VISUALIZING GEOMETRY WITH THE HELP OF "MATHEMATICA”

VALERY MARENICH AND ANDREY MARENICH

ABSTRACT. Among eight possible geometric structures on three-dimensional manifolds less studied from the differ-
ential geometric point of view are those modeled on the Heisenberg group Heis® and PSL2(R) - the group of all
isometries of the Lobachevsky plane, see [Sc]. We consider their left-invariant metrics, define Levi-Civita connections
and curvature tensors, define and solve equations of geodesic lines. Using ”Mathematica” software package we also
present drawings of geodesic lines and metric balls in these spaces.

1. Geometry of the Heisenberg group Heis®

1.1. Left-invariant metric, Levi-Civita connection and curvature tensor of Heis®. We begin with a
well-known description of the Heisenberg group of dimension 3. Let R? be the euclidean space with coordinates
(z,y,2). Then the Heisenberg group Heis® is this space with the following multiplication rule:

((1.1)) (z,y,2) (¢, ¢, 2) = (w+ 2 y+y, 2+ 2"+ (<9 > = <2,y >)),

where <, > is a scalar product in R?* = {(z,y)}. The element zero 0 = (0,...,0) is the unit of this group
structure and the vector fields

(1.2) X=(1,0,—y), Y=(0,1,2), T=(0,0,1)
are their left-invariant fields. We define the left-invariant metric on Heis® by taking X, Y, T as the orthonor-
mal frame.

Definition 1. Denote by g the left-invariant metric on Heis® such that vector fields X, Y and T are or-
thonormal ones. The corresponding scalar product we denote as usual by (, ).

Because due to (1.2) coordinate vectors are

0 0 0

— =X T — =Y —2T d ==T

5o = (XD), = -al), ad =T

and by our choice {X,Y,T'} is an orthonormal basis we arrive at the following formula for the metric tensor
of our left-invariant metric in coordinates (z,y, 2):

l+y* —zy oy
(1.3) g=| —zy 1+42* -z
Y - 1

The following was proved in [Mrl].
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Proposition 1. For the covariant derivatives of the Riemannian connection of the left-invariant metric,
defined above the following is true:

0 T -Y
(1.4) V=|-T 0o X |,
Y X 0

where the (i,j)-element in the table above equals Vg, E; for our basis

{Ep k=1,2,3}={X,Y,T}.

1.2. Geodesic lines in Heis®. We find equations of geodesics issuing from 0=(0,0,0). Let ¢(¢) be such a
geodesics with a natural parameter ¢, and its vector of velocity given by

(1.5) ¢(t) = a(t)X(t) + B)Y () + ()T
Then the equation of a geodesic V4(;)¢(t) = 0 and our table of covariant derivatives (1.3) give:

(@' (t) + 29B(£) X (t) + (8'(t) — 2va(t))Y (t) ++' ()T = 0.

Thus we easily obtain the following equations for coordinates of the vector of velocity of the geodesic ¢(t) in
our left-invariant moving frame:

o)+ 298 =0,
(1.6) {ﬂ'(w—zza(t):o 7 =0

(a(t) + B(t)) = 2v(a(t) = B(E)) =0, .\
o {(Mﬂ—ﬁ@Y+2%mw+ﬁ@):0’ﬂﬂ—0

Because the parameter t is natural we have
o®(t) + B2(t) +7* =1,

and we could take y(t) = v where |y| < 1 is the cos of the angle between ¢(0) and T-axe. For |y| = 1 we have
"vertical” geodesic, coinciding with z-axe, which is an integral line of the left-invariant vector field T'. For
~v = 0 our equations are linear. For v # 0 after some easy computation one could find that:

a(t) = rcos(2yt + ¢)
(1.8) { B(t) = rsin(Q”Zt + @)

where 7 = /a2 + 2. To find in coordinates {z,y, 2z} equations for geodesics c(t) = (x(t),y(t), z(t)) issuing
from 0 note, that if
é(t) = a() X (8) + BOY (8) + (T

and our left-invariant vector fields are

X = (1707 _y)7 Y= (07 17I)7 T= (07071)7

then 9 9
a:X—l—yT, and a—y:Y—azT,
so we easily have:
&(t) = a(t)
(1.9) y(t) = p(t)

