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Abstrat

Let (G;L; �) be an aÆne symmetri spae with G a simple Lie

group, � an involutive automorphism of G and L an open subgroup

of the � -�xed point group G

�

. It is proved here that the existene of

a proper semigroup S � G with intS 6= ; and L � S implies that

(G;L; �) is of Hermitian type, as onjetured by Hilgert and Neeb [4℄.

When S exists, it turns out that it leaves invariant an open L-orbit

in a minimal ag manifold of G. A byprodut of our approah is an

alternate proof of the maximality of the ompression semigroup of an

open orbit (see Hilgert and Neeb [3℄).
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Introdution

Let G be a onneted semi-simple Lie group and � 6= 1 an involutive au-

tomorphism of G. Semigroups ontaining the group G

�

of � -�xed points,

�
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or rather an open subgroup L of G

�

, have been studied extensively in the

literature, due mainly to their importane in harmoni analysis of ausal

symmetri spaes. We refer to [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄, [8℄, [9℄ and refer-

enes therein for the literature on semigroups and aÆne symmetri spaes.

The theory developed so far highlights aÆne symmetri spaes of Hermitian

{ or regular { type, and the orresponding Ol'shanski�� semigroups. For this

lass there are available invariant ones in the Lie algebra whih generate

proper semigroups invariant under a subgroup of � -�xed points. It turns out

that a great deal of the theory is developed with the aid of the ompression

semigroups of the open L-orbits in the ag manifolds.

When studying these ompression semigroups one is faed with a gap in

the theory onerning the existene of proper semigroups ontaining L when

the symmetri spae is not of Hermitian type. Of ourse, it is known that only

in the Hermitian ase are there invariant ones in the Lie algebra. However,

this is not an obstrution for the existene of an L-invariant semigroup having

trivial Lie wedge.

The purpose of this paper is to �ll this gap by proving that if (G; �) is

not of Hermitian type and S is a semigroup ontaining L then either S = G

or intS = ;. This result was onjetured before by Hilgert and Neeb [4℄ (see

Conjeture III in [4℄ whose statement amounts to our formulation).

Preisely, we assume that G is a simple nonompat and onneted Lie

group having �nite enter, and prove that if S = S

C

is the ompression

semigroup of a subset C of a ag manifold of G (i.e., S = fg 2 G : gC � Cg),

suh that L � S, S 6= G and intS 6= ; then the pair (G; �) is of Hermitian

type and C is an open L-orbit having spei� properties. Sine any semigroup

with nonempty interior is ontained in a ompression semigroup, the more

general result stated above follows.

Our proof is based on previous results about the ation of semigroups

on ag manifolds. The main point in the proof is a relation established

between two subgroups of the Weyl group W, namely the subgroup W

a

(a)

assoiated to the pair (G; �) and the subgroup W (S) built from S. The

subgroup W (S) is paraboli and hene has a �xed point in its ation on

the split subalgebra. This will imply the existene of a �xed point of the

subgroup W

a

(a), ensuring that the aÆne symmetri spae is of Hermitian

type. In the ourse of the proof the subgroup W (S) is omputed expliitly

when S is an invariant ompression semigroup with nonempty interior. From

the knowledge of W (S) it is easy to show that the existing ompression
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semigroups are maximal, a result already proved by Hilgert and Neeb [3℄.

1 Flag manifolds and Semigroups

This setion is preparatory for the proof of the main results. We reall here

the basi onstrutions and results about the ation of semigroups on ag

manifolds. Most of the results where proved elsewhere, so we just state them

or outline their proofs. We refer the reader to [10℄, [11℄, [12℄, [13℄ for further

details.

1.1 Flag manifolds

Let g be a nonompat semi-simple Lie algebra. We view a ag manifold of

g as an orbit of a paraboli subalgebra of g under the group Aut

0

(g) of inner

automorphisms of g. In the sequel we label a ag manifold by a subset of

the set of simple roots as follows: Let g = k� p be a Cartan deomposition

with Cartan involution � and hoose a maximal abelian subspae a

0

� p.

Denote by � the set of restrited roots of the pair (g; a

0

), and selet a simple

system of roots �

0

� �, with �

+

the orresponding set of positive roots and

a

+

0

the Weyl hamber. For a root � 2 � its root spae is denoted by g

�

.

Any paraboli subalgebra is onjugate under an inner automorphism of g to

a standard paraboli subalgebra

b

�

= n

�

(�)� b

+

;

with � � �

0

a proper subset. In this expression b

+

stands for the minimal

paraboli subalgebra b

+

= m+a

0

+n

+

where n

+

=

P

�2�

+

g

�

and m = z

k

(a

0

).

