VISUALIZING GEOMETRY WITH THE HELP OF "MATHEMATICA"

VALERY MARENICH AND ANDREY MARENICH

ABSTRACT. Among eight possible geometric structures on three-dimensional manifolds less studied from the differential geometric point of view are those modeled on the Heisenberg group $Heis^3$ and $PSL_2(R)$ - the group of all isometries of the Lobachevsky plane, see [Sc]. We consider their left-invariant metrics, define Levi-Civita connections and curvature tensors, define and solve equations of geodesic lines. Using "Mathematica" software package we also present drawings of geodesic lines and metric balls in these spaces.

1. Geometry of the Heisenberg group $Heis^3$

1.1. Left-invariant metric, Levi-Civita connection and curvature tensor of $Heis^3$. We begin with a well-known description of the Heisenberg group of dimension 3. Let R^3 be the euclidean space with coordinates (x, y, z). Then the Heisenberg group $Heis^3$ is this space with the following multiplication rule:

$$((1.1)) (x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + (\langle x, y' \rangle - \langle x', y \rangle)),$$

where \langle , \rangle is a scalar product in $\mathbb{R}^2 = \{(x, y)\}$. The element zero 0 = (0, ..., 0) is the unit of this group structure and the vector fields

(1.2)
$$X = (1, 0, -y), \quad Y = (0, 1, x), \quad T = (0, 0, 1)$$

are their left-invariant fields. We define the left-invariant metric on $Heis^3$ by taking X, Y, T as the orthonormal frame.

Definition 1. Denote by g the left-invariant metric on $Heis^3$ such that vector fields X, Y and T are orthonormal ones. The corresponding scalar product we denote as usual by (,).

Because due to (1.2) coordinate vectors are

$$\frac{\partial}{\partial x} = (X + yT), \qquad \frac{\partial}{\partial y} = (Y - xT), \text{ and } \frac{\partial}{\partial z} = T,$$

and by our choice $\{X, Y, T\}$ is an orthonormal basis we arrive at the following formula for the metric tensor of our left-invariant metric in coordinates (x, y, z):

(1.3)
$$g = \begin{pmatrix} 1+y^2 & -xy & y\\ -xy & 1+x^2 & -x\\ y & -x & 1 \end{pmatrix}.$$

The following was proved in [Mr1].

¹⁹⁹¹ Mathematics Subject Classification. 53C15, 53C20.

Key words and phrases. Left invariant metric, geodesic lines, Heisenberg and $PSL_2(R)$ -structures.

Supported by FAPESP

Proposition 1. For the covariant derivatives of the Riemannian connection of the left-invariant metric, defined above the following is true:

(1.4)
$$\nabla = \begin{pmatrix} 0 & T & -Y \\ -T & 0 & X \\ -Y & X & 0 \end{pmatrix},$$

where the (i, j)-element in the table above equals $\nabla_{E_i} E_j$ for our basis

$${E_k, k = 1, 2, 3} = {X, Y, T}.$$

1.2. Geodesic lines in $Heis^3$. We find equations of geodesics issuing from $\mathbf{0}=(0,0,0)$. Let c(t) be such a geodesics with a natural parameter t, and its vector of velocity given by

(1.5) $\dot{c}(t) = \alpha(t)X(t) + \beta(t)Y(t) + \gamma(t)T.$

Then the equation of a geodesic $\nabla_{\dot{c}(t)}\dot{c}(t) \equiv 0$ and our table of covariant derivatives (1.3) give:

$$(\alpha'(t) + 2\gamma\beta(t))X(t) + (\beta'(t) - 2\gamma\alpha(t))Y(t) + \gamma'(t)T = 0.$$

Thus we easily obtain the following equations for coordinates of the vector of velocity of the geodesic c(t) in our left-invariant moving frame:

