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Abstract

Modeling a reected wave by the Kirchho�-Helmholtz integral consists of an in-

tegration along the reector. By this, one sums the Huygens secondary-source contri-

butions to the wave�eld attached to the reector at the observation point. The pro-

posed asymptotic inverse Kirchho�-Helmholtz integral, by which this modeling process

is inverted, works in a completely analogous way. It consists of an integral along the

reection traveltime surface of the reector. For a point on the reector, one sums the

reected-wave contributions attached to the respective reection-traveltime surface as-

sociated with the related source-receiver pair. In this way, the new integral is a more

natural inverse to Kirchho�-Helmholtz forward modeling integral than the conventional

Kirchho� migration integral that is well-known in seismic reection imaging. The new

inverse integral reconstructs the Huygens sources along the reector, thus providing

their positions and amplitudes.

Introduction

The wave�eld originating from a point source and primary-reected from a smooth

reector overlain by a smooth inhomogeneous acoustic medium can be described by

the Kirchho� integral in the single-scattering, high-frequency approximation (see, e.g.,

Bleistein, 1984; Frazer and Sen, 1985). The resulting Kirchho�-Helmholtz integral mod-

els the reected elementary waves as a superposition of Huygens secondary point sources

distributed along the reector. A useful picture of this process is to imagine that the

reector is made up by point-source di�ractors that are individually excited by the in-

coming of the incident wave�eld. The intensity of each of these point di�ractors along

the reector, regarded a weight in the integral, is speci�ed by the Kirchho�-Helmholtz

approximation. It is given by the product of the incident �eld and the plane-wave re-
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ection coe�cient relative to the incident ray that connects the source to the di�raction

point, all these quantities being computed at this point. The wave�elds radiated by all

Huygens point-di�raction sources contribute in form of a constructive interference to the

wave measured at the receiver. The asymptotic evaluation of the Kirchho�-Helmholtz

integral leads to the familiar zero-order ray theory approximation (or geometrical op-

tics solution) of the reected wave�eld at the receiver (Tygel et al., 1994, and references

therein). Upon proper modi�cation of the weight function along the Kirchho�-Helmholtz

integral, a similar representation integral can be constructed to account for the propa-

gation of di�raction waves at edges and corners at the reector (see, e.g, Klem-Musatov

and Aizenberg, 1985; or Tygel and Ursin, 1999). By independent variation of the lo-

cations of the sources and receivers, a multi-coverage experiment can be simulated. In

this paper, we will consider data subsets, from sources and receivers combined into

pairs according to a chosen measurement con�guration. This is typically the situation

in seismic data acquisition. In a so-obtained seismogram section, the primary reections

from a given reector align along the corresponding reection-traveltime surface. This

surface can be interpreted as the kinematic image of the reector in the seismic record

section associated with the chosen con�guration. In other words, we can say that this

surface implicitly results from the evaluation of the Kirchho�-Helmholtz integral. In the

same way, the wave�eld observed along this surface dynamically images the Huygens

sources.

The Kirchho�-Helmholtz integral is largely used to accurately model primary re-

ections in smooth layered models bounded by smooth interfaces (reectors). A natural

question that arises is whether a transformation exists that performs the opposite task

of the Kirchho�-Helmholtz integral. In other words, this inverse would have to kine-

matically and dynamically reconstruct the reector. To be consistent with the forward

process, this inverse would have to involve a weighted superposition of the observed

elementary wave along the reection traveltime surface of the searched-for reector. To
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kinematically and dynamically reconstruct the reector means to asymptotically recover

the reector location together with the plane-wave reection coe�cient in each point

of the reector. In seismics, this is commonly called the true amplitude at all reector

points.

The problem of reconstructing a subsurface reector out of seismic reection

records on a given con�guration is called in the seismic literature the depth-migration

problem (see, e.g., Stolt, 1978). The depth migration method that is traditionally ac-

cepted as a practical inverse (or adjoint) to the Kirchho�-Helmholtz integral is Kirchho�

depth migration (Porter, 1970; Schneider, 1978; Burridge and Beylkin, 1988; de Hoop

and Bleistein, 1997). It is realized by summing the contributions of the reection data

along auxiliary di�raction surfaces constructed on an a priori given reference model.

The basic idea of Kirchho� depth migration is that points on the reector give rise

to di�raction traveltime surfaces, constructed in the reference model, that are tangent

to the corresponding observed primary reection traveltime surfaces. Because of phase

coherence along the tangential region, the summation process accumulates construc-

tively interfering signals. In this way, it provides a signi�cantly larger amplitude than

the counterpart amplitudes that are obtained when the summation process is carried

out for point-di�raction surfaces away from the reectors. Each di�raction traveltime

surface refers to a speci�c point in depth, on which the resulting summed amplitude is

assigned. Performing the above procedure to a �ne grid on depth provides the subsurface

depth-migration image.

From the above descriptions of the Kirchho�-Helmholtz integral and Kirchho�

depth migration, we readily realize that both methods are structurely very di�erent.

The former is amodeling process that uses the actual reector as a superposition integral.

The latter is an imaging process that superposes the data along prescribed surfaces con-

structed on a reference model. As shown in Hubral et al. (1996) and Tygel et al. (1996),
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Kirchho� depth migration is the (asymptotic) inverse of a di�erent operation called

Kirchho� demigration, realized by summation along depth-domain surfaces (isochrons)

constructed on the same reference model.

So far, the Kirchho�-Helmholtz integral, a summation operator along a given

reector, lacks a structurely similar (asymptotic) inverse operation. This should have

the form of a summation operation along the reection traveltime corresponding to the

reector, assuming, of course, the same con�guration of source-receiver pairs.

This is being set up in this paper by exploring the dual properties between

the given reector and its corresponding traveltime surface. The resulting new inverse

Kirchho�-Helmholtz integral is then completely analogous to the well-known forward-

modeling Kirchho�-Helmholtz integral.

Formulation of the problem

To formulate the Kirchho�-Helmholtz integral transformation pair, we make the

following assumptions about the model, as well as some basic properties of the 3-D

wave-propagation involved. A �xed global 3-D Cartesian (x; z) coordinate system is

assumed throughout. Here, x denotes the 2-D, horizontal coordinate vector and z is the

vertical coordinate increasing in the downward direction.

