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Abstra
t

In this work, after a theoreti
al explanation of the Monotone Iter-

ation Method, there are presented several numeri
al experiments with

this method, when applied to solve some nonlinear Ellipti
 Equations.

It is shown that, in some 
ases, uniqueness of solution 
an also be ver-

i�ed through the numeri
al implementation of the method. It is also

presented its appli
ation to Cooperative Ellipti
 Systems. For all the

examples Newton's method is also applied and a 
omparison between

the Monotone Iteration Method and Newton's Method is made.

1 Introdu
tion

The Monotone Iteration Method (MIM) has been widely used to show the

existen
e of solutions of some ellipti
 equations and systems. It may be used
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whenever a maximum prin
iple is available. Abstra
t versions of it have also

been presented (see [1℄, [3℄, [4℄, among many others).

In this paper we make numeri
al experiments based on that method and

we 
ompare its performan
e with Newton's Method. Sin
e the MIM de-

pends on �nding a super-solution, a sub-solution and a 
onvenient 
onstant

�, a preliminary 
al
ulation is needed to implement it in ea
h example. For

Newton's Method this preparation is not needed.

A 
hara
teristi
 of the MIM is that, on
e a super-solution and a sub-

solution are known, we have an a priori bound for the solution and the


onvergen
e of the method to some solution is supported by the theory,

even if we start far away from the solution. On the other hand, Newton's

Method may diverge or may 
onverge to a uninteresting solution for instan
e;

moreover, in the 
ase of 
onvergen
e, Newton's Method may be very sensitive

to small 
hanges in the initial approximation.

Even though our �nal task is the solution of Ellipti
 Equations, the MIM


an also be applied to s
alar equations. Se
tion 2 
onsists of theoreti
al

aspe
ts for this 
ase and we also present and analyse some numeri
al results

obtained when we applied the MIM for solving a s
alar equation f(x) = 0.

Even in this simple situation the method shows interesting features. For

instan
e, it dete
ts numeri
ally uniqueness of solution even in the presen
e

of a f(x) whi
h is nonmonotone.

In the 
ase of Ellipti
 Equations, presented in Se
tion 3, we 
onsider

basi
ally two 
ases. Examples 2 and 3 deal with the �rst one that 
onsists

of the equation with a for
ing term h(s; t). In the se
ond 
ase, presented

in Example 3, the equation is autonomous. This equation has the trivial

solution u

�

(s; t) � 0 and we are looking for nontrivial solutions. We make

several tests and 
omparisons with whi
h very interesting features of the

MIM are dete
ted . We also present, in Example 4, a 
ase where we 
an

verify the uniqueness of solution of an Equation, 
ombining the theory with

the numeri
al results found for the MIM.

In the last experiment of Se
tion 3 we make a 
ombination of the two

methods. More pre
isely, we use the MIM to �nd a solution with approxima-

tion 10

�2

and then, starting at this approximate solution, we use the MIM

and Newton's Method to improve the approximation up to10

�6

. For medium

sized grids, we have veri�ed that Newton's Method is faster. However, as the

grid gets thinner ( and we are 
loser to the exa
t solution of the ellipti


equation), the MIM has a better performan
e in despite of the mu
h larger

number of iterations it has to perform.

In Se
tion 4 we use again both methods to �nd a solution to a Cooperative
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Ellipti
 System with two equations, given by the prompt-feedba
k rea
tor

problem, whi
h is a pra
ti
al appli
ation that has similarity with models in

e
ology (see [4℄).

2 The Case of a S
alar Equation

First of all we 
onsider the question of solving a s
alar equation

f(x) = 0 (1)

and our theorem is the following:

Theorem 2.1. Let f : [
; d℄! R be a C

1

fun
tion su
h that f(
) < 0; f(d) >

0 and let � > 0 be a 
onstant su
h that f

0

(x) < � for any x 2 [
; d℄: Consider

the iteration fun
tion

�(x) = x�

f(x)

�

and let us de�ne two sequen
es x

k

and y

k

in the following way:

x

0

= 
 x

k+1

= �(x

k

); y

0

= d y

k+1

= �(y

k

):

Then for any k we have


 < x

k

� x

k+1

� y

k+1

� y

k

< d;

x

k


onverges to the least solution of f(x) = 0 in the interval [
; d℄ and y

k


onverges to the largest one.

Proof

The proof follows immediately from the monotoni
ity of � on the interval

[
; d℄ and from the fa
t that the interval [
; d℄ is invariant under � be
ause

�(
) = 
�

f(
)

�

> 
 and �(d) = d�

f(d)

�

< d.

Remarks

1. It 
an be proved that Theorem 2.1 holds if f(x) is only Lips
hitzian in

the interval [
; d℄.

2. The MIM has a similarity with the Modi�ed Newton's Method be
ause it

uses a �x value � in the pla
e of the derivative of the fun
tion in ea
h step.

3



But here we use an a priori upper bound for the derivative instead of using

its value in the initial approximation.

3. If x

k

and y

k

have the same limit, then the solution of f(x) = 0 in the

interval [
; d℄ is unique. So, uniqueness of solution of the equation 
an be

veri�ed numeri
ally by the method introdu
ed in Theorem 2:1, whi
h is 
alled

Monotone Iteration Method (MIM), even if f(x) is nonmonotone.

In order to 
ompare the MIM with Newton's Method we 
onsidered the

equation f(x) =̂ x

3

+ ax

2

+ bx = 0:

First we 
hose a = �3 so that f

00

(1) = 0. De�ning  (x) = x �

f(x)

f

0

(x)

and

h(x) =  ( (x)); we then 
hose b in su
h way that h(1) = 1. This gives the

following 
ondition for a and b:

19a

6

� 171a

4

b+ 567a

2

b

2

� 729b

3

= 0:

Sin
e we have taken a = �3 , a solution of this last equation is b = 2:3611.

