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Standard formulas for mass os
illations are based upon the approximation, t � L, and the

hypotheses that neutrinos have been produ
ed with a de�nite momentum, p, or, alternatively, with

de�nite energy, E. This represents an in
onsistent s
enario and gives an unjusti�ed fa
tor of two

in mass os
illation formulas. Su
h an ambiguity has been a matter of spe
ulations and mistakes in

dis
ussing 
avour os
illations. We present a series of results and show how the problem of the fa
tor

two in the os
illation length is not a 
onsequen
e of gedanken experiments, i.e. os
illations in time.

The 
ommon velo
ity s
enario yields the maximum simpli
ity and probably the right answer.

I. INTRODUCTION

One of the most popular �elds of resear
h in parti
le physi
s phenomenology of the last de
ades has been, and still

is, that of neutrino os
illations [1℄. Publi
ations in this �eld have a

ompanied an ever in
reasing and stimulating

series of experiments involving either solar, atmospheri
 or laboratory neutrinos [2℄.

The vast majority of the theoreti
al studies 
onsider the possibility of massive neutrinos distin
t from the 
avour

eigenstates 
reated in the various produ
tion pro
esses [3{5℄. Neutrinos are not the only example of su
h a phe-

nomenon. The �rst examples of 
avour os
illations observed were in the the kaon system where the strong intera
tion

is involved in the parti
le 
reation [6℄. We shall 
ontinue to refer in this work to neutrinos, but the 
onsiderations are

quite general.

What we shall 
all the \fa
tor two problem" in the neutrino os
illation formulas has been already observed and

dis
ussed in previous papers [8,9℄, but the situation is still surprisingly 
onfused and probably still subje
t to argument.

We would like to 
lose the question with this paper, but more realisti
ally, we shall simply 
ontribute to the general

debate.

II. NEUTRINOS MIXING

To fo
alize the 
ontents of this paper we begin by 
laiming that standard os
illation formulas, for mixing between

mass eigenstates, are based upon the approximation, t � L, and the assumptions of de�nite momentum or de�nite

energy for the neutrinos 
reated.

To explain and understand the 
ommon mistakes in os
illation 
al
ulations, let us brie
y re
all the standard

approa
h. The most important aspe
t of neutrino os
illations 
an be understood by studying the expli
it solution

for a system with only two types of neutrinos. For this two 
avour problem, the 
avour eigenstates, j�i e j~�i, are

represented by a 
oherent linear superposition of mass eigenstates, j�

1

i e j�

2

i,

j�i = 
os � j�

1

i+ sin � j�

2

i ;

j~�i = � sin � j�

1

i+ 
os � j�

2

i :

(1)

The time evolution of j�i is determined by solving the S
hr�odinger equation for the j�

1;2

i 
omponent of j�i in the rest

frame of that 
omponent

j�

n

(�

n

)i = e

�iM

n

�

n

j�

n

i n = 1; 2 ; (2)

whereM

n

is the mass of j�

n

i and �

n

is the time in the mass eigenstate frame. In terms of the time, t, and the position,

L, in the laboratory, or any other, frame, the Lorentz-invariant phase fa
tor in Eq. (2) must be rewritten as:

e

�iM

n

�

n

= e

�i(E

n

t�p

n

L)

; (3)
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with E

n

and p

n

energy and momentum of mass eigenstates in the laboratory frame. In the standard approa
h the

above equation is followed by this statement: In pra
ti
e, our neutrino will be extremely relativisti
, so we will be

interested in evaluating the phase fa
tor of Eq. (3) where t � L, where it be
omes

e

�i(E

n

�p

n

)L

: (4)

This result is in
orre
t as we shall show below.

For example, in the latest presentation 
ontained in the Review of Parti
le Physi
s [7℄, the probability that the

wrong 
avour will appear, is given by:

P (� ! �

0

) � sin

2

2� sin

2

�

L

4E

�M

2

�

(5)

� sin

2

2� sin

2

�

1:27

L [Km℄

E [Gev℄

�M

2

[eV

2

℄

�

;

where

�M

2

� M

2

1

�M

2

2

;

is obtained 
al
ulating the phase fa
tor for ea
h mass eigenstate traveling in the x dire
tion, e

�i(E

n

t�p

n

x)

, with the

approximation t � L and the assumptions that j�i has been produ
ed with a de�nite momentum, p,

E

n

=

p

p

2

+M

2

n

� p +

M

2

n

2p

;

or, alternatively, with a de�nite energy, E,

p

n

=

p

E

2

�M

2

n

� E �

M

2

n

2E

:

The phase fa
tor of Eq. (3) reads

e

�i

M

2

n

2p

L

or e

�i

M

2

n

2E

L

: (6)

\Sin
e highly relativisti
 neutrinos have E � p, the phase fa
tors in Eq. (6) are approximately equal. Thus, it doesn't

matter whether j�i is 
reated with de�nite momentum or de�nite energy." [7℄.