Also, n

�

(�) is the subalgebra spanned by the root spaes g

��

, � 2 h�i,

where h�i is the set of positive roots generated by �. The ag manifold

ontaining b

�

is denoted by B

�

. For the maximal ag manifold we write

simply B = B

;

. Reall that for any ag manifold B

�

there is a standard

�bration � : B ! B

�

, whih assigns to the minimal paraboli subalgebra b

the unique paraboli subalgebra � (b) in B

�

ontaining b.

Let G be a onneted Lie group with �nite enter and Lie algebra g. The

group ats on the ag manifolds of g through the adjoint representation of

G in g. We denote this representation by g �X, g 2 G, X 2 g. Let N

+

be

the nilpotent onneted subgroup of G whose Lie algebra is n

+

. In any ag
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manifold B

�

there is just one open and dense N

+

-orbit, say �

0

. By an open

Bruhat ell in B

�

we mean a subset of the form g�

0

, g 2 G. Equivalently,

the ell g�

0

is the open and dense orbit of the group gN

+

g

�1

.

For our purposes it is relevant to have a desription of the open ells in

terms of inidene of paraboli subalgebras. Starting with B , de�ne an ation

of G on B � B by putting g � (b

1

; b

2

) = (g � b

1

; g � b

2

). Let b

+

be the standard

minimal paraboli subalgebra de�ned above, and put b

�

= m + a + n

�

,

where n

�

=

P

�2�

+

g

��

. Two paraboli subalgebras b

1

; b

2

2 B are said to be

opposed (notation: b

1

t b

2

) in ase (b

1

; b

2

) belong to the G-orbit of (b

+

; b

�

).

This de�nition yields that the set of subalgebras opposed to b

+

is the orbit

N

+

� b

�

, that is, the open ell �

0

. In fat, b is opposed to b

+

if and only if

b = g � b

�

with g � b

+

= b

+

. This means that g 2 P , the normalizer of b

+

in

G. But it is well known that P � b

�

= N

+

� b

�

.

This haraterization of �

0

is arried over to arbitrary ells through the

G-ation. In general, given b = g � b

+

2 B the set of subalgebras opposed

to it is the ell g�

0

. Therefore, any open ell in B is the set of subalgebras

opposed to a given minimal paraboli subalgebra b. In what follows we put

� (b) for the ell of subalgebras opposed to b.

Now, for a subalgebra  of g denote by nil () its nilradial. We have

nil (b

+

) = n

+

, nil (b

�

) = n

�

and b

+

\ nil (b

�

) = b

�

\ nil (b

+

) = f0g. Fur-

thermore, given n 2 N

+

,

�

n � b

�

�

\ nil

�

b

+

�

= n �

�

b

�

\ nil

�

b

+

��

= f0g

and b

+

\ nil (n � b

�

) = n � (b

+

\ nil (b

�

)) = f0g. In other words, b t b

+

if

and only if nil (b) and nil (b

+

) are transversal to b

+

and b, respetively.

Atually, b

+

\ nil (b) = f0g if and only if b \ nil (b

+

) = f0g, sine the

intersetions are ontained in the nilradials of b

+

and b. Hene eah one of

these two transversalities onditions is neessary and suÆient for the subal-

gebras to be opposed. Through the adjoint representation, these onditions

are arried over to arbitrary pairs of minimal paraboli subalgebras.

Proposition 1.1 The minimal paraboli subalgebras b

1

; b

2

2 B are opposed

if and only if b

1

\ nil (b

2

) = f0g or b

2

\ nil (b

1

) = f0g.

Therefore an open ell in B is the set of minimal paraboli subalgebras

transversal to the nilradial of a �xed subalgebra b 2 B .

4



A similar piture holds for a ag manifold B

�

. However, in general the

transversality ondition must be taken with respet to subalgebras in the ag

manifold B

�

�

dual to B

�

. Here the subset �

�

de�ning B

�

�

is obtained as

follows: Let W be the Weyl group of the pair (g; a

0

) and denote by w

0

2 W

its prinipal involution, that is, the element of maximal length as a produt

of reetions with respet to the simple roots in �

0

. Alternatively, w

0

is

the only element of W suh that w

0

(�

0

) = ��

0

. Put � = �w

0

. Then

� (�

0

) = �

0

, so that it is an involutive automorphism of the Dynkin diagram

of �

0

. By de�nition �

�

= � (�).

It is well known and easy to prove from the standard deompositions that

the nilradial of b

�

is

nil (b

�

) = n

+

�

=

X

�2�

+

nh�i

g

�

(.f. [15℄, page 80; [14℄, page 280). De�ne the subalgebra

b

�

�

= � (b

�

) = n

+

(�)� b

�

;

where b

�

is as before the minimal paraboli subalgebra given by the negative

roots and n

+

(�) is the subalgebra spanned by the root spaes g

�

, � 2 h�i.