2(t) = v — a®)y(t) + B(t)z(t)

that after some computations gives the following equations for geodesics issuing from zero:
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Proposition 2. Geodesic lines issuing from zero 0 in the Heisenberg group Heis® satisfy to the following

equations:
z(t) = 3 (sin(2yt + ¢) — sin(¢))
(1.10) y(t) = 35 (cos(¢) — cos(2vt + ¢))
z(t) = %t - 14_712 sin(27t)

= (rcos(¢),rsin(d),y); or if

for some numbers ¢, r which could be defined from the initial condition ¢(0)
v =0, then they are "horizontal” and satisfy the following equations:

z(t) = a(0)t
y(t) = B(0)t
z2(t) =0

(1.11)
To find geodesics issuing from an arbitrary point and their equations it is sufficient to use left translation
to this point and apply to the equation above the multiplication rule (1).

1.3. Computer generated pictures of geodesic lines and metric balls in H3.

1. Two geodesic lines issuing from 0 in directions of X and Y axes for ¢t € [—10, 10].

2. Exp-image of the {X, T }-ccordinate plane.
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Metric ball with the center at 0 and radius 1.

Metric ball with the center at 0 and radius 3.

Half of the ball of radius 5.

Focal point of the exponential map: singular point of the sphere with radius 5
Amplified singular point of the sphere of radius 5.

Amplified neighborhood of the singular point of the same sphere.

Singular point of the metric sphere of radius ¢ = 20.

N ok W=

II. On the geometry of PSL2(R)

2.1. Ball model of Lobachevsky plane and global cordinates in PSLy(R).
In a standard way we identify the Lobachevsky hyperbolic plane H? with the unit disk
B? = {z € Cl||z|| < 1} in the complex plane with the metric
dz? + dy?
(1— (a2 +9%))*’
where z =  + iy. In this coordinate system isometries can be described as transformations of B? of the form

ds® =

Z—

z = w(z) = —e'? for a€B*0<¢<2n

az—1
(which is a composition of a parallel translation taking the point 0 to a and rotation on angle ¢). Then («, ¢)
for « € B? and ¢ € S' = {z € C|||z|| = 1} are coordinates in the group PSL:(R) of all isometries of H?.
Respectively, in the universal cover PSLy(R) of PSLy(R) the system of global coordinates is (a, ¢), where
¢ € R. Below we denote by I(«, ¢) the isometry with coordinates (o, ¢) and also a = x + iy, so that (z,y, ®)
are our global coordinates in PSLy(R).

2.2. Multiplication law in PSL,(R).

In the coordinate system which we have introduced above the multiplication law giving coordinates of a
composition of two isometries with coordinates (a, ¢) and (3,%) can be defined in the following way. Because

e d)o 18, )(e) = e T 220
for v = v(a, ) = 1 + afe™™ and § = §(a, B) = (B + ae_w)/% we doduce that

which we simply denote as

(2.1) (a,9) 0 (B,¢) = (6(ev, B), ¢ + ¥ + 24rg(v(a, B)))-
2.3. Left-invariant vector fields, Lie algebra psl»(R) and metric tensor. Take three coordinate vectors
X =0/0z,Y =0/0y and T = 0/0¢ of the coordinate system introduced above at the point 0 = (0,0, 0),
and applying the differential of the multiplication (2.1) by («, ¢) from the left we obtain three left invariant
vector fields X («, @), Y (a, ¢) and T'(«a, ¢) correspondingly. As direct calculations show these vector fields in
our coordinates (z,y, @) are
(2.2)
X(Iaya¢) = (1_I2 +y27_2xy72y)7 Y(Iaya¢) = (—2.’L'y,].+l'2 —y2,—2I) a‘nd T(x7y7¢) = (y,—x,l).
Also direct computations show that
[X,Y]=-4T [I,X]=Y [V,T]=X,

or taking from now on By = X/2, By =Y/2 and E3 = T we have for the left-invariant vector fields E;,i = 1,2,3

[E1, Bx] = \3E3 (B3, E1] = M2 E» [Es, B3] = M Ey

where
)\12)\221 and A3=—1.
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Definition 2. Denote by ¢ the left-invariant metric on PS‘Lz(R) such that vector fields E;,i = 1,2,3 are
orthonormal ones. The corresponding scalar product we denote as usual by (, ).

