

2

([0; T ℄) ; i.e. hh; gi

H

= hh

0

; g

0

i

L

2

, (see

e.g. Watanabe (1984)).

In this arti
le we intend to 
reate an isomorphism from the 
anoni
al Wiener

spa
e W to an AWS 
onstru
ted in the sequen
es of real number, that is, to

push the whole AWS stru
ture in some subspa
e of R

1

: This isomorphism

establishes a new framework whi
h depending on the problem 
on
erning the
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Malliavin Cal
ulus, it 
an provide a new point of view, for instan
e the Wiener

integration assumes a new interesting fa
e when it is taken in this spa
e (se
tion

3).

There are several di�erent ways of representingW as a sequen
e of real num-

bers but in general the asso
iated Hilbert spa
e whi
h radoni�es the indu
ed

measure is not trivial. Take for instan
e fq

i

g

i�1

� [0; T ℄ a dense 
ountable sub-

set, then, the map � : W ! l

1

given by (! (q

i

))

i�1

is an inje
tion. Obviously,

if we push the Wiener measure to l

1

, it would be a Gaussian measure over

an in�nite dimensional 
losed subspa
es and by Theorem 1 there would exist a

Hilbert spa
e H � l

1

whi
h would provide an AWS i : H ! l

1

, however the

Hilbert spa
e H is not trivial.

The motivation to 
onstru
t an isomorphism of AWS into a subspa
e V �

R

1

starts mainly in the fa
t that there is the 
anoni
al isometry � : H ! l

2

whi
h sends basis to basis. So, we look for an isomorphism of W whi
h extends

this isometry to � : W ! V: Hen
e, providing V with the indu
ed norm from

W we will have the reprodu
tion of the Wiener stru
ture i : l

2

! V , with i

being the in
lusion of l

2

� V. Note that, like in the 
anoni
al Wiener stru
ture,

here the Hilbert spa
e l

2

has two topologies: the inherited norm (l

2

; jj�jj

V

) whi
h

respe
t to whi
h l

2

is dense in V; and (l

2

; < �; � >

l

2

) with respe
t to whi
h l

2

is


losed.

In the next se
tion we 
onstru
t the isomorphism itself using Fourier series

te
hni
. In the se
tion 3 we 
onsider the probabilisti
 aspe
ts of the Wiener

isomorphism and establish the Wiener integration in the spa
e of sequen
es.

2 The Isomorphism

Our method is based on the Fourier series of ea
h traje
tory of the Wiener

pro
ess. In fa
t the isomorphism � : W ! R

1

is simply the 
oeÆ
ients of a

formal derivative of the Fourier series; this pro
edure will guarantee that the

elements of the Cameron-Martin spa
e are mapped isomorphi
ally into l

2

. We

shall divide the details and properties of these maps in two parts: �rstly the

Fourier series itself and se
ondly the formal derivative.

2.1 The Fourier Series

We shall write ea
h 
ontinuous fun
tion ! 2W in a Fourier series of sines. We

eliminate the 
osine 
omponent using the analyti
al tri
k of extending ! with

domain [0; T ℄ to a 
ontinuous ! with domain [0; 4T ℄. So, for a �xed traje
tory

! : [0; T ℄! R let ! : [0; 4T ℄! R be the extension de�ned as follows:

! =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

! (t) if t 2 [0; T ℄

! (2T � t) if t 2 [T; 2T ℄

�!(t� 2T ) if t 2 [2T; 3T ℄

�! (4T � t) if t 2 [3T; 4T ℄

3



If we extend ! periodi
ally into the whole real line we would get an odd


ontinuous fun
tion hen
e the 
osine 
oeÆ
ients of the Fourier series vanish.

There are several 
hoi
es for an odd extension of !, the extension ! de�ned

above has the advantage of symmetry (see the example at the end of se
tion

3). Now, writing

a

n

= a

n

(!) =

q

1

2T

4T

Z

0

! (s) sin

�

�n

2T

s

�

ds;

the Fourier analysis guarantees that the series

1

X

n=1

a

n

sin

�

�nt

2T

�


onverges to ! (t) in L

p

([0; 4T ℄) for 1 < p < 1, hen
e, restri
ting the domain,

it also 
onverges to ! (t) in L

p

([0; T ℄): The 
onvergen
e is uniform if ! belongs

to the subspa
e of bounded variation traje
tories (of probability zero), in par-

ti
ular if ! is an element of the Cameron-Martin spa
e H, see e.g. Katznelson

(1976).

