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Abstrat

In this work, after a theoretial explanation of the Monotone Iter-

ation Method, there are presented several numerial experiments with

this method, when applied to solve some nonlinear Ellipti Equations.

It is shown that, in some ases, uniqueness of solution an also be ver-

i�ed through the numerial implementation of the method. It is also

presented its appliation to Cooperative Ellipti Systems. For all the

examples Newton's method is also applied and a omparison between

the Monotone Iteration Method and Newton's Method is made.

1 Introdution

The Monotone Iteration Method (MIM) has been widely used to show the

existene of solutions of some ellipti equations and systems. It may be used
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whenever a maximum priniple is available. Abstrat versions of it have also

been presented (see [1℄, [3℄, [4℄, among many others).

In this paper we make numerial experiments based on that method and

we ompare its performane with Newton's Method. Sine the MIM de-

pends on �nding a super-solution, a sub-solution and a onvenient onstant

�, a preliminary alulation is needed to implement it in eah example. For

Newton's Method this preparation is not needed.

A harateristi of the MIM is that, one a super-solution and a sub-

solution are known, we have an a priori bound for the solution and the

onvergene of the method to some solution is supported by the theory,

even if we start far away from the solution. On the other hand, Newton's

Method may diverge or may onverge to a uninteresting solution for instane;

moreover, in the ase of onvergene, Newton's Method may be very sensitive

to small hanges in the initial approximation.

Even though our �nal task is the solution of Ellipti Equations, the MIM

an also be applied to salar equations. Setion 2 onsists of theoretial

aspets for this ase and we also present and analyse some numerial results

obtained when we applied the MIM for solving a salar equation f(x) = 0.

Even in this simple situation the method shows interesting features. For

instane, it detets numerially uniqueness of solution even in the presene

of a f(x) whih is nonmonotone.

In the ase of Ellipti Equations, presented in Setion 3, we onsider

basially two ases. Examples 2 and 3 deal with the �rst one that onsists

of the equation with a foring term h(s; t). In the seond ase, presented

in Example 3, the equation is autonomous. This equation has the trivial

solution u

�

(s; t) � 0 and we are looking for nontrivial solutions. We make

several tests and omparisons with whih very interesting features of the

MIM are deteted . We also present, in Example 4, a ase where we an

verify the uniqueness of solution of an Equation, ombining the theory with

the numerial results found for the MIM.

In the last experiment of Setion 3 we make a ombination of the two

methods. More preisely, we use the MIM to �nd a solution with approxima-

tion 10

�2

and then, starting at this approximate solution, we use the MIM

and Newton's Method to improve the approximation up to10

�6

. For medium

sized grids, we have veri�ed that Newton's Method is faster. However, as the

grid gets thinner ( and we are loser to the exat solution of the ellipti

equation), the MIM has a better performane in despite of the muh larger

number of iterations it has to perform.

In Setion 4 we use again both methods to �nd a solution to a Cooperative
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Ellipti System with two equations, given by the prompt-feedbak reator

problem, whih is a pratial appliation that has similarity with models in

eology (see [4℄).

2 The Case of a Salar Equation

First of all we onsider the question of solving a salar equation

f(x) = 0 (1)

and our theorem is the following:

Theorem 2.1. Let f : [; d℄! R be a C

1

funtion suh that f() < 0; f(d) >

0 and let � > 0 be a onstant suh that f

0

(x) < � for any x 2 [; d℄: Consider

the iteration funtion

�(x) = x�

f(x)

�

and let us de�ne two sequenes x

k

and y

k

in the following way:

x

0

=  x

k+1

= �(x

k

); y

0

= d y

k+1

= �(y

k

):

Then for any k we have

 < x

k

� x

k+1

� y

k+1

� y

k

< d;

x

k

onverges to the least solution of f(x) = 0 in the interval [; d℄ and y

k

onverges to the largest one.

