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Abstract

In this work, after a theoretical explanation of the Monotone Iter-
ation Method, there are presented several numerical experiments with
this method, when applied to solve some nonlinear Elliptic Equations.
It is shown that, in some cases, uniqueness of solution can also be ver-
ified through the numerical implementation of the method. It is also
presented its application to Cooperative Elliptic Systems. For all the
examples Newton’s method is also applied and a comparison between
the Monotone Iteration Method and Newton’s Method is made.

1 Introduction

The Monotone Iteration Method (MIM) has been widely used to show the
existence of solutions of some elliptic equations and systems. It may be used

*Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas,
CP 6065, 13081-970 Campinas, SP, Brazil (marcia@ime.unicamp.br). This author was
supported by FAPESP and FINEP.

"Department of Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065,
13081-970 Campinas, SP, Brazil (lopes@ime.unicamp.br). This author was supported by
CNPq and FAPESP.

!Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas,
CP 6065, 13081-970 Campinas, SP, Brazil (vlopes@ime.unicamp.br). This author was
supported by FAPESP and CAPES.



whenever a maximum principle is available. Abstract versions of it have also
been presented (see [1], [3], [4], among many others).

In this paper we make numerical experiments based on that method and
we compare its performance with Newton’s Method. Since the MIM de-
pends on finding a super-solution, a sub-solution and a convenient constant
«, a preliminary calculation is needed to implement it in each example. For
Newton’s Method this preparation is not needed.

A characteristic of the MIM is that, once a super-solution and a sub-
solution are known, we have an a priori bound for the solution and the
convergence of the method to some solution is supported by the theory,
even if we start far away from the solution. On the other hand, Newton’s
Method may diverge or may converge to a uninteresting solution for instance;
moreover, in the case of convergence, Newton’s Method may be very sensitive
to small changes in the initial approximation.

Even though our final task is the solution of Elliptic Equations, the MIM
can also be applied to scalar equations. Section 2 consists of theoretical
aspects for this case and we also present and analyse some numerical results
obtained when we applied the MIM for solving a scalar equation f(z) = 0.
Even in this simple situation the method shows interesting features. For
instance, it detects numerically uniqueness of solution even in the presence
of a f(x) which is nonmonotone.

In the case of Elliptic Equations, presented in Section 3, we consider
basically two cases. Examples 2 and 3 deal with the first one that consists
of the equation with a forcing term h(s,t). In the second case, presented
in Example 3, the equation is autonomous. This equation has the trivial
solution u*(s,t) = 0 and we are looking for nontrivial solutions. We make
several tests and comparisons with which very interesting features of the
MIM are detected . We also present, in Example 4, a case where we can
verify the uniqueness of solution of an Equation, combining the theory with
the numerical results found for the MIM.

In the last experiment of Section 3 we make a combination of the two
methods. More precisely, we use the MIM to find a solution with approxima-
tion 102 and then, starting at this approximate solution, we use the MIM
and Newton’s Method to improve the approximation up to10°. For medium
sized grids, we have verified that Newton’s Method is faster. However, as the
grid gets thinner ( and we are closer to the exact solution of the elliptic
equation), the MIM has a better performance in despite of the much larger
number of iterations it has to perform.

In Section 4 we use again both methods to find a solution to a Cooperative



Elliptic System with two equations, given by the prompt-feedback reactor
problem, which is a practical application that has similarity with models in
ecology (see [4]).

2 The Case of a Scalar Equation
First of all we consider the question of solving a scalar equation

f() =0 (1)
and our theorem is the following:

Theorem 2.1. Let f : [c,d] — R be a C* function such that f(c) <0, f(d) >
0 and let a > 0 be a constant such that f'(x) < « for any x € [c,d]. Consider
the iteration function

f(z)

(0%

ba) = -

and let us define two sequences xp and yi in the following way:

ro=c Tpp1 = Q(xk),  Yo=d Y1 = O(Yr)-
Then for any k we have
¢ < < Tpgr < Yppr Sy < d,

xy, converges to the least solution of f(x) = 0 in the interval [c,d] and yy
converges to the largest one.

Proof
The proof follows immediately from the monotonicity of ¢ on the interval
[c,d] and from the fact that the interval [c,d] is invariant under ¢ because

¢(c):c—%>cand¢(d):d—@<d. "

Remarks

1. It can be proved that Theorem 2.1 holds if f(z) is only Lipschitzian in
the interval [c, d].

2. The MIM has a similarity with the Modified Newton’s Method because it
uses a fix value « in the place of the derivative of the function in each step.



But here we use an a priori upper bound for the derivative instead of using
its value in the initial approximation.
3. If z; and y; have the same limit, then the solution of f(z) = 0 in the
interval [c,d| is unique. So, uniqueness of solution of the equation can be
verified numerically by the method introduced in Theorem 2.1, which is called
Monotone Iteration Method (MIM), even if f(z) is nonmonotone.