� Referring to Figure 1, we assume the model to consist of a smoothly varying inho-

mogeneous acoustic medium, bounded above and below by two smooth surfaces.

The upper one is the measurement surface and the lower one is the target re-

ector, to which we will simply refer as �. For simplicity, we suppose that the

measurement surface coincides with the horizontal plane z = 0. The reector �

is, also for simplicity, assumed to be parameterized as z = �(x), in which x varies

on a given planar set E, called the spatial aperture of the reector. Points on the
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reector will be generally denoted by M

�

= M

�

(x) = (x; z = �(x)) with x in E.

� A dense distribution of sources and receivers is speci�ed in a certain area of

the planar measurement surface z = 0. The sources and receivers are grouped

in pairs as described by the measurement con�guration involved. The locations

of the source-receiver pairs are given as a function of a two-dimensional vector

parameter � that varies in a given planar set A, called the con�guration aperture.

In other words, each source at point S = S(�) = (x

S

(�); 0) corresponds to exactly

one receiver at position G = G(�) = (x

G

(�); 0) with � in A.

� For each source-receiver pair (S;G), we suppose that there exists one and only

one point M

�

= M

�

(�) = M

�

(x

�

(�)) on the reector �, for which the composite

ray SM

�

G constitutes a specular primary reection. The dependency x

�

= x

�

(�)

implies that the location of the specular reection point M

�

is determined by the

location of the source-receiver pair (S;G), which in turn is speci�ed by �. We will

denote by R(M

�

) the plane-wave reection coe�cient for the ray SM

�

G at M

�

.

� The function t = �(�), for varying � in A, describes the reection traveltime

from the source S(�) to the receiver G(�) along the primary-reection ray SM

�

G.

This function is called the reection-traveltime surface � of the reector �. Both

surfaces are said to be dual of each other. Points on the traveltime surface � will

be denoted by N

�

= N

�

(�) = (�; t = �(�)).

� For each pointM

�

on the reector �, we correspondingly assume that there exists

one and only one source-receiver pair (S

�

; G

�

) for which the composite ray S

�

M

�

G

�

pertains to a specular primary reection atM

�

. This pair (S

�

; G

�

) is parameterized

by the unique parameter value �

�

= �

�

(x), which depends on the horizontal

coordinate x ofM

�

. We will denote by R(M

�

) the plane-wave reection coe�cient

for the ray S

�

M

�

G

�

at M

�

. Also, the notation N

�

= N

�

(x) = N

�

(�

�

(x)) will be
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used for a point on � pertaining to �

�

, i.e., to the �xed source-receiver pair

(S

�

; G

�

).

� At any speci�ed point S, on the measurement surface z = 0, we will consider

an exploding point source with a certain source signal that is the same for all

sources under consideration. Its time dependence can be described by an analytic

pulse F (t) that may have a limited bandwidth. The e�ects of limited bandwidth,

however, do not inuence the analysis carried out in this paper and need not be

considered here. Therefore, we will omit the dependency on F (t) and use the delta

function, �(t) as the source pulse. We remind that to �nd the response of a source

pulse F (t) we only need to convolve the result with this pulse function.

Under the above assumptions, the zero-order ray-theory provides the following

description of a primary reected elementary wave: For every source-receiver pair (S;G)

speci�ed by �, the reection event at the receiver is described in analytic form by

K

�

(�; t) = A(N

�

) �(t� �(�)) ; (1)

where A(N

�

) is the amplitude found in the seismic trace at N

�

= (�; t = �(�)). It is

given by

A(N

�

) =

R(M

�

)

L(M

�

)

: (2)

In the above formula, the amplitude factors R(M

�

) and L(M

�

) are the plane-wave re-

ection coe�cient atM

�

and the geometrical-spreading factor pertaining to the specular

reection ray SM

�

G.

We see that K

�

(�; t) is aligned along the reection-traveltime surface � as de�ned

above. We may say thatK

�

(�; t) is the image of the reector � in the time domain under

the given measurement con�guration. In other words, the imageK

�

(�; t) describes what

we can observe about the reector in the recorded reected wave�eld.
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We next introduce the function I

�

(x; z), which is aligned along the reector �

according to the formula

I

�

(x; z) = R(M

�

) �(z � �(x)) ; (3)

The function I

�

(x; z) in equation (3) is very much related to the singular function of

the reector, introduced by Cohen and Bleistein (1979). It is de�ned here, however, in

a true-amplitude sense, i.e., with the varying reection coe�cient along the reector as

its amplitude. For that reason, it will be called the true-amplitude singular function of

the reector �. In the same way, the function K

�

(�; t) in equation (3) will be referred

to as the true-amplitude singular function of the reection-traveltime surface �.

The function I

�

(x; z) can be conceived as the result of a true-amplitude depth

migration (Schleicher et al., 1993) of the time-domain reector image K

�

(�; t). Analo-

gously, the function K

�

(�; t) can be conceived as the result of a true-amplitude demi-

gration (Hubral et al., 1996) of the depth-domain reector image I

�

(x; t).

Due to the above observations, we may state that each point N

�

on � is associated

to a single point M

�

on � and each point M

�

on � is associated to a single point N

�

on

�. The relation between these points is established upon the consideration of the two

corresponding specular reection rays SM

�

G and S

�

M

�

G

�

, respectively. Thus, points

on � and � enjoy a duality relationship. The two fundamental singular functions I

�

(x; t)

and K

�

(�; t) can, correspondingly, be called dual functions of each other. Tygel et al.

(1995) have shown that other useful duality relationships also exist between the above

functions (see Appendix A for a brief description). These relations will be needed to

derive the inverse Kirchho�-Helmholtz integral.
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Diffraction traveltimes and spatial isochrons

For arbitrary vector parameters � in A and arbitrary subsurface pointsM = (x; z),

we introduce the di�raction traveltime surface

t = T (�;x; z) = T (�;M) = T (S(�);M) + T (G(�);M) ; (4)

namely the sum of traveltimes from the source and receiver pair speci�ed by � to the

subsurface point M . The above formula expresses the traveltimes from the di�ractor

point M to the source-receiver pairs speci�ed by varying �. This explains the adopted

terminology.

