
Nonexisten
e of invariant semigroups in aÆne

symmetri
 spa
es

Luiz A. B. San Martin

�

Instituto de Matem�ati
a

Universidade Estadual de Campinas

Cx.Postal 6065

13081-970 Campinas SP, Brasil

e-mail: smartin�ime.uni
amp.br

Abstra
t

Let (G;L; �) be an aÆne symmetri
 spa
e with G a simple Lie

group, � an involutive automorphism of G and L an open subgroup

of the � -�xed point group G

�

. It is proved here that the existen
e of

a proper semigroup S � G with intS 6= ; and L � S implies that

(G;L; �) is of Hermitian type, as 
onje
tured by Hilgert and Neeb [4℄.

When S exists, it turns out that it leaves invariant an open L-orbit

in a minimal 
ag manifold of G. A byprodu
t of our approa
h is an

alternate proof of the maximality of the 
ompression semigroup of an

open orbit (see Hilgert and Neeb [3℄).
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Introdu
tion

Let G be a 
onne
ted semi-simple Lie group and � 6= 1 an involutive au-

tomorphism of G. Semigroups 
ontaining the group G

�

of � -�xed points,

�
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or rather an open subgroup L of G

�

, have been studied extensively in the

literature, due mainly to their importan
e in harmoni
 analysis of 
ausal

symmetri
 spa
es. We refer to [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄, [8℄, [9℄ and refer-

en
es therein for the literature on semigroups and aÆne symmetri
 spa
es.

The theory developed so far highlights aÆne symmetri
 spa
es of Hermitian

{ or regular { type, and the 
orresponding Ol'shanski�� semigroups. For this


lass there are available invariant 
ones in the Lie algebra whi
h generate

proper semigroups invariant under a subgroup of � -�xed points. It turns out

that a great deal of the theory is developed with the aid of the 
ompression

semigroups of the open L-orbits in the 
ag manifolds.

When studying these 
ompression semigroups one is fa
ed with a gap in

the theory 
on
erning the existen
e of proper semigroups 
ontaining L when

the symmetri
 spa
e is not of Hermitian type. Of 
ourse, it is known that only

in the Hermitian 
ase are there invariant 
ones in the Lie algebra. However,

this is not an obstru
tion for the existen
e of an L-invariant semigroup having

trivial Lie wedge.

The purpose of this paper is to �ll this gap by proving that if (G; �) is

not of Hermitian type and S is a semigroup 
ontaining L then either S = G

or intS = ;. This result was 
onje
tured before by Hilgert and Neeb [4℄ (see

Conje
ture III in [4℄ whose statement amounts to our formulation).

Pre
isely, we assume that G is a simple non
ompa
t and 
onne
ted Lie

group having �nite 
enter, and prove that if S = S

C

is the 
ompression

semigroup of a subset C of a 
ag manifold of G (i.e., S = fg 2 G : gC � Cg),

su
h that L � S, S 6= G and intS 6= ; then the pair (G; �) is of Hermitian

type and C is an open L-orbit having spe
i�
 properties. Sin
e any semigroup

with nonempty interior is 
ontained in a 
ompression semigroup, the more

general result stated above follows.

Our proof is based on previous results about the a
tion of semigroups

on 
ag manifolds. The main point in the proof is a relation established

between two subgroups of the Weyl group W, namely the subgroup W

a

(a)

asso
iated to the pair (G; �) and the subgroup W (S) built from S. The

subgroup W (S) is paraboli
 and hen
e has a �xed point in its a
tion on

the split subalgebra. This will imply the existen
e of a �xed point of the

subgroup W

a

(a), ensuring that the aÆne symmetri
 spa
e is of Hermitian

type. In the 
ourse of the proof the subgroup W (S) is 
omputed expli
itly

when S is an invariant 
ompression semigroup with nonempty interior. From

the knowledge of W (S) it is easy to show that the existing 
ompression
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semigroups are maximal, a result already proved by Hilgert and Neeb [3℄.

1 Flag manifolds and Semigroups

This se
tion is preparatory for the proof of the main results. We re
all here

the basi
 
onstru
tions and results about the a
tion of semigroups on 
ag

manifolds. Most of the results where proved elsewhere, so we just state them

or outline their proofs. We refer the reader to [10℄, [11℄, [12℄, [13℄ for further

details.

1.1 Flag manifolds

Let g be a non
ompa
t semi-simple Lie algebra. We view a 
ag manifold of

g as an orbit of a paraboli
 subalgebra of g under the group Aut

0

(g) of inner

automorphisms of g. In the sequel we label a 
ag manifold by a subset of

the set of simple roots as follows: Let g = k� p be a Cartan de
omposition

with Cartan involution � and 
hoose a maximal abelian subspa
e a

0

� p.

Denote by � the set of restri
ted roots of the pair (g; a

0

), and sele
t a simple

system of roots �

0

� �, with �

+

the 
orresponding set of positive roots and

a

+

0

the Weyl 
hamber. For a root � 2 � its root spa
e is denoted by g

�

.

Any paraboli
 subalgebra is 
onjugate under an inner automorphism of g to

a standard paraboli
 subalgebra

b

�

= n

�

(�)� b

+

;

with � � �

0

a proper subset. In this expression b

+

stands for the minimal

paraboli
 subalgebra b

+

= m+a

0

+n

+

where n

+

=

P

�2�

+

g

�

and m = z

k

(a

0

).