Now, our point is that t = L implies for 
onsisten
y

p

1

E

1

=

p

2

E

2

= 1 ;

whi
h, if simultaneously applied, eliminates the phase-fa
tor 
ompletely. Null phase fa
tors, as in all 
ases of equal

phase fa
tors for ea
h mass eigenstate, pre
ludes any os
illation phenomena. Nor is su
h an approximation justi�ed

within a more realisti
 wave-pa
ket presentation. Returning to the simpli�ed plane wave dis
ussion, one should simply

write,

e

�i(Et�pL)

= e

�i(

E

v

�p)L

= e

�i(E

2

�p

2

)

L

P

= e

�iM

2

L

p

;

whi
h di�ers from Eq. (6) by a fa
tor of two in the argument. This simply doubles the 
oeÆ
ient of �M

2

in the

standard os
illation formulas.

The above result has already been noted by Lipkin [8℄, who however observes this ambiguity for the 
ase of equal

3-momentum of the neutrino mass eigenstates, the \non-experiments" as he 
alls them, but not for his 
hosen equal

energy s
enario. Lipkin's preferen
e for equal energy has not 
onvin
ed the majority of authors on this subje
t. The

same fate has thus been reserved for his observations upon the fa
tor two ambiguity. We believe that only experiment


an determine if in a given situation the neutrinos are produ
ed with the same momentum or energy or neither.

For this reason we wish to present below the di�eren
es in the various assumptions whi
h are parti
ularly signi�
ant

for non-relativisti
 velo
ities, admittedly not very pra
ti
al for the neutrino. In any 
ase we emphasize that the fore

mentioned fa
tor two appears not only in the s
enario of 
ommon momentum but also for the equal energy assumption

or \real experiments" as Lipkin [9℄ 
alls them.

In realisti
 situations the 
avour neutrino is 
reated in a wave pa
ket at time t = 0 and thus over an extended

region. We simplify our dis
ussion by ignoring, where possible, this lo
alization but we must note that it is essential

to give an approximate signi�
an
e to L, the distan
e from sour
e to measuring apparatus, or t, the time of travel.

Indeed, if for ea
h mi
ros
opi
 region we assign a 
ommon 4-momentum plane wave fa
tor then it is mathemati
ally

impossible that at time t = 0 the neutrino is 
reated as a 
avour state everywhere, sin
e the plane-wave fa
tor varies

with x.
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III. TIME OR SPACE OSCILLATIONS?

Assume that the state j�i is 
reated at t = 0 in x � 0. Introdu
e the Lorentz invariant plane wave fa
tor and

apply them to the mass eigenstates at a later time t and for position x. Sin
e the neutrino is 
reated over an

extended volume and the apparatus 
annot be 
onsidered without dimension, the interferen
e e�e
ts will involve in

general amplitudes of states with di�erent time and distan
e intervals. Di�erent time intervals t

1

6= t

2

may seem an

unne
essary, unphysi
al, abstra
tion. However, it is needed for self-
onsisten
y. Even if in a given frame the 
reation

is 
onsidered instantaneous it will not generally appear so for another observer, given the extended dimension of the

wave fun
tion. For this latter observer there will exist times when the probability of measuring the 
reated parti
le is

between 0 and 1. This implies the introdu
tion, in general, of a time dependen
e for the growth of a wave fun
tion at

ea
h x in all frames. Furthermore, if we �x L

1

= L

2

� L, and have di�erent velo
ities, v

1

6= v

2

, we must ne
essarily

allow for t

1

6= t

2

. All this does not mean that the 
ases listed below are equally realisti
.

We 
onsider three broad 
lasses, always within the approximation of an e�e
tive one dimensional treatment:

� Common momentum:

p

1

= p

2

= p ; E

1

6= E

2

[ v

1

6= v

2

℄ ;

� Common energy:

E

1

= E

2

= E ; p

1

6= p

2

[ v

1

6= v

2

℄ ;

� Di�erent momentum and energies:

E

1

6= E

2

; p

1

6= p

2

[ v

1

6= v

2

or v

1

= v

2

℄ :

The above 
ases by no means exhaust all possibilities but they are suÆ
ient to 
over almost all the assumptions

made in the literature and lead to the subtle di�eren
es of the resulting formulas for P (� ! ~�) whi
h we are interested

in.