The reection traveltime surface t = �(�) of the given reector � can be, as a

consequence, recast as

t = �(�) = T (�;M

�

) = T (�;x

�

;�(x

�

)) ; (5)

where the horizontal vector coordinate x

�

= x

�

(�) locates the reection point M

�

=

(x

�

;�(x

�

)) on � in dependence on the source-receiver pair speci�ed by �.

We next consider the spatial counterparts of the traveltime functions de�ned

above. For any x in E and arbitrary points N = (�; t) in the record space, we in-

troduce the isochron function z = Z(x; �; t). This surface is the locus of depth points

M

Z

for which the di�raction traveltimes to the source-receiver pairs speci�ed by varying

� equal the given traveltime t. This is the reason for the terminology isochron (equal

time) function. In symbols, points M

Z

= (x;Z(x; �; t)) on the isochron are implicitly

de�ned by the condition

T (�;M

Z

) = T (S(�);M

Z

) + T (G(�);M

Z

) = t : (6)

We assume throughout this paper that for all x in E, for all � in A and for all t under

consideration, isochrons z = Z(x; �; t) de�ned by condition (6) exist as unique, smooth
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functions. This, of course should impose restrictions on the shape of the reector, as well

as on the measuring con�guration. These matters will not be addressed in the present

work.

An important observation is that the reector function z = �(x) can be recast as

a restriction of the above isochron function, namely

z = �(x) = Z(x; N

�

) = Z(x; �

�

;�(�

�

)) ; (7)

where �

�

= �

�

(x) is the vector parameter that speci�es the source-receiver pair S

�

and

G

�

for which the two ray segments S

�

M

�

and M

�

G

�

constitute a reection ray.

As described in Tygel et al. (1995) and briey reviewed in Appendix A, di�rac-

tion traveltime surfaces t = T (�;x;�(x)), for �xed x, and isochron surfaces z =

Z(x; �;�(�)) for �xed � are connected by duality relationships. The di�raction-

traveltime surface for a �xed point M

�

(x) is tangent to � at the (supposedly unique)

point N

�

(x) = N

�

(�

�

(x)) de�ned by ray S

�

M

�

G

�

as explained above. We call N

�

the

dual point to M

�

. Correspondingly, the isochron surface for a �xed point N

�

(�) on �

is tangent to � at the (supposedly unique) point M

�

(�) = M

�

(x

�

(�)). We call M

�

the

dual point to N

�

. Note that the duality relationship is reciprocal, i.e., x

�

(�

�

(x)) = x

and �

�

(x

�

(�)) = �. In other words, M

�

= M

�

if and only if N

�

= N

�

. Further relation-

ships between the inclinations and curvatures of � and � at a pair of dual points are

established in Appendix A.

The Kirchhoff-Helmholtz integral pair

In this section, we analyze the forward Kirchho�-Helmholtz integral geometrically

and analytically with the aim of constructing its structurally equivalent inverse in the

most natural way.
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The forward Kirchho�-Helmholtz integral

Let be given the one-reector model and source-receiver speci�cation as described

in the previous sections. The reected response K(�; t) of the acoustic reector � due

to a �-type point source at S(�) and observed at the receiver G(�), can be modeled by

the classical forward KH integral (Frazer and Sen, 1985; Tygel et al., 1994)

K(�; t) =

1

4�

Z

d�W

K

(�;M

�

) R

S

(M

�

) @

�

�(t� T (�;M

�

)) : (8)

In this surface integral over the reector �, R

S

(M

�

) denotes the plane-wave reection

coe�cient of the incident ray that connects the source S(�) to the point M

�

on the

reector. Moreover, @

�

denotes the partial derivative in the direction of the normal �

to the surface � at M

�

. Finally, W

K

(�;M

�

) is the weight function

W

K

(�;M

�

) =

1

L

S

(M

�

)L

G

(M

�

)

; (9)

where L

S

(M

�

) and L

G

(M

�

) denote the point-source geometrical-spreading factors along

the two ray segments from the source S to the point M

�

and from there to the receiver

G. The asymptotic evaluation of the KH integral can be shown to produce the true-

amplitude singular function K

�

(�; t) of the traveltime surface � (see, e.g., Tygel et al.,

1994). This is briey reviewed in Appendix B.

As mentioned before, the KH integral expresses the wave�eld observed at G(�) as

a superposition of the wave�elds produced by di�raction point sources distributed at

the reector. These are excited by the incidence point-source wave�eld that originates

from S(�). The use of plane-wave reection coe�cients R

S

(M

�

) is based on the physical

idea that, at each reector point M

�

on the reector, the incident wavefront and the

reector can be approximated by their respective tangent planes.

For reasons that will become clear later, it is useful to consider a modi�ed ver-

sion of the classical KH integral. As we will see below, integral (8) does not change
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its asymptotic value if we replace the plane-wave reection coe�cient R

S

(M

�

) of the

incident ray segment SM

�

by the specular reection coe�cient R(M

�

) that pertains

to the reection ray determined by M

�

as introduced above. The reason is that at the

stationary point of integral (8), both are identical. Thus, we may approximate K(�; t)

by

K(�; t) '

1

4�

Z

d�W

K

(�;M

�

) R(M

�

) @

�

�(t� T (�;M

�

)) : (10)

As shown in Appendix B, the asymptotic evaluations of both the KH integral (8) and

its modi�ed version (10) produce the true-amplitude singular function K

�

(�; t) of the

traveltime surface �.

It should be noted that, besides being based on a more intuitive physical idea,

the classical KH integral, is certainly much better suited for actual computations. This

is because the use of the stationary value of the reection coe�cient R(M

�

) would

require a costly determination of the reection ray that pertains to each point M

�

on

the reector, which is avoided in the classical KH integral. The modi�ed KH integral

(10), however, is worthwhile to consider from a theoretical point of view, because it

provides an immediate (asymptotic) transformation link between the true-amplitude

singular functions of the reector � and of its corresponding traveltime surface �. This

link will be the key to the determination of the inverse KH integral.

Note also that the amplitude of the function to be integrated is just the ampli-

tude of the singular function I

�

(x; t) of the reector. In asymptotic evaluation, where

the normal derivative of R(M

�

) can be neglected, the integrand of equation (10) is

nothing else than the normal derivative of the singular function I

�

(x; t) of the reector,

multiplied with a weight function.