In order to compare the MIM with Newton’s Method we considered the
equation f(z) = 2* + az? + bz = 0.

/(@)

First we chose a = —3 so that f”(1) = 0. Defining ¢(z) = = — ()
T

h(x) = 1(¢(x)), we then chose b in such way that h(1) = 1. This gives the
following condition for a and b:

and

19a® — 171a*b + 567a?b? — 7290 = 0.

Since we have taken a = —3 , a solution of this last equation is b = 2.3611.
With this choice, the equation f(z) = 0 has x = 0 as the unique real solution.
Moreover, an elementary calculation shows that A'(1) = 0 (because f"(1) =
0) and then there is an open interval I containing the number 1 in its interior
such that if we take zy € I and define xy1 = h(zy) then {x} converges to
1. For instance, the interval I = [0.94,1.07] meets this condition. So if we
take o € [0.94,1.07] and we consider the sequence g = 9 (xy) defined
by Newton’s method , then {zy} converges to 1 and {zy,11} converges to
1.5652. For this particular problem the conclusion is this:

1) for any real number zy, if we choose « properly, then the MIM converges
to the unique solution f*(z) = 0;

2) if we start with any xy € [0.94,1.07] then the even and the odd elements
of the sequence constructed by Newton’s method have different limits, none
of them being a solution of the problem.

3 Elliptic Equations

Now we consider the problem of solving the semilinear elliptic problem
—L(u) + f(z,u) =0, z€Q (2)
with boundary condition

Buﬁa%—%bu:o, x € 0L (3)



In (2) Q is a bounded open set of the space RY with boundary 02 satisfying
a Lipschitz condition, f : {2 x R — R is a continuous given function which is
C'in u and

N 9%u N
a;;( — co(@)u(x
W= 3wl g+ Yk - alu

is a second order uniformly elliptic operator with sufficient regular coeffi-
cients.
In (3) we take either @ = 1, b = 0 (Neumann boundary condition) or
a =0, b =1 (Dirichlet boundary condition).

Next we give the following

Definition. A C? function v : @ — R is a sub-solution of problem (2)-(3) if
—Lv(z) + f(z,v(z)) <0, €, Bu(r)<0, ze€d

A super-solution w is defined by taking the reverse inequalities.

Theorem 3.1. Let v(x) be a sub-solution of (2)-(3) and w(x) be a super-
solution of the same problem such that v(x) < w(x) for any x € Q. Let o > 0

of(x, u)
ou

w(x) and co(x) + a > 0 for any x € Q.
We define a sequence {v(z)} in the following way: vy(z) = v(z) and vy ()
15 the unique solution of

be a constant such that o > for any (x,u) satisfying v(z) < u <

—Lvg1(x) + avgs1(x) = avg(z) — fz, ve(x)), x€Q

with boundary condition Buyyi(x) =0 on 0S.
Similarly we define another sequence {wg(x)} by: wo(x) = w(x) and wy1(x)
15 the unique solution of

—Lwi41(2) + awgy1(2) = awg(z) — fx, wg(z)), € Q

with boundary condition Bwy,1(x) =0 on OS.
Then for any k we have

(@) < () < vpa () < wepa (o) < wp(e) < w(z)

for any v € Q, {vg(x)} and {wg(x)} converge to solutions uy(x) and uy(x)
respectively of problem (2)-(3) satisfying v(z) < uy(z) < ug(x) < w(x) for
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any x € €.
Moreover, any solution u(x) of (2)-(3) such that v(z) < u(x) < w(z) for any
x € Q satisfies uy(v) < u(x) < ug(x) for any x € Q.

The proof of Theorem 3.1 is a consequence of the Maximum Principle
and it can be found in [1], [3], [4].

The next result is useful to estimate the maximum and the minimum of
solutions of some elliptic equations. For simplicicity, we consider a simpler
class of elliptic operators L(u).

Theorem 3.2. Let u(z) be a regular solution of the problem:

—Lu+epu) = 0 2€Q (@)
u(z) = 0 z€df
where
ou
8152'.

N
Lu=Au+ )Y b(x)
i—1

If (zo) is a point where the mazimum of u(x) is achieved then either we have
u(xg) =0, or
p(u(zo)) < 0.

Similarly for the minimum.
Proof

If (zg) € 09, then u(zg) = 0. If (x0) is in the interior of 2, then for each
1 < i < n we have:

ou
0*u(zg)
———=<0.
ox? —
So,
N ou(u
Plu(r0)) = dulro) + 3 bi(ag) "2 < g
i=1 i
and this proves the Theorem. ]



3.1 Numerical Experiments

We start this Section presenting two examples where we consider boundary
value problems of the form

—Au+p(u) = h(s,t) (5)

with homogeneous Neumann boundary condition. In both cases, the domain
is Q2 =[0,1] x [0,1] and we define h(s,t) such that a solution of the problem
is a given function u*(s,t). After discretization by central differences, (5)
becomes a nonlinear system

Fly) = 0. (6)

Example 1:
In this first case we take p(u) = 10sin(u), u*(s,t) = fcos(ws)cos(wt) where
£ = 0.5. Then we have to solve:

—Au+ 10sin(u) = —Au*+ 10sin(u*), on [0,1] x [0,1] (7)
Ju/On = 0 on 0.