Because due to (2.2) coordinate vectors are

0 1 0 1

e - T- @) O TS STy PR )
and 0 3} 0 1
= — R — _—_ — — 5 2 2
90 Es yax—kmay 1_(w2+y2)( 2y + 2zEy + (1 +2° + y*)E3),

and by our choice {E1, E2, E3} is an orthonormal basis we arrive at the following formula for the metric tensor
of our left-invariant metric in coordinates (z,y, ¢):

1 4 + 4y? —4zy —4y —2y(1 + 2% + y?)
y —4y —2y(1+ 22 +y?) dz+2z(1+22+y?) (1+22+ 9%+ 42? + 4y

2.4. Curvature tensor of PSL,(R).
Applying well known formulas (see [M]) for the curvature tensor of the left-invariant metric g we obtain
the following. Ricci curvature of g:

3 3 1
(2.4) Ric(Ey) = -3 Ric(Es) = -5 Ric(Es) = 5
scalar curvature

(2.5) p=—:

and for sectional curvatures K;; in two-dimensional directions generated by {E;, E;}
(26) K12 = —- K13 = - K23 = —.

Note, that there is a natural projection = : PSLy(R) — B? such that n(x,y, ) = (z,y) which is a riemannian
submersion (i.e., is an isometry in horizontal directions normal to the fibres of the projection 7). Indeed,
by the well-known O’Neill’s formula (see [O’N]) we see that the sectional curvature of the base H? of this
submersion equals

. 3 ‘ 7 3
(2.7) K(H?) = Kis + Z||[Ey, Bo|IP = —= + = = —1.
4 4 4
2.5. Cristoffel symbols of Levi-Civita connection.

Proposition 3, see [Mr2]. For the covariant derivatives of the riemannian connection of the left-invariant
metric g defined above the following is true:

0 -iB; 2B
(2.8) v=[1iE 0 28|,
3B, —-3E; 0

where the (i,j)-element in the table above equals Vg, E; for our orthonormal basis E;,i =1,2,3.
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2.6. Equation of geodesics.
First we find equations of geodesics issuing from 0=(0,0,0). Let ¢(t) be such a geodesics with a natural
parameter ¢, and its vector of velocity is given by

(2.9) é(t) = u' (£)Er(c(t)) + v' () E2(c(t)) + w' (t) Es(c(t)).

Then the equation of a geodesic v&(t)é(t) = 0 and our table of covariant derivatives (2.8) give:
(u” (t) — 50" (H)w'(¢)) Br(c(t) + (07 () + 5u'(t)w' (1)) E2(c(t)) + w” () Es(c(t) = 0,
which easily gives
(2.10) w'(t) = w'(0)
and
(2.11)  '(t) = u'(0) cos(5bw'(0)t) + v'(0) sin(5w’(0)t) and v'(t) = v'(0) cos(5w’ (0)t) — u'(0) sin(5w’(0)t).

