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Abstract

Let (G, L,7) be an affine symmetric space with G a simple Lie
group, 7 an involutive automorphism of G and L an open subgroup
of the 7-fixed point group G7. It is proved here that the existence of
a proper semigroup S C G with intS # () and L C S implies that
(G, L, ) is of Hermitian type, as conjectured by Hilgert and Neeb [4].
When S exists, it turns out that it leaves invariant an open L-orbit
in a minimal flag manifold of G. A byproduct of our approach is an
alternate proof of the maximality of the compression semigroup of an
open orbit (see Hilgert and Neeb [3]).
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Introduction

Let G be a connected semi-simple Lie group and 7 # 1 an involutive au-
tomorphism of G. Semigroups containing the group G7 of 7-fixed points,
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or rather an open subgroup L of G7, have been studied extensively in the
literature, due mainly to their importance in harmonic analysis of causal
symmetric spaces. We refer to [1], [2], [3], [4], [5], [6], [7], [8], [9] and refer-
ences therein for the literature on semigroups and affine symmetric spaces.
The theory developed so far highlights affine symmetric spaces of Hermitian
— or regular — type, and the corresponding Ol’shanskii semigroups. For this
class there are available invariant cones in the Lie algebra which generate
proper semigroups invariant under a subgroup of 7-fixed points. It turns out
that a great deal of the theory is developed with the aid of the compression
semigroups of the open L-orbits in the flag manifolds.

When studying these compression semigroups one is faced with a gap in
the theory concerning the existence of proper semigroups containing L when
the symmetric space is not of Hermitian type. Of course, it is known that only
in the Hermitian case are there invariant cones in the Lie algebra. However,
this is not an obstruction for the existence of an L-invariant semigroup having
trivial Lie wedge.

The purpose of this paper is to fill this gap by proving that if (G, 1) is
not of Hermitian type and S is a semigroup containing L then either S = G
or intS = (). This result was conjectured before by Hilgert and Neeb [4] (see
Conjecture III in [4] whose statement amounts to our formulation).

Precisely, we assume that G is a simple noncompact and connected Lie
group having finite center, and prove that if S = S¢ is the compression
semigroup of a subset C of a flag manifold of G (i.e., S = {g € G : gC C C}),
such that L € S, S # G and intS # () then the pair (G, ) is of Hermitian
type and C'is an open L-orbit having specific properties. Since any semigroup
with nonempty interior is contained in a compression semigroup, the more
general result stated above follows.

Our proof is based on previous results about the action of semigroups
on flag manifolds. The main point in the proof is a relation established
between two subgroups of the Weyl group W, namely the subgroup W* (a)
associated to the pair (G,7) and the subgroup W (S) built from S. The
subgroup W (S) is parabolic and hence has a fixed point in its action on
the split subalgebra. This will imply the existence of a fixed point of the
subgroup W* (a), ensuring that the affine symmetric space is of Hermitian
type. In the course of the proof the subgroup W (S) is computed explicitly
when S is an invariant compression semigroup with nonempty interior. From
the knowledge of W (S) it is easy to show that the existing compression



semigroups are maximal, a result already proved by Hilgert and Neeb [3].

1 Flag manifolds and Semigroups

This section is preparatory for the proof of the main results. We recall here
the basic constructions and results about the action of semigroups on flag
manifolds. Most of the results where proved elsewhere, so we just state them
or outline their proofs. We refer the reader to [10], [11], [12], [13] for further
details.

1.1 Flag manifolds

Let g be a noncompact semi-simple Lie algebra. We view a flag manifold of
g as an orbit of a parabolic subalgebra of g under the group Auty (g) of inner
automorphisms of g. In the sequel we label a flag manifold by a subset of
the set of simple roots as follows: Let g = €& p be a Cartan decomposition
with Cartan involution # and choose a maximal abelian subspace ay C p.
Denote by II the set of restricted roots of the pair (g, ag), and select a simple
system of roots ¥y C II, with II* the corresponding set of positive roots and
ag; the Weyl chamber. For a root a € II its root space is denoted by g,.
Any parabolic subalgebra is conjugate under an inner automorphism of g to
a standard parabolic subalgebra

bo =n" (©) ® b,

with © C X, a proper subset. In this expression b" stands for the minimal
parabolic subalgebra b* = m+4-ag+n* where n™ = >\ go and m = 3¢ (ay).
Also, n~ (©) is the subalgebra spanned by the root spaces g_,, a € (09),
where (©) is the set of positive roots generated by ©. The flag manifold
containing bg is denoted by Bg. For the maximal flag manifold we write
simply B = By. Recall that for any flag manifold Bg there is a standard
fibration 7 : B — Bg, which assigns to the minimal parabolic subalgebra b
the unique parabolic subalgebra 7 (b) in Bg containing b.