(1.6)
$$\begin{cases} \alpha'(t) + 2\gamma\beta(t) = 0\\ \beta'(t) - 2\gamma\alpha(t) = 0 \end{cases} \quad \gamma'(t) = 0$$

or

(1.7)
$$\begin{cases} (\alpha(t) + \beta(t))' - 2\gamma(\alpha(t) - \beta(t)) = 0\\ (\alpha(t) - \beta(t))' + 2\gamma(\alpha(t) + \beta(t)) = 0 \end{cases} \quad \gamma'(t) = 0$$

Because the parameter t is natural we have

$$\alpha^2(t) + \beta^2(t)) + \gamma^2 \equiv 1,$$

and we could take $\gamma(t) \equiv \gamma$ where $|\gamma| \leq 1$ is the cos of the angle between $\dot{c}(0)$ and *T*-axe. For $|\gamma| = 1$ we have "vertical" geodesic, coinciding with z-axe, which is an integral line of the left-invariant vector field *T*. For $\gamma = 0$ our equations are linear. For $\gamma \neq 0$ after some easy computation one could find that:

(1.8)
$$\begin{cases} \alpha(t) = r\cos(2\gamma t + \phi) \\ \beta(t) = r\sin(2\gamma t + \phi) \end{cases}$$

ċ

where $r = \sqrt{\alpha^2 + \beta^2}$. To find in coordinates $\{x, y, z\}$ equations for geodesics c(t) = (x(t), y(t), z(t)) issuing from **0** note, that if

$$e(t) = \alpha(t)X(t) + \beta(t)Y(t) + \gamma(t)T$$

and our left-invariant vector fields are

$$X = (1, 0, -y), \quad Y = (o, 1, x), \quad T = (0, 0, 1),$$

then

$$\frac{\partial}{\partial x} = X + yT$$
, and $\frac{\partial}{\partial y} = Y - xT$,

so we easily have:

(1.9)
$$\begin{cases} \dot{x}(t) = \alpha(t) \\ \dot{y}(t) = \beta(t) \\ \dot{z}(t) = \gamma - \alpha(t)y(t) + \beta(t)x(t) \end{cases}$$

that after some computations gives the following equations for geodesics issuing from zero:

Proposition 2. Geodesic lines issuing from zero **0** in the Heisenberg group $Heis^3$ satisfy to the following equations:

(1.10)
$$\begin{cases} x(t) = \frac{r}{2\gamma} (\sin(2\gamma t + \phi) - \sin(\phi)) \\ y(t) = \frac{r}{2\gamma} (\cos(\phi) - \cos(2\gamma t + \phi)) \\ z(t) = \frac{1+\gamma^2}{2\gamma} t - \frac{1-\gamma^2}{4\gamma^2} \sin(2\gamma t) \end{cases}$$

for some numbers ϕ , r which could be defined from the initial condition $\dot{c}(0) = (r \cos(\phi), r \sin(\phi), \gamma)$; or if $\gamma = 0$, then they are "horizontal" and satisfy the following equations:

(1.11)
$$\begin{cases} x(t) = \alpha(0)t\\ y(t) = \beta(0)t\\ z(t) = 0 \end{cases}$$

To find geodesics issuing from an arbitrary point and their equations it is sufficient to use left translation to this point and apply to the equation above the multiplication rule (1).

1.3. Computer generated pictures of geodesic lines and metric balls in H^3 .

1. Two geodesic lines issuing from **0** in directions of X and Y axes for $t \in [-10, 10]$.

2. Exp-image of the $\{X, T\}$ -coordinate plane.

VALERY MARENICH AND ANDREY MARENICH

1 2

- 1. Metric ball with the center at ${\bf 0}$ and radius 1.
- 2. Metric ball with the center at **0** and radius 3.
- 3. Half of the ball of radius 5.
- 4. Focal point of the exponential map: singular point of the sphere with radius 5
- 5. Amplified singular point of the sphere of radius 5.
- 6. Amplified neighborhood of the singular point of the same sphere.
- 7. Singular point of the metric sphere of radius t = 20.