We have b

�

�

2 B

�

�

. In fat, let w

0

be an inner automorphism of g extending

w

0

(e.g. w

0

is a representative of w

0

in the normalizer N

K

(a

0

) of a

0

in

K, the ompat group with Lie algebra k). Then w

0

(b

+

) = b

�

and sine

w

0

(��

�

) = �, it follows that w

0

(n

�

(�

�

)) = n

+

(�). Therefore, w

0

(b

�

�

) =

b

�

�

, implying that b

�

�

2 B

�

�

. Also, the nilradial of b

�

�

is the image under w

0

of nil (b

�

�

) =

P

�2�

+

nh�

�

i

g

�

. Hene we have

nil

�

b

�

�

�

=

X

�2�

+

nh�i

g

��

:

This subalgebra is learly transversal to b

�

.

Two subalgebras 

1

2 B

�

and 

2

2 B

�

�

are said to be opposed to eah

other (notation: 

1

t 

2

) in ase the pair (

1

; 

2

) 2 B

�

� B

�

�

belongs to

the G-orbit of

�

b

�

; b

�

�

�

under the omponentwise ation. Analogous to the

minimal paraboli ase the G-ation arries over to pairs of subalgebras in

B

�

� B

�

�

the inidene relations between b

�

and b

�

�

.
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Proposition 1.2 The subalgebra 

1

2 B

�

is opposed to 

2

2 B

�

�

if and only

if one of the two equivalent transversalities 

1

\nil (

2

) = f0g or 

2

\nil (

1

) =

f0g is satis�ed. Moreover, for  2 B

�

�

, the subset

� () = fb 2 B

�

: b \ nil () = f0gg

is an open ell in B

�

, and the map  7! � () gives a bijetive orrespondene

between B

�

�

and the set of open ells in B

�

.

We disuss now the relation between opposed minimal paraboli subalge-

bras and split subalgebras. Given two opposed minimal paraboli subalgebras

b

1

and b

2

, b

1

\ b

2

ontains a unique maximal abelian split subalgebra of g,

that is, a subalgebra of the form a = g � a

0

with g 2 G. In this ase one an

selet a Weyl hamber, say a

+

� a, suh that for H 2 a

+

, b

1

is the attra-

tor in B of h = expH having � (b

2

) as the orresponding stable manifold.

This means that h

k

x ! b

1

, as k ! +1, for any x 2 � (b

2

). In the sequel

we write a

+

(b

1

; b

2

) for the hamber oming from this onstrution, and put

A

+

(b

1

; b

2

) = exp (a

+

(b

1

; b

2

)).

Conversely, a minimal paraboli subalgebra is de�ned uniquely by a Weyl

hamber a

+

ontained in a maximal split subalgebra a. We denote this

paraboli subalgebra by b (a

+

). Fixing a

+

one has a well de�ned isomorphism

between W, the Weyl group of the basi subalgebra a

0

, and the Weyl group

W (a) of a. In fat, both groups are generated by reetions with respet

to simple systems of roots having the same Dynkin diagram. Denote for a

moment this isomorphism by  . If w 2 W then  (w) a

+

is a Weyl hamber

in a. In the sequel we write b (a

+

)w for the minimal paraboli subalgebra

de�ned by  (w) a

+

, that is, b (a

+

)w = b ( (w) a

+

). This element of B is

said to be the �xed point of type w for A

+

= exp (a

+

).

For a given a paraboli subalgebra  we denote by N () the onneted

subgroup whose Lie algebra is the nilradial nil () of . Sine nil

�

b

�

�

�

=

P

�=2h�i

g

��

omplements b

�

, the orbit of N

�

b

�

�

�

in B

�

ontaining b

�

is

open. The same remark holds for any subalgebra in B

�

opposed to b

�

�

, so that

�

�

b

�

�

�

is the open orbit of N

�

b

�

�

�

in B

�

. This fat is arried over to arbitrary

subalgebras  2 B

�

�

through the G-ation: We have  = g�b

�

�

for some g 2 G,

hene nil () = g�nil

�

b

�

�

�

, � () = g�

�

b

�

�

�

andN () = gN

�

b

�

�

�

g

�1

, implying

that � () is the open orbit of N () in B

�

.

Now, let � : B ! B

�

and �

�

: B ! B

�

�

be the standard �brations.

Take b 2 B and put  = �

�

(b). Then nil () � nil (b), so that the open
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orbit of N (b) projets down onto the open orbit of N (), implying that

� (� (b)) = � (). For later referene we emphasize this fat.

Lemma 1.3 If  = �

�

(b) then � () = � (� (b)).

Regarding the projetion of opposed minimal paraboli subalgebras there

is still the following fat, whih is required later.

Lemma 1.4 Let b = b (a

+

) be a minimal paraboli subalgebra built from the

Weyl hamber a

+

� a. Let W (a) be the Weyl group of a and let w

0

be

the prinipal involution of W (a) with respet to a

+

. Let � : B ! B

�

be

the projetion onto a smaller ag manifold. Then for w 2 W (a) the �ber

�

�1

� (b (wa

+

)) ontains a subalgebra opposed to b if and only if � (b (wa

+

)) =

� (b (w

0

a

+

)).