This pro
edure de�nes the linear isomorphism

� :W �! U � l

2

where, given ! 2 W , � (!) = (a

n

(!))

n�1

2 l

2

. The linear operator � is 
on-

tinuous, in fa
t it is the 
omposition of the 
ontinuous inje
tion

�

W; jj�jj

sup

�

!

L

2

([0; T ℄) and the Fourier isometry L

2

([0; T ℄)! l

2

(Bessel-Parseval formula) .

Moreover, sin
e W is dense in L

2

([0; T ℄) it implies that �(W ) = U is dense in

l

2

:

We remark that if ! 2 H then its Fourier series 
onverges absolutely, that

is a

n

(!) 2 l

1

; pre
isely, there is the following inequality whi
h relates the three

norms asso
iated to !:

jja

n

(!)jj

l

1

� jj!jj

L

1

[0;T ℄

+

 

2

1

X

n=1

1

n

2

!

2

jj!jj

H

See e.g. Katznelson (1976).

2.2 The Formal Derivative

If ! is an element in H, then its derivative !

0

2 L

2

([0; T ℄) and the derivative of

the extension (!)

0

2 L

2

([0; 4T ℄) : Now, if we extend periodi
ally the derivative

(!)

0

to the whole real line we get an even fun
tion, hen
e its Fourier series is a


osine series

1

X

n=1

b

n


os

�

�nt

2T

�

where
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b

n

= b

n

(!) =

q

1

2T

4T

Z

0

(!)

0

(s) 
os

�

�n

2T

s

�

ds:

The integration by parts formula provides

b

n

=

q

1

2T

� ! (t) 
os

�

�n

2T

t

�

�

�

�

t=4T

t=0

+

�n

2T

�

q

1

2T

4T

Z

0

! (s) sin

�

�n

2T

s

�

ds

=

�n

2T

� a

n

;

whi
h shows that, independently of the uniform 
onvergen
e of the series of

term by term derivatives, if ! 2 H then the Fourier series of !

0

is given by term

by term derivation of the Fourier series of !:

Again, thinking of Fourier 
oeÆ
ients as a sequen
e of real number, the


al
ulation above suggests the de�nition a formal derivative operator given by:

D : U � l

2

�! V � R

1

(a

n

)

n�1

7�!

�

2T

(n � a

n

)

n�1

:

Remark 1 This operator 
an also be see as the extension of the in�nitesimal

generator of the semigroup of 
ontra
tions T

t

: l

2

! l

2

given by the diagonal

operator T

t

(a

n

) =

�

a

n

e

�nt

�

: Its in�nitesimal generator A : Dom (A) ! l

2

is

given by A (a

n

) = (�na

n

) when (a

n

) 2 Dom (A) :

Finally we de�ne the isomorphism � : W �! V � R

1

by the 
omposition

� = D Æ �. We push the norm and the Gaussian measure by this linear map

from W to the subspa
e V to get the Gaussian stru
ture (V; jj�jj

V

;�

�

(W )) : By

the isometries H � L

2

[(0; T )℄ � l

2

we have that D (� (H)) = l

2

: One easily

sees that the in
lusion i : l

2

! (V; jj�jj

V

;�

�

(W )) is an AWS, hen
e � provides

an isomorphism (of AWS) between the 
lassi
al Wiener spa
e i : H ! W and

the new stru
uture 
onstru
ted in spa
e of sequen
es, whi
h was the purpose

of this paper.

Note that, by the same argument we have used to 
on
lude that �(H) � l

1

,

if ! 2 C

2

then � (!) 2 l

1

: We have that l

p

� V for all 1 � p � 1; hen
e

there is a �ltration of W in an in
reasing sequen
e of 
lose subspa
e �

�1

(l

1

) �

�

�1

(l

2

) = H � �

�1

(l

3

) � : : : � �

�1

(l

1

) � V . It would be interesting to

have a 
hara
terization of the subspa
es of this �ltrations in terms of (maybe

smoothness of) the 
ontinuous fun
tions, however it is not our purpose in this

arti
le to go further in this analysis.