Let G be a connected Lie group with finite center and Lie algebra g. The
group acts on the flag manifolds of g through the adjoint representation of
G in g. We denote this representation by ¢g- X, g € G, X € g. Let NT be
the nilpotent connected subgroup of G' whose Lie algebra is n™. In any flag
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manifold Bg there is just one open and dense N T-orbit, say 0. By an open
Bruhat cell in Bg we mean a subset of the form goy, g € G. Equivalently,
the cell goy is the open and dense orbit of the group gN*g~!.

For our purposes it is relevant to have a description of the open cells in
terms of incidence of parabolic subalgebras. Starting with B, define an action
of G on B x B by putting ¢g- (by, b)) = (g by, g bs). Let b be the standard
minimal parabolic subalgebra defined above, and put b= = m+a+n—,
where n= = ZaEH+ g . I'wo parabolic subalgebras by, by € B are said to be
opposed (notation: by h by) in case (by, by) belong to the G-orbit of (b™,b7).
This definition yields that the set of subalgebras opposed to bt is the orbit
NT .b", that is, the open cell oy. In fact, b is opposed to b™ if and only if
b=g- b with g-b" = b". This means that ¢ € P, the normalizer of b™ in
G. But it is well known that P-b~ = Nt -b".

This characterization of oy is carried over to arbitrary cells through the
G-action. In general, given b = ¢g- bt € B the set of subalgebras opposed
to it is the cell goy. Therefore, any open cell in B is the set of subalgebras
opposed to a given minimal parabolic subalgebra b. In what follows we put
o (b) for the cell of subalgebras opposed to b.

Now, for a subalgebra ¢ of g denote by nil(c) its nilradical. We have
nil (b7) = n™, nil(b7) = n~ and b Nnil(b7) = b~ Nnil(b") = {0}. Fur-
thermore, given n € N7,

(n-b7)Nnil(b7) =n- (b Nnil (b)) = {0}

and b" Nnil(n-b67) =n- (b7 Nnil(b7)) = {0}. In other words, b M b™ if
and only if nil (b) and nil (b™) are transversal to b™ and b, respectively.

Actually, b™ N nil(b) = {0} if and only if b N nil (b*) = {0}, since the
intersections are contained in the nilradicals of b™ and b. Hence each one of
these two transversalities conditions is necessary and sufficient for the subal-
gebras to be opposed. Through the adjoint representation, these conditions
are carried over to arbitrary pairs of minimal parabolic subalgebras.

Proposition 1.1 The minimal parabolic subalgebras by, by € B are opposed
if and only if by Nnil(by) = {0} or by Nnil (b)) = {0}.

Therefore an open cell in B is the set of minimal parabolic subalgebras
transversal to the nilradical of a fixed subalgebra b € B.



A similar picture holds for a flag manifold Bg. However, in general the
transversality condition must be taken with respect to subalgebras in the flag
manifold Beg- dual to Bg. Here the subset ©* defining Be- is obtained as
follows: Let W be the Weyl group of the pair (g, ap) and denote by w, € W
its principal involution, that is, the element of maximal length as a product
of reflections with respect to the simple roots in X,. Alternatively, wq is
the only element of W such that wg(Xg) = —Xy. Put ¢ = —wy. Then
L (X0) = Xy, so that it is an involutive automorphism of the Dynkin diagram
of 3y. By definition ©* =+ (0).