II. On the geometry of $PSL_2(R)$

2.1. Ball model of Lobachevsky plane and global cordinates in $\tilde{P}SL_2(R)$.

In a standard way we identify the Lobachevsky hyperbolic plane H^2 with the unit disk $B^2 = \{z \in C | ||z|| < 1\}$ in the complex plane with the metric

$$ds^{2} = \frac{dx^{2} + dy^{2}}{(1 - (x^{2} + y^{2}))^{2}},$$

where z = x + iy. In this coordinate system isometries can be described as transformations of B^2 of the form

$$z \to w(z) = -e^{i\phi} \frac{z-\alpha}{\bar{\alpha}z-1}$$
 for $\alpha \in B^2, 0 \le \phi \le 2\pi$

(which is a composition of a parallel translation taking the point 0 to α and rotation on angle ϕ). Then (α, ϕ) for $\alpha \in B^2$ and $\phi \in S^1 = \{z \in C | ||z|| = 1\}$ are coordinates in the group $PSL_2(R)$ of all isometries of H^2 . Respectively, in the universal cover $P\tilde{S}L_2(R)$ of $PSL_2(R)$ the system of global coordinates is (α, ϕ) , where $\phi \in R$. Below we denote by $I(\alpha, \phi)$ the isometry with coordinates (α, ϕ) and also $\alpha = x + iy$, so that (x, y, ϕ) are our global coordinates in $P\tilde{S}L_2(R)$.

2.2. Multiplication law in $P\tilde{S}L_2(R)$.

In the coordinate system which we have introduced above the multiplication law giving coordinates of a composition of two isometries with coordinates (α, ϕ) and (β, ψ) can be defined in the following way. Because

$$I(\alpha,\phi) \circ I(\beta,\psi)(z) = -e^{\phi+\psi} \frac{\gamma}{\bar{\gamma}} \frac{z-\delta}{\bar{\delta}z-\bar{z}}$$

for $\gamma = \gamma(\alpha, \beta) = 1 + \alpha \bar{\beta} e^{-i\psi}$ and $\delta = \delta(\alpha, \beta) = (\beta + \alpha e^{-i\psi})/\gamma$, we deduce that

$$I(\alpha, \phi) \circ I(\beta, \psi) = I(\delta, \phi + \psi + 2Arg(\gamma))$$

which we simply denote as

(2.1)
$$(\alpha, \phi) \circ (\beta, \psi) = (\delta(\alpha, \beta), \phi + \psi + 2Arg(\gamma(\alpha, \beta))).$$

2.3. Left-invariant vector fields, Lie algebra $psl_2(R)$ and metric tensor. Take three coordinate vectors $X = \partial/\partial x$, $Y = \partial/\partial y$ and $T = \partial/\partial \phi$ of the coordinate system introduced above at the point 0 = (0, 0, 0), and applying the differential of the multiplication (2.1) by (α, ϕ) from the left we obtain three left invariant vector fields $X(\alpha, \phi)$, $Y(\alpha, \phi)$ and $T(\alpha, \phi)$ correspondingly. As direct calculations show these vector fields in our coordinates (x, y, ϕ) are

$$X(x, y, \phi) = (1 - x^2 + y^2, -2xy, 2y), \quad Y(x, y, \phi) = (-2xy, 1 + x^2 - y^2, -2x) \text{ and } T(x, y, \phi) = (y, -x, 1).$$

Also direct computations show that

[X, Y] = -4T [T, X] = Y [Y, T] = X,

or taking from now on $E_1 = X/2$, $E_1 = Y/2$ and $E_3 = T$ we have for the left-invariant vector fields E_i , i = 1, 2, 3 $[E_1, E_2] = \lambda_3 E_3$ $[E_3, E_1] = \lambda_2 E_2$ $[E_2, E_3] = \lambda_1 E_1$

where

$$\lambda_1 = \lambda_2 = 1$$
 and $\lambda_3 = -1$.

Definition 2. Denote by g the left-invariant metric on $P\tilde{S}L_2(R)$ such that vector fields E_i , i = 1, 2, 3 are orthonormal ones. The corresponding scalar product we denote as usual by (,).