Proof

The proof follows immediately from the monotoniity of � on the interval

[; d℄ and from the fat that the interval [; d℄ is invariant under � beause

�() = �

f()

�

>  and �(d) = d�

f(d)

�

< d.

Remarks

1. It an be proved that Theorem 2.1 holds if f(x) is only Lipshitzian in

the interval [; d℄.

2. The MIM has a similarity with the Modi�ed Newton's Method beause it

uses a �x value � in the plae of the derivative of the funtion in eah step.
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But here we use an a priori upper bound for the derivative instead of using

its value in the initial approximation.

3. If x

k

and y

k

have the same limit, then the solution of f(x) = 0 in the

interval [; d℄ is unique. So, uniqueness of solution of the equation an be

veri�ed numerially by the method introdued in Theorem 2:1, whih is alled

Monotone Iteration Method (MIM), even if f(x) is nonmonotone.

In order to ompare the MIM with Newton's Method we onsidered the

equation f(x) =̂ x

3

+ ax

2

+ bx = 0:

First we hose a = �3 so that f

00

(1) = 0. De�ning  (x) = x �

f(x)

f

0

(x)

and

h(x) =  ( (x)); we then hose b in suh way that h(1) = 1. This gives the

following ondition for a and b:

19a

6

� 171a

4

b+ 567a

2

b

2

� 729b

3

= 0:

Sine we have taken a = �3 , a solution of this last equation is b = 2:3611.

With this hoie, the equation f(x) = 0 has x = 0 as the unique real solution.

Moreover, an elementary alulation shows that h

0

(1) = 0 (beause f

00

(1) =

0) and then there is an open interval I ontaining the number 1 in its interior

suh that if we take x

0

2 I and de�ne x

k+1

= h(x

k

) then fx

k

g onverges to

1. For instane, the interval I = [0:94; 1:07℄ meets this ondition. So if we

take x

0

2 [0:94; 1:07℄ and we onsider the sequene x

k+1

=  (x

k

) de�ned

by Newton's method , then fx

2k

g onverges to 1 and fx

2k+1

g onverges to

1.5652. For this partiular problem the onlusion is this:

1) for any real number x

0

, if we hoose � properly, then the MIM onverges

to the unique solution f

�

(x) � 0;

2) if we start with any x

0

2 [0:94; 1:07℄ then the even and the odd elements

of the sequene onstruted by Newton's method have di�erent limits, none

of them being a solution of the problem.

3 Ellipti Equations

Now we onsider the problem of solving the semilinear ellipti problem

�L(u) + f(x; u) = 0; x 2 
 (2)

with boundary ondition

Bu =̂ a

�u

�n

+ bu = 0; x 2 �
: (3)
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In (2) 
 is a bounded open set of the spae R

N

with boundary �
 satisfying

a Lipshitz ondition, f : 
�R! R is a ontinuous given funtion whih is

C

1

in u and

L(u) =

N

X

i=1;j=1

a

ij

(x)

�

2

u

�x

i

�xj

+

N

X

i=1

b

i

(x)

�u

�x

i

� 

0

(x)u(x)

is a seond order uniformly ellipti operator with suÆient regular oeÆ-

ients.

In (3) we take either a = 1; b = 0 (Neumann boundary ondition) or

a = 0; b = 1 (Dirihlet boundary ondition).

Next we give the following

De�nition. A C

2

funtion v : 
! R is a sub-solution of problem (2)-(3) if

�Lv(x) + f(x; v(x)) � 0; x 2 
; Bv(x) � 0; x 2 �
:

A super-solution w is de�ned by taking the reverse inequalities.

Theorem 3.1. Let v(x) be a sub-solution of (2)-(3) and w(x) be a super-

solution of the same problem suh that v(x) � w(x) for any x 2 
. Let � > 0

be a onstant suh that � �

�f(x; u)

�u

for any (x; u) satisfying v(x) � u �

w(x) and 

0

(x) + � > 0 for any x 2 
.