Also, n

�

(�) is the subalgebra spanned by the root spa
es g

��

, � 2 h�i,

where h�i is the set of positive roots generated by �. The 
ag manifold


ontaining b

�

is denoted by B

�

. For the maximal 
ag manifold we write

simply B = B

;

. Re
all that for any 
ag manifold B

�

there is a standard

�bration � : B ! B

�

, whi
h assigns to the minimal paraboli
 subalgebra b

the unique paraboli
 subalgebra � (b) in B

�


ontaining b.

Let G be a 
onne
ted Lie group with �nite 
enter and Lie algebra g. The

group a
ts on the 
ag manifolds of g through the adjoint representation of

G in g. We denote this representation by g �X, g 2 G, X 2 g. Let N

+

be

the nilpotent 
onne
ted subgroup of G whose Lie algebra is n

+

. In any 
ag
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manifold B

�

there is just one open and dense N

+

-orbit, say �

0

. By an open

Bruhat 
ell in B

�

we mean a subset of the form g�

0

, g 2 G. Equivalently,

the 
ell g�

0

is the open and dense orbit of the group gN

+

g

�1

.

For our purposes it is relevant to have a des
ription of the open 
ells in

terms of in
iden
e of paraboli
 subalgebras. Starting with B , de�ne an a
tion

of G on B � B by putting g � (b

1

; b

2

) = (g � b

1

; g � b

2

). Let b

+

be the standard

minimal paraboli
 subalgebra de�ned above, and put b

�

= m + a + n

�

,

where n

�

=

P

�2�

+

g

��

. Two paraboli
 subalgebras b

1

; b

2

2 B are said to be

opposed (notation: b

1

t b

2

) in 
ase (b

1

; b

2

) belong to the G-orbit of (b

+

; b

�

).

This de�nition yields that the set of subalgebras opposed to b

+

is the orbit

N

+

� b

�

, that is, the open 
ell �

0

. In fa
t, b is opposed to b

+

if and only if

b = g � b

�

with g � b

+

= b

+

. This means that g 2 P , the normalizer of b

+

in

G. But it is well known that P � b

�

= N

+

� b

�

.

This 
hara
terization of �

0

is 
arried over to arbitrary 
ells through the

G-a
tion. In general, given b = g � b

+

2 B the set of subalgebras opposed

to it is the 
ell g�

0

. Therefore, any open 
ell in B is the set of subalgebras

opposed to a given minimal paraboli
 subalgebra b. In what follows we put

� (b) for the 
ell of subalgebras opposed to b.

Now, for a subalgebra 
 of g denote by nil (
) its nilradi
al. We have

nil (b

+

) = n

+

, nil (b

�

) = n

�

and b

+

\ nil (b

�

) = b

�

\ nil (b

+

) = f0g. Fur-

thermore, given n 2 N

+

,

�

n � b

�

�

\ nil

�

b

+

�

= n �

�

b

�

\ nil

�

b

+

��

= f0g

and b

+

\ nil (n � b

�

) = n � (b

+

\ nil (b

�

)) = f0g. In other words, b t b

+

if

and only if nil (b) and nil (b

+

) are transversal to b

+

and b, respe
tively.

A
tually, b

+

\ nil (b) = f0g if and only if b \ nil (b

+

) = f0g, sin
e the

interse
tions are 
ontained in the nilradi
als of b

+

and b. Hen
e ea
h one of

these two transversalities 
onditions is ne
essary and suÆ
ient for the subal-

gebras to be opposed. Through the adjoint representation, these 
onditions

are 
arried over to arbitrary pairs of minimal paraboli
 subalgebras.

Proposition 1.1 The minimal paraboli
 subalgebras b

1

; b

2

2 B are opposed

if and only if b

1

\ nil (b

2

) = f0g or b

2

\ nil (b

1

) = f0g.

Therefore an open 
ell in B is the set of minimal paraboli
 subalgebras

transversal to the nilradi
al of a �xed subalgebra b 2 B .
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A similar pi
ture holds for a 
ag manifold B

�

. However, in general the

transversality 
ondition must be taken with respe
t to subalgebras in the 
ag

manifold B

�

�

dual to B

�

. Here the subset �

�

de�ning B

�

�

is obtained as

follows: Let W be the Weyl group of the pair (g; a

0

) and denote by w

0

2 W

its prin
ipal involution, that is, the element of maximal length as a produ
t

of re
e
tions with respe
t to the simple roots in �

0

. Alternatively, w

0

is

the only element of W su
h that w

0

(�

0

) = ��

0

. Put � = �w

0

. Then

� (�

0

) = �

0

, so that it is an involutive automorphism of the Dynkin diagram

of �

0

. By de�nition �

�

= � (�).

It is well known and easy to prove from the standard de
ompositions that

the nilradi
al of b

�

is

nil (b

�

) = n

+

�

=

X

�2�

+

nh�i

g

�

(
.f. [15℄, page 80; [14℄, page 280). De�ne the subalgebra

b

�

�

= � (b

�

) = n

+

(�)� b

�

;

where b

�

is as before the minimal paraboli
 subalgebra given by the negative

roots and n

+

(�) is the subalgebra spanned by the root spa
es g

�

, � 2 h�i.

We have b

�

�

2 B

�

�

. In fa
t, let w

0

be an inner automorphism of g extending

w

0

(e.g. w

0

is a representative of w

0

in the normalizer N

K

(a

0

) of a

0

in

K, the 
ompa
t group with Lie algebra k). Then w

0

(b

+

) = b

�

and sin
e

w

0

(��

�

) = �, it follows that w

0

(n

�

(�

�

)) = n

+

(�). Therefore, w

0

(b

�

�

) =

b

�

�

, implying that b

�

�

2 B

�

�

. Also, the nilradi
al of b

�

�

is the image under w

0

of nil (b

�

�

) =

P

�2�

+

nh�

�

i

g

�

. Hen
e we have

nil

�

b

�

�

�

=

X

�2�

+

nh�i

g

��

:

This subalgebra is 
learly transversal to b

�

.

