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This paper adds new features to the implementation of �nite-di�erence and

�nite-element methods for option models based on the Black-Scholes equa-

tion. Stability analysis for explicit methods without transformations and

non-uniform meshes for the asset price are focused. The American option

pricing model was formulated as a variational inequality whose approxima-

tion leads in general to a non-symmetric linear complementarity problem.

Numerical experiments reveal signi�cant improvements on European and

American "vanilla" options.

1 Introduction

Finite-di�erence methods for option pricing were extensively studied in the

past two decades (Brennan and Schwarz (1978), Courtadon (1982), Geske

and Shastri (1985), Hull and White (1990)). Starting from the approxima-

tion of the Black-Scholes formula (Black and Scholes (1973)) by solving the

corresponding boundary-value problem, several modi�cations of the standard

method were designed to solve general problems. Wilmott et al. (1993) and

Hull (1997) present a complete description of the methodology.

This paper recovers some issues on the �nite-di�erence approach and

proposes e�ective ways to increase the accuracy of such methods as well. We

present the e�ect of the proposed modi�cations on European call options.

We consider the standard problem of American put options, using a for-

mulation that does not involve the free-boundary (Wilmott et al. (1993)).

The same formulation can be rewriten as a variational inequality, what al-

lows the use of �nite-element methods.

The remainder of the paper is organized as follows. Sections 2 and 3

review the Black-Scholes model and the standard �nite-di�erence method.

Section 4 proposes an accurate measure of stability for explicit methods. In

Section 5, we discuss the discretization of the asset price. This variable is

particularly a�ected by logarithmic transformations. The modi�ed methods

are compared with the standard ones and with the Black-Scholes formula in

Section 6. Section 7 considers the pricing of American options and introduces
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a �nite-element method based on a variational formulation of the problem

(Wilmott et al. (1993)). The numerical results for American options are com-

pared with others found in the literature in Section 8. Section 9 summarizes

the main results.

2 The Model

The work of Black and Scholes (1973) and Merton (1973) are a landmark

in the general option pricing theory. Based on the hypothesis of continuous,

frictionless trading; constant interest rate; and the principle of non-arbitrage,

they had derived the following formula to the price c(S; t) of European call

options based on lognormal-based assets without dividend payments:

c(S; t) = SN(d

1

)� Ee

�r(T�t)

N(d

2

) ; (2.1)
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log(S=E) + (r +

1
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q

(T � t)

(2.2)

d2 =
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1
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)(T � t)

�

q

(T � t)

(2.3)

where E is the exercise price, r is the interest rate, � is the volatility, T is the

expiry and N(�) is the standard normal distribution. The variables S and t

are the asset price and time, respectively. This formula was derived from the

Black-Scholes di�erential equation
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with suitable initial and boundary conditions. It was shown later that (2.1)

can be derived from other approaches (Du�e (1988)).

The Black-Scholes equation is able to price several other derivatives based

on the lognormal process. (Geske and Shastri (1985), Wilmott et al. (1993)).

The formula to the price p(x; t) of a put option was also derived from (2.4),

and both formulas are consistent with the put-call parity:

p(S; t) = c(S; t)� S + Ee

�r(T�t)

(2.5)
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Under the same hypothesis, the price C(S; t) of an American call must be

the same as it European counterpart (Merton (1973)), while the price P (S; t)

of an American put option is the solution of the following problem (Wilmott

et al. (1993)):
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) � 0 (2.7)
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u(S; 0) = (E � S)

+

(2.9)

u(0; t) = E (2.10)

lim

S�!1

u(S; t) = 0 (2.11)

Here (E � S)

+

denotes maxfE � S; 0g. This is a free-boundary problem

whose free boundary represents the optimal exercise price at a time t. The

free boundary does not appear on the formulation above (what simpli�es the

analysis) but can be calculated a posteriori. In Appendix A we prove that

this boundary is unique.

3 Finite-Di�erence Method

Let us consider the European call option problem with a change in the time

variable (Wilmott et al. (1993)):

@c

@t

=

1

2

�

2

S

2

@

2

c

@S

2

+ rS

@c

@S

� rc ; S > 0 ; t > 0 (3.1)

c(S; 0) = (S � E)

+

(3.2)

c(S; t) � S (3.3)
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(Geske and Shastri (1985), Hull (1997)).

The �nite-di�erence methods approximate the solution c : 
! IR of the

problem (3.1)-(3.2) at the set 


h
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These methods are based on local approximations of the partial derivatives at

(S

i

; t

n

) 2 


h

, generating a set of di�erence equations whose solutions are the

numerical solutions U

n

i

.The simplest �nite-di�erence method is the explicit

method with centered di�erences at the variable S (Brennan and Schwarz

(1978), Hull (1997), Wilmott et al. (1993))
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Reordering (3.5) and observing that S
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The initial and boundary conditions are approximated in the following way:

U
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n
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), respectively. We

calculate the solution of (3.6) at each time level n, 1 � n � M , using the

(previous) solution at the time level n� 1.

Another standard scheme is given by the Crank-Nicolson method with

parameter � = 1=2:
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where the coe�cients b

j
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j
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The solution at the interior points is calculated by solving a tridiagonal

system derived from (3.10). The Crank-Nicolson scheme usually converges

when h and k tend to zero and, e.g., h = k, while the convergence in the

explicit method requires k � h; however, the computational cost on (3.10)

is higher than in (3.6), as we need to solve linear systems at each time step.

It is worth to have a precise measure of the relation between h and k on the

explicit method, as discussed in the next section.