Because due to (2.2) coordinate vectors are

$$\frac{\partial}{\partial x} = \frac{1}{1 - (x^2 + y^2)} (2E_1 - 2yE_3), \qquad \frac{\partial}{\partial y} = \frac{1}{1 - (x^2 + y^2)} (2E_2 + 2xE_3),$$

and

$$\frac{\partial}{\partial \phi} = E_3 - y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} = \frac{1}{1 - (x^2 + y^2)} (-2yE_1 + 2xE_2 + (1 + x^2 + y^2)E_3),$$

and by our choice $\{E_1, E_2, E_3\}$ is an orthonormal basis we arrive at the following formula for the metric tensor of our left-invariant metric in coordinates (x, y, ϕ) :

$$(2.3) \quad g = \frac{1}{(1 - (x^2 + y^2))^2} \begin{pmatrix} 4 + 4y^2 & -4xy & -4y - 2y(1 + x^2 + y^2) \\ -4xy & 4 + 4x^2 & 4x + 2x(1 + x^2 + y^2) \\ -4y - 2y(1 + x^2 + y^2) & 4x + 2x(1 + x^2 + y^2) & (1 + x^2 + y^2)^2 + 4x^2 + 4y^2 \end{pmatrix}.$$

2.4. Curvature tensor of $\tilde{P}SL_2(R)$.

Applying well known formulas (see [M]) for the curvature tensor of the left-invariant metric g we obtain the following. Ricci curvature of g:

(2.4)
$$Ric(E_1) = -\frac{3}{2} \quad Ric(E_2) = -\frac{3}{2} \quad Ric(E_3) = \frac{1}{2},$$

scalar curvature

$$(2.5) \qquad \qquad \rho = -\frac{5}{2},$$

and for sectional curvatures K_{ij} in two-dimensional directions generated by $\{E_i, E_j\}$

(2.6)
$$K_{12} = -\frac{7}{4} \quad K_{13} = \frac{1}{4} \quad K_{23} = \frac{1}{4}$$

Note, that there is a natural projection $\pi : \tilde{PSL}_2(R) \to B^2$ such that $\pi(x, y, \phi) = (x, y)$ which is a riemannian submersion (i.e., is an isometry in horizontal directions normal to the fibres of the projection π). Indeed, by the well-known O'Neill's formula (see [O'N]) we see that the sectional curvature of the base H^2 of this submersion equals

(2.7)
$$K(H^2) = K_{12} + \frac{3}{4} ||[E_1, E_2]||^2 = -\frac{7}{4} + \frac{3}{4} = -1.$$

2.5. Cristoffel symbols of Levi-Civita connection.

Proposition 3, see [Mr2]. For the covariant derivatives of the riemannian connection of the left-invariant metric g defined above the following is true:

(2.8)
$$\nabla = \begin{pmatrix} 0 & -\frac{1}{2}E_3 & 2E_2\\ \frac{1}{2}E_3 & 0 & 2E_1\\ 3E_2 & -3E_1 & 0 \end{pmatrix},$$

where the (i, j)-element in the table above equals $\nabla_{E_i} E_j$ for our orthonormal basis $E_i, i = 1, 2, 3$.

2.6. Equation of geodesics.

First we find equations of geodesics issuing from $\mathbf{0} = (0,0,0)$. Let c(t) be such a geodesics with a natural parameter t, and its vector of velocity is given by

(2.9)
$$\dot{c}(t) = u'(t)E_1(c(t)) + v'(t)E_2(c(t)) + w'(t)E_3(c(t)).$$

Then the equation of a geodesic $\nabla_{\dot{c}(t)}\dot{c}(t) \equiv 0$ and our table of covariant derivatives (2.8) give:

$$(u''(t) - 5v'(t)w'(t))E_1(c(t)) + (v''(t) + 5u'(t)w'(t))E_2(c(t)) + w''(t)E_3(c(t)) = 0,$$

which easily gives

$$(2.10) w'(t) \equiv w'(0)$$

and

$$(2.11) \quad u'(t) = u'(0)\cos(5w'(0)t) + v'(0)\sin(5w'(0)t) \quad \text{and } v'(t) = v'(0)\cos(5w'(0)t) - u'(0)\sin(5w'(0)t).$$