With this 
hoi
e, the equation f(x) = 0 has x = 0 as the unique real solution.

Moreover, an elementary 
al
ulation shows that h

0

(1) = 0 (be
ause f

00

(1) =

0) and then there is an open interval I 
ontaining the number 1 in its interior

su
h that if we take x

0

2 I and de�ne x

k+1

= h(x

k

) then fx

k

g 
onverges to

1. For instan
e, the interval I = [0:94; 1:07℄ meets this 
ondition. So if we

take x

0

2 [0:94; 1:07℄ and we 
onsider the sequen
e x

k+1

=  (x

k

) de�ned

by Newton's method , then fx

2k

g 
onverges to 1 and fx

2k+1

g 
onverges to

1.5652. For this parti
ular problem the 
on
lusion is this:

1) for any real number x

0

, if we 
hoose � properly, then the MIM 
onverges

to the unique solution f

�

(x) � 0;

2) if we start with any x

0

2 [0:94; 1:07℄ then the even and the odd elements

of the sequen
e 
onstru
ted by Newton's method have di�erent limits, none

of them being a solution of the problem.

3 Ellipti
 Equations

Now we 
onsider the problem of solving the semilinear ellipti
 problem

�L(u) + f(x; u) = 0; x 2 
 (2)

with boundary 
ondition

Bu =̂ a

�u

�n

+ bu = 0; x 2 �
: (3)
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In (2) 
 is a bounded open set of the spa
e R

N

with boundary �
 satisfying

a Lips
hitz 
ondition, f : 
�R! R is a 
ontinuous given fun
tion whi
h is

C

1

in u and

L(u) =

N

X

i=1;j=1

a

ij

(x)

�

2

u

�x

i

�xj

+

N

X

i=1

b

i

(x)

�u

�x

i

� 


0

(x)u(x)

is a se
ond order uniformly ellipti
 operator with suÆ
ient regular 
oeÆ-


ients.

In (3) we take either a = 1; b = 0 (Neumann boundary 
ondition) or

a = 0; b = 1 (Diri
hlet boundary 
ondition).

Next we give the following

De�nition. A C

2

fun
tion v : 
! R is a sub-solution of problem (2)-(3) if

�Lv(x) + f(x; v(x)) � 0; x 2 
; Bv(x) � 0; x 2 �
:

A super-solution w is de�ned by taking the reverse inequalities.

Theorem 3.1. Let v(x) be a sub-solution of (2)-(3) and w(x) be a super-

solution of the same problem su
h that v(x) � w(x) for any x 2 
. Let � > 0

be a 
onstant su
h that � �

�f(x; u)

�u

for any (x; u) satisfying v(x) � u �

w(x) and 


0

(x) + � > 0 for any x 2 
.

We de�ne a sequen
e fv

k

(x)g in the following way: v

0

(x) = v(x) and v

k+1

(x)

is the unique solution of

�Lv

k+1

(x) + �v

k+1

(x) = �v

k

(x)� f(x; v

k

(x)); x 2 


with boundary 
ondition Bv

k+1

(x) = 0 on �
.

Similarly we de�ne another sequen
e fw

k

(x)g by: w

0

(x) = w(x) and w

k+1

(x)

is the unique solution of

�Lw

k+1

(x) + �w

k+1

(x) = �w

k

(x)� f(x; w

k

(x)); x 2 


with boundary 
ondition Bw

k+1

(x) = 0 on �
.

Then for any k we have

v(x) � v

k

(x) � v

k+1

(x) � w

k+1

(x) � w

k

(x) � w(x)

for any x 2 
; fv

k

(x)g and fw

k

(x)g 
onverge to solutions u

1

(x) and u

2

(x)

respe
tively of problem (2)-(3) satisfying v(x) � u

1

(x) � u

2

(x) � w(x) for

5



any x 2 
.

Moreover, any solution u(x) of (2)-(3) su
h that v(x) � u(x) � w(x) for any

x 2 
 satis�es u

1

(x) � u(x) � u

2

(x) for any x 2 
.

The proof of Theorem 3.1 is a 
onsequen
e of the Maximum Prin
iple

and it 
an be found in [1℄, [3℄, [4℄.

The next result is useful to estimate the maximum and the minimum of

solutions of some ellipti
 equations. For simpli
i
ity, we 
onsider a simpler


lass of ellipti
 operators L(u):

Theorem 3.2. Let u(x) be a regular solution of the problem:

�Lu + '(u) = 0 x 2 


u(x) = 0 x 2 �


(4)

where

Lu = �u+

N

X

i=1

b

i

(x)

�u

�x

i

:

If (x

0

) is a point where the maximum of u(x) is a
hieved then either we have

u(x

0

) = 0; or

'(u(x

0

)) � 0:

Similarly for the minimum.