Let us return to the boundary conditions. The problem (3.1)-(3.2) doesn't

need boundary conditions to be analytically solved. Moreover, there is few

practical interest to �nd the option price when the asset price has extreme

values; however, �nite-di�erence methods do need boundary conditions.

The boundary condition at S = 0 can be easily derived (Black and Scholes

(1973), Merton (1973))

U

n

0

= c(0; t

n

) = 0 (3.12)

The value of S can grow without limits. We have that S ! 1 implies

T !1, that is, it only makes sense to �nd the limit of c(S; t) when S ! 1

in perpetual options (Oliveira (1998)). Let us denote the perpetual European

call and put options by c

1

(S; t) and p

1

(S; t) . We have (Merton (1973))

c

1

(S; t) = S and p

1

(S; t) = 0 (3.13)

However, c(S; t) approaches c

1

(S; t) when S � 0, that is,

lim

S�!1

c(S; t) = lim

S�!1

c

1

(S; t) = S (3.14)

Observe that (3.14) is consistent with (2.1). The next step is to approximate

the \boundary condition" (3.14) by the following:

U

n

N

= c

1

(L; t

n

) = S

N

; (3.15)

with L su�ciently large. The choice of L must take into account the accuracy

and the computational cost, and usually values within [2E; 3E] produce good

results. From the parity formula (2.5) and (3.13) we have the following

alternative to (3.15) :

U
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1
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� Ee

�r(T�t
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)

(3.16)

In general, (3.16) is more accurate than (3.15).
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4 Stability Analysis

It is well known that the explicit scheme (3.6) is conditionally stable, but we

haven't seen any accurate estimate, as the non-constant coe�cients of the

Black-Scholes equation complicate the discrete Fourier transform approach

and the analysis of eigenvalues. The standard approach (Courtadon (1982),

Geske and Shastri (1985)) is to transform the Black-Scholes equation in an-

other one with constant coe�cients.

Based on the observations in Brennan and Schwarz (1978) and Hull and

White (1990) we require the coe�cients (3.7) of the explicit scheme to be

positive and obtain a stability estimate for (3.6). The numerical experiments

below indicate that the relation between the increments h = �S and k = �t

derived from that estimate are close to be a necessary and su�cient stability

condition. See Thomas (1995) for a background in stability analysis.

A explicit �nite-di�erence scheme on the form

U(x; t + k) =

n

2

X

j=n

1

c

j

U(x + jh; t) (4.1)

is called positive if the components c

i

satisfy the following conditions:

9h

1

> 0 ; c

j

� 0 ; �n

1

� j � n

2

8 (x; t) and h ; 0 � h � h

1

(4.2)

Brennan and Schwarz (1978) interpret the coe�cients c

j

as probabilities of

the prices to move up (j > 0), down (j < 0) or stay the same (j = 0). The

condition (4.2) within this interpretation simply says that those probabilities

cannot be negative.

Let U

n+1

= [U

1

; U

2

; : : : U

N

] be a vector representing the approximate

solution U at a �xed time level t

n+1

(U

1

= U(x

i

; t

n+1

)). We state a de�nition

of stability following Forsythe and Wasow (1978) :

De�nition 4.1 : The scheme (4.1) is stable if for any �xed n there exists

M > 0 independent of h and k such that

kU

n+1

k � M 8 h; k > 0 (4.3)

In general,M depends on t and on kU

0

k. The theorem 1.41 on Forsythe and

Wasow (1978) states that the scheme (4.1) is stable if it is positive, assuming

that the initial and boundary conditions are uniformly bounded.
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Back to our original problem, we should then verify when the coe�cients

c

�1

; c

0

and c

1

in (3.7) are positive. Observe that c

1

is always positive. Im-

posing c
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> 0 leads us to the following inequality:
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A su�cient condition for (4.4) is given by
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As in general r; k � 1, we approximate (4.5) by the following inequality:
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We can replace (4.7) by a stronger inequality:

�

2

r

� 1 (4.8)

The condition (4.8) is too severe, as it imposes restrictions on equation pa-

rameters. As the instability due to the violation of (4.8) is numerically ob-

served only when r � �, we dismiss that condition. For the cases where that

instability is observed, the explicit method diverges and we need speci�c

numerical schemes to handle it (Zvan et al. (1998)).

The inequality (4.6) is thus our stability estimate. As h � N = L and

k�M = T , (4.6) provides an estimate for the minimum number of time steps

given the number of price steps:

M � (�N)

2

T (4.9)

We analyze it numerically by calculating the spectral radius of the matrix A

associated to the explicit scheme (Geske and Shastri (1985)), that is,

U

n+1

= AU

n

(4.10)
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The following plots describe the sensitivity of the spectral radius �(A) with

respect to the equation parameters. We use T = 1, L = 2 � E, N = 50 and

�x � to be 50% lower than �

�

, equal to �

�

and 25% higher than �

�

, where

�

�

is given by (4.6). The value of h follows from N and k is calculated from

�. The starting values of the parameters E, � and r are E = 10, � = 0:02

and r = 0:05, respectively.

We observed stability (�(A) � 1) for � � �

�

, given that r is not too large,

unlike the cases when � > �

�

. The instability due to the violation of (4.8)

occurs when r > 2, outside the range of practical importance.
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Figure 1: Sensitivity of �(A) when � is 50% below the estimate (4.6).
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Figure 2: Sensitivity of �(A) when � is equal to the estimate (4.6).
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5 Non-Uniform Grids

Let us consider a more general approximation of 
 = [0; L]� [0; T ]:




h

= f0 = S

0

< S

1

< : : : S

N

= Lg � f0 = t

0

< t

1

< : : : t

M

= Tg (5.1)

where t

n

= nk, 0 � n < M as before. We de�ne h

i

= S

i+1

� S

i

, 0 � i < N .