It is well known and easy to prove from the standard decompositions that
the nilradical of bg is

St
I

Zga

acllt\(e

nil (bg) =

(c.f. [15], page 80; [14], page 280). Define the subalgebra
b =0 (bo) =n" ()b,

where b~ is as before the minimal parabolic subalgebra given by the negative
roots and n* (O) is the subalgebra spanned by the root spaces g, @ € (0).
We have bg € Be-. In fact, let wy be an inner automorphism of g extending
wy (e.g. Wy is a representative of wy in the normalizer Nk (ag) of ag in
K, the compact group with Lie algebra €). Then w, (b7) = b~ and since
wy (—O*) = O, it follows that Wy (n~ (©*)) = n™ (©). Therefore, Wy (be-) =
bg, implying that by € Be-. Also, the nilradical of by is the image under w
of nil(be-) = > i+ (o) Ga- Hence we have

nil (bg) = Z ga

acllt\(©

This subalgebra is clearly transversal to be.

Two subalgebras ¢; € Bg and ¢ € Bg- are said to be opposed to each
other (notation: ¢; M ¢y) in case the pair (¢j,¢y) € Bo x Bo- belongs to
the G-orbit of (b@, b(f)) under the componentwise action. Analogous to the
minimal parabolic case the G-action carries over to pairs of subalgebras in
Be x Be- the incidence relations between bg and bg.



Proposition 1.2 The subalgebra ¢, € Bg is opposed to ¢ € Be+ if and only
if one of the two equivalent transversalities ¢;Nnil (co) = {0} or coNnil(¢y) =
{0} is satisfied. Moreover, for ¢ € Bg~, the subset

o(c)={be€Bo :bNnil(c) = {0}}

is an open cell in Bg, and the map ¢ — o (¢) gives a bijective correspondence
between Bg- and the set of open cells in Be .

We discuss now the relation between opposed minimal parabolic subalge-
bras and split subalgebras. Given two opposed minimal parabolic subalgebras
b, and by, by N by contains a unique maximal abelian split subalgebra of g,
that is, a subalgebra of the form a = g - ay with ¢ € G. In this case one can
select a Weyl chamber, say a® C a, such that for H € a*, b; is the attrac-
tor in B of h = exp H having o (by) as the corresponding stable manifold.
This means that h*z — by, as k — +oo, for any = € o (by). In the sequel
we write at (by, by) for the chamber coming from this construction, and put
AT (bl, bg) = exp (a+ ([11, [12))

Conversely, a minimal parabolic subalgebra is defined uniquely by a Weyl
chamber a® contained in a maximal split subalgebra a. We denote this
parabolic subalgebra by b (a™). Fixing a* one has a well defined isomorphism
between W, the Weyl group of the basic subalgebra ay, and the Weyl group
W (a) of a. In fact, both groups are generated by reflections with respect
to simple systems of roots having the same Dynkin diagram. Denote for a
moment this isomorphism by ¢. If w € W then ¢ (w) a™ is a Weyl chamber
in a. In the sequel we write b (a*)w for the minimal parabolic subalgebra
defined by ¢ (w)a™, that is, b (a*)w = b (¢ (w)a™). This element of B is
said to be the fixed point of type w for AT = exp (a™).

For a given a parabolic subalgebra ¢ we denote by N (¢) the connected
subgroup whose Lie algebra is the nilradical nil () of ¢. Since nil (bg) =
Zae(@ g_o complements bg, the orbit of N (bg)) in Bg containing bg is
open. The same remark holds for any subalgebra in Bg opposed to bg, so that
o (bg) is the open orbit of N (bg) in Bg. This fact is carried over to arbitrary
subalgebras ¢ € Be- through the G-action: We have ¢ = g-bg for some g € G,
hence nil (¢c) = g-nil (bg), o (¢) = go (bg) and N (¢) = gN (bg) ¢ *, implying
that o (c) is the open orbit of N (¢) in Be.

Now, let 7 : B — Bg and n* : B — Bg- be the standard fibrations.
Take b € B and put ¢ = 7*(b). Then nil(c) C nil(b), so that the open
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orbit of N (b) projects down onto the open orbit of N (c), implying that
7 (0 (b)) = o (c). For later reference we emphasize this fact.

Lemma 1.3 If ¢ = 7" (b) then o (¢) =7 (0 (b)).

Regarding the projection of opposed minimal parabolic subalgebras there
is still the following fact, which is required later.

Lemma 1.4 Let b = b (a™) be a minimal parabolic subalgebra built from the
Weyl chamber a* C a. Let W (a) be the Weyl group of a and let wy be
the principal involution of W (a) with respect to at. Let m : B — Bg be
the projection onto a smaller flag manifold. Then for w € W (a) the fiber
77t (b (wa't)) contains a subalgebra opposed to b if and only if 7 (b (wa™)) =

7 (b (wea™)).