Proof: The only subalgebra of the type b (wa

+

) opposed to b is b (w

0

a

+

).

Let N = N (b) be the nilpotent subgroup whose Lie algebra is the nilradial

of b. The subalgebras opposed to b are the elements of the orbit N �b (w

0

a

+

).

Take w 2 W (a) and suppose that for some n 2 N , n � b (w

0

a

+

) and b (wa

+

)

belong to the same �ber. Then nw

0

P

�

= wP

�

, hene by the Borel-Kostant

Theorem (see [15℄, Proposition 1.2.4.9), w

0

P

�

= wP

�

, whih means that

b (wa

+

) and b (w

0

a

+

) are in the same �ber. 2

1.2 Semigroups

Let S � G be a semigroup with nonempty interior. Reall that a ontrol

set for the ation of S on B

�

is a subset D � B

�

whih is maximal with

the properties D � l (Sx) for any x 2 D, and there exists x 2 D suh

that gx = x for some g 2 intS. It is known (see [10℄, [13℄) that on any

ag manifold there exists a unique invariant ontrol set (i.e., Sx � D for all

x 2 D) whih is losed. Also, in B

�

there is just one ontrol set whih is

S

�1

-invariant. This set is open. Beause of the natural order between ontrol

sets (see [11℄) we all this open ontrol set the minimal ontrol set of S.

A subset C � B

�

is said to be admissible if the following onditions hold:

1. C = l (intC).
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2. C � � () for some  2 B

�

�

.

The admissible subsets are the relevant invariant ontrol sets of semi-

groups in G. In fat, we have the following fat proved in [13℄.

Proposition 1.5 Let S � G be a proper semigroup with intS 6= ;.Then

there exists a unique subset �(S) � �

0

suh that

1. the invariant ontrol set C of S in B

�(S)

is admissible, and

2. the invariant ontrol set of S in B is �

�1

(C), where � : B ! B

�(S)

is

the standard �bration.

In what follows we write B (S) = B

�(S)

for the ag manifold whose ex-

istene and uniqueness is ensured by this proposition. Also, we let W (S)

stand for the subgroup of W generated by the reetions with respet to the

simple roots in � (S).

In the sequel we say that a semigroup S is of type � � �

0

in ase

� (S) = �. We emphasize that if intS 6= ; and S is a proper subsemigroup

then S is of type � for some proper subset � � �

0

. At this point we remark

that the type of S

�1

is the dual � (S)

�

of the type of S (see [12℄, Proposition

6.2).

In another diretion, it was proved in [12℄, Proposition 4.2, that if C � B

�

is admissible then the ompression semigroup

S

C

= fg 2 G : gC � Cg

has nonempty interior in G and is of type �. Also, C is the invariant ontrol

set of S

C

in B

�

. Therefore a subset of B

�

is admissible if and only if it is the

invariant ontrol set of a semigroup with nonempty interior of type �.

A basi property of a semigroup S of type � is given by its intersetion

with the Weyl hambers. Reall that the set of transitivity D

0

of a ontrol

set D is de�ned by

D

0

= fx 2 D : x 2 int (S)xg:

It is known that D

0

is dense in D and gx 2 D

0

if g 2 S and x 2 D

0

(see

[13℄). The following results were proved in [13℄.
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Proposition 1.6 Let S be a semigroup of type � and denote by C its in-

variant ontrol set in B . Also let a be a maximal split subalgebra, a

+

� a a

Weyl hamber, and put A

+

= exp a

+

. Suppose that A

+

\ intS 6= ;. Then

b (a

+

)w belongs to D

0

for some ontrol set D, and b (a

+

)w 2 C

0

if and only

if w 2 W (S) =W

�(S)

.

If A

+

= exp a

+

is suh that A

+

\ intS 6= ;, we denote by W (S;A

+

) the

subgroup

W

�

S;A

+

�

= fw 2 W (a) : wA

+

w

�1

\ intS 6= ;g; (1)

where W (a) is, as above, the Weyl group of a. By the previous proposition

W (S;A

+

) is isomorphi to W (S) under  .

Now, we develop a method of produing Weyl hambers meeting intS

when S is a ompression semigroup. For a subset C � B

�

its dual C

�

� B

�

�

is de�ned by

C

�

= fb 2 B

�

�

: (8b

0

2 C) ; b t b

0

g:

Clearly, C � � (b) for all b 2 C

�

. By de�nition, C

�

6= ; if C is admissible.

Proposition 1.7 Let C � B

�

be admissible and denote by S

C

its ompres-

sion semigroup. Take 

1

2 intC and 

2

2 C

�

. Let b

1

and b

2

be minimal

paraboli subalgebras suh that � (b

1

) = 

1

and �

�

(b

2

) = 

2

. Suppose that b

1

is opposed to b

2

. Then for all h 2 A

+

(b

1

; b

2

) there exists a positive integer

k suh that h

k

2 int (S

C

).