3 The Wiener Integral

In this se
tion we turn to the probabilisti
 aspe
ts of the problem. Firstly

we re
all the 
on
ept of Wiener integral in a general AWS i : H ! B: Let
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fe

1

; e

2

; : : :g be a 
omplete orthonormal basis of H su
h that e

i

2 B

�

(in

fa
t, sin
e H = L

2

-
losure(B

�

) ; approximate any orthonormal basis f f

1

; f

2

;

: : :g for H by elements f

e

f

1

;

e

f

2

; : : :g � B

�

; then get fe

1

; e

2

; : : :g by Gram-

S
hmidt orthonormalization). Denote by P

n

: H ! H the proje
tion P

n

(x) =

P

n

r=1

he

r

; xi e

r

for x 2 H and by

f

P

n

: B ! H the linear map given by

f

P

n

(b) =

P

n

r=1

e

r

(b) e

r

: Note that

f

P

n

Æ i = P

n

: Given an element v 2 H the Wiener

integral (with respe
t to v) is given by

hv; �i

s

= L

2

- lim

n!1

D

v;

f

P

n

(�)

E

H

:

On
e hv; �i

s

: B ! R is the L

2

-limit of Gaussian variables, it is also a Gaussian

r. v.. Note that jjhh; �i

s

jj

L

2

(B;�)

= jjhjj

H

, that is the linear map h 2 H 7�!

hv; �i

s

2 L

2

(B;�) is an isometry.

For the well known parti
ular 
ase of the 
lassi
al Wiener spa
e, given f 2

L

2

[0; T ℄, the Wiener integral is the Gaussian random variable on (W;F ;W )

denoted by

Z

T

0

f (x) W (dx)

whi
h is given by the limit in L

2

(W ) of the \white noise" integration of simple

fun
tions, i.e. if 1

(a;b)

is the 
hara
teristi
 fun
tion of the interval (a; b) � [0; 1℄

then

Z

T

0

1

(a;b)

(x) W (dx) = X (!) (1)

where X (!) = !(b) � ! (a) : See for instan
e Nualart (1996) or Ikeda and

Watanabe (1984).

Now, 
onsider the isomorphism � : W ! V � R

1

established in the last

se
tion and let � = �

�

(W ) be the probability measure indu
ed on V. The

Wiener integration be
omes quite simple in our AWS i : l

2

! (V; jj�jj

V

; �). In

fa
t, take the 
anoni
al orthonormal basis in l

2

given by fe

1

= (1; 0; 0; : : :); e

2

=

(0; 1; 0; : : :); : : :g su
h that ea
h element e

i

belongs to V

�

; the dual spa
e of V. If

(a

n

)

n�1

2 V then e

i

�

(a

n

)

n�1

�

= a

i

, hen
e given an element v = (v

n

)

n�1

2 l

2

,

the Wiener integral is simply

hv; �i

s

= L

2

- lim

n!1

n

X

i=1

v

i

a

i

:

Similar to the Wiener integral in the spa
e of 
ontinuous fun
tions, here the

limit is taken ne
essarily in L

2

(V; �) on
e pointwisely it diverges a.s..

Example: The 
lassi
al Wiener integral in the formula (1) is 
al
ulated in the

spa
e of sequen
es as follows. Given f 2 L

2

([0; T ℄) , let v = (v

n

)

n�1

2 l

2

be

the 
osine Fourier 
oeÆ
ients of the extended fun
tion f2 L

2

([0; 4T ℄) su
h that

f is an even fun
tion (a

ording to se
tions 2.1 and 2.2). The sequen
e v is

the image by the isomorphism � of the element in the Cameron-Martin spa
e

generated by f . The random variable

R

T

0

f dW equals the Wiener integral

6



hv; �i

s

= L

2

- lim

n!1

n

X

i=1

v

i

a

i

:

in the sense that

�

R

T

0

f dW

�

(!) = hv; �i

s

(� (!)) with equality 
onsidered in

L

2

(W ):

A 
urious 
lass of examples appears when we take, for instan
e, f(x) =

p

2T 
os

�

�nx

2T

�

for x 2 [0; T ℄. The extended even fun
tion is f(x) =

p

2T 
os

�

�nx

2T

�

for x 2 [0; 4T ℄ : Hen
e the 
osine 
oeÆ
ients in the Fourier series is the element

e

n

of the 
anoni
al basis in l

2

. In this 
ase the Wiener integral is simply the


ontinuous linear fun
tional

he

n

; �i

s

�

(a

n

)

n�1

�

= a

i

.

Note that a physi
al interpretation of the entries of the sequen
es in V is that the

square of the n-th entry would represent the energy of (the formal) derivative

of the traje
tories of the Brownian motion 
ontained in the frequen
y n=2T :
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