To find equations for the coordinates $(x(t), y(t), \phi(t))$ of the geodesic line c(t) in our coordinate system (x, y, ϕ) recall that due to (2.2) we have

$$E_1 = (1 - x^2 + y^2)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (2y)\frac{\partial}{\partial \phi}, \\ E_2 = (-2xy)\frac{\partial}{\partial x} + (1 + x^2 - y^2)\frac{\partial}{\partial y} + (-2x)\frac{\partial}{\partial \phi}, \\ E_3 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_4 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_5 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_7 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2xy)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2xy)\frac{\partial}{\partial y} + (-2x)\frac{\partial}{\partial \phi}, \\ E_8 = (-2xy)\frac{\partial}{\partial x} + (-2x)\frac{\partial}{\partial y} + (-2x)\frac{\partial}{\partial \phi} + (-2x)\frac{\partial}$$

and

(2.12)
$$E_3 = y \frac{\partial}{\partial x} + (-x) \frac{\partial}{\partial y} + \frac{\partial}{\partial \phi}.$$

Therefore, (2.10)-(2.11) substituted in (2.9) gives

$$\dot{c}(t) = (u'(t)(1 - x^2 + y^2) + v'(t)(-2xy) + w'(0)y)\frac{\partial}{\partial x} +$$

$$(2.13) \qquad (u'(t)(-2xy) + v'(t)(1 + x^2 - y^2) - w'(0)x)\frac{\partial}{\partial y} + (u'(t)(2y) + v'(t)(-2x) + w'(0))\frac{\partial}{\partial \phi},$$

so that from $\dot{c}(t) = x'(t)\frac{\partial}{\partial x} + y'(t)\frac{\partial}{\partial y} + \phi'(t)\frac{\partial}{\partial \phi}$ and that obviously x'(0) = u'(0), y'(0) = v'(0) and $\phi'(0) = w'(0)$ we arrive at the following equations (2.14) $\dot{x}(t) = (1 - x^2(t) + y^2(t))(u'\cos(5w't) + v'\sin(5w't)) + (-2x(t)y(t))(v'\cos(5w't) - u'\sin(5w't)) + w'y(t)$

$$\begin{split} \dot{y}(t) &= (-2x(t)y(t))(u'\cos(5w't) + v'\sin(5w't)) + (1 + x^2(t) - y^2(t))(v'\cos(5w't) - u'\sin(5w't)) - w'x(t) , \\ \dot{\phi}(t) &= (2y(t))(u'\cos(5w't) + v'\sin(5w't)) + (-2x(t))(v'\cos(5w't) - u'\sin(5w't)) + w' \end{split}$$

where we drop argument 0 in u'(0), v'(0) and w'(0) so that (u', v'w') equals the unit vector $\dot{c}(0)$. First two equations are independent of the third one, hence we first concentrate on the equation for $\alpha(t) = (x(t) + iy(t))$. If we denote $u'\cos(5w't) + v'\sin(5w't) = \sqrt{1 - (w')^2}\cos(\tau)$, then $v'\cos(5w't) - u'\sin(5w't) = (\sqrt{1 - (w')^2})\sin(\tau)$ for $\tau = 5w't$, and due to $x^2 - y^2 = Re(\alpha^2)$ and $2xy = Im(\alpha^2)$ we find

$$(\dot{x}(t) + i\dot{y}(t)) = \dot{\alpha}(t) =$$

$$\sqrt{1 - (w')^{2}((1 - Re(\alpha^{2}(t)))\cos(\tau) + (iIm(\alpha^{2}(t)))(i\sin(\tau) + (-iIm(\alpha^{2}(t)))\cos(\tau) + i(1 + Re(\alpha^{2}(t)))\sin(\tau))} - (iw')(iIm(\alpha(t))) - (iw')Re(\alpha(t)) = \sqrt{1 - (w')^{2}}((1 - \alpha^{2}(t)))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau))) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau))) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau))) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau))) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) - iw'\alpha(t) = \sqrt{1 - (w')^{2}}(1 - \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) + (1 + \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t))(i\sin(\tau)) + (1 + \alpha^{2}(t))\cos(\tau) + (1 + \alpha^{2}(t$$