Proof: By Lemma 1.3, � (� (b

2

)) = � (

2

). Sine C � � (

2

), it follows that

h

k

x ! 

1

, as k ! +1, for all x 2 C and h 2 A

+

(b

1

; b

2

). Now, the om-

patness of C implies that h

k

C � intC for large k. Thus h

k

2 int (S

C

), as

laimed. 2

Remark: If 

1

2 B

�

and 

2

2 B

�

�

are opposed then for any b

1

2 B projeting

into 

1

there exists b

2

2 B whih projets into 

2

and is opposed to b

1

. This

is easily seen for the models b

�

and b

�

�

. In this ase b

1

= b

+

and b

2

= b

�

are

opposed minimal paraboli subalgebras ontained in b

�

and b

�

�

, respetively.

For general 

1

and 

2

we apply the adjoint ation to the standard models and

use the existene of an automorphism g suh that 

1

= g � b

�

and 

2

= g � b

�

�

.

Therefore, the above proposition implies that every x 2 intC is the attrator

of some h 2 int (S

C

).

9



For later referene we note the following fat onerning the dual of an

invariant ontrol set.

Proposition 1.8 Let S be a semigroup of type � and denote by C its in-

variant ontrol set in B (S). Also, let D be the invariant ontrol set of S

�1

in

the ag manifold B (S)

�

= B

�(S)

�

dual to B (S). Then its set of transitivity

D

0

� C

�

.

Proof: From the general results about the duality operator we know that

C

�

is open and S

�1

-invariant (see [12℄, Proposition 3.5 and Corollary 3.10).

Hene l (C

�

) is invariant under S

�1

, implying that D � l (C

�

). Now, D

0

is

open and dense in D, so that D

0

\C

�

6= ;. Sine D

0

= S

�1

x for x 2 D

0

and

C

�

is S

�1

-invariant the result follows. 2

We onlude this setion with the proof of a suÆient ondition for the

maximality of a ompression semigroup. With this ondition it is easy to

prove that the ompression semigroups in aÆne symmetri spaes having

nonempty interior are maximal.

Proposition 1.9 Let C � B

�

be an admissible subset and denote by S

C

its ompression semigroup. Suppose that the union of the ontrol sets of S

C

in B

�

is dense in B

�

. Then S

C

is maximal of type �. In partiular S

C

is

maximal in G if � is maximal in �

0

.

Proof: To say that S

C

is maximal of type � means that if T � G is a

semigroup and S

C

� T properly then T is either G or of type �

0

� � with

� 6= �

0

. Let T be a semigroup ontaining S

C

properly. Denote by E its

invariant ontrol set in B

�

. We have that C � E. By de�nition of S

C

,

there exists g 2 T and x 2 C suh that gx =2 C. Sine C = l (intC) we

an assume without loss of generality that x 2 intC. Hene, the assumption

that the ontrol sets are dense imply that g (intC) meets some ontrol set

of S

C

di�erent from C. Denote this ontrol set by D. It follows that D is

attainable by means of T from some point of C � E, so that D � E. Sine

the ontrol sets in B

�

are the projetions of the ontrol sets in B , this implies

at one that T is not of type �. In fat, an appliation of Proposition 1.6 to

both S

C

and T shows that W (T ) ontains W (S

C

) properly. 2

10



Remark: Let E be as in the proof above. Then E is not ontained in

any open ell of B

�

. In fat, suppose that E � � () for some  2 B

�

�

.

Pik 

1

2 intC. By Proposition 1.7 (and the remark following it) there are

minimal paraboli subalgebras b and b

1

projeting into  and 

1

, respetively,

suh that A

+

(b

1

; b) meets int (S

C

). Sine D is not the invariant ontrol set of

S

C

, there exists w =2 W (S

C

) suh that the �xed point of type w of A

+

(b

1

; b)

projets into D, ontraditing the assumption that D � E � � ().

2 AÆne symmetri spaes

Let (G;L; �) be an aÆne symmetri spae where G is a onneted Lie group,

� an involutive automorphism of G and L an open subgroup of G

�

, the

subgroup of � -�xed points. The orresponding symmetri Lie algebra is

denoted by (g; l; �). We assume throughout that g is simple and G has �nite

enter. For the problem treated here the general ase an be redued to this

one (see [4℄, Setion I). Also, we avoid the trivial situation l = g by assuming

that � 6= 1.