For the explicit method we have, as in (3.6) ,

U

n+1

i

= c

�1

U

n

i�1

+ c

0

U

n

i

+ c

1

U

n

i+1

; (5.2)

Where the coe�cients c

j

now depend on S

i

and are given by

c

�1

=

kS

i

h

i�1

� h

i

 

�

2

S

2

i

h

i�1

� ri

!

c

0

= 1� k

 

�

2

S

2

i

h

i

h

i�1

� r

!

(5.3)

c

1

=

kS

i

h

i�1

� h

i

 

�

2

S

2

i

h

i

+ ri

!

For the Crank-Nicolson method,
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where the coe�cients
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Non-uniform grids are employed to re�ne some regions of the domain where

the approximate solution must be more accurate. In our case, that region is

the neighborhood of S = E.

There are two reasons for re�ne the grid around the exercise price E.

First, the initial condition (the payo�) is not di�erentiable at S = E for both

call and put options, what can jeopardize the solution there. Moreover, the

most important option prices stand around the exercise price (Hull (1997)).

We also get grids with non-uniform patterns with logarithmic transforma-

tions on the asset variable (Geske and Shastri (1985), 49). The most popular
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transformation is x = ln(S=E) (Brennan and Schwarz (1978)), that trans-

forms the Black-Scholes equation in a equation with constant coe�cients and

takes advantage from the fact that the standard deviation of ln(S) does not

depend on S and t in a short period of time (Hull and White (1990)). An-

other approach (Geske and Shastri (1985), Wilmott et al. (1993)) transforms

the Black-Scholes equation in the di�usion equation, a symmetric problem.

However, these transformations extend the asset price domain to ] �

1;+1[. Moreover, if we apply an uniform grid over x = ln(S=E), the grid

points of the original variable S are strongly concentrated around S = 0.

This can be easily seen if we plot the resulting solution as follows:
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Figure 4: Transformed �nite-di�erence solution without interpolation.

In this case, we would need to reduce the value of h (what implies a higher

computational cost) to improve the solution accuracy at S � E. Further, we

get an unnecessary re�nement at S � 0.

Thus, applying the explicit method straight to the Black-Scholes equation

leads us to stability problems, while simplifying the equation with logarithmic

transformations may be inaccurate around S = E. A natural question is that

if there is any transformation that at the same time simpli�es the equation

and gives a grid re�ned around S = E in the original variable when we use

a uniform mesh over the transformed one.

Focusing on that idea, we could come up with the following transforma-
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tion:

S = E � E(e

y

� 1) (5.7)

Observe that (5.7) is not injective. We can circumvent that by splitting the

asset price domain in [0; E] and [E;L]. Following Wilmott et al. (1993), we

also transform the time variable. The transformations and corresponding

equations are as follow:

1. Sub-domain [0; E]

Transformations:
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) ; � =
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Transformed Equation:
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and K = 2r=�

2

.

Initial condition and boundary condition at y

N
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= 0 (5.10)

2. Sub-domain [E;L]

Transformations:
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Initial condition and boundary condition at x
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x
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n

N

= e

x

(5.13)

In principle we have no conditions at V

n

0

and W

n

0

, which correspond to the

interior point S = E; however, from the symmetry on (5.7) we have that the
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distance from y

1

to y

o

= E is the same as the one from x

1

to x

o

= E. It

suggests that the points y

1

e x

1

would be shared in the following sense: x

1

becomes an arti�cial point on the y grid (x

1

= y

�1

); then, we impose the

following boundary condition over y

�1

:

V

n

�1

= W

n

1

(5.14)

Analogously,

W

n

�1

= V

n

1

(5.15)

Despite we coudn't simplify the coe�cients, the explicit �nite-di�erence im-

plementation of that approach, that we will refer as \E-concentrative", gave

us relatively accurate solutions. But the resulting scheme is unstable and

may not be generalized to other problems, in order that this approach have

only theoretical interest.

However, we can still take advantage of (5.7) without modifying the o-

riginal equation. We use (5.7) to map a uniform grid onto a non-uniform

grid on [0; L], which will be naturally re�ned around S = E, and then use

the schemes (5.2)-(5.3) or (5.4)-(5.6). That new approach provided the best

results for European Options.

6 Computational Results - I

We summarize the numerical experiments of the following �nite-di�erence

schemes:

E1: Standard explicit method

E2: Explicit method / transformation to the di�usion equation

E3: Explicit method / logarithmic transformation x = ln(S=E)

E4: \E-Concentrative" method (see Section 5)

E5: Explicit method with a non-uniform grid de�ned by (5.7)

C1: Standard Crank-Nicolson method

C2: Crank-Nicolson method / transformation to the di�usion equation

C3: Crank-Nicolson with a non-uniform grid de�ned by (5.7)
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We used a Pentium Pro with 64MB RAM. The algorithms were written in

Fortran 77 and timed with Fortran's intrinsic function Second. The tests

were performed on European call options. We denote by BL the solutions

given by the Black-Scholes formula. We set L as twice the exercise price E

and the other parameters following Geske and Shastri (1985):

S = $40,00

E = $35,00, $40,00, $45,00

r = ln(1 + r

F

), r

F

= 5.00 percent (annual)

� = 0.3 (annual)

T = 1, 4, 7 months

The following tables show the approximate option values and absolute errors

when N = 30 and M = 30 for the explicit methods and N = 30 and M = 10

for the Crank-Nicolson schemes. These values keep the average absolute

errors below 5%

The non-uniform mesh improved the accuracy in both explicit and Crank-

Nicolson schemes without losing stability. Both explicit and Crank Nicolson

schemes had spent less than 0.01 seconds to evaluate each option price.