As an important step to design an asymptotic inverse KH integral, let us now

interpret integral (10) geometrically. Referring to Figure 2, we consider a certain �xed

value � = �

R

, where we want to compute the modi�ed KH integral (10) as a function
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of time. Clearly, �

R

de�nes a point N

R

= N

�

(�

R

) = (�

R

;�(�

R

)) on �. Let (S

R

; G

R

)

be the unique source-receiver pair speci�ed by �

R

. We denote by M

R

the (supposedly

unique) reection point on � which pertains to the source-receiver pair (S

R

; G

R

), i.e.,

M

R

= M

�

(x

R

), where x

R

= x

�

(�

R

). Obviously, M

R

is the dual point to N

R

, i.e., also

M

R

= M

�

(�

R

). The point M

R

, on its turn, de�nes a di�raction traveltime surface that

is tangent to the reection traveltime surface � at a supposedly unique point. This

tangent point is again point N

R

, the dual point to M

R

, i.e., N

R

= N

�

(x

R

). Note that

the traveltime surface � (dashed line in Figure 2 is a priori unknown. It will become

known only by a repeated execution of integral (10) for all � in A.

For each point M

�

on the reector, the integrand in equation (10) contributes

to the �nal response K(�

R

; t) at a single point N

K

= (�

R

; T (�

R

;M

�

)). Recall that

T (�

R

;M

�

) is de�ned in equation (4) as the sum of traveltimes along the ray segments

S

R

M

�

and M

�

G

R

. In other words, N

K

is the point where the di�raction traveltime

surface t = T (�;M

�

), cuts the vertical line at �

R

(see Figure 2). The surface t =

T (�;M

�

) is given by all traveltimes along the rays from any source-receiver pair (S;G)

to point M

�

.

The point N

K

will fall onto �, i.e., it will coincide with point N

R

, the dual point

to M

R

, when M

�

coincides with M

R

. At N

R

, the di�raction traveltime surface of M

R

,

t = T (�;M

R

), is tangent to �. Due to our assumption that the reector � is continuous

and smooth, we thus have a stationary situation at N

R

, which means that the main

contribution of the integrand in equation (10) will be observed at that point. In other

words, the modi�ed KH integral (10) transforms the singular function of reector �

onto its image at �. The weight function W

K

(�;M

�

), computed at � = �

R

, serves to

perform this transformation in a dynamically correct way, i.e., yielding the correct wave

amplitude and pulse shape at N

R

.
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The inverse Kirchho�-Helmholtz integral

To set up an analogous integral that achieves the inverse task, namely to recon-

struct the singular function of the reector � from its image at �, our strategy will be

to substitute in the above modi�ed KH integral (10) all points and surfaces by their

respective duals. This is geometrically described with the help of Figure 3.

The new KH inverse will consist of an integration along the reection-traveltime

surface �, as opposed to its KH forward counterpart (10) that involves an integration

along the reector �. In analogy with the preceding construction, we consider the output

of the integration at a certain, �xed coordinate x = x

R

, which determines a point

M

R

=M

�

(x

R

) on �. By means of a reection ray, it also determines a dual point N

R

=

N

�

(x

R

) = N

�

(�

R

) on �. Here, the value of the parameter �

R

is given by �

R

= �

�

(x

R

).

The isochron of N

R

will be tangent to � at M

R

= M

�

(�

R

).

For each point N

�

on �, the new integrand should contribute to the output result

I(x

R

; z) at a single point M

I

, namely the intersection between the isochron of N

�

,

z = Z(x; N

�

), and the vertical line at x

R

. In symbols, M

I

= (x

R

;Z(x

R

; N

�

)).

The point M

I

will fall on �, i.e., it will coincide with M

R

, when N

�

coincides with

N

R

, the dual point of M

R

. At M

R

, the isochron z = Z(x; N

R

) is tangent to �. Due to

our assumptions of a smooth reector and uniqueness of dual points, we have again the

situation of an isolated stationary point atM

R

, which means that the main contribution

of the new integral will be observed at M

R

. As before, the reector � (dashed line in

Figure 3) is a priori unknown. It will become known only by a repeated execution of the

above process for all x in E. In this way, we have geometrically constructed a kinematic

transformation of the reection-traveltime function � into the reector �.

In the same way as the amplitude of the function to be integrated in equation (10)

is that of the singular function I

�

(x; z) of the reector, multiplied with an appropriate

14



weight function, it is most natural to set the amplitude of the integrand in the inverse

integral to be that of the singular function K

�

(�; t) of the reection-traveltime surface

�, multiplied with a corresponding, yet unspeci�ed weight function. Analogously to the

weight function W

K

(�;M

�

) in the forward KH integral (10), the new weight function,

W

I

(x; N

�

), will be included into the inverse integral in order to assure that also this

inverse transformation can be performed in a dynamically correct way, i.e., to correctly

reconstruct the varying reection coe�cient along the reector �. Similarly to the for-

ward KH integral, the correct pulse shape will be ensured by the use of a derivative of

the involved �-pulse in the direction normal to �.

Translating the above arguments into mathematical terms and in full correspon-

dence to the modi�ed KH integral (10), we can now set up the proposed inverse KH

integral as

I(x; z) = �

1

4�

Z

d�W

I

(x; N

�

) A(N

�

) @

�

�(z �Z(x; N

�

)) : (11)

In this formula, @

�

denotes, correspondingly to @

�

in equation (10), the partial deriva-

tive in the direction of the normal � to the traveltime surface � at the generic point

N

�

= (�;�(�)) that describes the integral. The point N

�

, by means of the con�guration

parameter �, automatically determines the source-receiver pair (S;G), where S = S(�)

and G = G(�). As previously, let us denote by M

R

the (unique) specular reection

point on the reector pertaining to the source-receiver pair (S;G) de�ned by �. From

the analysis carried out in Appendix B, it follows that the weight function can be

selected as

W

I

(x; N

�

) =

h

B

(�;M

I

) v

3

(M

I

) cos

2

�(M

I

)

cos

2

�(M

I

)

L

S

(M

I

)L

G

(M

I

) : (12)

Here, M

I

is the point (x; z = Z(x; N

�

)), where the isochron z = Z(x; N

�

) of N

�

cuts

the vertical line at M

R

(see Figure 3). Also, v(M

I

) is the medium velocity at M

I

and

L

S

(M

I

) and L

G

(M

I

) are the point-source geometrical-spreading factors along the ray
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segments SM

I

and M

I

G, respectively. Moreover, �(M

I

) represents the angle the normal

to � at N

�

makes with the vertical t-axis), and �(M

I

) denotes the incidence angle that

the incoming ray SM

I

makes with the isochron normal at M

I

(see Figure 3). Finally,

h

B

(�;M

I

) is the modulus of the Beylkin determinant (Beylkin, 1985; Bleistein, 1987),

h

B

(�;M

I

) =

2

6

6

6

6

6

4

rT (�;M

I

)

@

�

1

rT (�;M

I

)

@

�

2

rT (�;M

I

)

3

7

7

7

7

7

5

; (13)

where r = (@

x

1

; @

x

2

; @

z

) is the spatial gradient operator.