Proof: The only subalgebra of the type b (wa™) opposed to b is b (woa™).
Let N = N (b) be the nilpotent subgroup whose Lie algebra is the nilradical
of b. The subalgebras opposed to b are the elements of the orbit N-b (woa™).
Take w € W (a) and suppose that for some n € N, n-b (wpa™) and b (wa™)
belong to the same fiber. Then nwyPe = wPe, hence by the Borel-Kostant
Theorem (see [15], Proposition 1.2.4.9), wyPe = wPg, which means that
b (wa™) and b (wea™) are in the same fiber. O

1.2 Semigroups

Let S C G be a semigroup with nonempty interior. Recall that a control
set for the action of S on Bg is a subset D C Bg which is maximal with
the properties D C ¢l (Sz) for any x € D, and there exists x € D such
that gr = « for some g € intS. It is known (see [10], [13]) that on any
flag manifold there exists a unique invariant control set (i.e., Sz C D for all
x € D) which is closed. Also, in Bg there is just one control set which is
S~ l.invariant. This set is open. Because of the natural order between control
sets (see [11]) we call this open control set the minimal control set of S.

A subset C' C By is said to be admissible if the following conditions hold:

1. C = cl(intC).



2. C C o (c) for some ¢ € Bo-.

The admissible subsets are the relevant invariant control sets of semi-
groups in G. In fact, we have the following fact proved in [13].

Proposition 1.5 Let S C G be a proper semigroup with intS # 0. Then
there exists a unique subset © (S) C Xy such that

1. the invariant control set C' of S in Be(s) s admissible, and

2. the invariant control set of S in B is n=' (C), where m : B — Bg(g) is
the standard fibration.

In what follows we write B(S) = Be(s) for the flag manifold whose ex-
istence and uniqueness is ensured by this proposition. Also, we let W (S)
stand for the subgroup of W generated by the reflections with respect to the
simple roots in © (.5).

In the sequel we say that a semigroup S is of type © C X, in case
© (S) = ©. We emphasize that if intS # () and S is a proper subsemigroup
then S is of type © for some proper subset © C Y,. At this point we remark
that the type of S~ is the dual © (S)" of the type of S (see [12], Proposition
6.2).

In another direction, it was proved in [12], Proposition 4.2, that if C' C Bg
is admissible then the compression semigroup

Se={g€G:9CCC}

has nonempty interior in G' and is of type ©. Also, C' is the invariant control
set of S¢ in Bg. Therefore a subset of Bg is admissible if and only if it is the
invariant control set of a semigroup with nonempty interior of type ©.

A basic property of a semigroup S of type © is given by its intersection
with the Weyl chambers. Recall that the set of transitivity Dy of a control
set. D is defined by

Dy={x € D:z€int(S)z}.

It is known that Dy is dense in D and gx € Dy if ¢ € S and = € Dy (see
[13]). The following results were proved in [13].



Proposition 1.6 Let S be a semigroup of type © and denote by C its in-
variant control set in B. Also let a be a mazimal split subalgebra, a™ C a a
Weyl chamber, and put AT = expa®t. Suppose that AT NintS # (. Then
b (a™)w belongs to Dy for some control set D, and b (a™) w € Cy if and only
if we W (S) = Wes)-

If AT =expa® is such that A™ NintS # (), we denote by W (S, AT) the
subgroup

W (S,A") ={w e W (a) : wATw ' NintS # 0}, (1)

where W (a) is, as above, the Weyl group of a. By the previous proposition
W (S, AT) is isomorphic to W (S) under .

Now, we develop a method of producing Weyl chambers meeting intS
when S is a compression semigroup. For a subset C' C Bg its dual C* C Bg-
is defined by

C*={beBe : (Vb € C),bMb'}.

Clearly, C' C o (b) for all b € C*. By definition, C* # () if C' is admissible.

Proposition 1.7 Let C' C Bg be admissible and denote by S its compres-
ston semigroup. Take ¢y € intC and ¢ € C*. Let by and by be minimal
parabolic subalgebras such that m (by) = ¢; and 7 (by) = cy. Suppose that by
is opposed to by. Then for all h € AT (b, by) there exists a positive integer
k such that h* € int (S¢).