The spa
e-time evolution of j�i and j~�i is determined by the spa
e-time development of the mass eigenstates j�

1

i

and j�

2

i. In the laboratory frame, we have

j�

n

(t

n

; L

n

)i = e

�i(E

n

t

n

�p

n

L

n

)

j�

n

i ; n = 1; 2 :

Consequently,

P (� ! ~�) = sin

2

2� sin

2

�

E

2

t

2

�E

1

t

1

�p

2

L

2

+p

1

L

1

2

�

:

We 
an eliminate the spa
e or time dependen
e in the previous formula by using the relations

L

1

=

p

1

E

1

t

1

and L

2

=

p

2

E

2

t

2

:

For time os
illations, we have

P (� ! ~�) = sin

2

2� sin

2

�

M

2

2

2E

2

t

2

�

M

2

1

2E

1

t

1

�

; (7)

whereas, for spa
e os
illations, we obtain

P (� ! ~�) = sin

2

2� sin

2

�

M

2

2

2p

2

L

2

�

M

2

1

2p

1

L

1

�

: (8)

For 
ommon momentum neutrino produ
tions, we 
osidere two di�erent situations, 
ommon arrival time and �xed

laboratory distan
e.

� Common momentum:

� t

1

= t

2

= t ,

P (� ! ~�) = sin

2

2� sin

2

h

t

2

�

M

2

2

E

2

�

M

2

1

E

1

�i

;

� L

1

= L

2

= L ,

P (� ! ~�) = sin

2

2� sin

2

h

L

2p

�

M

2

2

�M

2

1

�

i

:
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As already mentioned, for Lipkin [8℄ time os
illations represent non experiments or gedanken experiments be
ause

they measure time os
illations. For \real" experiments, in the s
enario of 
ommon momentum neutrino produ
tion,

we should use the formula:

P (� ! ~�) = sin

2

2� sin

2

�

L

2p

�M

2

�

: (9)

In terms of the average neutrino energy

�

E =

E

1

+E

2

2

= p

�

1 +

M

2

1

+M

2

2

4p

2

+O

�

M

4

p

4

��

;

we 
an rewrite the previous equation, in the ultra{relativisti
 limit, as:

P (� ! ~�) � sin

2

2� sin

2

�

L

2

�

E

�M

2

�

: (10)

Thus, we �nd a fa
tor two di�eren
e between the os
illation 
oeÆ
ient in this formula and the standard mass os
illation

formula of Eq. (5).

Let us now 
onsider 
ommon energy neutrinos produ
tions.

� Common energy:

� t

1

= t

2

= t ,

P (� ! ~�) = sin

2

2� sin

2

�

t

2E

�

M

2

2

�M

2

1

��

;

� L

1

= L

2

= L ,

P (� ! ~�) = sin

2

2� sin

2

h

L

2

�

M

2

2

p

2

�

M

2

1

p

1

�i

:

Spa
e os
illations are des
ribed by

P (� ! ~�) = sin

2

2� sin

2

�

L

2

�

�

M

2

p

��

; (11)

where

�

�

M

2

p

�

=

M

2

2

p

2

�

M

2

1

p

1

:

This 
an be written as:

�

�

M

2

p

�

=

�M

2

E

�

1 +

M

2

1

+M

2

2

2E

2

+O

�

M

4

E

4

��

:

Consequently, in the ultra-relativisti
 limit, Eq. (11) be
omes:

P (� ! ~�) � sin

2

2� sin

2

�

L

2E

�M

2

�

: (12)

The fa
tor two di�eren
e is thus also present in 
ommon energy s
enarios.

The formulas in Eqs. (9,11) tend to the same result in the ultra-relativisti
 limit, Eqs. (10,12), and are in disagree-

ment with the standard formula, Eq. (5). In theory, at least, the di�eren
es between them may be experimentally

determined, espe
ially for non-relativisti
 pro
esses.

IV. OUR PREFERRED CHOICE

The s
enario of di�erent momentum and energies neutrinos produ
tions, with 
ommon velo
ities, merits spe
ial

attention, be
ause only if v

1

= v

2

the formula P (� ! �

0

) is valid for all times. Otherwise, P (� ! �

0

) is valid only

until the wave pa
ket for the two mass eigenstates overlap substantially. This 
ompli
ation does not exists for v

1

= v

2

.