As shown in Appendix B, the forward KH integrals (8) and (10), as well as the new

inverse KH integral (11), can be asymptotically evaluated by the time-domain version

of the standard stationary-phase method, as described, e.g., in Bleistein (1984). The

KH forward integrals (8) and (10) can be approximated, for time values t � �(�) as

K(�; t) � K

�

(�; t) = A(N

�

) �(t� �(�)) ; (14)

namely, the true-amplitude singular function of the traveltime surface �.

Correspondingly, the new KH inverse integral (11) can be asymptotically approx-

imated for spatial values z � �(x) as

I(x; z) � I

�

(x; z) = R(M

�

) �(z � �(x)) ; (15)

i.e., the true-amplitude singular function of the reector �.

This means that integral (11) is the (asymptotic) inverse to the modi�ed KH

integral (10), and thus also to the classical forward KH integral (8), since the latter is

asymptotically equivalent to integral (10). The integrals (8) (or (10)) and (11) form an

asymptotic transform pair between the depth-domain true-amplitude singular function

I

�

(x; z) of the reector � and its corresponding time-domain true-amplitude singular

function K

�

(�; t) of the traveltime surface �.
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A simple numerical example

To verify the validity of the inverse Kirchho�-Helmholtz integral (11), we have

designed the following simple numerical experiment. A seismic common-o�set exper-

iment with a half-o�set of h =500 m was simulated above the earth model depicted

in Figure 4. It consists of two homogeneous acoustic layers with constant velocities of

4 km/s and 4.5 km/s, respectively, separated by a smooth interface in the form of a

dome structure. The terminology \common-o�set experiment" means that all source-

receiver pairs involved are separated by the same �xed o�set of 2h = 1000 m. More

speci�cally, the location of each source and each receiver can be expressed as x

S

= ��h

and x

G

= � + h, where parameter � is the midpoint coordinate, i.e., � = (x

S

+ x

G

)=2.

Figure 5a shows the common-o�set data as modeled by the forward integral (8).

For an easier analysis, we have convolved the results of integral (8) with a Ricker wavelet

of unit peak amplitude and a duration of 64 ms. Also indicated in Figure 5a is the

reection traveltime curve as the locus of the peak amplitudes of the time-symmetric

Ricker wavelet used in the numerical modeling. Along this identi�ed traveltime curve, we

now perform the new inverse Kirchho�-Helmholtz integral (11). The result is shown in

Figure 5b. The inversion results show that the obtained wavelets align perfectly along

the reector that is indicated by a continuous line. This con�rms that integral (11)

performs the inversion task in a kinematically correct way (i.e., it correctly positions

the reector in depth).

To check on the dynamics, we determine the obtained peak amplitudes and com-

pare them to the correct reection coe�cient (see Figure 6a). We observe an almost

perfect coincidence between the inverted amplitudes (thin line) and the theoretical curve

(bold line) within the center region of the dome structure. On both anks, a slightly

larger error can be observed. This is due to the reduced illumination of this part of
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the reector, caused by the employed measurement con�guration. In Figure 6b, this

observation is quanti�ed by the relative error of the observed amplitudes. In the central

region, the error does not exceed half a percent. In the less well-illuminated parts of the

reector, we still have errors less than four percent, an also good amplitude recovery.

These results (and other numerical experiments not shown in this paper) con�rm our

claim that integral (11) constitutes indeed an asymptotic inverse to the well-known

forward Kirchho�-Helmholtz integral (8).

Conclusions

We have presented an analogous (asymptotic) inverse to the well-known forward

Kirchho�-Helmholtz (KH) integral. Just as the forward KH integral can be conceived

as a superposition of the elementary responses of all Huygens secondary sources along

the reector, we can conceive its inverse as a superposition of \elementary reection

images" along the reection-traveltime surface. The elementary Huygens sources along

the reector are then recovered in position and strength.

For a given distribution of source-receiver pairs (the measurement con�guration)

that provides the \illumination" of the reector, we have introduced the concepts of

the true-amplitude singular functions of the reector and its corresponding reection-

traveltime surface. These are nothing else than �-functions localized on the two surfaces

multiplied by specular reection coe�cients (at the reector) and zero-order ray re-

sponses (at the reection-traveltime surface). The new KH transform pair provides an

(asymptotic) link between the true-amplitude singular functions of the reector and its

reection-traveltime surface. The new inverse KH integral was constructed using the

fundamental dual properties that relate primary-reection surfaces of the time-domain

data space and their corresponding depth-domain reectors in model space. By a simple

numerical example, we have con�rmed that the new inverse Kirchho�-Helmholtz inte-
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gral indeed recovers the reection coe�cients along the reecting interface as claimed

theoretically.

The new inverse integral also �lls a gap which originates from the observation

that the conventional Kirchho� migration integral (Schneider, 1978), well known in the

seismic literature and frequently used to solve the inverse problem, is not an inverse

but the adjoint operation to the forward KH integral (Tarantola, 1984). In fact, the

structurely correct inverse to Kirchho� migration has also been recently provided under

the name of the Kirchho� demigration integral (Hubral et al., 1996; Tygel et al., 1996).

The proposed inverse KH integral enables the design of a new seismic migration

technique that would deserve the name Kirchho� migration much more than what is up

to now associated with this name. Note, however, that conventional Kirchho� migration

has done an excellent job in practice. Whether the new inverse Kirchho�-Helmholtz

integral can be employed with comparable success in practical seismic inverse problems

remains a topic of future research.
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APPENDIX A

Complete Duality Theorems

In this Appendix, we revisit the �rst and second duality theorems of Tygel et al.