We de�ne a sequene fv

k

(x)g in the following way: v

0

(x) = v(x) and v

k+1

(x)

is the unique solution of

�Lv

k+1

(x) + �v

k+1

(x) = �v

k

(x)� f(x; v

k

(x)); x 2 


with boundary ondition Bv

k+1

(x) = 0 on �
.

Similarly we de�ne another sequene fw

k

(x)g by: w

0

(x) = w(x) and w

k+1

(x)

is the unique solution of

�Lw

k+1

(x) + �w

k+1

(x) = �w

k

(x)� f(x; w

k

(x)); x 2 


with boundary ondition Bw

k+1

(x) = 0 on �
.

Then for any k we have

v(x) � v

k

(x) � v

k+1

(x) � w

k+1

(x) � w

k

(x) � w(x)

for any x 2 
; fv

k

(x)g and fw

k

(x)g onverge to solutions u

1

(x) and u

2

(x)

respetively of problem (2)-(3) satisfying v(x) � u

1

(x) � u

2

(x) � w(x) for
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any x 2 
.

Moreover, any solution u(x) of (2)-(3) suh that v(x) � u(x) � w(x) for any

x 2 
 satis�es u

1

(x) � u(x) � u

2

(x) for any x 2 
.

The proof of Theorem 3.1 is a onsequene of the Maximum Priniple

and it an be found in [1℄, [3℄, [4℄.

The next result is useful to estimate the maximum and the minimum of

solutions of some ellipti equations. For simpliiity, we onsider a simpler

lass of ellipti operators L(u):

Theorem 3.2. Let u(x) be a regular solution of the problem:

�Lu + '(u) = 0 x 2 


u(x) = 0 x 2 �


(4)

where

Lu = �u+

N

X

i=1

b

i

(x)

�u

�x

i

:

If (x

0

) is a point where the maximum of u(x) is ahieved then either we have

u(x

0

) = 0; or

'(u(x

0

)) � 0:

Similarly for the minimum.

Proof

If (x

0

) 2 �
; then u(x

0

) = 0: If (x

0

) is in the interior of 
; then for eah

1 � i � n we have:

�u

�x

i

(x

0

) = 0

�

2

u(x

0

)

�x

2

i

� 0:

So,

'(u(x

0

)) = �u(x

0

) +

N

X

i=1

b

i

(x

0

)

�u(u

0

)

�x

i

� 0

and this proves the Theorem.
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3.1 Numerial Experiments

We start this Setion presenting two examples where we onsider boundary

value problems of the form

��u+ '(u) = h(s; t) (5)

with homogeneous Neumann boundary ondition. In both ases, the domain

is 
 = [0; 1℄� [0; 1℄ and we de�ne h(s; t) suh that a solution of the problem

is a given funtion u

�

(s; t): After disretization by entral di�erenes, (5)

beomes a nonlinear system

F (y) = 0: (6)

Example 1:

In this �rst ase we take '(u) = 10sin(u); u

�

(s; t) = �os(�s)os(�t) where

� = 0:5: Then we have to solve:

��u+ 10sin(u) = ��u

�

+ 10sin(u

�

); on [0; 1℄� [0; 1℄

�u=�n = 0 on �
:

(7)

With these we an easily visualize numerially the behavior of both meth-

ods: Newton's method and the MIM.