Proof: By Lemma 1.3, 7 (0 (by)) = 0 (¢3). Since C' C o (¢y), it follows that
h*x — ¢;, as k — +oo, for all z € C and h € A* (b, bs). Now, the com-
pactness of C' implies that h*C C intC for large k. Thus h* € int (S¢), as
claimed. O

Remark: If ¢; € Bg and ¢y € Bg- are opposed then for any b; € B projecting
into ¢; there exists by, € B which projects into ¢, and is opposed to b;. This
is easily seen for the models bg and bg. In this case by = b* and by = b~ are
opposed minimal parabolic subalgebras contained in bg and bg, respectively.
For general ¢; and ¢y we apply the adjoint action to the standard models and
use the existence of an automorphism ¢ such that ¢; = ¢g-be and ¢; = g- bg.
Therefore, the above proposition implies that every x € intC' is the attractor
of some h € int (S¢).



For later reference we note the following fact concerning the dual of an
invariant control set.

Proposition 1.8 Let S be a semigroup of type © and denote by C' its in-
variant control set in B(S). Also, let D be the invariant control set of S™' in
the flag manifold B(S)" = Bo(sy dual to B(S). Then its set of transitivity
Dy C C*.

Proof: From the general results about the duality operator we know that
C* is open and S~ '-invariant (see [12], Proposition 3.5 and Corollary 3.10).
Hence cl (C*) is invariant under S~', implying that D C ¢l (C*). Now, Dy is
open and dense in D, so that Dy N C* # (. Since Dy = S~ for v € Dy and
C* is S~l-invariant the result follows. O

We conclude this section with the proof of a sufficient condition for the
maximality of a compression semigroup. With this condition it is easy to
prove that the compression semigroups in affine symmetric spaces having
nonempty interior are maximal.

Proposition 1.9 Let C' C Bg be an admissible subset and denote by S¢
its compression semigroup. Suppose that the union of the control sets of S¢
in Bg is dense in Bg. Then Sc is mazimal of type ©. In particular Sc is
mazimal in G if © s mazximal in Xy.

Proof: To say that Sc is maximal of type © means that if 7' C G is a
semigroup and S¢ C T properly then 7' is either G or of type ©' D © with
© # ©'. Let T be a semigroup containing Sc properly. Denote by E its
invariant control set in Bg. We have that C' C E. By definition of S¢,
there exists ¢ € T and « € C such that gr ¢ C. Since C' = ¢l (intC) we
can assume without loss of generality that x € intC'. Hence, the assumption
that the control sets are dense imply that ¢ (intC') meets some control set
of S¢ different from C. Denote this control set by D. It follows that D is
attainable by means of 1" from some point of C' C F, so that D C E. Since
the control sets in Bg are the projections of the control sets in B, this implies
at once that T is not of type ©. In fact, an application of Proposition 1.6 to
both S¢ and 7" shows that W (1') contains W (S¢) properly. O
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Remark: Let E be as in the proof above. Then FE is not contained in
any open cell of Bg. In fact, suppose that £ C o (c) for some ¢ € Bg-.
Pick ¢; € intC. By Proposition 1.7 (and the remark following it) there are
minimal parabolic subalgebras b and b, projecting into ¢ and ¢y, respectively,
such that A" (b1, b) meets int (S¢). Since D is not the invariant control set of
Sc, there exists w ¢ VW (S¢) such that the fixed point of type w of A" (by, b)
projects into D, contradicting the assumption that D C E C o ().

2 Affine symmetric spaces

Let (G, L, T) be an affine symmetric space where G is a connected Lie group,
7 an involutive automorphism of G and L an open subgroup of G7, the
subgroup of 7-fixed points. The corresponding symmetric Lie algebra is
denoted by (g, [, 7). We assume throughout that g is simple and G has finite
center. For the problem treated here the general case can be reduced to this
one (see [4], Section I). Also, we avoid the trivial situation [ = g by assuming
that 7 # 1.

Let g = [+ q be the decomposition into 7-eigenspaces, where q = {X €
g:7X = —X}. Also, let  be a Cartan involution commuting with 7 and
denote by g = €4 p the corresponding Cartan decomposition. Put ¢, = ¢N|
tE.=¢tNng,pr=pnland p_ =png. Then

g=t 4+t +p . +p.