Proof

If (x

0

) 2 �
; then u(x

0

) = 0: If (x

0

) is in the interior of 
; then for ea
h

1 � i � n we have:

�u

�x

i

(x

0

) = 0

�

2

u(x

0

)

�x

2

i

� 0:

So,

'(u(x

0

)) = �u(x

0

) +

N

X

i=1

b

i

(x

0

)

�u(u

0

)

�x

i

� 0

and this proves the Theorem.
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3.1 Numeri
al Experiments

We start this Se
tion presenting two examples where we 
onsider boundary

value problems of the form

��u+ '(u) = h(s; t) (5)

with homogeneous Neumann boundary 
ondition. In both 
ases, the domain

is 
 = [0; 1℄� [0; 1℄ and we de�ne h(s; t) su
h that a solution of the problem

is a given fun
tion u

�

(s; t): After dis
retization by 
entral di�eren
es, (5)

be
omes a nonlinear system

F (y) = 0: (6)

Example 1:

In this �rst 
ase we take '(u) = 10sin(u); u

�

(s; t) = �
os(�s)
os(�t) where

� = 0:5: Then we have to solve:

��u+ 10sin(u) = ��u

�

+ 10sin(u

�

); on [0; 1℄� [0; 1℄

�u=�n = 0 on �
:

(7)

With these we 
an easily visualize numeri
ally the behavior of both meth-

ods: Newton's method and the MIM.

To apply the MIM, after all the 
al
ulation we found v

0

� �1:0923 as a


onstant sub-solution and w

0

� 1:0923 as a 
onstant super-solution for the

problem. We also have that an iterative 
onstant (� in Theorem 3.1) for the

MIM is � = 10:

>From the periodi
ity of sin(u), we see that adding and subtra
ting mul-

tiples of 2� to v

0

and w

0

we have in�nitely many 
onstant sub-solutions and


onstant super-solutions for the problem: v

j

and w

j

respe
tively. Then if this

problem has a solution, it will have in�nite solutions (u

�

j

), ea
h one uniquelly

determined by the 
orresponding pair v

j

and w

j

:

All the tests in this example were run in a SUN Ultra Creator using the

software MatLab. We used a grid with 289 points whi
h means 15 internal

points in ea
h axis and we have stopped the pro
esses when kF (y

k

)k

1

�

10

�6

:

The initial ve
tors of approximations were 
hosen in this way: y

0

=

(a

0

; a

0

; � � � ; a

0

)

T

where a

0

= 1:1+2C�; C = 0; 1; : : : ; 5, be
ause 1.1 is a super-

solution to the solution with all the 
omponents in the interval [�0:5; 0:5℄ and

with the other initial approximations we will obtain other solutions for the

nonlinear system.
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In order to 
ompare the perfoman
e of MIM we used the same initial

approximations for Newton's method. It is important to observe that these

ve
tors may not be good 
hoi
es for Newton's method sin
e that, in some


ases, they may not be in an appropriate neighborhood of u

�

j

. This is an

important di�eren
e between the two methods be
ause in order to apply the

MIM it is not ne
essary to start 
lose to a solution of the problem.

Table 1 gives the notation used to represent the di�erent solutions ob-

tained in the next tests. The end points of the interval represent the minimum

and the maximum values assumed by the entries of the approximate solution

found.

s

j

Interval

s

1

[�0:5; 0:5℄

s

2

[1:8421; 4:4411℄

s

3

[5:7832; 6:7832℄

s

4

[8:1253; 10:7243℄

s

5

[12:0664; 13:0664℄

s

6

[14:4085; 17:0075℄

s

7

[18:3496; 19:3496℄

s

8

[20:6917; 23:2906℄

s

9

[24:6327; 25:6327℄

s

10

[26:9748; 29:5738℄

s

11

[30:9159; 31:9159℄

Table 1: Notation for some approximate solutions to the nonlinear system.

a

0

MIM Newton

s

j

IT Time Flops s

j

IT Time Flops

1.1 s

1

6 0.3326 339591 s

1

5 1.3560 669376

1.1 + 2� s

3

6 0.3201 339591 s

3

5 1.3697 669376

1.1 + 4� s

5

6 0.3154 339591 s

5

5 1.3734 669376

1.1 + 6� s

7

6 0.3452 339591 s

7

5 1.3674 669376

1.1 + 8� s

9

6 0.3130 339591 s

9

5 1.3581 669376

1.1 + 10� s

11

6 0.3134 339591 s

11

5 1.3597 669376

Table 2: Comparative results of MIM and Newton's Methods.

Remarks

1) In the 
ase of Table 2, where both methods 
onverged to the same solu-

tions, the total iterations number of Newton's method is smaller than that
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of the MIM. But the MIM is faster be
ause it is 
heaper in terms of the 
om-

putational 
ost by iteration, 
onsidering the elapsed time and the number of


ops performed. Su
h a di�eren
e is justi�ed by the fa
t that, in ea
h iter-

ation of Newton's method it is solved a 
ompletely new linear system while

in the MIM the matrix of 
oe�
ients is independent of the step and so, its

fa
torization has to be done just on
e in the whole pro
ess.

2) The MIM requires an initial work to �nd a super and a sub-solution for

the problem and also to �nd the iterative 
onstant �; without them is it

impossible to apply the MIM. In this example we obtained these 
onstants

very easily but in some 
ases it may happen to be not so easy to do this job.

3) After being 
al
ulated, the 
onstants of the MIM represent an advantage

for this method be
ause they give a region where we guarantee the existen
e

of a solution.

We have also analysed the performan
e of both methods for initial ap-

proximations between two super-solutions. For this, we have 
hosen some

values between 1:1 and 1:1 + 2�: Table 3 presents the results obtained. The

solution 
alled s

0

has its entries in the interval [�13:0664;�12:0664℄ and we

have kept the same notation for the other s

j

solutions.

a

0

MIM Newton

s

j

IT Time Flops s

j

IT Time Flops

1.5 s

1

7 0.3471 367029 s

0

3 1.2520 402408

2.0 s

1

8 0.3645 394466 s

2

5 1.4212 669376

2.5 s

1

9 0.4018 421904 s

2

3 1.2198 402408

3.0 s

1

11 0.4868 476781 s

2

4 1.3470 535892

3.5 s

3

10 0.4434 449343 s

2

3 1.2294 402408

4.0 s

3

8 0.3693 394467 s

2

4 1.3527 535892

4.5 s

3

7 0.3309 367029 s

1

4 1.3479 535892

5.0 s

3

7 0.3645 367029 s

4

5 1.4031 669376

5.5 s

3

6 0.2961 339591 s

3

4 1.3126 535892

6.0 s

3

5 0.2571 312153 s

3

2 1.1332 268924

6.5 s

3

5 0.2603 312513 s

3

2 1.1117 268924

Table 3: Comparative results of MIM and Newton's Methods.