To apply the MIM, after all the alulation we found v

0

� �1:0923 as a

onstant sub-solution and w

0

� 1:0923 as a onstant super-solution for the

problem. We also have that an iterative onstant (� in Theorem 3.1) for the

MIM is � = 10:

>From the periodiity of sin(u), we see that adding and subtrating mul-

tiples of 2� to v

0

and w

0

we have in�nitely many onstant sub-solutions and

onstant super-solutions for the problem: v

j

and w

j

respetively. Then if this

problem has a solution, it will have in�nite solutions (u

�

j

), eah one uniquelly

determined by the orresponding pair v

j

and w

j

:

All the tests in this example were run in a SUN Ultra Creator using the

software MatLab. We used a grid with 289 points whih means 15 internal

points in eah axis and we have stopped the proesses when kF (y

k

)k

1

�

10

�6

:

The initial vetors of approximations were hosen in this way: y

0

=

(a

0

; a

0

; � � � ; a

0

)

T

where a

0

= 1:1+2C�; C = 0; 1; : : : ; 5, beause 1.1 is a super-

solution to the solution with all the omponents in the interval [�0:5; 0:5℄ and

with the other initial approximations we will obtain other solutions for the

nonlinear system.
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In order to ompare the perfomane of MIM we used the same initial

approximations for Newton's method. It is important to observe that these

vetors may not be good hoies for Newton's method sine that, in some

ases, they may not be in an appropriate neighborhood of u

�

j

. This is an

important di�erene between the two methods beause in order to apply the

MIM it is not neessary to start lose to a solution of the problem.

Table 1 gives the notation used to represent the di�erent solutions ob-

tained in the next tests. The end points of the interval represent the minimum

and the maximum values assumed by the entries of the approximate solution

found.

s

j

Interval

s

1

[�0:5; 0:5℄

s

2

[1:8421; 4:4411℄

s

3

[5:7832; 6:7832℄

s

4

[8:1253; 10:7243℄

s

5

[12:0664; 13:0664℄

s

6

[14:4085; 17:0075℄

s

7

[18:3496; 19:3496℄

s

8

[20:6917; 23:2906℄

s

9

[24:6327; 25:6327℄

s

10

[26:9748; 29:5738℄

s

11

[30:9159; 31:9159℄

Table 1: Notation for some approximate solutions to the nonlinear system.

a

0

MIM Newton

s

j

IT Time Flops s

j

IT Time Flops

1.1 s

1

6 0.3326 339591 s

1

5 1.3560 669376

1.1 + 2� s

3

6 0.3201 339591 s

3

5 1.3697 669376

1.1 + 4� s

5

6 0.3154 339591 s

5

5 1.3734 669376

1.1 + 6� s

7

6 0.3452 339591 s

7

5 1.3674 669376

1.1 + 8� s

9

6 0.3130 339591 s

9

5 1.3581 669376

1.1 + 10� s

11

6 0.3134 339591 s

11

5 1.3597 669376

Table 2: Comparative results of MIM and Newton's Methods.

Remarks

1) In the ase of Table 2, where both methods onverged to the same solu-

tions, the total iterations number of Newton's method is smaller than that
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of the MIM. But the MIM is faster beause it is heaper in terms of the om-

putational ost by iteration, onsidering the elapsed time and the number of

ops performed. Suh a di�erene is justi�ed by the fat that, in eah iter-

ation of Newton's method it is solved a ompletely new linear system while

in the MIM the matrix of oe�ients is independent of the step and so, its

fatorization has to be done just one in the whole proess.

2) The MIM requires an initial work to �nd a super and a sub-solution for

the problem and also to �nd the iterative onstant �; without them is it

impossible to apply the MIM. In this example we obtained these onstants

very easily but in some ases it may happen to be not so easy to do this job.

3) After being alulated, the onstants of the MIM represent an advantage

for this method beause they give a region where we guarantee the existene

of a solution.