Let g = l + q be the deomposition into � -eigenspaes, where q = fX 2

g : �X = �Xg. Also, let � be a Cartan involution ommuting with � and

denote by g = k+p the orresponding Cartan deomposition. Put k

+

= k\ l,

k

�

= k \ q, p

+

= p \ l and p

�

= p \ q. Then

g = k

+

+ k

�

+ p

+

+ p

�

:

In order to desribe the open orbits let a � p be a � -invariant maximal

split subalgebra and put a

l

= a \ l and a

q

= a \ q. For a Weyl hamber

a

+

� a denote by �

+

the orresponding set of positive roots. Let b (a

+

) be

the minimal paraboli subalgebra de�ned by a

+

. It is well known that L

has open orbits in B . The following haraterization of the open orbits was

proved in [8℄, x3, Proposition 1.

Proposition 2.1 Neessary and suÆient onditions for the L-orbit of b (a

+

)

to be open are:

1. a

q

is maximal abelian in p

�

, and

2. �

+

is q-ompatible, that is, �

+

n a

?

q

is �� -invariant.

11



More important to us than this haraterization of the Weyl hambers

giving rise to open orbits, is the following relation between them given by

the Weyl group ation. Thus keeping �xed the � -invariant maximal split

subalgebra a, onsider the groups

� W (a) = N

K

(a) =Z

K

(a), the Weyl group of a.

� W

�

(a) = fw 2 W (a) : wa

l

= a

l

g.

� W

a

(a) = N

K

+

(a) =Z

K

+

(a), where K

+

= K \ L.

Here and in the sequel the notations Z

U

(d) and N

U

(d) stand for the en-

tralizer and the normalizer of d in U , respetively. The following inlusions

hold

W

a

(a) � W

�

(a) � W (a) ;

and the open orbits are enumerated by

Proposition 2.2 Let a

+

be a Weyl hamber suh that the L-orbit of b (a

+

)

is open. Then the open L-orbits are the orbits of b (wa

+

) with w 2 W

�

(a).

Moreover, the orbits of b (w

1

a

+

) and b (w

2

a

+

), w

1

; w

2

2 W

�

(a), agree if and

only if W

a

(a)w

1

=W

a

(a)w

2

.

Proof: See [8℄, Theorem 3, and [4℄, Proposition II.10. 2

Now, we an look at the semigroups. Start with a semigroup S ontaining

L and suh that intS 6= ; and S 6= G. Our purpose is to rule out the aÆne

symmetri spaes where suh a semigroup does not exist. For this we an

assume without loss of generality that S is a ompression semigroup. In fat,

denote by C the invariant ontrol set of S in B . Sine S 6= G, it follows that

C 6= B , hene the ompression semigroup S

C

of C is proper. Clearly S � S

C

so that int (S

C

) 6= ;. Therefore, if L is ontained in a proper semigroup with

nonempty interior then it is ontained in a ompression semigroup of the

same kind.

Thus we assume from now on that L � S and S is the ompression

semigroup of its invariant ontrol set C � B . Let � = � (S) be the type of

S, and put � : B ! B

�

and �

�

: B ! B

�

�

for the standard �brations. The

projetion � (C) is the invariant ontrol set of S in B

�

and C = �

�1

(� (C)).

12



By equivariane of �, g 2 G leaves C invariant if and only if � (C) is invariant

under g. Thus S oinides with the ompression semigroup of � (C).

Before proeeding we prove the following simple lemma.

Lemma 2.3 Let D be a ontrol set of S in B . Then its set of transitivity

D

0

ontains an open L-orbit. Furthermore, any open orbit meeting D is

ontained in D

0

.

Proof: By de�nition intD 6= ;, D � l (Sx) for all x 2 D, and D is max-

imal with these properties. This maximality property { together with the

fat that L � S { implies that any L-orbit meeting D is ontained in D.

Moreover, the union of the open L-orbits is dense in B , so that D ontains

some open L-orbit, say O. We have D

0

\ O 6= ;, beause D

0

is dense inD.

Sine D

0

is S

C

-invariant within D, it follows that O � D

0

. 2

In partiular there are open L-orbits ontained in C. Suppose that C

ontains the open orbit passing through b (a

+

) where the Weyl hamber a

+

satis�es the onditions of Proposition 2.1. The following lemma ensures that

the subalgebra b (w

0

a

+

) opposed to b (a

+

) belongs to the minimal ontrol

set C

�

of S. Reall that C

�

is open and S

�1

-invariant. Also, �

�

(C

�

) is the

minimal ontrol set of S in B

�

�

.

Lemma 2.4 Let w

0

be the prinipal involution with respet to a

+

, i.e., w

0

a

+

=

�a

+

. Then b (w

0

a

+

) 2 C

�

0

.

Proof: SineW

�

(a) parametrizes the open L-orbits and C

�

0

ontains suh an

orbit, there exists w 2 W

�

(a) suh that b (wa

+

) 2 C

�

0

. Write b

w

= b (wa

+

).