Two subalgebras 


1

2 B

�

and 


2

2 B

�

�

are said to be opposed to ea
h

other (notation: 


1

t 


2

) in 
ase the pair (


1

; 


2

) 2 B

�

� B

�

�

belongs to

the G-orbit of

�

b

�

; b

�

�

�

under the 
omponentwise a
tion. Analogous to the

minimal paraboli
 
ase the G-a
tion 
arries over to pairs of subalgebras in

B

�

� B

�

�

the in
iden
e relations between b

�

and b

�

�

.
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Proposition 1.2 The subalgebra 


1

2 B

�

is opposed to 


2

2 B

�

�

if and only

if one of the two equivalent transversalities 


1

\nil (


2

) = f0g or 


2

\nil (


1

) =

f0g is satis�ed. Moreover, for 
 2 B

�

�

, the subset

� (
) = fb 2 B

�

: b \ nil (
) = f0gg

is an open 
ell in B

�

, and the map 
 7! � (
) gives a bije
tive 
orresponden
e

between B

�

�

and the set of open 
ells in B

�

.

We dis
uss now the relation between opposed minimal paraboli
 subalge-

bras and split subalgebras. Given two opposed minimal paraboli
 subalgebras

b

1

and b

2

, b

1

\ b

2


ontains a unique maximal abelian split subalgebra of g,

that is, a subalgebra of the form a = g � a

0

with g 2 G. In this 
ase one 
an

sele
t a Weyl 
hamber, say a

+

� a, su
h that for H 2 a

+

, b

1

is the attra
-

tor in B of h = expH having � (b

2

) as the 
orresponding stable manifold.

This means that h

k

x ! b

1

, as k ! +1, for any x 2 � (b

2

). In the sequel

we write a

+

(b

1

; b

2

) for the 
hamber 
oming from this 
onstru
tion, and put

A

+

(b

1

; b

2

) = exp (a

+

(b

1

; b

2

)).

Conversely, a minimal paraboli
 subalgebra is de�ned uniquely by a Weyl


hamber a

+


ontained in a maximal split subalgebra a. We denote this

paraboli
 subalgebra by b (a

+

). Fixing a

+

one has a well de�ned isomorphism

between W, the Weyl group of the basi
 subalgebra a

0

, and the Weyl group

W (a) of a. In fa
t, both groups are generated by re
e
tions with respe
t

to simple systems of roots having the same Dynkin diagram. Denote for a

moment this isomorphism by  . If w 2 W then  (w) a

+

is a Weyl 
hamber

in a. In the sequel we write b (a

+

)w for the minimal paraboli
 subalgebra

de�ned by  (w) a

+

, that is, b (a

+

)w = b ( (w) a

+

). This element of B is

said to be the �xed point of type w for A

+

= exp (a

+

).

For a given a paraboli
 subalgebra 
 we denote by N (
) the 
onne
ted

subgroup whose Lie algebra is the nilradi
al nil (
) of 
. Sin
e nil

�

b

�

�

�

=

P

�=2h�i

g

��


omplements b

�

, the orbit of N

�

b

�

�

�

in B

�


ontaining b

�

is

open. The same remark holds for any subalgebra in B

�

opposed to b

�

�

, so that

�

�

b

�

�

�

is the open orbit of N

�

b

�

�

�

in B

�

. This fa
t is 
arried over to arbitrary

subalgebras 
 2 B

�

�

through the G-a
tion: We have 
 = g�b

�

�

for some g 2 G,

hen
e nil (
) = g�nil

�

b

�

�

�

, � (
) = g�

�

b

�

�

�

andN (
) = gN

�

b

�

�

�

g

�1

, implying

that � (
) is the open orbit of N (
) in B

�

.

Now, let � : B ! B

�

and �

�

: B ! B

�

�

be the standard �brations.

Take b 2 B and put 
 = �

�

(b). Then nil (
) � nil (b), so that the open
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orbit of N (b) proje
ts down onto the open orbit of N (
), implying that

� (� (b)) = � (
). For later referen
e we emphasize this fa
t.

Lemma 1.3 If 
 = �

�

(b) then � (
) = � (� (b)).

Regarding the proje
tion of opposed minimal paraboli
 subalgebras there

is still the following fa
t, whi
h is required later.

Lemma 1.4 Let b = b (a

+

) be a minimal paraboli
 subalgebra built from the

Weyl 
hamber a

+

� a. Let W (a) be the Weyl group of a and let w

0

be

the prin
ipal involution of W (a) with respe
t to a

+

. Let � : B ! B

�

be

the proje
tion onto a smaller 
ag manifold. Then for w 2 W (a) the �ber

�

�1

� (b (wa

+

)) 
ontains a subalgebra opposed to b if and only if � (b (wa

+

)) =

� (b (w

0

a

+

)).

Proof: The only subalgebra of the type b (wa

+

) opposed to b is b (w

0

a

+

).

Let N = N (b) be the nilpotent subgroup whose Lie algebra is the nilradi
al

of b. The subalgebras opposed to b are the elements of the orbit N �b (w

0

a

+

).

