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Standard formulas for mass osillations are based upon the approximation, t � L, and the

hypotheses that neutrinos have been produed with a de�nite momentum, p, or, alternatively, with

de�nite energy, E. This represents an inonsistent senario and gives an unjusti�ed fator of two

in mass osillation formulas. Suh an ambiguity has been a matter of speulations and mistakes in

disussing avour osillations. We present a series of results and show how the problem of the fator

two in the osillation length is not a onsequene of gedanken experiments, i.e. osillations in time.

The ommon veloity senario yields the maximum simpliity and probably the right answer.

I. INTRODUCTION

One of the most popular �elds of researh in partile physis phenomenology of the last deades has been, and still

is, that of neutrino osillations [1℄. Publiations in this �eld have aompanied an ever inreasing and stimulating

series of experiments involving either solar, atmospheri or laboratory neutrinos [2℄.

The vast majority of the theoretial studies onsider the possibility of massive neutrinos distint from the avour

eigenstates reated in the various prodution proesses [3{5℄. Neutrinos are not the only example of suh a phe-

nomenon. The �rst examples of avour osillations observed were in the the kaon system where the strong interation

is involved in the partile reation [6℄. We shall ontinue to refer in this work to neutrinos, but the onsiderations are

quite general.

What we shall all the \fator two problem" in the neutrino osillation formulas has been already observed and

disussed in previous papers [8,9℄, but the situation is still surprisingly onfused and probably still subjet to argument.

We would like to lose the question with this paper, but more realistially, we shall simply ontribute to the general

debate.

II. NEUTRINOS MIXING

To foalize the ontents of this paper we begin by laiming that standard osillation formulas, for mixing between

mass eigenstates, are based upon the approximation, t � L, and the assumptions of de�nite momentum or de�nite

energy for the neutrinos reated.

To explain and understand the ommon mistakes in osillation alulations, let us briey reall the standard

approah. The most important aspet of neutrino osillations an be understood by studying the expliit solution

for a system with only two types of neutrinos. For this two avour problem, the avour eigenstates, j�i e j~�i, are

represented by a oherent linear superposition of mass eigenstates, j�

1
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2

i,

j�i = os � j�
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2

i ;
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(1)

The time evolution of j�i is determined by solving the Shr�odinger equation for the j�

1;2

i omponent of j�i in the rest

frame of that omponent
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whereM

n

is the mass of j�

n

i and �

n

is the time in the mass eigenstate frame. In terms of the time, t, and the position,

L, in the laboratory, or any other, frame, the Lorentz-invariant phase fator in Eq. (2) must be rewritten as:
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with E

n

and p

n

energy and momentum of mass eigenstates in the laboratory frame. In the standard approah the

above equation is followed by this statement: In pratie, our neutrino will be extremely relativisti, so we will be

interested in evaluating the phase fator of Eq. (3) where t � L, where it beomes

e

�i(E

n

�p

n

)L

: (4)

This result is inorret as we shall show below.

For example, in the latest presentation ontained in the Review of Partile Physis [7℄, the probability that the

wrong avour will appear, is given by:
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is obtained alulating the phase fator for eah mass eigenstate traveling in the x diretion, e

�i(E

n

t�p

n

x)

, with the

approximation t � L and the assumptions that j�i has been produed with a de�nite momentum, p,
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or, alternatively, with a de�nite energy, E,
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The phase fator of Eq. (3) reads
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: (6)

\Sine highly relativisti neutrinos have E � p, the phase fators in Eq. (6) are approximately equal. Thus, it doesn't

matter whether j�i is reated with de�nite momentum or de�nite energy." [7℄.

Now, our point is that t = L implies for onsisteny

p
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2

E

2

= 1 ;

whih, if simultaneously applied, eliminates the phase-fator ompletely. Null phase fators, as in all ases of equal

phase fators for eah mass eigenstate, preludes any osillation phenomena. Nor is suh an approximation justi�ed

within a more realisti wave-paket presentation. Returning to the simpli�ed plane wave disussion, one should simply

write,

e
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whih di�ers from Eq. (6) by a fator of two in the argument. This simply doubles the oeÆient of �M

2

in the

standard osillation formulas.

The above result has already been noted by Lipkin [8℄, who however observes this ambiguity for the ase of equal

3-momentum of the neutrino mass eigenstates, the \non-experiments" as he alls them, but not for his hosen equal

energy senario. Lipkin's preferene for equal energy has not onvined the majority of authors on this subjet. The

same fate has thus been reserved for his observations upon the fator two ambiguity. We believe that only experiment

an determine if in a given situation the neutrinos are produed with the same momentum or energy or neither.

For this reason we wish to present below the di�erenes in the various assumptions whih are partiularly signi�ant

for non-relativisti veloities, admittedly not very pratial for the neutrino. In any ase we emphasize that the fore

mentioned fator two appears not only in the senario of ommon momentum but also for the equal energy assumption

or \real experiments" as Lipkin [9℄ alls them.

In realisti situations the avour neutrino is reated in a wave paket at time t = 0 and thus over an extended

region. We simplify our disussion by ignoring, where possible, this loalization but we must note that it is essential

to give an approximate signi�ane to L, the distane from soure to measuring apparatus, or t, the time of travel.

Indeed, if for eah mirosopi region we assign a ommon 4-momentum plane wave fator then it is mathematially

impossible that at time t = 0 the neutrino is reated as a avour state everywhere, sine the plane-wave fator varies

with x.
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III. TIME OR SPACE OSCILLATIONS?