With these we can easily visualize numerically the behavior of both meth-
ods: Newton’s method and the MIM.

To apply the MIM, after all the calculation we found vy = —1.0923 as a
constant sub-solution and wy = 1.0923 as a constant super-solution for the
problem. We also have that an iterative constant (« in Theorem 3.1) for the
MIM is o = 10.

;From the periodicity of sin(u), we see that adding and subtracting mul-
tiples of 27 to vy and wy we have infinitely many constant sub-solutions and
constant super-solutions for the problem: v; and w; respectively. Then if this
problem has a solution, it will have infinite solutions (u}), each one uniquelly
determined by the corresponding pair v; and w;.

All the tests in this example were run in a SUN Ultra Creator using the
software MatLab. We used a grid with 289 points which means 15 internal
points in each axis and we have stopped the processes when ||[F(yg)||co <
105,

The initial vectors of approximations were chosen in this way: y, =
(ag, ag, -+, ap)t where ag = 1.1+2Cm, C =0,1,...,5, because 1.1 is a super-
solution to the solution with all the components in the interval [—0.5, 0.5] and
with the other initial approximations we will obtain other solutions for the
nonlinear system.



In order to compare the perfomance of MIM we used the same initial
approximations for Newton’s method. It is important to observe that these
vectors may not be good choices for Newton’s method since that, in some
cases, they may not be in an appropriate neighborhood of uj. This is an
important difference between the two methods because in order to apply the
MIM it is not necessary to start close to a solution of the problem.

Table 1 gives the notation used to represent the different solutions ob-
tained in the next tests. The end points of the interval represent the minimum
and the maximum values assumed by the entries of the approximate solution
found.

S; Interval
51 [—0.5, 0.5]
S9 [1.8421, 4.4411]
S3 [5.7832, 6.7832]
Sy [8.1253, 10.7243]

s5 || 112.0664, 13.0664
se || |14.4085,17.0075
s7 || |18.3496, 19.3496

[ ]
[ ]
[ ]
ss | [20.6917,23.2906]
[ ]
[ ]
[ ]

sg || [24.6327,25.6327
s10 || 126.9748,29.5738
s11 | 130.9159, 31.9159

Table 1: Notation for some approximate solutions to the nonlinear system.

Qo MIM Newton
S; ‘ IT ‘ Time ‘ Flops | s; ‘ IT ‘ Time ‘ Flops
1.1 sp | 6 10.3326 | 339591 || s; | 5 | 1.3560 | 669376
1.1 + 27 | s3 | 6 | 0.3201 | 339591 || s3 | 5 | 1.3697 | 669376
1.1 +4m | s5 | 6 | 0.3154 | 339591 || s5 | & | 1.3734 | 669376
1.1 +6m | s7 | 6 | 0.3452 | 339591 || s7 | 5 | 1.3674 | 669376
1.1+ 87 | s9 | 6 | 0.3130 | 339591 | s9 | 5 | 1.3581 | 669376
1.1 + 107 || 811 | 6 | 0.3134 | 339591 || s11 | © | 1.3597 | 669376

Table 2: Comparative results of MIM and Newton’s Methods.

Remarks
1) In the case of Table 2, where both methods converged to the same solu-
tions, the total iterations number of Newton’s method is smaller than that
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of the MIM. But the MIM is faster because it is cheaper in terms of the com-
putational cost by iteration, considering the elapsed time and the number of
flops performed. Such a difference is justified by the fact that, in each iter-
ation of Newton’s method it is solved a completely new linear system while
in the MIM the matrix of coeficients is independent of the step and so, its
factorization has to be done just once in the whole process.

2) The MIM requires an initial work to find a super and a sub-solution for
the problem and also to find the iterative constant «; without them is it
impossible to apply the MIM. In this example we obtained these constants
very easily but in some cases it may happen to be not so easy to do this job.
3) After being calculated, the constants of the MIM represent an advantage
for this method because they give a region where we guarantee the existence
of a solution.