(2.15)
$$\sqrt{1 - (w')^2 (Exp^{i\tau} - \alpha^2(t)Exp^{-i\tau}) - iw'\alpha(t)}.$$

Changing variable t to $s = \sqrt{1 - (w')^2}t$ last equality yields for

$$u(s) = \alpha(s/\sqrt{1 - (w')^2}) Exp^{i \frac{w's}{\sqrt{1 - (w')^2}}}$$

the following equations

$$\dot{u}(s) = Exp^{isA} - u^2(s)Exp^{-isA}$$

where $A = 6w'/\sqrt{1 - (w')^2}$, which in turn gives Ricatti equation

$$\dot{r}(s) = 1 + (iA)r(s) - r^2(s)$$

for $r(s) = Exp^{iAs}u^{-1}(s)$. Finally, with the help of software package "Mathematica" we get

(2.16)
$$r(s) = \frac{1}{2} (Ai + (\sqrt{A^2 - 4})tg[-\frac{\sqrt{A^2 - 4}}{2}s + C_1]),$$

where $C_1 = \pi/2$ due to initial conditions. Finally, we arrive at the following formula for the first two coordinates of the geodesic line:

(2.17)
$$\alpha(t) = \frac{Exp^{\frac{5w'}{\sqrt{1-(w')^2}}s}}{\frac{1}{2}(\frac{6w'i}{\sqrt{1-(w')^2}} + (\sqrt{\frac{40(w')^2 - 4}{1-(w')^2}})ctg[(\sqrt{10(w')^2 - 1})t])}$$

Substituting $x(t) = Re(\alpha(t))$ and $y(t) = Im(\alpha(t))$ into the equation (2.14) for the third coordinate, we define $\phi(t)$, and with the help of "Mathematica" obtain the following pictures describing geodesic lines and metric balls in $PSL_2(R)$.

2.7. Computer generated pictures of geodesic lines in $PSL_2(R)$.

8

GEOMETRY OF $Heis^3$ AND $PSL_2(R)$ WITH "MATHEMATICA"

9

4 5 6 7

VALERY MARENICH AND ANDREY MARENICH

1. Horizontal projection of the geodesic line issuing from $\mathbf{0}$ in the direction (0.91, 0, 0.3).

2. Horizontal projection of the geodesic line issuing from $\mathbf{0}$ in the direction (0.84, 0, 0.4).

3. Horizontal projection of the geodesic line issuing from $\mathbf{0}$ in the direction (0.19, 0, 0.9).

4. Geodesic line issuing from $\mathbf{0}$ in the direction (0.9975, 0, 0.05)

5. Geodesic line issuing from $\mathbf{0}$ in the direction (0.99, 0, 0.1)

6. Geodesic line issuing from $\mathbf{0}$ in the direction (0.91, 0, 0.3)

7. Geodesic line issuing from $\mathbf{0}$ in the direction (0.64, 0, 0.6)

8. Metric ball of the radius 0.1.

9. Half of the sphere of the radius 1.

10. Part of the $\{X, \Phi\}$ coordinate plane in the neighborhood of the focal point.

References

[M] J. Milnor, Curvatures of Left Invariant Metrics on Lie Groups, Advances in Math. 21 (1976), 293-329.

[Mr1] V. Marenich, Geodesics in Heisenberg groups, Geometria Dedicata 66:2 (1997), 175-185.

[Mr2] V. Marenich, On the geometry of $PSL_2(R)$ and some examples of $PSL_2(R)$ manifolds, Preprint.

[Sc] P. Scott, The geometry of 3-manifolds, Bull. LMS 15 (1983), 401–487.

IMECC - UNICAMP, CAMPINAS, BRAZIL E-mail address: marenich@ime.unicamp.br