In order to describe the open orbits let a C p be a 7T-invariant maximal
split subalgebra and put af = anland a; = ang. For a Weyl chamber
at C a denote by IIT the corresponding set of positive roots. Let b (a™) be
the minimal parabolic subalgebra defined by a®. Tt is well known that L
has open orbits in B. The following characterization of the open orbits was
proved in [8], §3, Proposition 1.

Proposition 2.1 Necessary and sufficient conditions for the L-orbit of b (a™)
to be open are:

1. a4 18 mazimal abelian in p_, and

2. I is q-compatible, that is, TIT \ aqL is —T-invariant.
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More important to us than this characterization of the Weyl chambers
giving rise to open orbits, is the following relation between them given by
the Weyl group action. Thus keeping fixed the 7-invariant maximal split
subalgebra a, consider the groups

e W (a) = Nk (a) /Zk (a), the Weyl group of a.
o W, (a)={we W(a): wa = a}.
e W (a) = Ng+ (a) /Zk+ (a), where K+ = K N L.

Here and in the sequel the notations Zy (9) and Ny (0) stand for the cen-
tralizer and the normalizer of 0 in U, respectively. The following inclusions
hold

W (a) C W, (a) C W (a),

and the open orbits are enumerated by

Proposition 2.2 Let a® be a Weyl chamber such that the L-orbit of b (a™)
is open. Then the open L-orbits are the orbits of b (wa™) with w € W; (a).
Moreover, the orbits of b (wia™) and b (wea™), wy, ws € W, (a), agree if and
only if W (a) w; = W (a) w,.

Proof: See [8], Theorem 3, and [4], Proposition II.10. O

Now, we can look at the semigroups. Start with a semigroup S containing
L and such that intS # () and S # G. Our purpose is to rule out the affine
symmetric spaces where such a semigroup does not exist. For this we can
assume without loss of generality that S is a compression semigroup. In fact,
denote by C' the invariant control set of S in B. Since S # G, it follows that
C # B, hence the compression semigroup S¢ of C' is proper. Clearly S C S¢
so that int (S¢) # (0. Therefore, if L is contained in a proper semigroup with
nonempty interior then it is contained in a compression semigroup of the
same kind.

Thus we assume from now on that L C S and S is the compression
semigroup of its invariant control set C' C B. Let © = O (S5) be the type of
S, and put 7 : B — Bg and 7* : B — Bg- for the standard fibrations. The
projection 7 (C') is the invariant control set of S in Bg and C' = 7~ (7 (C)).
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By equivariance of 7, g € G leaves C' invariant if and only if 7 (C') is invariant
under g. Thus S coincides with the compression semigroup of 7 (C').
Before proceeding we prove the following simple lemma.

Lemma 2.3 Let D be a control set of S in B. Then its set of transitivity
Dy contains an open L-orbit. Furthermore, any open orbit meeting D 1s
contained in Dy.

Proof: By definition intD # (), D C ¢l (Sz) for all z € D, and D is max-
imal with these properties. This maximality property — together with the
fact that L C S — implies that any L-orbit meeting D is contained in D.
Moreover, the union of the open L-orbits is dense in B, so that D contains
some open L-orbit, say O. We have Dy N O # (), because Dy is dense in D.
Since Dy is Sc-invariant within D, it follows that O C D,. O

In particular there are open L-orbits contained in C. Suppose that C'
contains the open orbit passing through b (a™) where the Weyl chamber a*
satisfies the conditions of Proposition 2.1. The following lemma ensures that
the subalgebra b (woa™) opposed to b (a®) belongs to the minimal control
set C~ of S. Recall that C'~ is open and S™!'-invariant. Also, 7 (C'7) is the
minimal control set of S in Bg-.

Lemma 2.4 Let wy be the principal involution with respect to a™, i.e., woa™ =
—at. Then b (weat) € Cj .