Take w 2 W (a) and suppose that for some n 2 N , n � b (w

0

a

+

) and b (wa

+

)

belong to the same �ber. Then nw

0

P

�

= wP

�

, hen
e by the Borel-Kostant

Theorem (see [15℄, Proposition 1.2.4.9), w

0

P

�

= wP

�

, whi
h means that

b (wa

+

) and b (w

0

a

+

) are in the same �ber. 2

1.2 Semigroups

Let S � G be a semigroup with nonempty interior. Re
all that a 
ontrol

set for the a
tion of S on B

�

is a subset D � B

�

whi
h is maximal with

the properties D � 
l (Sx) for any x 2 D, and there exists x 2 D su
h

that gx = x for some g 2 intS. It is known (see [10℄, [13℄) that on any


ag manifold there exists a unique invariant 
ontrol set (i.e., Sx � D for all

x 2 D) whi
h is 
losed. Also, in B

�

there is just one 
ontrol set whi
h is

S

�1

-invariant. This set is open. Be
ause of the natural order between 
ontrol

sets (see [11℄) we 
all this open 
ontrol set the minimal 
ontrol set of S.

A subset C � B

�

is said to be admissible if the following 
onditions hold:

1. C = 
l (intC).

7



2. C � � (
) for some 
 2 B

�

�

.

The admissible subsets are the relevant invariant 
ontrol sets of semi-

groups in G. In fa
t, we have the following fa
t proved in [13℄.

Proposition 1.5 Let S � G be a proper semigroup with intS 6= ;.Then

there exists a unique subset �(S) � �

0

su
h that

1. the invariant 
ontrol set C of S in B

�(S)

is admissible, and

2. the invariant 
ontrol set of S in B is �

�1

(C), where � : B ! B

�(S)

is

the standard �bration.

In what follows we write B (S) = B

�(S)

for the 
ag manifold whose ex-

isten
e and uniqueness is ensured by this proposition. Also, we let W (S)

stand for the subgroup of W generated by the re
e
tions with respe
t to the

simple roots in � (S).

In the sequel we say that a semigroup S is of type � � �

0

in 
ase

� (S) = �. We emphasize that if intS 6= ; and S is a proper subsemigroup

then S is of type � for some proper subset � � �

0

. At this point we remark

that the type of S

�1

is the dual � (S)

�

of the type of S (see [12℄, Proposition

6.2).

In another dire
tion, it was proved in [12℄, Proposition 4.2, that if C � B

�

is admissible then the 
ompression semigroup

S

C

= fg 2 G : gC � Cg

has nonempty interior in G and is of type �. Also, C is the invariant 
ontrol

set of S

C

in B

�

. Therefore a subset of B

�

is admissible if and only if it is the

invariant 
ontrol set of a semigroup with nonempty interior of type �.

A basi
 property of a semigroup S of type � is given by its interse
tion

with the Weyl 
hambers. Re
all that the set of transitivity D

0

of a 
ontrol

set D is de�ned by

D

0

= fx 2 D : x 2 int (S)xg:

It is known that D

0

is dense in D and gx 2 D

0

if g 2 S and x 2 D

0

(see

[13℄). The following results were proved in [13℄.
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Proposition 1.6 Let S be a semigroup of type � and denote by C its in-

variant 
ontrol set in B . Also let a be a maximal split subalgebra, a

+

� a a

Weyl 
hamber, and put A

+

= exp a

+

. Suppose that A

+

\ intS 6= ;. Then

b (a

+

)w belongs to D

0

for some 
ontrol set D, and b (a

+

)w 2 C

0

if and only

if w 2 W (S) =W

�(S)

.

If A

+

= exp a

+

is su
h that A

+

\ intS 6= ;, we denote by W (S;A

+

) the

subgroup

W

�

S;A

+

�

= fw 2 W (a) : wA

+

w

�1

\ intS 6= ;g; (1)

where W (a) is, as above, the Weyl group of a. By the previous proposition

W (S;A

+

) is isomorphi
 to W (S) under  .

Now, we develop a method of produ
ing Weyl 
hambers meeting intS

when S is a 
ompression semigroup. For a subset C � B

�

its dual C

�

� B

�

�

is de�ned by

C

�

= fb 2 B

�

�

: (8b

0

2 C) ; b t b

0

g:

Clearly, C � � (b) for all b 2 C

�

. By de�nition, C

�

6= ; if C is admissible.

Proposition 1.7 Let C � B

�

be admissible and denote by S

C

its 
ompres-

sion semigroup. Take 


1

2 intC and 


2

2 C

�

. Let b

1

and b

2

be minimal

paraboli
 subalgebras su
h that � (b

1

) = 


1

and �

�

(b

2

) = 


2

. Suppose that b

1

is opposed to b

2

. Then for all h 2 A

+

(b

1

; b

2

) there exists a positive integer

k su
h that h

k

2 int (S

C

).

Proof: By Lemma 1.3, � (� (b

2

)) = � (


2

). Sin
e C � � (


2

), it follows that

h

k

x ! 


1

, as k ! +1, for all x 2 C and h 2 A

+

(b

1

; b

2

). Now, the 
om-

pa
tness of C implies that h

k

C � intC for large k. Thus h

k

2 int (S

C

), as


laimed. 2

Remark: If 


1

2 B

�

and 


2

2 B

�

�

are opposed then for any b

1

2 B proje
ting

into 


1

there exists b

2

2 B whi
h proje
ts into 


2

and is opposed to b

1

. This

is easily seen for the models b

�

and b

�

�

. In this 
ase b

1

= b

+

and b

2

= b

�

are

opposed minimal paraboli
 subalgebras 
ontained in b

�

and b

�

�

, respe
tively.

For general 


1

and 


2

we apply the adjoint a
tion to the standard models and

use the existen
e of an automorphism g su
h that 


1

= g � b

�

and 


2

= g � b

�

�

.