Remarks

1) Observe that for some solutions of the nonlinear system it was not pos-

sible to �nd a 
onvergent sequen
e by the MIM sin
e, for su
h solutions, it is

not possible to �nd 
onstant super and sub-solutions. In Table 3 we 
an see,

for example, that the solution s

2

; with entries in the interval [1:8421; 4:4411℄

9



dete
ted by Newton's method, was not found by the MIM.

2) Some initial approximations are not adequate for Newton's method be-


ause besides beeing not 
lose enough to a solution x

�

; they are in regions of

ill-
onditioning of the Ja
obian matrix. In these 
ases, the sequen
e gener-

ated by Newton's method 
onverged for other solutions, sometimes very far

from the expe
ted solution. This happens, for example, in the neighborhood

of a

0

= 1:5: Small perturbations in this value made the solutions rea
hed be

very distin
t from ea
h other, as we 
an see in Table 4.

We ran the MIM with all these inital guesses and we always obtained the

solution s

1

:

a

0

Newton

[a; b℄ IT Time Flops

1.51 [�17:0075;�14:4084℄ 5 1.4519 669376

1.53 [�23:2906;�20:6917℄ 5 1.3906 669376

1.55 [�48:4234;�45:8244℄ 4 1.2772 535892

1.57 [�1:255E + 03;�1:252E + 03℄ 4 1.2847 535892

1.59 [52:1076; 54:7066℄ 4 1.2863 535892

Table 4: Newton's Method with initial approximations 
lose to 1.5.

Example 2 :

In this 
ase we took '(u) = u

3

+au

2

+bu; with a = �3; b = 2:36110308062087

and u

�

(s; t) = �
os(�s)
os(�t): For small values of �; the behavior of New-

ton's method is similar to its behavior for the unidimensional 
ase of Se
tion

2. We took for � the values � = 5 and several small values whi
h will be

given in a next Table. Then, the problem to be solved is :

��u + u

3

+ au

2

+ bu = ��u

�

+ u

�

3

+ au

�

2

+ bu

�

; on 


�u=�n = 0 on �


(8)

where 
 = [0; 1℄� [0; 1℄:

For this example the tests were run in a SUN Ultra1 Creator, using the

software MatLab. We will now present some numeri
al results. All the

problems were solved with dimension 289 and we have stopped the pro
ess

when jjF (y

k

)jj

1

< 10

�6

.

In Table 5, for ea
h 
ase we 
al
ulated a 
onstant sub-solution, a 
onstant

super-solution and also a 
orresponding iterative 
onstant � for the MIM. In

this table, a

0

is the 
onstant for all the entries of the initial approximation

ve
tor; IT is the total number of iterations performed and TIME represents
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the CPU time in se
onds. In the 
olumn � we present the 
orresponding

iterative 
onstant � for the MIM and n
 for Newton's method means that

the method did not 
onverge after 300 iterations and in all these 
ases the

sequen
e of the even iterations 
onverged to a 
onstant ve
tor with all the

entries 
lose or equal to 1 and the same to the sequen
e of odd iterations, to

1:5652. Observe also that when � = 0 the 
onvergen
e of the MIM was to

the solution u

�

(s; t) � 0:

We �nish this example showing, in Table 6, the behavior of Newton's

method for several values of � and for all of them we have started the iter-

ations with a

0

= 1 and also with a

0

= 0:95; with the same results. Non
on-

vergen
e is indi
ated by n
 and in all of these 
ases, the sequen
e os
illated

again between values 
lose or equal to 1 and 
lose or equal to 1:5672.

� a

0

MIM Newton

� IT Time IT Time

5 �6 142 206 18.1095 6 1.8435

7 211 18.3048 7 1.8558

0.01 �0:5 7 32 2.8933 4 1.4590

1.0 45 3.9926 n
 {

0.045 1.0 10 67 5.9170 80 11.7094

0 1.0 67 5.8487 n
 {

Table 5: Behavior of Newton's Method and MIM for Example 2.

� Newton

IT Time

10

�6

n
 {

10

�2

n
 {

0:005 n
 {

0:002 n
 {

0:015 n
 {

0:04 n
 {

0:0425 n
 {

0:0449 62 9.2488

0:05 35 5.7022

0:09 15 2.9225

Table 6: Behavior of Newton's Method for other values of �:

11



Example 3 :

So far we have worked with problems that have a variational formulation and

so they 
ould be solved by other methods su
h as Gradient methods. In this

Example we show the performan
e of Newton's Method and of the MIM for

a problem with a 
onve
tive term:




s

�u

�s

+ 


t

�u

�t

;

this problem does not have a variational formulation and so the Gradient

methods 
an not be used. Now we work with the following problem:

�Lu + '(u) = 0; on [0; 1℄� [0; 1℄

u(s; t) = 0 on �


(9)

where

Lu = �u� 


s

�u

�s

� 


t

�u

�t

and

'(u) = 
u(u� 5)(u� 10)(u� 15):

Observe that the problem has the trivial solution u

�

(s; t) � 0 and we are in-

terested in 
al
ulating non trivial ones. The numeri
al results are presented

in Tables 7 and 8: We used the 
onstant 
 = 0:1 and several values for 


s

; for




t

and for the initial ve
tors for whi
h all the entries are equal to a

0

� 10; a

super-solution to the MIM. These values were found after all the ne
essary


al
ulation whi
h gave also for the 
onstant of the MIM, � = 40: All the

tests were run in a Pentium 166 mi
ro
omputer, using the software MatLab.