Proof: Since W; (a) parametrizes the open L-orbits and C;; contains such an
orbit, there exists w € W, (a) such that b (wat) € Cy. Write b, = b (wa™).
The projection 7 (C) is the invariant control set of S in Bg. Also, 7* (clC™)
is the invariant control set of S~! in Be-, so that 7* (Cyy') is contained in the
set of transitivity of the invariant control set of S=! in Be-. Hence Proposi-
tion 1.8 implies that 7* (b,) € 7 (C)*. Therefore, in the fiber (7*)™" 7* (b,)
there exists b opposed to b (a™). By Lemma 1.4 this implies that b (wpa™) €
(7*) " 7* (b,). Hence b (wpa®) belongs to the invariant control set of S
because this semigroup is of type ©*. Using the fact that the open orbits
meeting C'~ are contained in Cj we conclude that b (wpa™) € Cj . a

Now, we apply propositions 1.7 and 1.8 in order to get a decisive infor-
mation about the type © of S. By construction 7 (b (at)) belongs to the set

13



of transitivity of the invariant control set of S in Bg. On the other hand the
above lemma ensures that 7* (b (woa™)) € 7* (C),. Hence from Proposition
1.8 we get 7 (b (wpa™)) € (7 (C))". Clearly, b(a®) th b(woa™). Since we
are assuming that S is a compression semigroup, it follows by Proposition
1.7 that the chamber A™ (b (a™),b (woat)) meets intS. Since by definition
AT (b(a™),b(wea™)) = exp (at), we have proved:

Proposition 2.5 Suppose that the open orbit through b (a™) is contained in
the invariant control set of S inB. Then AT NintS # () where AT = exp (a™).

The fact that AT meets the interior of S permits to determine explicitly
the subgroup W (S, A") and thus the flag manifold associated to S. In fact,
by definition W (S, A™) is the set of w € W (a) such that b (wa™) belongs to
the invariant control set C' or, equivalently, the L-orbit of b (wa™) is contained
in C.

Proposition 2.6 Keeping the above notations, let wy,...,ws € W, (a) be
such that the L-orbits of b (w;a™), i = 1,...,s, are the open orbits contained
in C. Then

W (S, AY) = Cjwa (a) w;.

In particular, W (a) C W (S, AT) C W; (a). Also, W* (a) has a fized point
in a.

Proof: The first statement follows immediately from the previous proposi-
tion, the definition of W (S, A*) (see (1)), and the characterization of the
open orbits in Proposition 2.2. The existence of W* (a)-fixed points is a con-
sequence of the fact that W (S, AT) is parabolic with respect to a™, i.e., is
generated by the reflections with respect to the simple roots in a subset of
the simple system of roots associated to a*. Such a subgroup has a fixed
point in at. O

This proposition implies that W, (a) = W (a). In fact, any control set
contains at least one open L-orbit, which by Proposition 2.2 is the orbit
of b(wa") for some w € W, (a). However, b(wia®) and b (wya™) be-
long to the same control set if and only if W (S, A")w; = W (S, A1) w,.
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Therefore the number of control sets is |[W, (a)|/ W (S, AT)|. But the gen-
eral theory of control sets ensures that the number of control sets in B is
(W (a)|/ W (S, AT)] (see [13], Theorem 4.5). Hence W, (a) = W (a).

Corollary 2.7 If there exists a proper semigroup S O L with intS # () then
W (a) =W (a), oy = {0} and a4 = a.

Proof: It was showed above that W, (a) = W (a). To see that a; = 0, recall
first that g is assumed to be simple, so that W (a) is irreducible in a. Since g
is invariant under W, (a) = W (a), it follows that a; = {0} or a. The second
possibility is ruled out because in this case [ = g. To see this observe that
since the orbit of b (at) is open, a4 is maximal abelian in p_. Hence a; = a
implies that a; = {0}, and thus p_ = 0 and p = p,. This means that p C [.
But p generates g, so that [ = g if a; = a. Therefore a; = {0} as claimed. O

We continue to keep fixed a Weyl chamber a™ such that the L-orbit of
b (at) is open. The Lie algebra [ = €, + p_ is the subalgebra fixed by
the involution 76, hence it is a reductive Lie algebra. The decomposition
[* =%, +p_ is a Cartan decomposition of [*. In view of the above corollary
we assume that a; = a. It is maximal abelian in p_, and hence a maximal
split subalgebra of [¢.

The symmetric pair (g, 7) is said to be regular or of Hermitian type pro-
vided 3 (I*) Np_ # 0. It is now easy to prove our main result, namely that
the existence of a semigroup containing L implies that (g, 7) is regular.