Therefore, the above proposition implies that every x 2 intC is the attra
tor

of some h 2 int (S

C

).

9



For later referen
e we note the following fa
t 
on
erning the dual of an

invariant 
ontrol set.

Proposition 1.8 Let S be a semigroup of type � and denote by C its in-

variant 
ontrol set in B (S). Also, let D be the invariant 
ontrol set of S

�1

in

the 
ag manifold B (S)

�

= B

�(S)

�

dual to B (S). Then its set of transitivity

D

0

� C

�

.

Proof: From the general results about the duality operator we know that

C

�

is open and S

�1

-invariant (see [12℄, Proposition 3.5 and Corollary 3.10).

Hen
e 
l (C

�

) is invariant under S

�1

, implying that D � 
l (C

�

). Now, D

0

is

open and dense in D, so that D

0

\C

�

6= ;. Sin
e D

0

= S

�1

x for x 2 D

0

and

C

�

is S

�1

-invariant the result follows. 2

We 
on
lude this se
tion with the proof of a suÆ
ient 
ondition for the

maximality of a 
ompression semigroup. With this 
ondition it is easy to

prove that the 
ompression semigroups in aÆne symmetri
 spa
es having

nonempty interior are maximal.

Proposition 1.9 Let C � B

�

be an admissible subset and denote by S

C

its 
ompression semigroup. Suppose that the union of the 
ontrol sets of S

C

in B

�

is dense in B

�

. Then S

C

is maximal of type �. In parti
ular S

C

is

maximal in G if � is maximal in �

0

.

Proof: To say that S

C

is maximal of type � means that if T � G is a

semigroup and S

C

� T properly then T is either G or of type �

0

� � with

� 6= �

0

. Let T be a semigroup 
ontaining S

C

properly. Denote by E its

invariant 
ontrol set in B

�

. We have that C � E. By de�nition of S

C

,

there exists g 2 T and x 2 C su
h that gx =2 C. Sin
e C = 
l (intC) we


an assume without loss of generality that x 2 intC. Hen
e, the assumption

that the 
ontrol sets are dense imply that g (intC) meets some 
ontrol set

of S

C

di�erent from C. Denote this 
ontrol set by D. It follows that D is

attainable by means of T from some point of C � E, so that D � E. Sin
e

the 
ontrol sets in B

�

are the proje
tions of the 
ontrol sets in B , this implies

at on
e that T is not of type �. In fa
t, an appli
ation of Proposition 1.6 to

both S

C

and T shows that W (T ) 
ontains W (S

C

) properly. 2

10



Remark: Let E be as in the proof above. Then E is not 
ontained in

any open 
ell of B

�

. In fa
t, suppose that E � � (
) for some 
 2 B

�

�

.

Pi
k 


1

2 intC. By Proposition 1.7 (and the remark following it) there are

minimal paraboli
 subalgebras b and b

1

proje
ting into 
 and 


1

, respe
tively,

su
h that A

+

(b

1

; b) meets int (S

C

). Sin
e D is not the invariant 
ontrol set of

S

C

, there exists w =2 W (S

C

) su
h that the �xed point of type w of A

+

(b

1

; b)

proje
ts into D, 
ontradi
ting the assumption that D � E � � (
).

2 AÆne symmetri
 spa
es

Let (G;L; �) be an aÆne symmetri
 spa
e where G is a 
onne
ted Lie group,

� an involutive automorphism of G and L an open subgroup of G

�

, the

subgroup of � -�xed points. The 
orresponding symmetri
 Lie algebra is

denoted by (g; l; �). We assume throughout that g is simple and G has �nite


enter. For the problem treated here the general 
ase 
an be redu
ed to this

one (see [4℄, Se
tion I). Also, we avoid the trivial situation l = g by assuming

that � 6= 1.

Let g = l + q be the de
omposition into � -eigenspa
es, where q = fX 2

g : �X = �Xg. Also, let � be a Cartan involution 
ommuting with � and

denote by g = k+p the 
orresponding Cartan de
omposition. Put k

+

= k\ l,

k

�

= k \ q, p

+

= p \ l and p

�

= p \ q. Then

g = k

+

+ k

�

+ p

+

+ p

�

:

In order to des
ribe the open orbits let a � p be a � -invariant maximal

split subalgebra and put a

l

= a \ l and a

q

= a \ q. For a Weyl 
hamber

a

+

� a denote by �

+

the 
orresponding set of positive roots. Let b (a

+

) be

the minimal paraboli
 subalgebra de�ned by a

+

. It is well known that L

has open orbits in B . The following 
hara
terization of the open orbits was

proved in [8℄, x3, Proposition 1.

Proposition 2.1 Ne
essary and suÆ
ient 
onditions for the L-orbit of b (a

+

)

to be open are:

1. a

q

is maximal abelian in p

�

, and

2. �

+

is q-
ompatible, that is, �

+

n a

?

q

is �� -invariant.

11



More important to us than this 
hara
terization of the Weyl 
hambers

giving rise to open orbits, is the following relation between them given by

the Weyl group a
tion. Thus keeping �xed the � -invariant maximal split

subalgebra a, 
onsider the groups

� W (a) = N

K

(a) =Z

K

(a), the Weyl group of a.

� W

�

(a) = fw 2 W (a) : wa

l

= a

l

g.

� W

a

(a) = N

K

+

(a) =Z

K

+

(a), where K

+

= K \ L.

Here and in the sequel the notations Z

U

(d) and N

U

(d) stand for the 
en-

tralizer and the normalizer of d in U , respe
tively. The following in
lusions

hold

W

a

(a) � W

�

(a) � W (a) ;

and the open orbits are enumerated by

Proposition 2.2 Let a

+

be a Weyl 
hamber su
h that the L-orbit of b (a

+

)

is open. Then the open L-orbits are the orbits of b (wa

+

) with w 2 W

�

(a).