(1995) that provide fundamental geometrical relationships between a reector � and

its corresponding primary reection traveltime surface �. As these relationships are

crucial to the derivation of practically all the results presented in this paper, we �nd it

convenient to briey state and comment them here.

As established in the text, we consider a given con�guration of source-receiver

pairs (S;G), speci�ed by their dependence on a vector parameter �. The family of

rays from each S to a corresponding G under reection from a reector � de�nes the

reection-traveltime surface �.

The duality theorems to be stated below relate tangents and normals (�rst-order

derivatives) and curvatures (second-order derivatives) of the reector �: t = �(x) and

its reection-traveltime surface �: t = �(�), called throughout the fundamental dual

surfaces. The relationships between the fundamental dual surfaces are given in terms

of auxiliary surfaces, namely the isochrons �

�

: z = Z(x; N

�

) and the di�raction trav-

eltimes �

�

: t = T (�;M

�

). Note that the latter are, in an analogous sense, also dual to

each other. With the above de�nitions, we are ready to state the duality theorems.

First duality theorem

(a) For any given point M

�

on the reector �, its corresponding di�raction traveltime

surface �

�

is tangent to the reection traveltime � at a unique point N

�

.

(b) For any given point N

�

on the reection traveltime �, its corresponding isochron
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surface �

�

is tangent to the reector � at a unique point M

�

.

The pointsM

�

and N

�

orM

�

and N

�

in (a) and (b) are called dual points of each other.

From now on, we will refer to an arbitrary pair of dual points M

R

and N

R

.

(c) For � in A and x in E, we de�ne the partial-derivative functions

m

D

= @

z

T (�;x; z) and n

I

= @

t

Z(x; �; t) : (A-1)

Then, at any pair of dual points

m

D

� n

I

= 1 : (A-2)

(d) For the dual points M

R

and N

R

, let S and G denote the source-receiver pair asso-

ciated to them. Considering the reection ray SM

R

G, let � be the angle the incident

ray SM

R

makes with the normal of � at M

R

, let � be the angle between the normal to

� at M

R

and the vertical axis and let v be the velocity of the medium just above M

R

.

Finally, let � denote the angle the normal to � makes with the t-axis at N

R

. Using the

same notation as above, the following expressions are valid at the dual points M

R

and

N

R

m

D

= @

z

T =

2 cos�

R

cos �

R

v

R

; (A-3)

@

�

T =

m

D

cos �

R

=

2 cos�

R

v

R

; (A-4)

and

@

�

Z =

n

I

v

R

cos �

R

=

1

2 cos�

R

cos �

R

cos �

R

: (A-5)

Here, @

�

and @

�

denote the derivative in the direction of the normals � and � to the

reector and the reection-traveltime surface, respectively. Equations (A-4) an (A-5)

follow directly from geometrical considerations. Note that the time coordinate axis has

to be scaled with the local velocity v

R

= v(M

R

) in order to have a well-de�ned normal

derivative @

�

Z.
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Second duality theorem

Let us introduce the 2� 2 spatial Hessian matrices

�

�

(x) =

 

@

2

�(x)

@x

i

@x

j

!

and Z

�

(x; �; t) =

 

@

2

Z(x; �; t)

@x

i

@x

j

!

(A-6)

of the reector and isochron, respectively. In the same way, we introduce the 2 � 2

traveltime Hessian matrices

�

�

(�) =

 

@

2

�(�)

@�

i

@�

j

!

and H

�

(�;x; z) =

 

@

2

T (�;x; z)

@�

i

@�

j

!

(A-7)

of the reection and di�raction-traveltime surfaces, respectively. We also introduce the

\auxiliary isochron function" Z

�

as the restriction of the isochron function to points N

�

on the traveltime surface � of the reector �, i.e.,

Z

�

(x; �) = Z(x; N

�

) = Z(x; �;�(�)) (A-8)

with its 2� 2 Hessian matrix

Z

�

�

(x; �) =

 

@

2

Z

�

(x; �)

@�

i

@�

j

!

: (A-9)

In the same way, we introduce the \auxiliary traveltime function" T

�

as the restriction

of the di�raction traveltime function to points on the reector, i.e.

T

�

(�;x) = T (�;M

�

) = T (�;x;�(x)) (A-10)

with its 2� 2 Hessian matrix

H

�

�

(�;x) =

 

@

2

T

�

(�;x)

@x

i

@x

j

!

: (A-11)

Additionally, the auxiliary traveltime function T

�

gives rise to its 2�2 mixed-derivative

matrix

�

�

(�;x; z) =

 

@

2

T

�

(�;x)

@�

i

@x

j

!

: (A-12)
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Finally, we will also need the 3� 3 mixed derivative matrix

H

�

B

(�;x; z) =

0

B

B

B

B

B

@

r

x

T (�;x; z)

@

�

1

r

x

T (�;x; z)

@

�

2

r

x

T (�;x; z)

1

C

C

C

C

C

A

(A-13)

of the unrestricted di�raction-traveltime function T (�;x; z).

At a pair of dual points M

R

and N

R

, the second duality theorem states then the

following relationships between the above matrices:

H

�

��

�

=�

�

H

�

�1

�

�

�

T

; (A-14)

H

�

�

= m

D

(�

�

�Z

�

) ; (A-15)

and

Z

�

�

=

1

m

D

h

�

�

�H

�

i

= �

1

m

D

�

�

H

�

�1

�

�

�

T

: (A-16)

Here and in the following, a matrix symbol without argument stands for the respective

matrix evaluated at M

R

and N

R

.

A useful relationship can also be obtained after elimination ofH

�

�

in equations

(A-14) and (A-15), namely

m

D

(H

�

��

�

) =�

�

(�

�

�Z

�

)

�1

�

�

T

: (A-17)

Moreover, we have the additional relationship

det�

�

=

detH

�

B

m

D

; (A-18)

where detH

�

B

is the Beylkin determinant (Beylkin, 1985; Bleistein, 1987). Note that

the quantity h

B

= j detH

�

B

j appears in the weight function (12) of the new inverse KH

integral.