Theorem 2.8 Suppose that there exists a proper semigroup S O L with
intS # (. Then the symmetric pair (g, 7) is of Hermitian type.

Proof: Let (K.), be the connected subgroup whose Lie algebra is €.
Then Ng,), (¢) /Zx,), (a) is the Weyl group of the pair (I*;a). Clearly,
Nk,), (@) C Ng, (a). Now, Proposition 2.6 implies that N, (a) has a fixed
point in a. Hence the Weyl group of (1%, a) has a fixed point in a. Since [®
is reductive, the fixed point set of the Weyl group of (I, a) is contained in
the center 3 (1) of I*. Thus 3 (I*) Np_ D 3(I*) Na # 0, that is, the affine
symmetric space is regular. O

Next we improve this theorem by showing that the only possibility for C'
in the regular case is to be the closure of just one open orbit.
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A basic fact about a regular pair is that the subspace ¢ = 3(I*) Na
is one-dimensional and [* = 3 (c) (see [4], Theorem V.1). Let O (c) C X
be the subset of simple roots a such that a(¢) = 0. Denote by W* the
subgroup generated by the reflections with respect to the simple roots in
O (c). Since ¢ is one-dimensional the parabolic subalgebra bg() is maximal.
Also, W* is a maximal parabolic subgroup of W (a). Put L (¢) = Zg (c) and
K (¢) = L (¢)NK. The Lie algebra of L (¢) is [* = £, +p_ and the Lie algebra
of K (¢) is €.

Lemma 2.9 W*(a) = W (S, A") = W, where as above AT = exp (a™) and
at is a basic chamber defining an open orbit contained in C.

Proof: By [15], Lemma 1.2.4.5, K (¢) = Zk (a) K (¢), where K (c), is the
identity component of K (c). Also, Corollary 1.2.4.7 in [15] ensures that W*
is the Weyl group of (I*,a), that is, Nk (a)/Zk (a). Hence W* is con-
tained in K (¢), in the sense that each w € W° has a representative in
K (¢),. On the other hand €, is the Lie algebra of both K (¢) and K, so
that K (¢), C K. It follows that W C W* (a). Now, by Proposition 2.6,
We(a) C W(S,A"). However, W* is maximal parabolic in W (a), so that
W (a) =W (S, At) = Wr, O

Joining this lemma with Proposition 2.6, we get easily that the only
possibility for the invariant control set C'is to be an open orbit.

Theorem 2.10 Suppose that there exists a proper semigroup S O L with
intS # 0. Let C be the invariant control set of S in B. Then C = clO, where
O is an open L-orbit. Write O = G - b(a"). Then one of the half-lines of
¢ =3 (%) Na is contained in cla®. Furthermore, the compression semigroup
Sc 18 mazimal.

Proof: The fact that C' contains just one open orbit follows from the above
lemma and the characterization of the open orbits in Proposition 2.2. Since
W (S, A1) fixes the points in c, it follows that ¢ meets the closure of a*
(see [13], Section 4). To see that S is maximal we note that the num-
ber of control sets (i.e., [W|/ W (S)]) equals the number of open L-orbits
(i.e., W]/ |W* (a)]). Now, each control set contains at least one open orbit.
Therefore, every open orbit is contained in a control set. This shows that the
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union of the control sets is dense. Hence the maximality of S follows from
Proposition 1.9, and the remark that its type © (S) is a maximal subset. O

Remark: In defining the orbit O = G - b(a™) we can choose any Weyl
chamber containing a given half-line ¢* of ¢, since W* interchanges these
chambers. Hence O is determined by ¢*. On the other hand the semigroup
S~1 also contains L, and it is not hard to see that the open orbit contained
in the S~l-invariant control set is given by —c¢™.

Finally we mention that our results do not ensure the existence of proper
semigroups with nonempty interior containing L. Clearly, this happens if
and only if the compression semigroup of an open orbit like in Theorem 2.10
has nonempty interior. For the existence problem we refer to the literature
on affine symmetric spaces. In particular we mention that it is proved in
[4] that in case G complexifies to a simply connected group G¢ then G7 is
contained in a compression semigroup of an open orbit, which is the same
for every L.
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