We have also analysed the performance of both methods for initial ap-
proximations between two super-solutions. For this, we have chosen some
values between 1.1 and 1.1 + 27. Table 3 presents the results obtained. The
solution called sy has its entries in the interval [—13.0664, —12.0664] and we
have kept the same notation for the other s; solutions.

ay MIM Newton

s; | IT| Time | Flops || s; | IT | Time | Flops
15 || s1 | 7 [0.3471 | 367029 | s 1.2520 | 402408
2.0 || 51 | 8 | 0.3645 | 394466 | s 1.4212 | 669376
2.5 || 51| 9 |0.4018 | 421904 | s 1.2198 | 402408
3.0 || sy | 11 ] 0.4868 | 476781 || s, 1.3470 | 535892
3.5 || 53 | 10 | 0.4434 | 449343 || s, 1.2294 | 402408

DO DO | O | | WO | W O W

4.0 | s3 | 8 | 0.3693 | 394467 || s, 1.3527 | 535892

45 | sz | 7 |0.3309 | 367029 || s; 1.3479 | 535892

5.0 || s3 | 7 [0.3645 | 367029 || s4 1.4031 | 669376

5.5 | s3| 6 | 0.2961 | 339591 || s3 1.3126 | 535892

6.0 s3| 5 |0.2571 | 312133 || s3 1.1332 | 268924
3

6.5 | s3 0.2603 | 312513 || s3 1.1117 | 268924

Table 3: Comparative results of MIM and Newton’s Methods.

Remarks

1) Observe that for some solutions of the nonlinear system it was not pos-
sible to find a convergent sequence by the MIM since, for such solutions, it is
not possible to find constant super and sub-solutions. In Table 3 we can see,
for example, that the solution sg, with entries in the interval [1.8421,4.4411]
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detected by Newton’s method, was not found by the MIM.
2) Some initial approximations are not adequate for Newton’s method be-
cause besides beeing not close enough to a solution x*, they are in regions of
ill-conditioning of the Jacobian matrix. In these cases, the sequence gener-
ated by Newton’s method converged for other solutions, sometimes very far
from the expected solution. This happens, for example, in the neighborhood
of ag = 1.5. Small perturbations in this value made the solutions reached be
very distinct from each other, as we can see in Table 4.

We ran the MIM with all these inital guesses and we always obtained the
solution s;.

ag Newton
[a, b] | IT | Time | Flops
1.51 [—17.0075, —14.4084] 5 | 1.4519 | 669376
1.53 [—23.2906, —20.6917] 5 | 1.3906 | 669376
1.55 [—48.4234, —45.8244] 4 | 1.2772 | 535892
157 || [-1.255E + 03, —1.252E + 03] | 4 | 1.2847 | 535892
4

1.59 [52.1076, 54.7066] 1.2863 | 535892

Table 4: Newton’s Method with initial approximations close to 1.5.

Example 2 :

In this case we took p(u) = u’+au?+bu, with a = —3, b = 2.36110308062087
and u*(s,t) = feos(ms)cos(mt). For small values of 3, the behavior of New-
ton’s method is similar to its behavior for the unidimensional case of Section
2. We took for § the values 8 = 5 and several small values which will be
given in a next Table. Then, the problem to be solved is :

—Au+ud+au®+bu = —Au+u*® +aut? +bu*, on (8)
Ju/on = 0 on 0N

where = [0,1] x [0, 1].

For this example the tests were run in a SUN Ultral Creator, using the
software MatLab. We will now present some numerical results. All the
problems were solved with dimension 289 and we have stopped the process
when ||F(yx)||so < 107°.

In Table 5, for each case we calculated a constant sub-solution, a constant
super-solution and also a corresponding iterative constant « for the MIM. In
this table, ag is the constant for all the entries of the initial approximation
vector; IT is the total number of iterations performed and TIME represents
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the CPU time in seconds. In the column « we present the corresponding
iterative constant « for the MIM and nc for Newton’s method means that
the method did not converge after 300 iterations and in all these cases the
sequence of the even iterations converged to a constant vector with all the
entries close or equal to 1 and the same to the sequence of odd iterations, to
1.5652. Observe also that when § = 0 the convergence of the MIM was to
the solution u*(s,t) = 0.

We finish this example showing, in Table 6, the behavior of Newton’s
method for several values of # and for all of them we have started the iter-
ations with ag = 1 and also with ag = 0.95, with the same results. Noncon-
vergence is indicated by nc and in all of these cases, the sequence oscillated
again between values close or equal to 1 and close or equal to 1.5672.

I} o MIM Newton
| IT| Time |IT| Time

Y —6 || 142 | 206 | 18.1095 || 6 | 1.8435

7 211 | 18.3048 || 7| 1.8558

0.01 | =0.5 7 32] 28933 | 4| 1.4590
1.0 45| 3.9926 || nc -

0.045 1.0 10| 67| 5.9170 || 80 | 11.7094
0 1.0 67 | 5.8487 || nc -

Table 5: Behavior of Newton’s Method and MIM for Example 2.

o) Newton
IT | Time
107 || nc —~
102 || nc —~
0.005 || nc -
0.002 || nc -
0.015 || nc -
0.04 nc -
0.0425 || nc -
0.0449 || 62 | 9.2488
0.05 35 | 5.7022
0.09 15 | 2.9225

Table 6: Behavior of Newton’s Method for other values of .
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Example 3 :
So far we have worked with problems that have a variational formulation and
so they could be solved by other methods such as Gradient methods. In this
Example we show the performance of Newton’s Method and of the MIM for
a problem with a convective term:

ou N ou

Cs Ct—o7s

ds ot
this problem does not have a variational formulation and so the Gradient
methods can not be used. Now we work with the following problem:

—Lu+¢(u) = 0, on [0,1] x [0,1]

u(s,t) = 0 on 02 )
where 5 5
U U
Lu = Au— ng - Cta
and

o(u) = cu(u — 5)(u — 10)(u — 15).