We have also analysed the performane of both methods for initial ap-

proximations between two super-solutions. For this, we have hosen some

values between 1:1 and 1:1 + 2�: Table 3 presents the results obtained. The

solution alled s

0

has its entries in the interval [�13:0664;�12:0664℄ and we

have kept the same notation for the other s

j

solutions.

a

0

MIM Newton

s

j

IT Time Flops s

j

IT Time Flops

1.5 s

1

7 0.3471 367029 s

0

3 1.2520 402408

2.0 s

1

8 0.3645 394466 s

2

5 1.4212 669376

2.5 s

1

9 0.4018 421904 s

2

3 1.2198 402408

3.0 s

1

11 0.4868 476781 s

2

4 1.3470 535892

3.5 s

3

10 0.4434 449343 s

2

3 1.2294 402408

4.0 s

3

8 0.3693 394467 s

2

4 1.3527 535892

4.5 s

3

7 0.3309 367029 s

1

4 1.3479 535892

5.0 s

3

7 0.3645 367029 s

4

5 1.4031 669376

5.5 s

3

6 0.2961 339591 s

3

4 1.3126 535892

6.0 s

3

5 0.2571 312153 s

3

2 1.1332 268924

6.5 s

3

5 0.2603 312513 s

3

2 1.1117 268924

Table 3: Comparative results of MIM and Newton's Methods.

Remarks

1) Observe that for some solutions of the nonlinear system it was not pos-

sible to �nd a onvergent sequene by the MIM sine, for suh solutions, it is

not possible to �nd onstant super and sub-solutions. In Table 3 we an see,

for example, that the solution s

2

; with entries in the interval [1:8421; 4:4411℄
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deteted by Newton's method, was not found by the MIM.

2) Some initial approximations are not adequate for Newton's method be-

ause besides beeing not lose enough to a solution x

�

; they are in regions of

ill-onditioning of the Jaobian matrix. In these ases, the sequene gener-

ated by Newton's method onverged for other solutions, sometimes very far

from the expeted solution. This happens, for example, in the neighborhood

of a

0

= 1:5: Small perturbations in this value made the solutions reahed be

very distint from eah other, as we an see in Table 4.

We ran the MIM with all these inital guesses and we always obtained the

solution s

1

:

a

0

Newton

[a; b℄ IT Time Flops

1.51 [�17:0075;�14:4084℄ 5 1.4519 669376

1.53 [�23:2906;�20:6917℄ 5 1.3906 669376

1.55 [�48:4234;�45:8244℄ 4 1.2772 535892

1.57 [�1:255E + 03;�1:252E + 03℄ 4 1.2847 535892

1.59 [52:1076; 54:7066℄ 4 1.2863 535892

Table 4: Newton's Method with initial approximations lose to 1.5.

Example 2 :

In this ase we took '(u) = u

3

+au

2

+bu; with a = �3; b = 2:36110308062087

and u

�

(s; t) = �os(�s)os(�t): For small values of �; the behavior of New-

ton's method is similar to its behavior for the unidimensional ase of Setion

2. We took for � the values � = 5 and several small values whih will be

given in a next Table. Then, the problem to be solved is :

��u + u

3

+ au

2

+ bu = ��u

�

+ u

�

3

+ au

�

2

+ bu

�

; on 


�u=�n = 0 on �


(8)

where 
 = [0; 1℄� [0; 1℄:

For this example the tests were run in a SUN Ultra1 Creator, using the

software MatLab. We will now present some numerial results. All the

problems were solved with dimension 289 and we have stopped the proess

when jjF (y

k

)jj

1

< 10

�6

.

In Table 5, for eah ase we alulated a onstant sub-solution, a onstant

super-solution and also a orresponding iterative onstant � for the MIM. In

this table, a

0

is the onstant for all the entries of the initial approximation

vetor; IT is the total number of iterations performed and TIME represents

10



the CPU time in seonds. In the olumn � we present the orresponding

iterative onstant � for the MIM and n for Newton's method means that

the method did not onverge after 300 iterations and in all these ases the

sequene of the even iterations onverged to a onstant vetor with all the

entries lose or equal to 1 and the same to the sequene of odd iterations, to

1:5652. Observe also that when � = 0 the onvergene of the MIM was to

the solution u

�

(s; t) � 0:

We �nish this example showing, in Table 6, the behavior of Newton's

method for several values of � and for all of them we have started the iter-

ations with a

0

= 1 and also with a

0

= 0:95; with the same results. Nonon-

vergene is indiated by n and in all of these ases, the sequene osillated

again between values lose or equal to 1 and lose or equal to 1:5672.