In the next tables:

It means the number of iterations performed until 
onvergen
e;

T ime is the elapsed time until 
onvergen
e;

Sol is the maximum value assumed by the approximated solution in the grid.

We have worked with 15 internal nodes, what makes the systems with di-

mension 225: The stopping 
riterion was

kF (y

k

)k

1

� 10

�4

:

Non
onvergen
e (n
) means

kF (y

k

)k

1

> 10

10

:

Noti
e that, a

ording to Theorem 3:2; for any solution u

�

(s; t) we have

that

u

�

max

� 15;

12



be
ause '(u) > 0 for u > 15: In our experiments the ve
tors y

k

assume

positive large values, and this is also an indi
ation of non
onvergen
e.

Newton MIM




s




t

x

0

It Time Sol It Time Sol

0.1 0.2 5 4 1.04 3.5978 19 1.86 3.5978

6 4 1.05 3.5978 19 1.87 3.5978

7 5 1.27 0.0000 19 1.87 3.5978

8 - - n
 19 1.92 3.5978

9 - - n
 20 2.02 3.5978

10 14 3.46 3.5978 20 2.03 3.5978

0.4 -0.6 5 4 1.10 3.5901 19 1.81 3.5901

6 4 1.10 3.5901 19 1.92 3.5901

7 5 1.26 0.0000 20 2.03 3.5901

8 - - n
 20 1.92 3.5901

9 - - n
 20 2.03 3.5901

10 14 3.46 3.5901 20 1.97 3.5901

0.6 -0.8 5 4 1.04 3.5822 19 1.82 3.5822

6 4 1.04 3.5822 20 1.97 3.5822

7 5 1.26 0.0000 20 1.98 3.5822

8 - - n
 20 1.98 3.5822

9 - - n
 20 1.92 3.5822

10 15 3.74 3.5822 21 2.04 3.5822

2 -3 5 4 1.04 3.5053 24 2.25 3.5053

6 4 1.05 3.5053 24 2.19 3.5053

7 6 1.59 0.0000 24 2.25 3.5053

8 - - n
 24 2.25 3.5053

9 - - n
 24 2.20 3.5053

10 18 4.51 3.5053 25 2.37 3.5053

5 -8 5 6 1.48 2.8917 52 4.72 2.5918

6 5 1.26 2.8917 52 4.73 2.5918

7 7 1.75 0.0000 52 4.73 2.5918

8 - - n
 53 4.84 2.5918

9 - - n
 53 4.84 2.5918

10 - - n
 53 4.83 2.5918

Table 7: Behavior of Newton's Method and MIM for Example 3.

We have also 
he
ked that Newton's Method 
onverged to the trivial

13



solution u

�

(s; t) � 0 for every 
onstant initial ve
tor starting with a

0

2

[6:801; 7:199℄; for all the 
hoi
es of 


s

and 


t

that we have made. For all

these values, the MIM 
onverged to a solution whose maximum value is

3.5815.

Observe that when 


s

= 


t

= 0; we have a variational 
ase. We exhibit

this 
ase in the separate Table 8 to emphasyze this fa
t. Again, for a

0

= 7

the 
onvergen
e of Newton's method was to the trivial solution. Noti
e that,

in the variational 
ase, the trivial solution is uninteresting be
ause it is a

unstable stationary solution of an evolution equation.

Newton MIM




s




t

x

0

It Time Sol It Time Sol

0 0 5 4 0.82 3.5986 18 1.70 3.5986

6 4 0.88 3.5986 19 1.81 3.5986

7 5 1.32 0.0000 19 1.86 3.5986

8 - - n
 19 1.81 3.5986

9 - - n
 20 1.93 3.5986

10 14 2.80 3.5986 20 1.93 3.5986

Table 8: Example 3, variational 
ase.

The �nal remark in this Example is the analysis of Newton's Method for

the following initial 
onstant ve
tors for whi
h we 
an not use the theory of

the MIM: x

0

= 1; 2; 3; 4: We present in Table 9; only the 
ases where the

results were di�erent from the positive solution results already found for the


orresponding values of 


s

and 


t

:

Newton




s




t

x

0

It Time Sol

0 0 1 11 2.91 0.0000

0.1 0.2 1 11 2.75 0.6060

0.4 -0.6 1 - - n


0.6 -0.8 1 - - n


2 -3 1 - - n


Table 9: Newton's Method where the theory of the MIM does not apply.

Observe that in these 
ases, the MIM 
onverged to Sol = 3:5986:

Example 4 :

In this example we use the numeri
al results of the MIM to verify uniqueness

14



of solution. Here we solve the following problem:

��u+ '(u) = 0; on [0; 1℄� [0; 1℄

u(s; t) = 0; on �


(10)

where

'(u) = 
u(u� 2)(u� 3)(u� 5):

For this problem, Theorem 3.2 assures the existen
e of at least one posi-

tive solution, provided that

�

2

�

�'

�u

�

�

�

�

�

u=0

< �

1

;

where �

1

and �

2

are the �rst and se
ond eigenvalues of the Lapla
ian, re-

spe
tively. We want then to verify whether su
h a solution is unique or not.