Observe that the problem has the trivial solution u*(s,t) = 0 and we are in-
terested in calculating non trivial ones. The numerical results are presented
in Tables 7 and 8. We used the constant ¢ = 0.1 and several values for ¢, for
¢; and for the initial vectors for which all the entries are equal to ay < 10, a
super-solution to the MIM. These values were found after all the necessary
calculation which gave also for the constant of the MIM, a = 40. All the
tests were run in a Pentium 166 microcomputer, using the software MatLab.
In the next tables:

It means the number of iterations performed until convergence;

Time is the elapsed time until convergence;

Sol is the maximum value assumed by the approximated solution in the grid.
We have worked with 15 internal nodes, what makes the systems with di-
mension 225. The stopping criterion was

1 (ya) |0 < 1072
Nonconvergence (nc) means
1 ()| > 10°°.

Notice that, according to Theorem 3.2, for any solution u*(s,t) we have
that
uy < 15,

mar —
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because @(u) > 0 for v > 15. In our experiments the vectors y; assume
positive large values, and this is also an indication of nonconvergence.

Newton MIM
Cs ¢ wo |l It  Time Sol It Time Sol
0.1 02 5| 4 1.04 3.5978 || 19 1.86 3.5978
6 || 4 1.05 3.5978 || 19 1.87 3.5978
71 5 1.27 0.0000 || 19 1.87 3.5978
8 - - nc 19 192 3.5978
9 - - nc 20 2.02 3.5978
10 || 14 3.46 3.5978 || 20 2.03 3.5978
04 -06 5| 4 1.10 3.5901 || 19 1.81 3.5901
6 || 4 1.10 3.5901 || 19 1.92 3.5901
71 5 1.26 0.0000 || 20 2.03 3.5901
8 - - nc 20 1.92 3.5901
9 - - nc 20 2.03 3.5901
10 || 14 3.46 3.5901 || 20 1.97 3.5901
0.6 -0.8 5 4 1.04 3.5822 || 19 1.82 3.5822
6 4 1.04 3.5822 || 20 1.97 3.5822
71 5 1.26 0.0000 || 20 1.98 3.5822
8 - - nc 20 1.98 3.5822
9 - - nc 20 1.92 3.5822
10 || 15 3.74 3.5822 || 21 2.04 3.5822
2 -3 5| 4 1.04 3.5053 || 24 2.25 3.5053
6 || 4 1.05 3.5053 || 24 2.19 3.5053
70 6 1.59 0.0000 || 24 2.25 3.5053
8 - - nc 24 2.25 3.5053
9 - - nc 24 2.20 3.5053
10 || 18 4.51 3.5053 || 25 2.37 3.5053
5 8 5| 6 1.48 2.8917 || 52 4.72 2.5918
6 || 5 1.26 2.8917 || 52 4.73 2.5918
T 1.75 0.0000 || 52 4.73 2.5918
8 - - nc 53 4.84 2.5918
9 - - nc 53 4.84 2.5918
10 || - - nc 53 4.83 2.5918

Table 7: Behavior of Newton’s Method and MIM for Example 3.

We have also checked that Newton’s Method converged to the trivial
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solution u*(s,t) = 0 for every constant initial vector starting with ay €
[6.801, 7.199], for all the choices of ¢ and ¢; that we have made. For all
these values, the MIM converged to a solution whose maximum value is
3.5815.

Observe that when ¢, = ¢, = 0, we have a variational case. We exhibit
this case in the separate Table 8 to emphasyze this fact. Again, for ag =7
the convergence of Newton’s method was to the trivial solution. Notice that,
in the variational case, the trivial solution is uninteresting because it is a
unstable stationary solution of an evolution equation.

Newton MIM
cs ¢ wp || It Time Sol It Time Sol
0 0 5| 4 0.82 3.5986 || 18 1.70 3.5986
6 || 4 0.88 3.5986 || 19 1.81 3.5986
71 5 1.32 0.0000 || 19 1.86 3.5986
8 - - nc 19 1.81 3.5986
9 - - nc 20 1.93 3.5986
10 || 14 2.80 3.5986 || 20 1.93 3.5986

Table 8: Example 3, variational case.

The final remark in this Example is the analysis of Newton’s Method for
the following initial constant vectors for which we can not use the theory of
the MIM: zy = 1, 2, 3, 4. We present in Table 9, only the cases where the
results were different from the positive solution results already found for the
corresponding values of ¢, and ¢;.