Indeed, with this 
ondition, the wave pa
kets travel together, for all observers, and we may even employ a 
ommon L
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and 
ommon t. Furthermore, there exists in this 
ase a rest frame, v = 0, for our 
avour eigenstate 
ommon to that

of the mass eigenstates. This situation is impli
it in all 
al
ulations that use a 
ommon proper time � [10℄.

By assuming a 
ommon velo
ity s
enario, we must, ne
essarily, require di�erent momentum and energies for the

neutrinos produ
ed. Due to the 
ommon velo
ity, the time evolution for the mass eigenstates in the 
ommon rest

frame is

j�

n

(�)i = e

�iM

n

�

j�

n

i ; (13)

and only in this 
ase is Eq. (3) really justi�ed with its non indexed time and distan
e. In fa
t, for 
ommon velo
ities,

the Lorentz-invariant phase fa
tor 
an be rewritten in terms of the 
ommon time, t, and the 
ommon position, L, in

the laboratory frame. We 
an eliminate the time dependen
e in the previous formula by using the relations

L =

p

1

E

1

t =

p

2

E

2

t :

Spa
e os
illations, are, thus, des
ribed by

P (� ! ~�) = sin

2

2� sin

2

�

L

2

�

M

2

2

p

2

�

M

2

1

p

1

��

: (14)

This equation is formally equivalent to Eq. (12) and, thus, at �rst glan
e, it seems to reprodu
e the fa
tor two

di�eren
e. This is a wrong 
on
lusion! Indeed, in the s
enario of 
ommon velo
ities

p

1

= M

1




v

v and p

2

= M

2




v

v ;

and 
onsequently,

�

�

M

2

p

�

=

M

2

�M

1




v

v

=

�M

2

2�p

:

Spa
e os
illations, in the 
ommon velo
ity s
enario, are, thus, des
ribed by

P (� ! ~�) = sin

2

2� sin

2

�

L

4�p

�M

2

�

; (15)

and this re
alls the standard result with the fa
tor four in the denominator. However, it must be noti
ed that for this


ase

E

1

E

2

=

p

1

p

2

=

M

1

M

2

;

and this may be very far from unity. Thus, the use of �p in Eq. (15) is not exa
tly the E intended in the standard

formula, whi
h was identi
al, or almost, for both neutrinos.

V. CONCLUSIONS

The 
ommon velo
ity s
enario is aestheti
ally the most pleasing. We believe in fa
t that the 
reation of a parti
le

may di�er, for example in the extension of a wave fun
tion, from pro
ess to pro
ess, therefore only experiment 
an

de
ide whi
h, if any, of the above situations are involved. However, we wish to point out that the assumptions of same

momentum, p, or same energy, E, 
an only be valid in, at most, one referen
e frame. It seems to us highly unlikely

that this frame happens to 
oin
ide with our laboratory frame. This means that if our preferred 
ommon velo
ity

s
enario, whi
h is frame independent, is not satis�ed, we may legitimately doubt that any of the popular hypothesis


oin
ide with any given experimental situation.

We 
on
lude our dis
ussion by giving the mass os
illation formula in terms of the \standard" phase fa
tor

L

4

�

E

�M

2

;

and the parameter
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� =

�

1 +




1

M

1




2

M

2

��

1

v

2

�

1

v

1




2

M

1




1

M

2

��

1�

M

2

1

M

2

2

�

�1

:

The new formula reads

P (� ! ~�) = sin

2

2� sin

2

�

�

L

4

�

E

�M

2

�

: (16)

For 
ommon velo
ity, momentum and energy, the parameter � be
omes

�

v

� � [v

1

= v

2

℄ = 1=v ;

�

p

� � [p

1

= p

2

℄ = (v

1

+ v

2

)=v

1

v

2

;

�

E

� � [E

1

= E

2

℄ = 2

�

1 +

1

v

1

v

2

�

=(v

1

+ v

2

) :

Finally, in the ultra-relativisti
 limit, by killing the O

�

M

4

p

4

;

M

4

E

4

�

terms, we obtain

�

v

� 1 +

�

M

2

1

=p

1

+M

2

2

=p

2

�

=4�p ;

�

p

� 2 +

�

M

2

1

+M

2

2

�

=2p

2

;

�

E

� 2 +

�

M

2

1

+M

2

2

�

=E

2

:
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