Moreover, the orbits of b (w

1

a

+

) and b (w

2

a

+

), w

1

; w

2

2 W

�

(a), agree if and

only if W

a

(a)w

1

=W

a

(a)w

2

.

Proof: See [8℄, Theorem 3, and [4℄, Proposition II.10. 2

Now, we 
an look at the semigroups. Start with a semigroup S 
ontaining

L and su
h that intS 6= ; and S 6= G. Our purpose is to rule out the aÆne

symmetri
 spa
es where su
h a semigroup does not exist. For this we 
an

assume without loss of generality that S is a 
ompression semigroup. In fa
t,

denote by C the invariant 
ontrol set of S in B . Sin
e S 6= G, it follows that

C 6= B , hen
e the 
ompression semigroup S

C

of C is proper. Clearly S � S

C

so that int (S

C

) 6= ;. Therefore, if L is 
ontained in a proper semigroup with

nonempty interior then it is 
ontained in a 
ompression semigroup of the

same kind.

Thus we assume from now on that L � S and S is the 
ompression

semigroup of its invariant 
ontrol set C � B . Let � = � (S) be the type of

S, and put � : B ! B

�

and �

�

: B ! B

�

�

for the standard �brations. The

proje
tion � (C) is the invariant 
ontrol set of S in B

�

and C = �

�1

(� (C)).

12



By equivarian
e of �, g 2 G leaves C invariant if and only if � (C) is invariant

under g. Thus S 
oin
ides with the 
ompression semigroup of � (C).

Before pro
eeding we prove the following simple lemma.

Lemma 2.3 Let D be a 
ontrol set of S in B . Then its set of transitivity

D

0


ontains an open L-orbit. Furthermore, any open orbit meeting D is


ontained in D

0

.

Proof: By de�nition intD 6= ;, D � 
l (Sx) for all x 2 D, and D is max-

imal with these properties. This maximality property { together with the

fa
t that L � S { implies that any L-orbit meeting D is 
ontained in D.

Moreover, the union of the open L-orbits is dense in B , so that D 
ontains

some open L-orbit, say O. We have D

0

\ O 6= ;, be
ause D

0

is dense inD.

Sin
e D

0

is S

C

-invariant within D, it follows that O � D

0

. 2

In parti
ular there are open L-orbits 
ontained in C. Suppose that C


ontains the open orbit passing through b (a

+

) where the Weyl 
hamber a

+

satis�es the 
onditions of Proposition 2.1. The following lemma ensures that

the subalgebra b (w

0

a

+

) opposed to b (a

+

) belongs to the minimal 
ontrol

set C

�

of S. Re
all that C

�

is open and S

�1

-invariant. Also, �

�

(C

�

) is the

minimal 
ontrol set of S in B

�

�

.

Lemma 2.4 Let w

0

be the prin
ipal involution with respe
t to a

+

, i.e., w

0

a

+

=

�a

+

. Then b (w

0

a

+

) 2 C

�

0

.

Proof: Sin
eW

�

(a) parametrizes the open L-orbits and C

�

0


ontains su
h an

orbit, there exists w 2 W

�

(a) su
h that b (wa

+

) 2 C

�

0

. Write b

w

= b (wa

+

).

The proje
tion � (C) is the invariant 
ontrol set of S in B

�

. Also, �

�

(
lC

�

)

is the invariant 
ontrol set of S

�1

in B

�

�

, so that �

�

�

C

�

0

�

is 
ontained in the

set of transitivity of the invariant 
ontrol set of S

�1

in B

�

�

. Hen
e Proposi-

tion 1.8 implies that �

�

(b

w

) 2 � (C)

�

. Therefore, in the �ber (�

�

)

�1

�

�

(b

w

)

there exists b opposed to b (a

+

). By Lemma 1.4 this implies that b (w

0

a

+

) 2

(�

�

)

�1

�

�

(b

w

). Hen
e b (w

0

a

+

) belongs to the invariant 
ontrol set of S

�1

be
ause this semigroup is of type �

�

. Using the fa
t that the open orbits

meeting C

�

are 
ontained in C

�

0

we 
on
lude that b (w

0

a

+

) 2 C

�

0

. 2

Now, we apply propositions 1.7 and 1.8 in order to get a de
isive infor-

mation about the type � of S. By 
onstru
tion � (b (a

+

)) belongs to the set
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of transitivity of the invariant 
ontrol set of S in B

�

. On the other hand the

above lemma ensures that �

�

(b (w

0

a

+

)) 2 �

�

(C

�

)

0

. Hen
e from Proposition

1.8 we get �

�

(b (w

0

a

+

)) 2 (� (C))

�

. Clearly, b (a

+

) t b (w

0

a

+

). Sin
e we

are assuming that S is a 
ompression semigroup, it follows by Proposition

1.7 that the 
hamber A

+

(b (a

+

) ; b (w

0

a

+

)) meets intS. Sin
e by de�nition

A

+

(b (a

+

) ; b (w

0

a

+

)) = exp (a

+

), we have proved:

Proposition 2.5 Suppose that the open orbit through b (a

+

) is 
ontained in

the invariant 
ontrol set of S in B . Then A

+

\intS 6= ; where A

+

= exp (a

+

).