Newton
Cs ¢ X || It Time Sol
0 0 111 2.91 0.0000
0.1 02 1|11 2.75 0.6060
04 -06 1 - - nc
0.6 -08 1 - - nc
2 -3 1 - - nc

Table 9: Newton’s Method where the theory of the MIM does not apply.
Observe that in these cases, the MIM converged to Sol = 3.5986.

Example 4 :
In this example we use the numerical results of the MIM to verify uniqueness
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of solution. Here we solve the following problem:

—Au+p(u) = 0, on [0,1] x[0,1]
u(s,t) = 0, on 0N

where
o(u) = cu(u — 2)(u — 3)(u — 5).

For this problem, Theorem 3.2 assures the existence of at least one posi-
tive solution, provided that
Oy

)\2§8_ <)\17

u u=0

where \; and A are the first and second eigenvalues of the Laplacian, re-
spectively. We want then to verify whether such a solution is unique or not.
It is easily seen that, choosing ¢ according to the last condition and for &
small enough, the first eigenfunction of the Laplacian,

uq(s,t) = ksin(mws)sin(mt)

is a sub-solution for problem (10).
Using Theorem 3.2 again, we have that u} = 5 is a super-solution for this
problem and we also have that every solution u*(s,t) is such that

wr o <5,

max

The values found for ¢ and k& were:
0.6580 < ¢ < 1.6449

and then
0 <k <3.5.

We took ¢ = 1.15, for which a constant « for the MIM is o« = 35 and some
values for k, k£ =0.1, 0.2, 0.3. The conclusions are the following:

1. Starting the MIM with the sub-solution wu;(s,t), the sequences con-
verged to a positive solution uy(s,) whose maximum value in [0, 1] x
0, 1]is uy <0.7.

2. Starting the MIM with the constant super-solution wu.(s,t) = 5 the
sequence converged to the same solution u(s,t) of item 1.
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Since starting with a super-solution and with a sub-solution the conver-
gence was to the same solution, by the remarks made after Theorem 2.1, we
conclude that this problem has a unique positive solution.

This is a very interesting and special feature of the MIM: we can use
its numerical results to conclude uniqueness (or nonuniqueness) of solution.
Notice that this analysis is a very important and not such an easy task, in
general.

Example 5 :

The last example of this Section shows another very important feature of the
MIM: for the problems above, the MIM is a good tool to find an appropriate
initial approximation for Newton’s Method.

We have had used Newton’s Method for problem (10) of Example 4 start-
ing with the same sub-solutions u;(s,t) used there and in all the cases the
sequences converged to the trivial solution u*(s,t) = 0. We also started New-
ton’s Method with the constant super-solution u.(s,t) = 5 and the method
did not converge. So we used a combination of the MIM and Newton’s
method, that consists of:

(i) running the MIM starting with yo = 5, @ = 35 until ||F(g;)|] < 1072
(MINIC);

(ii) using the 7, of (i) as initial approximation, run Newton’sMethod
(and also the MIM).(MIM/MIM for the combination MIM and MIM and
MIM/NEW for the combination MIM and Newton).

Table 10 shows how this combination works. The stopping criterion for
both methods was ||F(9x)]|c < 107 and Sol = ||gx/|,. Finally DI means
the number of interior points in each axis.

MINIC MIM/MIM MIM/NEW
Dl Sol It Sol It Time Sol It Time
3 | 0.6899 26 || 0.6890 35 0.17 | 0.6890 2 0.06
7 1 0.6728 28 | 0.6719 37 0.55 || 0.6719 2 0.11
9 || 0.6693 28 || 0.6684 38 0.82 | 0.6684 2 0.17
19 || 0.6641 29 || 0.6633 37 3.79 | 0.6633 2 0.88
24 || 0.6614 29 || 0.6606 37 6.37 || 0.6606 2 1.81
29 || 0.6631 29 || 0.6623 37 10.65 || 0.6623 2 13.51

Table 10: The combination of the MIM and Newton’s Method.

Looking at the last line of Table 10 we can see that, when we increase
the number of mesh points, the ellapsed time for the MIM turns out to be
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smaller then that of Newton’s Method which is natural to happen because
each Newton’s iteration is much more expensive then the MIM’s iterations.
As we have pointed out, when we use the MIM, the matrix of the linear
system that we have to solve at each step is the same.

4 Cooperative Elliptic Systems

In the case of elliptic systems we can prove a result similar to Theorem 3.1
provided we assume that the nonlinearity satisfies a cooperative condition.
For 2 x 2 systems the problem is:

—L(z,u) + f(z,u,v) = 0 on €, Bu=0 on 0 (1)
—M(z,v) +g(z,u,v) = 0 on Q, Bv=0 on 0

where (2 is as before, f,g: {2 X R X R :— R are given continuous functions
which are C! in u, v and Holder continuous in 2 and

N 0%u N ou
L(z,u) = Z _
w3 @), g+ b~ )
and
N 0%v N ov
M(z,v) = l _:
B = X g LR Al

are given second order uniformly elliptic operators with sufficiently regular
real coefficients and the boundary condition is as in Theorem 3.1.
If we define a vector U = (u,v) then system (11) can be written as

—N(z,U)+ H(z,U)=0, on Q, BU=0 on 09,

where N(z,U) = (L(z,u), M(x,v)), H(z,U) = (f(z,u,v),g(z,u,v)) and
BU = (Bu, Bv).