To find equations for the coordinates (z(t),y(t), ¢(t)) of the geodesic line ¢(t) in our coordinate system (z,y, @)
recall that due to (2.2) we have

0 0
1 2 .2\ 7 —97) —
HUHE =) 2+ (-20)

0 0

0 0
_ 2 PAYE _ -~

Jy

and
(212) B =y (ol 2
Therefore, (2.10)-(2.11) substituted in (2.9) gives

é(t) = (W' (t)(1 — 2 +y?) + ' (t) (= 22y) + W'(O)y)a%+

(2.13) (W' (t)(=2zy) +0'(H)(1 +2* = y*) — w'(O)m)a% + (' (1) (2y) + ' (1) (—2z) + w'(O))a%,

so that from é(t) = 2'(t) 8% +y'(t) 8% —l—(;ﬁ’(t)a% and that obviously z'(0) = »'(0), y'(0) = v’(0) and ¢'(0) = w'(0)
we arrive at the following equations

(2.14)

(t) = (1 —2%(t) + y*(t))(u cos(5w't) + v’ sin(5w't)) + ( 2x(t)y(t)) (v' cos(5w't) — u'sin(5w't)) + w'y(t)
y(t) = (—2z(t)y(t))(u' cos(5w't) + v'sin(5w't)) + (1 + = 2(t) — y2(t)) (v cos(bw't) — u' sin(5w't)) — w'z(t),
o(t) = (2y (1)) (u' cos(bw't) + v’ sin(5w't)) + (—2z(¢))(v' cos(bw't) — u' sin(5w't)) + w'

where we drop argument 0 in u'(0), v'(0) and w'(0) so that (u',v'w") equals the unit vector ¢(0). First two equa-
tions are independent of the third one, hence we first concentrate on the equation for a(t) = (z(t)+iy(t)). If we

denote u' cos(5w't) + v’ sin(5w't) = /1 — (w')* cos(r), then v’ cos(5w't) — u'sin(5w't) = (/1 — (w')?) sin(r)
for 7 = 5w't, and due to 2> — y? = Re(a?) and 2zy = Im(a?) we find

(@(t) + iy (1)) = a(t) =
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A/1— (w’)z((l — Re(a?(t))) cos(7) + (iIm(a?(t)))(isin(7) + (—iIm(a*(t))) cos(r) + i(1 + Re(a?*(t))) sin(7))
—(iw")(iIm(a(t))) — (iw')Re(a(t)) =

\/1-— (w’)2((1 —a?(t))) cos() + (1 + a*(t))(isin(7))) — iw'a(t) =

(2.15) V1= (W) (Exp’™ — o?(t)Exp™ ™) — iw'a(t).

Changing variable t to s = 1/1 — (w’)?¢ last equality yields for

> w’s
i

u(s) = als/\/1 - (w)?) Eep Vi-?

the following equations ‘ ‘
u(s) = Bxp™* — u?(s)Bxp 4

where A = 6w'/y/1 — (w')?, which in turn gives Ricatti equation

7(s) =14 (iA)r(s) — r’(s)
for r(s) = Ezp'*u~(s). Finally, with the help of software package "Mathematica” we get

2

(Ai + (VA2 — 4)tg[—gs +C1)),

(2.16) r(s) = 5

N =

where C; = 7/2 due to initial conditions. Finally, we arrive at the following formula for the first two coordinates
of the geodesic line:

5w’ s
E 1—(w’)2
(2.17) alt) = P .

1 6w'i 40(w')?—4 2
M + (/S etgl(y10(w)” — 1))

Substituting x(t) = Re(a(t)) and y(t) = Im(a(t)) into the equation (2.14) for the third coordinate, we define
¢(t), and with the help of ”Mathematica” obtain the following pictures describing geodesic lines and metric
balls in PSLy(R).

2.7. Computer generated pictures of geodesic lines in PSLy(R).
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Horizontal projection of the geodesic line issuing from 0 in the direction (0.91,0,0.3).
Horizontal projection of the geodesic line issuing from 0 in the direction (0.84,0,0.4).
Horizontal projection of the geodesic line issuing from 0 in the direction (0.19,0,0.9).
Geodesic line issuing from 0 in the direction (0.9975,0,0.05)

Geodesic line issuing from 0 in the direction (0.99,0,0.1)

Geodesic line issuing from 0 in the direction (0.91,0,0.3)

Geodesic line issuing from 0 in the direction (0.64,0,0.6)

Metric ball of the radius 0.1.

. Half of the sphere of the radius 1.

0. Part of the {X, ®} coordinate plane in the neighborhood of the focal point.
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