Table 1: European call option values.

T 1/12 4/12 7/12

E 35 40 45 35 40 45 35 40 45

BL 5.2191 1.4614 0.1622 6.2513 3.0729 1.2549 7.1711 4.1860 2.2352

E1 5.2203 1.3494 0.1990 6.2422 3.0335 1.2703 7.1675 4.1641 2.2504

E2 5.2334 1.3894 0.2393 6.2286 3.0504 1.2759 7.1523 4.1792 2.2501

E3 5.2335 1.3895 0.2394 6.2293 3.0513 1.2766 7.1543 4.1815 2.2522

E4 5.2205 1.4544 0.1812 6.2464 3.1008 1.2859 7.1700 4.2251 2.2751

E5 5.2201 1.4103 0.1737 6.2468 3.0548 1.2549 7.1710 4.1782 2.2436

C1 5.2220 1.3416 0.2008 6.2380 3.0211 1.2662 7.1582 4.1478 2.2411

C2 5.2347 1.3854 0.2407 6.2257 3.0395 1.2732 7.1450 4.1662 2.2430

C3 5.2218 1.4036 0.1758 6.2425 3.0428 1.2563 7.1617 4.1622 2.2341
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Table 2: Corresponding percent errors in absolute value.

T 1/12 4/12 7/12

E 35 40 45 35 40 45 35 40 45

E1 0.1166 11.2037 3.6757 0.9088 3.9110 1.5427 0.3506 2.1868 1.5216

E2 1.4325 7.2058 7.7092 2.2705 2.2550 2.1007 1.8771 0.6771 1.4893

E3 1.4363 7.1962 7.7130 2.1980 2.1623 2.1745 1.6784 0.4502 1.6935

E4 0.1396 0.7040 1.8982 0.4889 2.7939 3.1025 0.1061 3.9113 3.9916

E5 0.0946 5.1143 1.1438 0.4546 1.8071 0.5835 0.0006 0.7799 0.8321

C1 0.2828 11.9859 3.8528 1.3334 5.1838 1.1250 1.2840 3.8166 0.5868

C2 1.5580 7.5995 7.8433 2.5627 3.3447 1.8276 2.6055 1.9743 0.7789

C3 0.2635 5.7788 1.3587 0.8842 3.0089 0.1405 0.9318 2.3818 0.1143

The graph of the absolute error versus the asset price reveals that the

error is strongly concentrated at-the-money.

0 10 20 30 40 50 60 70 80
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

E1
E5

Figure 5: Absolute error (methods E1 and E5) when E = $40 and T = 1=12.

Observe that the non-uniform mesh used in E5 has more points around

E = $45 than the uniform one. For both methods, the maximum error

occurs at the exercise price.

The following plots illustrate the speed of convergence for some of the

methods above. We compare E1, E2, E5 and the corresponding Crank-

Nicolson schemes. We calculate the option price at S = $40 for E = $40,
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T = 1=12 for di�erent values of N and M , �nding the CPU time and the

relative error with respect to the Black-Scholes formula at each evaluation.

The results were plotted in logarithmic scale.

We chose M and N in order to satisfy stability conditions ((4.6) or Geske

and Shastri (1985), eq.[23]) in the explicit case. We chose N = 8M for C2

and N = 4M for C1 and C3.

We used linear regression in E2 and C2 because the oscillatory behavior

observed didn't allow interpolating the points.

All methods have similar convergence patterns. We can compare them

by following one of the horizontal grid lines, that represent a �xed amount

of time

�

T . The �rst graph intercepted by that line from the left to the

right corresponds to the method that (approximately) provides the smallest

relative error in

�

T seconds.
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Figure 6: CPU time � relative error for explicit methods.
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Figure 7: CPU time � relative error for the Crank-Nicolson methods.

7 Pricing American Options

The motivation to analyze numerical methods for the Black-Scholes equation

is to extend the same methods to pricing problems without closed formulas.

We focus on the American option pricing problem (2.6) - (2.11).

7.1 Finite-Di�erence Approach

The explicit method leads us to the following scheme (Wilmott et al. (1993)):

U

n+1

i

� Y

i

= c

�1

U

n

i�1

+ c

o

U

n

i

+ c

1

U

n

i+1

(7.1)

U

n+1

i

� g

i

(7.2)

(U

n+1

i

� Y

i

)(U

n+1

i

� g

i

) = 0 (7.3)
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(1 � n �M � 1 ; 2 � i � N � 1)

U

0

i

= g

i

; 1 � i � N (7.4)

U

n+1

1

= E and U

n+1

N

= 0 ; 1 � n �M (7.5)

The coe�cients c

j

are given by (3.7) (or (5.3) in the non-uniform case). The

solution of (7.1) - (7.5) is also the solution of (7.4) - (7.5) and the following

equations :

Y

i

= c

�1

U

n

i�1

+ c

o

U

n

i

+ c

1

U

n

i+1

(7.6)

U

n+1

i

= maxfY

i

; g

i

g (7.7)

Analogously for the Crank Nicolson method,

b

�1

U

n+1

i�1

+ b

0

U

n+1

i

+ b

1

U

n+1

i+1

� Z

n

i

= c

�1

U

n

i�1

+ c

0

U

n

i

+ c

1

U

n

i+1

(7.8)

U

n+1

i

� g

i

(7.9)

(b

�1

U

n+1

i�1

+ b

0

U

n+1

i

+ b

1

U

n+1

i+1

� Z

n

i

)(U

n+1

i

� g

i

) = 0 (7.10)