The projetion � (C) is the invariant ontrol set of S in B

�

. Also, �

�

(lC

�

)

is the invariant ontrol set of S

�1

in B

�

�

, so that �

�

�

C

�

0

�

is ontained in the

set of transitivity of the invariant ontrol set of S

�1

in B

�

�

. Hene Proposi-

tion 1.8 implies that �

�

(b

w

) 2 � (C)

�

. Therefore, in the �ber (�

�

)

�1

�

�

(b

w

)

there exists b opposed to b (a

+

). By Lemma 1.4 this implies that b (w

0

a

+

) 2

(�

�

)

�1

�

�

(b

w

). Hene b (w

0

a

+

) belongs to the invariant ontrol set of S

�1

beause this semigroup is of type �

�

. Using the fat that the open orbits

meeting C

�

are ontained in C

�

0

we onlude that b (w

0

a

+

) 2 C

�

0

. 2

Now, we apply propositions 1.7 and 1.8 in order to get a deisive infor-

mation about the type � of S. By onstrution � (b (a

+

)) belongs to the set

13



of transitivity of the invariant ontrol set of S in B

�

. On the other hand the

above lemma ensures that �

�

(b (w

0

a

+

)) 2 �

�

(C

�

)

0

. Hene from Proposition

1.8 we get �

�

(b (w

0

a

+

)) 2 (� (C))

�

. Clearly, b (a

+

) t b (w

0

a

+

). Sine we

are assuming that S is a ompression semigroup, it follows by Proposition

1.7 that the hamber A

+

(b (a

+

) ; b (w

0

a

+

)) meets intS. Sine by de�nition

A

+

(b (a

+

) ; b (w

0

a

+

)) = exp (a

+

), we have proved:

Proposition 2.5 Suppose that the open orbit through b (a

+

) is ontained in

the invariant ontrol set of S in B . Then A

+

\intS 6= ; where A

+

= exp (a

+

).

The fat that A

+

meets the interior of S permits to determine expliitly

the subgroup W (S;A

+

) and thus the ag manifold assoiated to S. In fat,

by de�nition W (S;A

+

) is the set of w 2 W (a) suh that b (wa

+

) belongs to

the invariant ontrol set C or, equivalently, the L-orbit of b (wa

+

) is ontained

in C.

Proposition 2.6 Keeping the above notations, let w

1

; : : : ; w

s

2 W

�

(a) be

suh that the L-orbits of b (w

i

a

+

), i = 1; : : : ; s, are the open orbits ontained

in C. Then

W

�

S;A

+

�

=

s

[

i=1

W

a

(a)w

i

:

In partiular, W

a

(a) � W (S;A

+

) � W

�

(a). Also, W

a

(a) has a �xed point

in a.

Proof: The �rst statement follows immediately from the previous proposi-

tion, the de�nition of W (S;A

+

) (see (1)), and the haraterization of the

open orbits in Proposition 2.2. The existene ofW

a

(a)-�xed points is a on-

sequene of the fat that W (S;A

+

) is paraboli with respet to a

+

, i.e., is

generated by the reetions with respet to the simple roots in a subset of

the simple system of roots assoiated to a

+

. Suh a subgroup has a �xed

point in a

+

. 2

This proposition implies that W

�

(a) = W (a). In fat, any ontrol set

ontains at least one open L-orbit, whih by Proposition 2.2 is the orbit

of b (wa

+

) for some w 2 W

�

(a). However, b (w

1

a

+

) and b (w

2

a

+

) be-

long to the same ontrol set if and only if W (S;A

+

)w

1

= W (S;A

+

)w

2

.
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Therefore the number of ontrol sets is jW

�

(a)j = jW (S;A

+

)j. But the gen-

eral theory of ontrol sets ensures that the number of ontrol sets in B is

jW (a)j = jW (S;A

+

)j (see [13℄, Theorem 4.5). Hene W

�

(a) =W (a).

Corollary 2.7 If there exists a proper semigroup S � L with intS 6= ; then

W

�

(a) =W (a), a

l

= f0g and a

q

= a.

Proof: It was showed above that W

�

(a) =W (a). To see that a

l

= 0, reall

�rst that g is assumed to be simple, so thatW (a) is irreduible in a. Sine a

l

is invariant under W

�

(a) =W (a), it follows that a

l

= f0g or a. The seond

possibility is ruled out beause in this ase l = g. To see this observe that

sine the orbit of b (a

+

) is open, a

q

is maximal abelian in p

�

. Hene a

l

= a

implies that a

q

= f0g, and thus p

�

= 0 and p = p

+

. This means that p � l.

But p generates g, so that l = g if a

l

= a. Therefore a

l

= f0g as laimed. 2

We ontinue to keep �xed a Weyl hamber a

+

suh that the L-orbit of

b (a

+

) is open. The Lie algebra l

a

= k

+

+ p

�

is the subalgebra �xed by

the involution ��, hene it is a redutive Lie algebra. The deomposition

l

a

= k

+

+ p

�

is a Cartan deomposition of l

a

. In view of the above orollary

we assume that a

q

= a. It is maximal abelian in p

�

, and hene a maximal

split subalgebra of l

a

.