The fa
t that A

+

meets the interior of S permits to determine expli
itly

the subgroup W (S;A

+

) and thus the 
ag manifold asso
iated to S. In fa
t,

by de�nition W (S;A

+

) is the set of w 2 W (a) su
h that b (wa

+

) belongs to

the invariant 
ontrol set C or, equivalently, the L-orbit of b (wa

+

) is 
ontained

in C.

Proposition 2.6 Keeping the above notations, let w

1

; : : : ; w

s

2 W

�

(a) be

su
h that the L-orbits of b (w

i

a

+

), i = 1; : : : ; s, are the open orbits 
ontained

in C. Then

W

�

S;A

+

�

=

s

[

i=1

W

a

(a)w

i

:

In parti
ular, W

a

(a) � W (S;A

+

) � W

�

(a). Also, W

a

(a) has a �xed point

in a.

Proof: The �rst statement follows immediately from the previous proposi-

tion, the de�nition of W (S;A

+

) (see (1)), and the 
hara
terization of the

open orbits in Proposition 2.2. The existen
e ofW

a

(a)-�xed points is a 
on-

sequen
e of the fa
t that W (S;A

+

) is paraboli
 with respe
t to a

+

, i.e., is

generated by the re
e
tions with respe
t to the simple roots in a subset of

the simple system of roots asso
iated to a

+

. Su
h a subgroup has a �xed

point in a

+

. 2

This proposition implies that W

�

(a) = W (a). In fa
t, any 
ontrol set


ontains at least one open L-orbit, whi
h by Proposition 2.2 is the orbit

of b (wa

+

) for some w 2 W

�

(a). However, b (w

1

a

+

) and b (w

2

a

+

) be-

long to the same 
ontrol set if and only if W (S;A

+

)w

1

= W (S;A

+

)w

2

.
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Therefore the number of 
ontrol sets is jW

�

(a)j = jW (S;A

+

)j. But the gen-

eral theory of 
ontrol sets ensures that the number of 
ontrol sets in B is

jW (a)j = jW (S;A

+

)j (see [13℄, Theorem 4.5). Hen
e W

�

(a) =W (a).

Corollary 2.7 If there exists a proper semigroup S � L with intS 6= ; then

W

�

(a) =W (a), a

l

= f0g and a

q

= a.

Proof: It was showed above that W

�

(a) =W (a). To see that a

l

= 0, re
all

�rst that g is assumed to be simple, so thatW (a) is irredu
ible in a. Sin
e a

l

is invariant under W

�

(a) =W (a), it follows that a

l

= f0g or a. The se
ond

possibility is ruled out be
ause in this 
ase l = g. To see this observe that

sin
e the orbit of b (a

+

) is open, a

q

is maximal abelian in p

�

. Hen
e a

l

= a

implies that a

q

= f0g, and thus p

�

= 0 and p = p

+

. This means that p � l.

But p generates g, so that l = g if a

l

= a. Therefore a

l

= f0g as 
laimed. 2

We 
ontinue to keep �xed a Weyl 
hamber a

+

su
h that the L-orbit of

b (a

+

) is open. The Lie algebra l

a

= k

+

+ p

�

is the subalgebra �xed by

the involution ��, hen
e it is a redu
tive Lie algebra. The de
omposition

l

a

= k

+

+ p

�

is a Cartan de
omposition of l

a

. In view of the above 
orollary

we assume that a

q

= a. It is maximal abelian in p

�

, and hen
e a maximal

split subalgebra of l

a

.

The symmetri
 pair (g; �) is said to be regular or of Hermitian type pro-

vided z (l

a

) \ p

�

6= 0. It is now easy to prove our main result, namely that

the existen
e of a semigroup 
ontaining L implies that (g; �) is regular.

Theorem 2.8 Suppose that there exists a proper semigroup S � L with

intS 6= ;. Then the symmetri
 pair (g; �) is of Hermitian type.

Proof: Let (K

+

)

0

be the 
onne
ted subgroup whose Lie algebra is k

+

.

Then N

(K

+

)

0

(a) =Z

(K

+

)

0

(a) is the Weyl group of the pair (l

a

; a). Clearly,

N

(K

+

)

0

(a) � N

K

+

(a). Now, Proposition 2.6 implies that N

K

+

(a) has a �xed

point in a. Hen
e the Weyl group of (l

a

; a) has a �xed point in a. Sin
e l

a

is redu
tive, the �xed point set of the Weyl group of (l

a

; a) is 
ontained in

the 
enter z (l

a

) of l

a

. Thus z (l

a

) \ p

�

� z (l

a

) \ a 6= 0, that is, the aÆne

symmetri
 spa
e is regular. 2

Next we improve this theorem by showing that the only possibility for C

in the regular 
ase is to be the 
losure of just one open orbit.
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A basi
 fa
t about a regular pair is that the subspa
e 
 = z (l

a

) \ a

is one-dimensional and l

a

= z (
) (see [4℄, Theorem V.1). Let � (
) � �

be the subset of simple roots � su
h that � (
) = 0. Denote by W




the

subgroup generated by the re
e
tions with respe
t to the simple roots in

� (
). Sin
e 
 is one-dimensional the paraboli
 subalgebra b

�(
)

is maximal.

Also, W




is a maximal paraboli
 subgroup of W (a). Put L (
) = Z

G

(
) and

K (
) = L (
)\K. The Lie algebra of L (
) is l

a

= k

+

+p

�

and the Lie algebra

of K (
) is k

+

.

Lemma 2.9 W

a

(a) =W (S;A

+

) =W




, where as above A

+

= exp (a

+

) and

a

+

is a basi
 
hamber de�ning an open orbit 
ontained in C.