� a

0

MIM Newton

� IT Time IT Time

5 �6 142 206 18.1095 6 1.8435

7 211 18.3048 7 1.8558

0.01 �0:5 7 32 2.8933 4 1.4590

1.0 45 3.9926 n {

0.045 1.0 10 67 5.9170 80 11.7094

0 1.0 67 5.8487 n {

Table 5: Behavior of Newton's Method and MIM for Example 2.

� Newton

IT Time

10

�6

n {

10

�2

n {

0:005 n {

0:002 n {

0:015 n {

0:04 n {

0:0425 n {

0:0449 62 9.2488

0:05 35 5.7022

0:09 15 2.9225

Table 6: Behavior of Newton's Method for other values of �:
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Example 3 :

So far we have worked with problems that have a variational formulation and

so they ould be solved by other methods suh as Gradient methods. In this

Example we show the performane of Newton's Method and of the MIM for

a problem with a onvetive term:



s

�u

�s

+ 

t

�u

�t

;

this problem does not have a variational formulation and so the Gradient

methods an not be used. Now we work with the following problem:

�Lu + '(u) = 0; on [0; 1℄� [0; 1℄

u(s; t) = 0 on �


(9)

where

Lu = �u� 

s

�u

�s

� 

t

�u

�t

and

'(u) = u(u� 5)(u� 10)(u� 15):

Observe that the problem has the trivial solution u

�

(s; t) � 0 and we are in-

terested in alulating non trivial ones. The numerial results are presented

in Tables 7 and 8: We used the onstant  = 0:1 and several values for 

s

; for



t

and for the initial vetors for whih all the entries are equal to a

0

� 10; a

super-solution to the MIM. These values were found after all the neessary

alulation whih gave also for the onstant of the MIM, � = 40: All the

tests were run in a Pentium 166 miroomputer, using the software MatLab.

In the next tables:

It means the number of iterations performed until onvergene;

T ime is the elapsed time until onvergene;

Sol is the maximum value assumed by the approximated solution in the grid.

We have worked with 15 internal nodes, what makes the systems with di-

mension 225: The stopping riterion was

kF (y

k

)k

1

� 10

�4

:

Nononvergene (n) means

kF (y

k

)k

1

> 10

10

:

Notie that, aording to Theorem 3:2; for any solution u

�

(s; t) we have

that

u

�

max

� 15;

12



beause '(u) > 0 for u > 15: In our experiments the vetors y

k

assume

positive large values, and this is also an indiation of nononvergene.