It is easily seen that, 
hoosing 
 a

ording to the last 
ondition and for k

small enough, the �rst eigenfun
tion of the Lapla
ian,

u

1

(s; t) = ksin(�s)sin(�t)

is a sub-solution for problem (10):

Using Theorem 3.2 again, we have that u

�




� 5 is a super-solution for this

problem and we also have that every solution u

�

(s; t) is su
h that

u

�

max

� 5:

The values found for 
 and k were:

0:6580 � 
 < 1:6449

and then

0 < k � 3:5:

We took 
 = 1:15; for whi
h a 
onstant � for the MIM is � = 35 and some

values for k; k = 0:1; 0:2; 0:3: The 
on
lusions are the following:

1. Starting the MIM with the sub-solution u

1

(s; t); the sequen
es 
on-

verged to a positive solution u

�

p

(s; t) whose maximum value in [0; 1℄�

[0; 1℄ is u

�

p

max

� 0:7:

2. Starting the MIM with the 
onstant super-solution u




(s; t) � 5 the

sequen
e 
onverged to the same solution u

�

p

(s; t) of item 1:

15



Sin
e starting with a super-solution and with a sub-solution the 
onver-

gen
e was to the same solution, by the remarks made after Theorem 2.1, we


on
lude that this problem has a unique positive solution.

This is a very interesting and spe
ial feature of the MIM: we 
an use

its numeri
al results to 
on
lude uniqueness (or nonuniqueness) of solution.

Noti
e that this analysis is a very important and not su
h an easy task, in

general.

Example 5 :

The last example of this Se
tion shows another very important feature of the

MIM: for the problems above, the MIM is a good tool to �nd an appropriate

initial approximation for Newton's Method.

We have had used Newton's Method for problem (10) of Example 4 start-

ing with the same sub-solutions u

1

(s; t) used there and in all the 
ases the

sequen
es 
onverged to the trivial solution u

�

(s; t) � 0:We also started New-

ton's Method with the 
onstant super-solution u




(s; t) � 5 and the method

did not 
onverge. So we used a 
ombination of the MIM and Newton's

method, that 
onsists of:

(i) running the MIM starting with y

0

� 5; � = 35 until kF (�y

k

)k � 10

�2

(MINIC);

(ii) using the �y

k

of (i) as initial approximation, run Newton'sMethod

(and also the MIM).(MIM/MIM for the 
ombination MIM and MIM and

MIM/NEW for the 
ombination MIM and Newton).

Table 10 shows how this 
ombination works. The stopping 
riterion for

both methods was kF (~y

k

)k

1

� 10

�6

and Sol � k~y

k

k

1

: Finally Dl means

the number of interior points in ea
h axis.

MINIC MIM/MIM MIM/NEW

Dl Sol It Sol It Time Sol It Time

3 0.6899 26 0.6890 35 0.17 0.6890 2 0.06

7 0.6728 28 0.6719 37 0.55 0.6719 2 0.11

9 0.6693 28 0.6684 38 0.82 0.6684 2 0.17

19 0.6641 29 0.6633 37 3.79 0.6633 2 0.88

24 0.6614 29 0.6606 37 6.37 0.6606 2 1.81

29 0.6631 29 0.6623 37 10.65 0.6623 2 13.51

Table 10: The 
ombination of the MIM and Newton's Method.

Looking at the last line of Table 10 we 
an see that, when we in
rease

the number of mesh points, the ellapsed time for the MIM turns out to be

16



smaller then that of Newton's Method whi
h is natural to happen be
ause

ea
h Newton's iteration is mu
h more expensive then the MIM's iterations.

As we have pointed out, when we use the MIM, the matrix of the linear

system that we have to solve at ea
h step is the same.

4 Cooperative Ellipti
 Systems

In the 
ase of ellipti
 systems we 
an prove a result similar to Theorem 3.1

provided we assume that the nonlinearity satis�es a 
ooperative 
ondition.

For 2� 2 systems the problem is:

�L(x; u) + f(x; u; v) = 0 on 
; Bu = 0 on �


�M(x; v) + g(x; u; v) = 0 on 
; Bv = 0 on �


(11)

where 
 is as before, f; g : 
 � R � R :! R are given 
ontinuous fun
tions

whi
h are C

1

in u; v and H�older 
ontinuous in x and

L(x; u) =

N

X

i=1;j=1

a

ij

(x)

�

2

u

�x

i

�x

j

+

N

X

i=1

b

i

(x)

�u

�x

i

� 


0

(x)u(x)

and

M(x; v) =

N

X

i=1;j=1

~a

ij

(x)

�

2

v

�x

i

�x

j

+

N

X

i=1

~

b

i

(x)

�v

�x

i

� ~


0

(x)v(x)

are given se
ond order uniformly ellipti
 operators with suÆ
iently regular

real 
oeÆ
ients and the boundary 
ondition is as in Theorem 3.1.

If we de�ne a ve
tor U = (u; v) then system (11) 
an be written as

�N(x; U) +H(x; U) = 0; on 
; BU = 0 on �
;

where N(x; U) = (L(x; u);M(x; v)), H(x; U) = (f(x; u; v); g(x; u; v)) and

BU = (Bu;Bv).

De�nition. A C

2

fun
tion � : 
! R� R is a sub-solution of (11) if

�N(x;�(x)) +H(x;�(x)) � 0 on 
 and B�(x) � 0 on �


The inequality holds 
omponentwise here.