It is to be reminded that the �rst duality theorem and equations (A-14), (A-15),

(A-17) and (A-18) have been proved in Tygel et al. (1995). The new equation (A-16)
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is derived below. With the inclusion of this last equation, we call the above results the

complete duality theorems.

Analysis of the isochron: Proof of equation (A-16)

In this section, we present a proof of the new result (A-16) of the second duality

theorem. Recalling that M

Z

(x; �) = (x;Z(x; N

�

)) is a point on the isochron de�ned by

N

�

, we start from the identity

T (�;M

Z

(x; �)) = �(�) : (A-19)

Di�erentiate both sides with respect to �

j

(j = 1; 2) using the chain rule to obtain

@T

@�

j

+ @

z

T (�;M

Z

)

@Z

�

@�

j

=

@�

@�

j

: (A-20)

At the stationary point N

R

, we have

@Z

�

=@�

j

= 0 ; (A-21)

which leads to the well-known tangency property between the reection-traveltime and

di�raction surfaces

@T

@�

j

=

@�

@�

j

: (A-22)

The above result is nothing else than part (a) of the �rst duality theorem. We next

di�erentiate both sides of equation (A-20) with respect to �

i

using again the chain rule.

At the stationary point N

R

, we �nd upon the use of the condition (A-21)

@

2

T

@�

i

@�

j

+ @

z

T (�;M

R

)

@

2

Z

�

@�

i

@�

j

=

@

2

�

@�

i

@�

j

: (A-23)

Dividing by m

D

= @

z

T (�;M

R

), we obtain

@

2

Z

�

@�

i

@�

j

=

1

m

D

"

@

2

�

@�

i

@�

j

�

@

2

T

@�

i

@�

j

#

; (A-24)

which, in the previous notation, is exactly the left-hand equation of formula (A-16). The

right-hand equation follows directly from equation (A-14). The proof is, thus, complete.
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APPENDIX B

Asymptotic evaluation of the integrals

The forward and inverse KH integrals can be asymptotically approximated by

means of the time-domain version of the standard technique of stationary-phase (see,

e.g., Bleistein, 1984) that is designed for the high-frequency evaluation of Fourier-type

integrals. By means of these evaluations, the weight expressions of the KH integrals, as

stated in the text, will be derived.

Asymptotic evaluation of the forward KH integral

In this section, we asymptotically evaluate the forward KH integral (8) at a �xed

point �

R

(see Figure 2). For that purpose, we translate the high-frequency, stationary-

phase results of Bleistein (1984) to the time domain. In this way, the leading term of

the asymptotic evaluation of the forward KH integral is readily found to be

K

as

(�

R

; t) =

R(M

R

)

2L

S

(M

R

)L

G

(M

R

) cos�

R

e

i� (2��)=4

q

jH

�

j

@

�

T (�

R

;M

R

) �(t� �(�

R

)) ; (B-1)

where M

R

= M

�

(x

R

) is the (unique) specular reection point on the reector �. It

pertains to the source-receiver pair speci�ed by the given con�guration vector parameter

�

R

. Here, x

R

= x

�

(�

R

) is the stationary point of integral (10). Observe that due to the

duality, M

R

= M

�

(�

R

). Moreover, �

R

is the angle the normal to the reector makes

with the vertical axis at M

R

. Finally, � and H

�

are the signature and the determinant,

respectively, of the Hessian matrix of the auxiliary traveltime T

�

(�;x), as de�ned by

equation (A-10), evaluated at (�

R

;x

R

). Note that equation (B-1) is the result of the

asymptotic evaluation of both the classical forward KH integral (8) and its modi�ed

version (10), because at the stationary point M

R

, we have R

S

(M

R

) = R(M

R

).
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The matrixH

�

�

plays an important role in the investigation of what is the re-

ector region in the vicinity of the reection point that mainly contributes under the

illumination of a given source-receiver measurement con�guration. The projection of

this matrix onto the tangent plane to the reector at the reection point is referred to

as the Fresnel matrix corresponding to this point. As was shown in Hubral et al. (1992),

this projected matrix de�nes the size of the Fresnel zone.

We now recall the fact that (see equation (A-4))

@

�

T (�;M

R

) =

2 cos�

R

v

R

; (B-2)

is nothing else than the well known obliquity factor in the classical KH integral. Here,

v

R

is the local velocity and �

R

is the specular reection angle at M

R

. Substituting the

above expression into the KH integral asymptotic evaluation (B-1), we can recast it in

the form of a zero-order ray theory approximation

K

as

(�

R

; t) =

R(M

R

)

L(M

R

)

�(t� �(�

R

)) = A(N

R

) �(t� �(�

R

)) : (B-3)

Observe that this result is nothing else than the true-amplitude singular function (1)

of the reection-traveltime surface at the chosen point �

R

, thus con�rming result (14).

In formula (B-3), one recognizes

L(M

R

) =

L

S

(M

R

)L

G

(M

R

)v

R

cos �

R

cos�

R

e

i� (��2)=4

q

jH

�

j ; (B-4)

as the geometrical-spreading factor of the reected ray SM

R

G. Introducing further the

Fresnel geometrical-spreading factor

L

F

(M

R

) =

cos�

R

v

R

cos �

R

e

i� (2��)=4

q

jH

�

j

; (B-5)

we �nd the geometrical-spreading decomposition (Tygel et al., 1994)

L(M

R

) =

L

S

(M

R

) L

G

(M

R

)

L

F

(M

R

)

: (B-6)
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This formula will be of further use in the evaluation of the inverse KH integral (11).

Asymptotic evaluation of the inverse KH integral

In the same way as the forward KH integral, also the inverse KH integral admits

a simple asymptotic evaluation, irrespective of the speci�c form of the weight function,

which will, for the time being, be left unspeci�ed. In this section, we will compare the

asymptotic evaluations of both KH integrals to con�rm the correct duality of the trans-

formation pair given by equations (8) and (11). The dynamics of the present analysis

will, in fact, determine the adequate form of the necessary weight function in integral

(11).