U

n+1

i

0 = g(i) (7.11)

U

n+1

1

= E and U

n+1

N

= 0 (7.12)

(1 � n �M � 1 ; 2 � i � N � 1)

We have that (7.8)-(7.12) can be written (Wilmott et al. (1993)) as the

following linear complementarity problem (LCP):

8

>

>

>

<

>

>

>

:

Cu

n+1

� b

n

u

n+1

� g

(Cu

n+1

� b

n

)

t

(u

n+1

� g) = 0

u

0

= g

(7.13)

LCPs are usually solved by iterative methods (Oden and Kikushi (1980),

Pissarra (1997), Wilmott et al. (1993)), and most of them are limited to

symmetric matrices. This makes the transformation to the di�usion equation

proposed by Wilmott et al. (1993) attractive. Wilmott et al. (1993) transform

the problem and solve the resulting LCP by the Projected SOR method.

We can achieve some improvement by a suitable choice of the boundary

conditions. If we would know the free boundary S

f

(t) at each time t, we

could replace the boundary condition at S = 0 by the following:

P (S

f

(t); t) = (E � S

f

(t))

+

; 0 < t < T (7.14)
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As S

f

(t) is also an unknown, we must replace S

f

(t) in (7.14) by an uniform

lower bound S

�

. We used an accurate lower bound provided by Broadie

and Detemple (1996) that only requires to �nd the zero of a function of one

variable. As S

f

(t) is nondecreasing with respect to t (Myneni (1992), 13),

we just need to estimate S

f

(0) (what corresponds to S

f

(T ) when we apply

the transformation � = T � t); therefore, we can get a good approximation

for (7.14) at a reasonable cost. This choice also alleviates the excessive

re�nement near S = 0 due to the logarithmic transformation. The following

plot shows the e�ects of the (estimate) boundary condition (7.14).
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Figure 8: Transformed �nite-di�erence solutions for American put options

7.2 Finite-Element Approach

The �nite-element method approach of American option pricing is based

on the formulation of the problem (2.6) - (2.11) as a variational inequality

(Baiocchi and Capelo (1984), Wilmott et al. (1993)). In this section we

consider a more general setting in order to have consistency with the standard

literature.

The abstract formulation of the (elliptic) variational inequality problem

is as follows: let (V; h:; :i) be a real Hilbert space with norm de�ned by

kuk

2

= hu; ui and let K � V be a closed and convex subset of V. Let a(:; :)

be a bilinear continuous functional and f 2 V . We consider the problem

20



(VI) Find u 2 K such that a(u; v � u) � hf; v � ui 8 v 2 K

The Lions-Stampacchia theorem (Lions and Stampacchia (1967)) states that

the problem (VI) have a unique solution, if the bilinear form a(:; :) satis�es

some special properties. One particular case is the following:

a(v; v) = 0) v � 0 (7.15)

In most of the applications, the convex set K has the following form:

K = fv 2 V ; v(x) �  (x) 8 x 2 
g (7.16)

There are several di�erent approaches to solve the problem (VI) ( Glowinski

et al. (1976), Oden and Kikushi (1980)). Here we consider the Galerkin

method, which determines the best approximation u

h

of u over a �nite-

dimensional subspace of V .

Let V

h

= spanf'

1

; : : : ; '

n

g be a subspace of V . We approximate the

solution u of (VI) and the function  in (7.16) as

u

h

=

n

X

j=1

u

j

'

j

;  

h

=

n

X

j=1

 

j

'

j

(7.17)

Thus,

K

h

= fv =

n

X

j=1

v

j

'

j

2 V ; v

j

�  

j

; 1 � j � ng (7.18)

The approximate solution u

h

is the solution of the following problem:

(VI

h

) Find u

h

2 K

h

such that a(u

h

; v

h

� u

h

) � (f; v

h

� u

h

) 8 v 2 K

h

In Appendix B we verify that it is su�cient to have

8

>

<

>

:

Ax � b

x � c

(Ax� b)

t

(x� c) = 0

; (7.19)

another LCP, where

x = (u

1

; : : : ; u

n

) c = ( 

1

; : : : ;  

n

)

b = (hf; '

1

i; : : : ; hf; '

n

i)

A = [a

ij

]; a

ij

= a('

j

; '

i

) ; 1 � i; j � n

(7.20)
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Wilmott et al. (1993) presented a similar result for the case when a(�; �) is

symmetric. As far as we know, this is the �rst time that the Galerkin method

for variational inequalities is extended to non-symmetric bilinear forms.

The formulation (VI) can be extended to time-dependent problems in the

following way:

(VI

t

) Find u(t) : [0; T ]! K such that

(

hu

t

; v � ui+ a(u; v � u) � hf; v � ui 8 v 2 K 8 t 2 [0; T ]

hu(0); vi = hu

0

; vi 8 v 2 K

Consider a partition � : 0 = t

1

< t

2

< : : : t

M

= T of [0; T ]. Approximating u

in � by U

n

, where

u

t

�

U

n+1

� U

n

�t

; U

n

= U(t

n

) 2 K (7.21)

we have the following discretization of (VI

t

):

(VI

�

) Find U

0

; : : : ; U

M

2 K such that

8

>

<

>

:

h

U

n+1

�U

n

�t

; v � U

n+1

i+ a(U

n+1

; v � U

n+1

) � hf; v � U

n

+ 1i ; n � 1

hU

0

; vi = hu

0

; vi 8 v 2 K

De�ning

a

�

(u; v) = hu; vi+�ta(u; v) ; f

n

= U

n

+�tf ; (7.22)

we have that the solution U

n+1

of (VI

�

) for �xed n, given that U

n

is known,

satis�es

a

�

(U

�

; v � U

�

) � hf

n

; v � U

�

i 8 v 2 K (7.23)

The variational inequality (7.23) has the same form as (VI) and can be solved

by the Galerkin method presented before.