Definition. A C? function ® : ) — R X R is a sub-solution of (11) if
—N(z,®(x)) + H(z,®(z)) <0 on 2 and B®(z) <0 on 0
The inequality holds componentwise here.

A super-solution ¥(z) is defined in a similar way.
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Theorem 4.1. Suppose that ®(x) and ¥(z) are sub-solution and super-
solution, respectively, of (11) such that ®(z) < ¥(zx) for any x € ). Suppose

also that O u,v) < 0 and dg(w,u,v) < 0 for any (z,u,v) such that
v

u
Q(z) < U < VU(x). Let a« > 0 be a real number such that o + co(z) > 0,

a+ ¢o(z) > 0 for any x in Q andMS% w
v

U
(x,U) = (z,u,v) such that ®(z) < U < ¥(x).
We define a sequence {Pg(x)} in the following way: Po(zr) = ®(x) and
Oy 11 (x) is the unique solution of

—L®p i (x) + aPpiy(2) = aPr(z) — H(z, Pr(x)) x€Q

< « for any

with boundary condition B®y1(x) =0 on OS.
Similarly we define another sequence {Ug(x)} by: Wo(z) = ¥(x) and ¥y (x)
15 the unique solution of

—LYy i (z) + a¥ppi(x) = afp(x) — H(z, Yy (z)) 2 €Q

with boundary condition BYy 1 (x) =0 on 0S).
Then

O(2) < Op(2) < Ppya(w) < Vg () < V() < V(2)
for any x € Q and @y (x) and Vi(z) converge to solutions Uy (x) and Us(x)
of system (11) satisfying ®(x) < U, (v) < Us(x) < ¥(z) for any x € Q.
Moreover, any solution U(x) of (11) such that ®(z) < U(x) < V(z) for any
x € Q satisfies Up(x) < U(x) < Uy(x) for any x € Q.

Proof

The proof of Theorem 4.1 follows exactly the proof of Theorem 3.1 be-
cause under the assumptions we have made, —H (x,U) is monotone in the
region ®(z) < U < ¥(z). N

Remark
In Theorem 4.1 we may allow a coupling also in the linear part but, in that
case, a more complicate Maximum Principle is required (see [3]).

4.1 Numerical Experiments

Among others, a large class of examples of cooperative elliptic systems is
made of the boundary value problems of the form

—AU + ¢(U) = H(s,t), (s,t) €Q (12)
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with homogeneous Dirichlet boundary conditions. We will present one of such
examples that is the prompt-feedback reactor problem. This problem has
some similarity with various particular mutualism models in ecology, in the
sense that the presence of each component contributes to faster growth rate
of all other components (see [4]). We present some numerical experiments
with the following two species mutualism model:

—Auy —uy(a —buy +cuy) = 0,
—Auy —us(e + fuy —gug) = 0, on €, (13)
u; = uy =0 on 0.

Here a, b, ¢, d, e, f, g, are nonnegative constants, and u; and u, are
the concentrations of mutualistic (cooperating) species. So, the interesting
solutions are the positive ones.

In our first experiment we solved a system with a choice for the parameters
that were taken satisfying the assumptions of the next Theorem (see also [4].

Let us recall that the first eigenvalue A; of the operator —A with Dirichlet
boundary condition is simple,positive and that the eigenfunction associated
to it is strictly positive on €.

Theorem 4.2. Suppose that a and e > Ay, (the smallest eigenvalue of the
Laplacian) that b, g are positive and ¢, [ are nonnegative, satisfying

bg > cf.

Then the boundary value problem (13) has a solution (s,t),us(s,t) with
ai(s,t) >0, i=1, 2 for (s,t) € Q.

Before proving Theorem 4.2, let us prove a Lemma that will be useful for
studying uniqueness of solution of (13).

Lemma 4.1. If \; < a and \; < e and ¢(s,t) is the eigenfunction associated
to Ay then there is an €y > 0 such that (ep(s,t),ep(s,t)) is a sub-solution of
system (13) for 0 < € < €.