The asymptotic evaluation of the inverse KH integral (11) can be obtained using

an analogous procedure as the one used for the direct KH counterpart. We �nd for the

leading-order term of the asymptotic evaluation at a certain �xed point x = x

R

I

as

(x

R

; z) = A(N

R

)

W

I

(x

R

; N

R

)

2 cos �

R

e

�i� (2+)=4

q

jZ

�

j

@

�

Z(x

R

; N

R

) �(z � �(x

R

)) ; (B-7)

where N

R

= N

�

(�

R

) speci�es the source-receiver pair (S

R

; G

R

) for which the reector

point M

R

= M

�

(x

R

) = M

�

(�

R

) is a specular reection point. Here, �

R

= �

R

(x

R

) is

the stationary point of integral (11). In other words, N

R

, on the reection-traveltime

surface �, is the dual point to the point M

R

on the reector � in the vicinity of which

the integral (11) is calculated, i.e., N

R

= N

�

(x

R

). Finally,  and Z

�

are the signature

and the determinant, respectively, of the Hessian matrixZ

�

�

of the auxiliary isochron

function Z

�

(x; �), de�ned by equation (A-8) and evaluated at (x

R

; �

R

). Also, �

R

is the

local reection-traveltime dip at N

R

. To �nd an expression for the determinant Z

�

of

the matrixZ

�

�

, we make use of the results of the second duality theorem. Taking the

determinant of both sides of equation (A-17), we employ employ the equations (A-14)
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and (A-18) to �nd

Z

�

= detZ

�

�

=

h

2

B

m

4

D

1

detH

�

�

=

h

2

B

m

4

D

H

�

(B-8)

and

 = SgnZ

�

�

= � SgnH

�

�

= �� : (B-9)

These two equations can be combined into

e

�i� (2+)=4

q

jZ

�

j

=

m

2

D

q

jH

�

j

h

B

e

�i�(2��)=4

: (B-10)

Using the Fresnel geometrical-spreading formula (B-5), we �nd

e

�i� (2+)=4

q

jZ

�

j

=

cos�

R

v

R

cos �

R

m

2

D

h

B

L

F

(M

R

) : (B-11)

Substitution of the above expressions into equation (B-7), together with the use of the

geometrical-spreading decomposition formula (B-6) and the expression for @

�

Z given

by equation (A-5), leads to

I

as

(x

R

; z) = R(M

R

)W

I

(x

R

; N

R

)

cos

2

�

R

h

B

v

3

R

cos

2

�

R

L

S

(M

R

)L

G

(M

R

)

�(z � �(x

R

)) : (B-12)

We observe that equation (B-12) kinematically reconstructs the singular function (15)

of the reector �. To also achieve correct dynamic reconstruction, we have to choose the

weight function W

I

(x

R

; N

R

) such that the amplitude factor in equation (B-12) equals

R(M

R

). This determines the sought-for weight function as

W

I

(x

R

; N

R

) =

h

B

v

3

R

cos

2

�

R

cos

2

�

R

L

S

(M

R

)L

G

(M

R

) : (B-13)

With this choice, we obtain

I

as

(x

R

; z) = R(M

R

) �(z � �(x

R

)) ; (B-14)

Observe that formula (B-14) is just the true-amplitude singular function of the reector

at the chosen point x

R

. This con�rms result (15).
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Observing that there is no quantity involved in equation (B-13) that depends on

the reector, we can generalize weight function to any arbitrary point N

�

. This justi�es

dropping the subindex R and replacing the stationary point M

R

by the generic point

M

I

on the isochron of M

I

. In this way, we arrive to the �nal weight function of the

inverse Kirchho� integral (11), as stated by equation (12) in the main text.

31



Figure Captions

Fig. 1: 2-D sketch of a model with reector � and reection-traveltime surface �. Also

shown are the isochron and di�raction-traveltime surfaces. Each arbitrary point

N

�

on � de�nes a unique point M

�

on � as the reection point of ray SM

�

G.

In the same way, each arbitrary point M

�

on � de�nes a unique point N

�

on �

by the parameter �

�

of the source-receiver pair (S

�

; G

�

) for which ray S

�

M

�

G

�

constitutes a reection ray, and by the traveltime along that ray.

Fig. 2: The forward Kirchho�-Helmholtz integral understood geometrically. For each

point M

�

on �, the integration contributes to the reection response computed

for �

R

at the corresponding point N

K

= (�

R

; T (�

R

;M

�

)). For details see text.

Fig. 3: The inverse Kirchho�-Helmholtz integral understood geometrically. For each

point N

�

on �, the integration contributes to the reector depth image computed

for x

R

at the corresponding point M

I

= (x

R

;Z(x

R

; N

�

)). For details see text.

Fig. 4: Earth model used for the numerical example.

Fig. 5: (a) Synthetic data as modeled by the forward Kirchho�-Helmholtz integral.

(b) Inverted data as obtained by the inverse Kirchho�-Helmholtz integral.

Fig. 6: (a) Picked peak amplitude in the inverted section of Figure 5b (thin line), as

compared with the theoretical reection coe�cient (bold line). (b) Relative error

of the amplitudes of part (a).
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Fig. 1. 2-D sketch of a model with reector � and reection-traveltime surface �. Also

shown are the isochron and di�raction-traveltime surfaces. Each arbitrary point N

�

on

� de�nes a unique pointM

�

on � as the reection point of ray SM

�

G. In the same way,

each arbitrary point M

�

on � de�nes a unique point N

�

on � by the parameter �

�

of

the source-receiver pair (S

�

; G

�

) for which ray S

�

M

�

G

�

constitutes a reection ray, and

by the traveltime along that ray.
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Fig. 2. The forward Kirchho�-Helmholtz integral understood geometrically. For each

point M

�

on �, the integration contributes to the reection response computed for �

R

at the corresponding point N

K

= (�

R

; T (�

R

;M

�

)). For details see text.
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Fig. 3. The inverse Kirchho�-Helmholtz integral understood geometrically. For each

point N

�

on �, the integration contributes to the reector depth image computed for

x

R

at the corresponding point M

I

= (x

R

;Z(x

R

; N

�

)). For details see text.
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Fig. 4. Model for the numerical example.
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Fig. 5. (a) Synthetic data as modeled by the forward Kirchho�-Helmholtz integral. (b)

Inverted data as obtained by the inverse Kirchho�-Helmholtz integral.
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Fig. 6. (a) Picked peak amplitude in the inverted section of Figure 5b (thin line), as

compared with the theoretical reection coe�cient (bold line). (b) Relative error of the

amplitudes of part (a).
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