The symmetri pair (g; �) is said to be regular or of Hermitian type pro-

vided z (l

a

) \ p

�

6= 0. It is now easy to prove our main result, namely that

the existene of a semigroup ontaining L implies that (g; �) is regular.

Theorem 2.8 Suppose that there exists a proper semigroup S � L with

intS 6= ;. Then the symmetri pair (g; �) is of Hermitian type.

Proof: Let (K

+

)

0

be the onneted subgroup whose Lie algebra is k

+

.

Then N

(K

+

)

0

(a) =Z

(K

+

)

0

(a) is the Weyl group of the pair (l

a

; a). Clearly,

N

(K

+

)

0

(a) � N

K

+

(a). Now, Proposition 2.6 implies that N

K

+

(a) has a �xed

point in a. Hene the Weyl group of (l

a

; a) has a �xed point in a. Sine l

a

is redutive, the �xed point set of the Weyl group of (l

a

; a) is ontained in

the enter z (l

a

) of l

a

. Thus z (l

a

) \ p

�

� z (l

a

) \ a 6= 0, that is, the aÆne

symmetri spae is regular. 2

Next we improve this theorem by showing that the only possibility for C

in the regular ase is to be the losure of just one open orbit.
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A basi fat about a regular pair is that the subspae  = z (l

a

) \ a

is one-dimensional and l

a

= z () (see [4℄, Theorem V.1). Let � () � �

be the subset of simple roots � suh that � () = 0. Denote by W



the

subgroup generated by the reetions with respet to the simple roots in

� (). Sine  is one-dimensional the paraboli subalgebra b

�()

is maximal.

Also, W



is a maximal paraboli subgroup of W (a). Put L () = Z

G

() and

K () = L ()\K. The Lie algebra of L () is l

a

= k

+

+p

�

and the Lie algebra

of K () is k

+

.

Lemma 2.9 W

a

(a) =W (S;A

+

) =W



, where as above A

+

= exp (a

+

) and

a

+

is a basi hamber de�ning an open orbit ontained in C.

Proof: By [15℄, Lemma 1.2.4.5, K () = Z

K

(a)K ()

0

where K ()

0

is the

identity omponent of K (). Also, Corollary 1.2.4.7 in [15℄ ensures that W



is the Weyl group of (l

a

; a), that is, N

K()

(a) =Z

K

(a). Hene W



is on-

tained in K ()

0

in the sense that eah w 2 W



has a representative in

K ()

0

. On the other hand k

+

is the Lie algebra of both K () and K

+

, so

that K ()

0

� K

+

. It follows that W



� W

a

(a). Now, by Proposition 2.6,

W

a

(a) � W (S;A

+

). However, W



is maximal paraboli in W (a), so that

W

a

(a) =W (S;A

+

) =W



. 2

Joining this lemma with Proposition 2.6, we get easily that the only

possibility for the invariant ontrol set C is to be an open orbit.

Theorem 2.10 Suppose that there exists a proper semigroup S � L with

intS 6= ;. Let C be the invariant ontrol set of S in B . Then C = lO, where

O is an open L-orbit. Write O = G � b (a

+

). Then one of the half-lines of

 = z (l

a

) \ a is ontained in la

+

. Furthermore, the ompression semigroup

S

C

is maximal.

Proof: The fat that C ontains just one open orbit follows from the above

lemma and the haraterization of the open orbits in Proposition 2.2. Sine

W (S;A

+

) �xes the points in , it follows that  meets the losure of a

+

(see [13℄, Setion 4). To see that S

C

is maximal we note that the num-

ber of ontrol sets (i.e., jWj = jW (S)j) equals the number of open L-orbits

(i.e., jWj = jW

a

(a)j). Now, eah ontrol set ontains at least one open orbit.

Therefore, every open orbit is ontained in a ontrol set. This shows that the
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union of the ontrol sets is dense. Hene the maximality of S

C

follows from

Proposition 1.9, and the remark that its type � (S) is a maximal subset. 2

Remark: In de�ning the orbit O = G � b (a

+

) we an hoose any Weyl

hamber ontaining a given half-line 

+

of , sine W



interhanges these

hambers. Hene O is determined by 

+

. On the other hand the semigroup

S

�1

also ontains L, and it is not hard to see that the open orbit ontained

in the S

�1

-invariant ontrol set is given by �

+

.

Finally we mention that our results do not ensure the existene of proper

semigroups with nonempty interior ontaining L. Clearly, this happens if

and only if the ompression semigroup of an open orbit like in Theorem 2.10

has nonempty interior. For the existene problem we refer to the literature

on aÆne symmetri spaes. In partiular we mention that it is proved in

[4℄ that in ase G omplexi�es to a simply onneted group G

C

then G

�

is

ontained in a ompression semigroup of an open orbit, whih is the same

for every L.
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