A super-solution 	(x) is de�ned in a similar way.
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Theorem 4.1. Suppose that �(x) and 	(x) are sub-solution and super-

solution, respe
tively, of (11) su
h that �(x) � 	(x) for any x 2 
. Suppose

also that

�f(x; u; v)

�v

� 0 and

�g(x; u; v)

�u

� 0 for any (x; u; v) su
h that

�(x) � U � 	(x). Let � > 0 be a real number su
h that � + 


0

(x) > 0 ,

� + ~


0

(x) > 0 for any x in 
 and

�f(x; u; v)

�u

� �,

�g(x; u; v)

�v

� � for any

(x; U) = (x; u; v) su
h that �(x) � U � 	(x).

We de�ne a sequen
e f�

k

(x)g in the following way: �

0

(x) = �(x) and

�

k+1

(x) is the unique solution of

�L�

k+1

(x) + ��

k+1

(x) = ��

k

(x)�H(x;�

k

(x)) x 2 


with boundary 
ondition B�

k+1

(x) = 0 on �
.

Similarly we de�ne another sequen
e f	

k

(x)g by: 	

0

(x) = 	(x) and 	

k+1

(x)

is the unique solution of

�L	

k+1

(x) + �	

k+1

(x) = � 

k

(x)�H(x;	

k

(x)) x 2 


with boundary 
ondition B	

k+1

(x) = 0 on �
.

Then

�(x) � �

k

(x) � �

k+1

(x) � 	

k+1

(x) � 	

k

(x) � 	(x)

for any x 2 
 and �

k

(x) and 	

k

(x) 
onverge to solutions U

1

(x) and U

2

(x)

of system (11) satisfying �(x) � U

1

(x) � U

2

(x) � 	(x) for any x 2 
.

Moreover, any solution U(x) of (11) su
h that �(x) � U(x) � 	(x) for any

x 2 
 satis�es U

1

(x) � U(x) � U

2

(x) for any x 2 
.

Proof

The proof of Theorem 4.1 follows exa
tly the proof of Theorem 3.1 be-


ause under the assumptions we have made, �H(x; U) is monotone in the

region �(x) � U � 	(x).

Remark

In Theorem 4.1 we may allow a 
oupling also in the linear part but, in that


ase, a more 
ompli
ate Maximum Prin
iple is required (see [3℄).

4.1 Numeri
al Experiments

Among others, a large 
lass of examples of 
ooperative ellipti
 systems is

made of the boundary value problems of the form

��U + �(U) = H(s; t); (s; t) 2 
 (12)
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with homogeneous Diri
hlet boundary 
onditions. We will present one of su
h

examples that is the prompt-feedba
k rea
tor problem. This problem has

some similarity with various parti
ular mutualism models in e
ology, in the

sense that the presen
e of ea
h 
omponent 
ontributes to faster growth rate

of all other 
omponents (see [4℄). We present some numeri
al experiments

with the following two spe
ies mutualism model:

��u

1

� u

1

(a� bu

1

+ 
u

2

) = 0;

��u

2

� u

2

(e+ fu

1

� gu

2

) = 0; on 
; (13)

u

1

= u

2

= 0 on �
:

Here a; b; 
; d; e; f; g; are nonnegative 
onstants, and u

1

and u

2

are

the 
on
entrations of mutualisti
 (
ooperating) spe
ies. So, the interesting

solutions are the positive ones.

In our �rst experiment we solved a system with a 
hoi
e for the parameters

that were taken satisfying the assumptions of the next Theorem (see also [4℄.

Let us re
all that the �rst eigenvalue �

1

of the operator �� with Diri
hlet

boundary 
ondition is simple,positive and that the eigenfun
tion asso
iated

to it is stri
tly positive on 
.

Theorem 4.2. Suppose that a and e > �

1

; (the smallest eigenvalue of the

Lapla
ian) that b; g are positive and 
; f are nonnegative, satisfying

bg > 
f:

Then the boundary value problem (13) has a solution �u

1

(s; t); �u

2

(s; t) with

�u

i

(s; t) > 0; i = 1; 2 for (s; t) 2 
:

Before proving Theorem 4.2, let us prove a Lemma that will be useful for

studying uniqueness of solution of (13).

Lemma 4.1. If �

1

< a and �

1

< e and �(s; t) is the eigenfun
tion asso
iated

to �

1

then there is an �

0

> 0 su
h that (��(s; t); ��(s; t)) is a sub-solution of

system (13) for 0 < � � �

0

.

Proof

In fa
t, (��(s; t); ��(s; t)) to be a sub-solution of system (13) is equivalent

to the two inequalities

��

1

�(s; t)� ��(s; t)(a� b��(s; t) + 
��(s; t)) � 0
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��

1

�(s; t)� ��(s; t)(e+ f��(s; t)� g��(s; t)) � 0

whi
h are equivalent to

�

1

� (a� b��(s; t) + 
��(s; t)) � 0

�

1

� (e + f��(s; t)� g��(s; t)) � 0

and these two inequalities are satisi�ed if � is positive and small and this

proves the lemma.

Proof of Theorem 4.2.

Under the assumptions of Theorem 4.2 and in view o Lemma 4.1, we know

that (��(s; t); ��(s; t)) is a sub-solution of system (13) for 0 < � � �

0

. More-

over, an easy 
al
ulation show that ea
h 
omponent of the solution (u

0

; v

0

)

of the linear system

a� bu + 
v = 0

e+ fu� gv = 0

is positive and then (u

0

; v

0

) is a 
onstant super-solution of (13) and in view

of Theorem 4.1, Theorem 4.2 is proved.

For a = 25; b = 5; 
 = 3; e = 22; f = 2; g = 6; we used both Newton's

Method and the MIM, starting with the 
onstant super-solution (u

0

; v

0

) =

(9; 6:666:::): For these values the 
onstant � for the MIM was found to be � =

65: Stopping the pro
esses when kF (u

k

; v

k

)k

1

� 10

�4

we veri�ed 
onvergen
e

of both methods to a positive solution with (u

max

; v

max

) � (2:626; 1:620).