Proof

In fact, (ep(s,t),ep(s,t)) to be a sub-solution of system (13) is equivalent
to the two inequalities

€A P(s,t) — ep(s,t)(a — bep(s,t) + cep(s,t)) <0
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e o(s,t) —ep(s,t)(e+ fep(s,t) — gep(s,t)) <0

which are equivalent to
A — (@ — bep(s,t) + cep(s,t)) <0

M= (e + fed(s, 1) — geg(s, 1)) <0

and these two inequalities are satisified if € is positive and small and this
proves the lemma. ]

Proof of Theorem 4.2.
Under the assumptions of Theorem 4.2 and in view o Lemma 4.1, we know
that (ep(s,t),ep(s,t)) is a sub-solution of system (13) for 0 < € < €. More-
over, an easy calculation show that each component of the solution (ug, vy)
of the linear system

a—bu+cv=0

e+ fu—guv=0

is positive and then (ug,vg) is a constant super-solution of (13) and in view
of Theorem 4.1, Theorem 4.2 is proved. ]

Fora=25 0=5¢c=3, e=22, f =2, g =06, we used both Newton’s
Method and the MIM, starting with the constant super-solution (ug,vy) =
(9,6.666...). For these values the constant « for the MIM was found to be a =
65. Stopping the processes when || F'(ug, v;)]], < 107* we verified convergence
of both methods to a positive solution with (Umaz, Umaz) < (2.626, 1.620).

The last experiment we have done was to use again numerical results of
the MIM to help the identification of uniqueness of solution of this kind of
Cooperative Elliptic Systems.

Next we analyse uniqueness of positive solution of system (13) and the
the following a priori estimate is important.

Theorem 4.3. Suppose ¢ < b, f < g and let M = max(ﬁ,g%). If
(u(s,t),v(s,t)) is a positive solution of system then for any (s,t) € Q we
have u(s,t) < M and v(s,t) < M.

Proof

Let M, > 0 and M, > 0 be the maximum of u(s,?) and v(s,t), respec-
tively, and suppose M, < M;. If we denote by (sg,ty) the point in the
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interior of Q0 where u(sg,ty) = M; then Au(sp,tp) < 0 and then from the
first equation of (13) we see that

a — bu(sg, ty) + cv(so,tp) > 0

and, since v(sg,to) < My < M this las inequality gives M; < %. In a
completely similar way, we show that if M; < M, then M, < gff and this
proves the Theorem 4.3. ]

Lemma 4.1 and Theorem 4.3 can be used to verify numerically whether
the positive solution of system (13) is unique or not. In fact, let (ug,vy) be
a constant positive super-solution such that M < uy and M < vy, where M
is the constant given by Theorem 4.3. Then, according to Theorem 4.3 any
positive solution (u(s,t),v(s,t)) has to satisfy u(s,t) < ug and v(s,t) < v
for any (s,t) € Q. Moreover, for any such a solution (u(s,t),v(s,t)) there
is an € > 0 such that (ep(s,t),ep(s,t)) < (u(s,t),v(s,t)). So, in view of
Theorem 4.1, system (13) has a unique positive solution if and only if the
two solutions we get starting at (ug, vy) and (eg(s,t), ep(s,t)) with e small
enough are equal.

For the value of the parameters chosen above we have M = 12.5, ¢, = 2.5,
(up,v9) = (13,13) and the constant o can be taken as 65. In that case our
numerical experiments comprove uniqueness of positive solution.

5 Conclusions

In this work we have presented some theoretical results and we have proven
others for the MIM; we also have made several numerical experiments with
this method, comparing it with Newton’s method whose features are very well
known [2]. Basically Newton’s method can be used to solve any equation but
in order to guarantee its convergence, we have to start at a point which is
“close enough” to a solution and, sometimes, this may be difficult to accom-
plish because we do not know how to guess where the solution (or solutions)
is. The results proved and the comparisons that we made here lead us to
conclude that the MIM has some limitations and also several good features.
These facts guarantee that both, the MIM and Newton’s Method have their
own merit. We think that the following points deserve to be emphasized:
(i) In order to apply the MIM we have to be able to find a sub-solution and
a super-solution (this is not always easy) and the constant « (this is easy).
So, in order to apply the MIM we always need an extra initial work. But
once we have verified all these conditions, we can guarantee the existence of a
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solution and the convergence of the method, even if we are not close enough
to a solution in the ”Newton’s sense”.

(ii) The MIM works if a maximum principle is available. For instance, in
the case of systems, this requires it to be cooperative. Of course this excludes
many interesting problems.

(iii) In some cases, the MIM can be used to guarantee uniqueness (or
nonuniqueness) of solution for certain type of problems.

(iv) Computationally speaking, the MIM is very cheap and so, even if we
start at an approximation of the solution that is reasonable for both methods,
its performance can be better than Newton’s, mainly in the case of thin grids.

(v) In some cases, Newton’s method can find some solutions that can not
be detect (and found) by the MIM.

Our final remark is that several initial guesses that are good initial ap-
proximations for the MIM are very bad for Newton’s method, either because
they are far from a solution or because the Jacobian matrix is close to sin-
gular at these points. So, we found that another feature of the MIM is that
it can be used to find a good initial guess for Newton’s method which has
been done in Example 5.
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