Proof: By [15℄, Lemma 1.2.4.5, K (
) = Z

K

(a)K (
)

0

where K (
)

0

is the

identity 
omponent of K (
). Also, Corollary 1.2.4.7 in [15℄ ensures that W




is the Weyl group of (l

a

; a), that is, N

K(
)

(a) =Z

K

(a). Hen
e W




is 
on-

tained in K (
)

0

in the sense that ea
h w 2 W




has a representative in

K (
)

0

. On the other hand k

+

is the Lie algebra of both K (
) and K

+

, so

that K (
)

0

� K

+

. It follows that W




� W

a

(a). Now, by Proposition 2.6,

W

a

(a) � W (S;A

+

). However, W




is maximal paraboli
 in W (a), so that

W

a

(a) =W (S;A

+

) =W




. 2

Joining this lemma with Proposition 2.6, we get easily that the only

possibility for the invariant 
ontrol set C is to be an open orbit.

Theorem 2.10 Suppose that there exists a proper semigroup S � L with

intS 6= ;. Let C be the invariant 
ontrol set of S in B . Then C = 
lO, where

O is an open L-orbit. Write O = G � b (a

+

). Then one of the half-lines of


 = z (l

a

) \ a is 
ontained in 
la

+

. Furthermore, the 
ompression semigroup

S

C

is maximal.

Proof: The fa
t that C 
ontains just one open orbit follows from the above

lemma and the 
hara
terization of the open orbits in Proposition 2.2. Sin
e

W (S;A

+

) �xes the points in 
, it follows that 
 meets the 
losure of a

+

(see [13℄, Se
tion 4). To see that S

C

is maximal we note that the num-

ber of 
ontrol sets (i.e., jWj = jW (S)j) equals the number of open L-orbits

(i.e., jWj = jW

a

(a)j). Now, ea
h 
ontrol set 
ontains at least one open orbit.

Therefore, every open orbit is 
ontained in a 
ontrol set. This shows that the
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union of the 
ontrol sets is dense. Hen
e the maximality of S

C

follows from

Proposition 1.9, and the remark that its type � (S) is a maximal subset. 2

Remark: In de�ning the orbit O = G � b (a

+

) we 
an 
hoose any Weyl


hamber 
ontaining a given half-line 


+

of 
, sin
e W




inter
hanges these


hambers. Hen
e O is determined by 


+

. On the other hand the semigroup

S

�1

also 
ontains L, and it is not hard to see that the open orbit 
ontained

in the S

�1

-invariant 
ontrol set is given by �


+

.

Finally we mention that our results do not ensure the existen
e of proper

semigroups with nonempty interior 
ontaining L. Clearly, this happens if

and only if the 
ompression semigroup of an open orbit like in Theorem 2.10

has nonempty interior. For the existen
e problem we refer to the literature

on aÆne symmetri
 spa
es. In parti
ular we mention that it is proved in

[4℄ that in 
ase G 
omplexi�es to a simply 
onne
ted group G

C

then G

�

is


ontained in a 
ompression semigroup of an open orbit, whi
h is the same

for every L.

Referen
es

[1℄ Faraut, J., J. Hilgert, G.

�

Olafsson: Spheri
al fun
tions on ordered sym-

metri
 spa
es. Ann. Inst. Fourier 44 (1994), 927{966.

[2℄ Hilgert, J., K.-H. Neeb: Lie semigroups and their appli
ations. Le
ture

Notes in Math., 1552, Springer-Verlag (1993).

[3℄ Hilgert, J., K.-H. Neeb: Maximality of 
ompression semigroups. Semi-

group Forum 50 (1995), 205-222.

[4℄ Hilgert, J., K.-H. Neeb: Compression semigroups of open orbits on real


ag manifolds. Monatsh. Math., 119, (1995), 187{214.

[5℄ Hilgert, J., G.

�

Olafsson: Causal symmetri
 spa
es. Geometry and har-

moni
 analysis. Perspe
tives in Mathemati
s, 18, A
ademi
 Press In
.

(1997).

[6℄ Lawson, J. D.: Semigroups of Ol'shanski�� type. In Semigroups in Alge-

bra, Geometry and Analysis (Eds. K.H. Hofmann, J.D. Lawson and E.B.

Vinberg), De Gruyter Expositions in Mathemati
s 20 (1995), 121{157.

17



[7℄ Lawson, J. D.: Polar and Ol'shanski�� de
ompositions. J. reine angew.

Math. 448 (1994), 191{219

[8℄ Matsuki, T.: The orbits of aÆne symmetri
 spa
es under the a
tion of

minimal paraboli
 subgroups. J. Math. So
. Japan, 31, (1979), 331{357.

[9℄

�

Olafsson, G.: Causal symmetri
 spa
es. Math. Gottingensis 15 (1990).

[10℄ San Martin L. A. B.: Invariant 
ontrol sets on 
ag manifolds. Mathe-

mati
s of Control, Signals, and Systems 6 (1993), 41{61.

[11℄ San Martin L. A. B.: Order and domains of attra
tions of 
ontrol sets

in 
ag manifolds. J. of Lie Theory 8 (1998), 335{350.

[12℄ San Martin L. A. B.: Maximal semigroups in semi-simple Lie groups.

Submitted.

[13℄ San Martin, L. A. B., P. A. Tonelli: Semigroup a
tions on homogeneous

spa
es. Semigroup Forum 50 (1995), 59{88.

[14℄ Varadarajan, V. S.: Harmoni
 Analysis on Real Redu
tive Groups. Le
-

ture Notes in Mathemati
s 576 Springer-Verlag (1977).

[15℄ Warner, G.: Harmoni
 analysis on semi-simple Lie groups I. Springer-

Verlag (1972).

18