We can also apply the Crank-Nicolson approach to solve (VI

t

). De�ning

�U

n

= U

n+1

� U

n

, the inequality for the time step n+ 1 is given by

1

�t

h�U

n

; v � U

n+1

i+

1

2

a(�U

n

; v � U

n+1

) � hf; v � U

n+1

i 8 v 2 K (7.24)

See Johnson (1987) for further time-space discretization procedures. Con-

vergence estimates can be proved for implicit schemes (Johnson (1976)).
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Let us use the structure above in the American option pricing problem.

We start de�ning V as a space of smooth functions in [0; L] (so that we can

de�ne derivatives), the inner product h�; �i as

hu; vi =

Z

L

0

u(x)v(x)dx (7.25)

and the convex set K as

K = fv 2 V ; v(x) � (E � S)

+

8 x 2 [0; 1]g (7.26)

The bilinear form is derived by multiplying the left-hand side of (2.6) by a

function v 2 V and integrating over [0; L]

a(u; v) =

1

2

�

2

hS

2

@u

@S

;

@v

@S

i � (r � �

2

)hS

@u

@S

; vi+ rhu; vi (7.27)

The problem (VI

t

) with K given (7.26) and a(�; �) given by (7.27) is equiva-

lent to (2.6)-(2.11) (Baiocchi and Capelo (1984), Oliveira (1998)). Observe

that a(�; �) satis�es (7.15).

Remark: Some important details about the space V and boundary condi-

tions (Oliveira (1998), Wilmott et al. (1993)) were skipped for simplicity.

Consider the partition � : 0 = S

0

< S

1

< : : : S

N

= L of [0; L]. We have

used the standard piecewise linear �nite-element functions, that is, we con-

sider in the Galerkin method n = N + 1 and for 0 � j � N ,

�

j

(S) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

S�S

j�1

S

j

�S

j�1

; S 2 [S

j�1

; S

j

] (j > 0)

S

j+1

�S

S

j+1

�S

j

; S 2 [S

j

; S

j+1

] (j < N)

0 elsewhere

(7.28)

See Johnson (1987), Wilmott et al. (1993) for further details.

7.3 Iterative Methods for LCPs

Both �nite-di�erence and �nite-element approaches to solve (2.6)-(2.11) re-

sulted in a LCP. We have used the classical Projected SOR method (Wilmott

et al. (1993)) and a modi�cation of the conjugate gradient squared algorithm

for LCPs (Pissarra (1997)).
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Given a n � n real matrix A = [a

ij

] and a column vector b = (b

j

) 2 IR

n

,

we state the LCP as follows:

Find x = (x

j

) 2 IR

n

such that

8

>

<

>

:

Ax � b

x � 0

(Ax� b)

t

x = 0

; (7.29)

where 0 is the zero vector in IR

n

. This formulation is the same as (7.19) up

to a change of variables. Iterative methods generate a sequence x

(1)

; x

(2)

; : : :

of approximate solutions to (LCP). We denote by x

(0)

the initial guess for x

and de�ne r

(k)

= b� Ax

The Projected SOR method can only be applied to (2.6)-(2.11) after the

transformation to the di�usion equation, as it requires A to be symmetric.

Oden and Kikushi (1980) present a relationship between the projected

SOR method and the �xed-point method. As the �xed-point algorithm (O-

den and Kikushi (1980)) does not require symmetry, the projected SOR

method for non-symmetric LCPs might converge for suitable values of !.

Algorithm: Projected SOR Method

input A, b, n, 0 < ! < 2, x

(0)

, � > 0, MAX > 0

k = 0

while (j(r

(k)

)

t

x

(k)

j > � and k < MAX) do

for i = 1 to n do

y =

1

a

ii

0

@

b

i

�

i�1

X

j=1

x

(k)

j

a

ij

�

n

X

j=i+1

x

(k)

j

a

ij

1

A

x

(k+1)

i

= maxfx

(k)

i

+ !(y � x

(k)

i

); 0g

end

k = k + 1

end

The second method, referred in Pissarra (1997) as projected conjugate gradi-

ent squared (CGSP), allows us to solve the non-symmetric LCPs arising from

the untransformed problem. Its algorithm is as follows:
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Algorithm: Method CGSP

input A, b, n, x

(0)

, � > 0, MAX > 0

k = 0

while (j(r

(k)

)

t

x

(k)

j > � and k < MAX) do

P = IdentityMatrix(n)

for i = 1 to n do

if (x

(k)

i

< 0)

P

ii

= 0

x

(k)

i

= 0

end if

end

R

(k)

= Ax

(k)

� b

for i = 1 to n do

if (P

ii

= 0) and (R

(k)

i

> 0)

P

ii

= 1

end if

x

(k+1)

=CGS(x

(k)

; PAP; Pb; n; �)

k = k + 1

end

end

Function CGS(x

(0)

; A; b; n; �)

g

(0)

= b� Ax

(0)

d

(�1)

= q

(0)

= 0

�

�1

= 1

k = 0

while (kg

(k)

k > �) do

�

k

= (g

(0)

)

t

g

(k)

�

k

= �

k

=�

k�1

u

(k)

= g

(k)

+ �

k

q

(k)

d

(k)

= u

(k)

+ �

k

�

q

(k)

+ �

k

d

(k�1)

�

v

(k)

= Ad

(k)

�

k

= (g

(0)

)

t

v

(k)

�

k

= �

k

=�

k

q

k+1

= u

(k)

� �

k

v

(k)

g

(k+1)

= g

(k)

� �

k

A

�

u

(k)

+ q

(k+1)

�
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x

(k+1)

= x

(k)

+ �

k

�

u

(k)

+ q

(k+1)

�

k = k + 1

end

return(x

(k)

)

8 Computational Results - II

The numerical experiments for American put options include the methods

described above and some results from Huang et al. (1996) and Sullivan

(1997).