The last experiment we have done was to use again numeri
al results of

the MIM to help the identi�
ation of uniqueness of solution of this kind of

Cooperative Ellipti
 Systems.

Next we analyse uniqueness of positive solution of system (13) and the

the following a priori estimate is important.

Theorem 4.3. Suppose 
 < b, f < g and let M = max(

a

b�


;

e

g�f

). If

(u(s; t); v(s; t)) is a positive solution of system then for any (s; t) 2 
 we

have u(s; t) �M and v(s; t) �M .

Proof

Let M

1

> 0 and M

2

> 0 be the maximum of u(s; t) and v(s; t), respe
-

tively, and suppose M

2

� M

1

. If we denote by (s

0

; t

0

) the point in the
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interior of 
 where u(s

0

; t

0

) = M

1

then �u(s

0

; t

0

) � 0 and then from the

�rst equation of (13) we see that

a� bu(s

0

; t

0

) + 
v(s

0

; t

0

) � 0

and, sin
e v(s

0

; t

0

) � M

2

� M

1

this las inequality gives M

1

�

a

b�


. In a


ompletely similar way, we show that if M

1

� M

2

then M

2

�

e

g�f

and this

proves the Theorem 4.3.

Lemma 4.1 and Theorem 4.3 
an be used to verify numeri
ally whether

the positive solution of system (13) is unique or not. In fa
t, let (u

0

; v

0

) be

a 
onstant positive super-solution su
h that M � u

0

and M � v

0

, where M

is the 
onstant given by Theorem 4.3. Then, a

ording to Theorem 4.3 any

positive solution (u(s; t); v(s; t)) has to satisfy u(s; t) � u

0

and v(s; t) � v

0

for any (s; t) 2 
. Moreover, for any su
h a solution (u(s; t); v(s; t)) there

is an � > 0 su
h that (��(s; t); ��(s; t)) � (u(s; t); v(s; t)). So, in view of

Theorem 4.1, system (13) has a unique positive solution if and only if the

two solutions we get starting at (u

0

; v

0

) and (��(s; t); ��(s; t)) with � small

enough are equal.

For the value of the parameters 
hosen above we haveM = 12:5, �

0

= 2:5,

(u

0

; v

0

) = (13; 13) and the 
onstant � 
an be taken as 65. In that 
ase our

numeri
al experiments 
omprove uniqueness of positive solution.

5 Con
lusions

In this work we have presented some theoreti
al results and we have proven

others for the MIM; we also have made several numeri
al experiments with

this method, 
omparing it with Newton's method whose features are very well

known [2℄. Basi
ally Newton's method 
an be used to solve any equation but

in order to guarantee its 
onvergen
e, we have to start at a point whi
h is

\
lose enough" to a solution and, sometimes, this may be diÆ
ult to a

om-

plish be
ause we do not know how to guess where the solution (or solutions)

is. The results proved and the 
omparisons that we made here lead us to


on
lude that the MIM has some limitations and also several good features.

These fa
ts guarantee that both, the MIM and Newton's Method have their

own merit. We think that the following points deserve to be emphasized:

(i) In order to apply the MIM we have to be able to �nd a sub-solution and

a super-solution (this is not always easy) and the 
onstant � (this is easy).

So, in order to apply the MIM we always need an extra initial work. But

on
e we have veri�ed all these 
onditions, we 
an guarantee the existen
e of a
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solution and the 
onvergen
e of the method, even if we are not 
lose enough

to a solution in the "Newton's sense".

(ii) The MIM works if a maximum prin
iple is available. For instan
e, in

the 
ase of systems, this requires it to be 
ooperative. Of 
ourse this ex
ludes

many interesting problems.

(iii) In some 
ases, the MIM 
an be used to guarantee uniqueness (or

nonuniqueness) of solution for 
ertain type of problems.

(iv) Computationally speaking, the MIM is very 
heap and so, even if we

start at an approximation of the solution that is reasonable for both methods,

its performan
e 
an be better than Newton's, mainly in the 
ase of thin grids.

(v) In some 
ases, Newton's method 
an �nd some solutions that 
an not

be dete
t (and found) by the MIM.

Our �nal remark is that several initial guesses that are good initial ap-

proximations for the MIM are very bad for Newton's method, either be
ause

they are far from a solution or be
ause the Ja
obian matrix is 
lose to sin-

gular at these points. So, we found that another feature of the MIM is that

it 
an be used to �nd a good initial guess for Newton's method whi
h has

been done in Example 5.

Referen
es

[1℄ Amann, H., On the Number of Solutions of Nonlinear Equations in

Ordered Bana
h Spa
es, Journal of Fun
tional Analysis, 11, 346-384

(1972).

[2℄ Dennis, Jr., J. E. and S
hnabel, R. B., Numeri
al Methods for Un-


onstrained Optimization and Nonlinear Equations, SIAM Classi
s in

Applied Mathemati
s, 16 (1996).

[3℄ Figueiredo, D. G. and Mitidieri, E., Maximum Prin
iples for Linear

Ellipti
 Systems, Rend. Istit. Mat. Univ. Trieste 22 (1990), no. 1-2, 33-

66, (1992).

[4℄ Leung, A. W., Systems of Nonlinear Partial Di�erential Equations -

Appli
ations to Biology and Engineering, Kluwer A
ademi
 Publishers

(1988).

[5℄ Sattinger, D. H., Topi
s in Stability and Bifur
ation Theory, Le
ture

Notes in Mathemati
s, 309, Springer-Verlag (1972).

22