Assume that the state j�i is reated at t = 0 in x � 0. Introdue the Lorentz invariant plane wave fator and

apply them to the mass eigenstates at a later time t and for position x. Sine the neutrino is reated over an

extended volume and the apparatus annot be onsidered without dimension, the interferene e�ets will involve in

general amplitudes of states with di�erent time and distane intervals. Di�erent time intervals t

1

6= t

2

may seem an

unneessary, unphysial, abstration. However, it is needed for self-onsisteny. Even if in a given frame the reation

is onsidered instantaneous it will not generally appear so for another observer, given the extended dimension of the

wave funtion. For this latter observer there will exist times when the probability of measuring the reated partile is

between 0 and 1. This implies the introdution, in general, of a time dependene for the growth of a wave funtion at

eah x in all frames. Furthermore, if we �x L

1

= L

2

� L, and have di�erent veloities, v

1
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2

, we must neessarily

allow for t

1

6= t

2

. All this does not mean that the ases listed below are equally realisti.

We onsider three broad lasses, always within the approximation of an e�etive one dimensional treatment:
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The above ases by no means exhaust all possibilities but they are suÆient to over almost all the assumptions

made in the literature and lead to the subtle di�erenes of the resulting formulas for P (� ! ~�) whih we are interested

in.

The spae-time evolution of j�i and j~�i is determined by the spae-time development of the mass eigenstates j�

1

i

and j�

2

i. In the laboratory frame, we have
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Consequently,
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We an eliminate the spae or time dependene in the previous formula by using the relations
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For time osillations, we have
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whereas, for spae osillations, we obtain
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For ommon momentum neutrino produtions, we osidere two di�erent situations, ommon arrival time and �xed

laboratory distane.

� Common momentum:
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As already mentioned, for Lipkin [8℄ time osillations represent non experiments or gedanken experiments beause

they measure time osillations. For \real" experiments, in the senario of ommon momentum neutrino prodution,

we should use the formula:
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In terms of the average neutrino energy
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we an rewrite the previous equation, in the ultra{relativisti limit, as:
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Thus, we �nd a fator two di�erene between the osillation oeÆient in this formula and the standard mass osillation

formula of Eq. (5).

Let us now onsider ommon energy neutrinos produtions.

� Common energy:
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Spae osillations are desribed by
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This an be written as:
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Consequently, in the ultra-relativisti limit, Eq. (11) beomes:
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The fator two di�erene is thus also present in ommon energy senarios.

The formulas in Eqs. (9,11) tend to the same result in the ultra-relativisti limit, Eqs. (10,12), and are in disagree-

ment with the standard formula, Eq. (5). In theory, at least, the di�erenes between them may be experimentally

determined, espeially for non-relativisti proesses.

IV. OUR PREFERRED CHOICE

The senario of di�erent momentum and energies neutrinos produtions, with ommon veloities, merits speial

attention, beause only if v

1

= v

2

the formula P (� ! �

0

) is valid for all times. Otherwise, P (� ! �

0

) is valid only

until the wave paket for the two mass eigenstates overlap substantially. This ompliation does not exists for v

1

= v

2

.

Indeed, with this ondition, the wave pakets travel together, for all observers, and we may even employ a ommon L
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and ommon t. Furthermore, there exists in this ase a rest frame, v = 0, for our avour eigenstate ommon to that

of the mass eigenstates. This situation is impliit in all alulations that use a ommon proper time � [10℄.

By assuming a ommon veloity senario, we must, neessarily, require di�erent momentum and energies for the

neutrinos produed. Due to the ommon veloity, the time evolution for the mass eigenstates in the ommon rest

frame is

j�

n

(�)i = e

�iM

n

�

j�

n

i ; (13)

and only in this ase is Eq. (3) really justi�ed with its non indexed time and distane. In fat, for ommon veloities,

the Lorentz-invariant phase fator an be rewritten in terms of the ommon time, t, and the ommon position, L, in

the laboratory frame. We an eliminate the time dependene in the previous formula by using the relations
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This equation is formally equivalent to Eq. (12) and, thus, at �rst glane, it seems to reprodue the fator two

di�erene. This is a wrong onlusion! Indeed, in the senario of ommon veloities

p
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Spae osillations, in the ommon veloity senario, are, thus, desribed by
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and this realls the standard result with the fator four in the denominator. However, it must be notied that for this

ase

E
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p

1

p

2
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M

1
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2

;

and this may be very far from unity. Thus, the use of �p in Eq. (15) is not exatly the E intended in the standard

formula, whih was idential, or almost, for both neutrinos.

V. CONCLUSIONS

The ommon veloity senario is aesthetially the most pleasing. We believe in fat that the reation of a partile

may di�er, for example in the extension of a wave funtion, from proess to proess, therefore only experiment an

deide whih, if any, of the above situations are involved. However, we wish to point out that the assumptions of same

momentum, p, or same energy, E, an only be valid in, at most, one referene frame. It seems to us highly unlikely

that this frame happens to oinide with our laboratory frame. This means that if our preferred ommon veloity

senario, whih is frame independent, is not satis�ed, we may legitimately doubt that any of the popular hypothesis

oinide with any given experimental situation.

We onlude our disussion by giving the mass osillation formula in terms of the \standard" phase fator
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The new formula reads
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For ommon veloity, momentum and energy, the parameter � beomes
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Finally, in the ultra-relativisti limit, by killing the O
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