BN: Binomial method with n = 10000 (Huang et al. (1996))

X1: Standard explicit method

X2: Explicit method with a non-uniform grid de�ned by (5.7)

S1: Crank-Nicolson method / transformation to the di�usion equation

S2: Crank-Nicolson method / transformation to the di�usion equation and

shifted boundary conditions

F1: Standard Crank-Nicolson Method / Finite-Element Method

F2: Standard Crank-Nicolson, non-uniform grid / Finite-Element Method

HU: Recursive Integration Method (Huang et al. (1996))

QD: Extrapolated Quadrature Method (Sullivan (1997))

The parameters are the same as in Section 6. Schemes S1 and S2 use the

projected SOR algorithm, while F1 and F2 use the projected conjugate

gradient squared one. The method S2 shifts the boundary condition at

S = 0 to S = 0:9S

�

, where S

�

is a lower bound for S

f

(T ) (Broadie and

Detemple (1996)).

The following tables show the option values and absolute errors with

respect to BN. We set N = 100 and M = 950 for the explicit methods,

N = 200 and M = 200 for F1, F2 and N = 200 and M = 100 for S1, S2.

The entries for the methodsHU and SU are the same as in Sullivan (1997).
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Table 3: American put option values.

T 1/12 4/12 7/12

E 35 40 45 35 40 45 35 40 45

BN 0.2466 1.7681 5.2868 1.3460 3.3874 6.5099 2.1594 4.3526 7.3830

X1 0.2461 1.7613 5.2887 1.3542 3.3845 6.5109 2.1545 4.3509 7.3843

X2 0.2471 1.7647 5.2879 1.3462 3.3859 6.5105 2.1552 4.3519 7.3839

S1 0.2487 1.7683 5.2919 1.3459 3.3871 6.5121 2.1544 4.3524 7.3847

S2 0.2466 1.7681 5.2868 1.3460 3.3874 6.5099 2.1594 4.3526 7.3830

F1 0.2468 1.7669 5.2865 1.3450 3.3848 6.5078 2.1527 4.3491 7.3798

F2 0.2468 1.7670 5.2868 1.3448 3.3849 6.5079 2.1526 4.3491 7.3798

HU 0.2467 1.7694 5.2853 1.3468 3.3970 6.5128 2.1603 4.3699 7.3865

QD 0.2467 1.7685 5.2868 1.3461 3.3876 6.5097 2.1594 4.3527 7.3828

Table 4: Corresponding percent errors in absolute value.

T 1/12 4/12 7/12

E 35 40 45 35 40 45 35 40 45

X1 0.0467 0.6774 0.1851 0.0772 0.2915 0.1033 0.4939 0.1684 0.1329

X2 0.0495 0.3446 0.1108 0.0223 0.1456 0.0628 0.4179 0.0706 0.0903

S1 0.2070 0.0198 0.5099 0.0099 0.0263 0.2208 0.4956 0.0220 0.1695

S2 0.0301 0.0082 0.0084 0.0039 0.0048 0.0089 0.4502 0.0056 0.6861

F1 0.0249 0.0119 0.0223 0.0472 0.0121 0.0259 0.4160 0.0179 0.0325

F2 0.0179 0.0171 0.0414 0.0310 0.0137 0.0325 0.4329 0.0161 0.0343

HU 0.04 0.07 0.03 0.06 0.28 0.04 0.25 0.28 0.05

QD 0.04 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.00

The explicit methods had the best computational time (around 0.15 sec-

onds) but were less accurate. The methods based on LCPs spent in mean

3.0 seconds but had an absolute error as low as the methods presented in

Huang et al. (1996) and Sullivan (1997).

The shifted boundary condition was a remarkable improvement over the

regular boundary condition for the transformation to the di�usion equation.

The non-uniform mesh on the method F2 didn't performed well. One

reason is that more re�nement is needed around the free-boundary point, in

order that S = E is no longer the right place to re�ne. This also explains

the good performance of S2 relative to S1 and all other schemes.

A probable reason for the bad performance of most methods at E = $35

and T = 7=12 is the distance of the point S = $40 to the exercise price and

specially from the free boundary (that is around $22). The option price at
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S is relatively closer to the boundary condition at the right (P = 0), what

may cause an under-pricing.

The condition (4.9) gives M � 934 for N = 100 and T = 1=12, and the

choice M = 950 could preserve stability. It suggests that the estimate (4.6)

is still adequate in explicit methods for American options.

The following plot compares the speed of convergence for some of the

methods as in Section 6. We compare X1, S1, S2 and F1. Now the relative

error is calculated with respect to the method BN.

We chose M and N satisfying (4.6) for X1, N =M for F1 and N = 2M

for S1 and S2.

The transformed methods (S1 and S2) kept the same tendency observed

on European option, while the others had a cyclic behavior. The slopes are

steeper than in the methods for the European options, what represents a loss

of convergence order. The explicit method seems to be a good alternative

when its parameters satisfy the stability condition (4.6).
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Figure 9: CPU time � relative error for American options.
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9 Conclusions

Finite-di�erences can be relatively accurate, given that aspects like stability

and choice of a suitable mesh are taken into account. We have proposed

attractive alternatives for both issues based on the standard option pricing

theory and several numerical experiments.

The main achievements were the stability condition (4.6) for explicit

methods, which was accurate for both European and American options, the

non-uniform mesh generated by (5.7), consistent with both �nancial and

mathematical objectives, the extension of the Finite- Element technique sug-

gested in Wilmott et al. (1993) for non-symmetric problems and the shifted

boundary conditions for American option pricing.

The extension of the ideas above to more complex derivatives seems to be

natural. Finite-di�erence features were exported to �nite-elements methods

and could be used in other numerical methods as well.

APPENDICES

Appendix A. Uniqueness of the Optimal Exercise Price

This appendix presents an explicit proof that the optimal exercise price of

an American put option P (S; t) is unique for each t � 0. The arguments are

based on Merton (1973) and Rudin (1976).

We start by observing that the following results from Merton (1973) will

be valid if P (S; t) satis�es the Black-Scholes hypothesis:

P (S; t) � C(S; t)� S + Ee

�r(T�t)

(A.1)

P (S; t) � C(S; t)� S + E (A.2)

P (�S

1

+ (1� �)S

2

; t) � �P (S

1

; t) + (1� �)P (S

2

; t) (A.3)

( 8 S; S

1

; S

2

� 0; 8 t � 0; 8 � 2 [0; 1] )

The inequality (A.3) means that P (S; t) is convex with respect to S.

Lemma A.1 : P (0; t) = E and P (S; t) > (E � S)

+

8 S � E; t > 0

Proof : From the Black-Scholes formula (2.1) and the fact that C(S; t) =

c(S; t) in absence of dividends,

C(S; t) > S � Ee

�r(T�t)

8 S > 0 and t > 0 (A.4)

C(0; t) = 0 (A.5)
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From (A.1) and (A.4),

P (S; t) > 0 = (E � S)

+

8 S � E and t > 0 (A.6)

From (A.2) and (A.5),

P (0; t) � E (A.7)

By (2.7), P (0; t) � E; thus, P (0; t) = E.

Theorem A.1 : If

�

S � E satis�es P (

�

S; t) > (E �

�

S)

+

, then P (S; t) >

(E � S)

+

for any S such that

�

S < S � E.

Proof : Suppose that there is S

0

2 (

�

S;E] such that

P (S

0

; t) = (E � S

0

)

+

= (E � S

0

) (A.8)

As S

0

>

�

S > 0,

�

S = �S

0

= �S

0

+ (1� �)0 for some � 2 (0; 1); therefore,

P (�S

0

+ (1� �)0; t) = P (

�

S; t)

> (E �

�

S)

+

= E � �S

0

+ (1� �)0

> �(E � S

0

) + (1� �)0

= P (S

0

; t) + (1� �)0

(A.9)

From lemma A.1,

P (�S

0

+ (1� �)0; t) > �P (S

0

; t) + (1� �)P (0; t) ; (A.10)

what contradicts (A.3); thus, P (S; t) > (E � S)

+

8 S 2 (

�

S;E].

Theorem A.2 : There exists a unique point S

f

= S

F

(t) such that

(

P (S; t) = (E � S)

+

; S � S

f

(t)

P (S; t) > (E � S)

+

; S > S

f

(t)

(A.11)

Proof : From lemma A.1, P (S; t) = (E � S)

+

for S = 0; thus, the set

I = fS � 0 ; P (S; t) = (E � S)

+

g (A.12)

is nonempty. As P is continuous, the set I is closed and the set

I

c

= fS � 0 ; P (S; t) > (E � S)

+

g ; (A.13)
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the complement of I, is open. By lemma A.1, P (S; t) > (E�S)

+

for S � E;

thus, I

c

is also nonempty. As I

c

is bounded below (0 is a lower bound), it

has an in�mum, i.e., there is a unique S

f

2 I (as I

c

is open) such that

(

S

f

< S 8 S 2 I

c

S

f

� S 8 S 2 I

(A.14)

Therefore, P (S; t) = (E � S)

+

for S � S

f

and P (S; t) > (E � S)

+

for

S

f

< S � E. From theorem A.1, P (S; t) > (E � S)

+

also for S

f

< S � E.

Appendix B. Galerkin Method

Here we present the details of the derivation of (7.19) from the Galerkin

formulation (VI

h

) of the variational inequality (VI).

Let v

h

be an arbitrary element in V

h

given by

v

h

=

n

X

j=1

v

j

'

j

(B.1)

Replacing (B.1), (7.17) in (VI

h

):

a

0

@

n

X

j=1

u

j

'

j

;

n

X

i=1

(v

i

� u

i

)'

i

1

A

�

*

f;

n

X

i=1

(v

i

� u

i

)'

i

+

n

X

i=1

(v

i

� u

i

)

n

X

j=1

u

j

a('

j

; '

i

) �

n

X

i=1

(v

i

� u

i

)hf; '

i

i

Using the notations in (7.20), we have

(y � x)

t

Ax � b

t

(y � x) 8 y � c ; v = (v

i

: : : ; v

n

) (B.2)

Let us rewrite (B.2) in order to get su�cient conditions over x:

u

t

A

t

((y � c)� (x� c)) � b

t

((y � c)� (x� c))

u

t

A

t

(y � c)� b

t

(y � c) � u

t

A

t

(x� c)� b

t

(x� c)

(Ax� b)

t

(y � c) � (Ax� b)

t

(x� c) 8 y � c (B.3)

As (y � c) � 0, we have from (B.3) the following su�cient conditions:

8

>

<

>

:

Ax � b

x � c

(Ax� b)

t

(x� c) = 0

(B.4)
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