Newton MIM



s



t

x

0

It Time Sol It Time Sol

0.1 0.2 5 4 1.04 3.5978 19 1.86 3.5978

6 4 1.05 3.5978 19 1.87 3.5978

7 5 1.27 0.0000 19 1.87 3.5978

8 - - n 19 1.92 3.5978

9 - - n 20 2.02 3.5978

10 14 3.46 3.5978 20 2.03 3.5978

0.4 -0.6 5 4 1.10 3.5901 19 1.81 3.5901

6 4 1.10 3.5901 19 1.92 3.5901

7 5 1.26 0.0000 20 2.03 3.5901

8 - - n 20 1.92 3.5901

9 - - n 20 2.03 3.5901

10 14 3.46 3.5901 20 1.97 3.5901

0.6 -0.8 5 4 1.04 3.5822 19 1.82 3.5822

6 4 1.04 3.5822 20 1.97 3.5822

7 5 1.26 0.0000 20 1.98 3.5822

8 - - n 20 1.98 3.5822

9 - - n 20 1.92 3.5822

10 15 3.74 3.5822 21 2.04 3.5822

2 -3 5 4 1.04 3.5053 24 2.25 3.5053

6 4 1.05 3.5053 24 2.19 3.5053

7 6 1.59 0.0000 24 2.25 3.5053

8 - - n 24 2.25 3.5053

9 - - n 24 2.20 3.5053

10 18 4.51 3.5053 25 2.37 3.5053

5 -8 5 6 1.48 2.8917 52 4.72 2.5918

6 5 1.26 2.8917 52 4.73 2.5918

7 7 1.75 0.0000 52 4.73 2.5918

8 - - n 53 4.84 2.5918

9 - - n 53 4.84 2.5918

10 - - n 53 4.83 2.5918

Table 7: Behavior of Newton's Method and MIM for Example 3.

We have also heked that Newton's Method onverged to the trivial

13



solution u

�

(s; t) � 0 for every onstant initial vetor starting with a

0

2

[6:801; 7:199℄; for all the hoies of 

s

and 

t

that we have made. For all

these values, the MIM onverged to a solution whose maximum value is

3.5815.

Observe that when 

s

= 

t

= 0; we have a variational ase. We exhibit

this ase in the separate Table 8 to emphasyze this fat. Again, for a

0

= 7

the onvergene of Newton's method was to the trivial solution. Notie that,

in the variational ase, the trivial solution is uninteresting beause it is a

unstable stationary solution of an evolution equation.

Newton MIM



s



t

x

0

It Time Sol It Time Sol

0 0 5 4 0.82 3.5986 18 1.70 3.5986

6 4 0.88 3.5986 19 1.81 3.5986

7 5 1.32 0.0000 19 1.86 3.5986

8 - - n 19 1.81 3.5986

9 - - n 20 1.93 3.5986

10 14 2.80 3.5986 20 1.93 3.5986

Table 8: Example 3, variational ase.

The �nal remark in this Example is the analysis of Newton's Method for

the following initial onstant vetors for whih we an not use the theory of

the MIM: x

0

= 1; 2; 3; 4: We present in Table 9; only the ases where the

results were di�erent from the positive solution results already found for the

orresponding values of 

s

and 

t

:

Newton



s



t

x

0

It Time Sol

0 0 1 11 2.91 0.0000

0.1 0.2 1 11 2.75 0.6060

0.4 -0.6 1 - - n

0.6 -0.8 1 - - n

2 -3 1 - - n

Table 9: Newton's Method where the theory of the MIM does not apply.

Observe that in these ases, the MIM onverged to Sol = 3:5986:

Example 4 :

In this example we use the numerial results of the MIM to verify uniqueness

14



of solution. Here we solve the following problem:

��u+ '(u) = 0; on [0; 1℄� [0; 1℄

u(s; t) = 0; on �


(10)

where

'(u) = u(u� 2)(u� 3)(u� 5):

For this problem, Theorem 3.2 assures the existene of at least one posi-

tive solution, provided that

�

2

�

�'

�u

�

�

�

�

�

u=0

< �

1

;

where �

1

and �

2

are the �rst and seond eigenvalues of the Laplaian, re-

spetively. We want then to verify whether suh a solution is unique or not.

It is easily seen that, hoosing  aording to the last ondition and for k

small enough, the �rst eigenfuntion of the Laplaian,

u

1

(s; t) = ksin(�s)sin(�t)

is a sub-solution for problem (10):

Using Theorem 3.2 again, we have that u

�



� 5 is a super-solution for this

problem and we also have that every solution u

�

(s; t) is suh that

u

�

max

� 5:

The values found for  and k were:

0:6580 �  < 1:6449

and then

0 < k � 3:5:

We took  = 1:15; for whih a onstant � for the MIM is � = 35 and some

values for k; k = 0:1; 0:2; 0:3: The onlusions are the following:

1. Starting the MIM with the sub-solution u

1

(s; t); the sequenes on-

verged to a positive solution u

�

p

(s; t) whose maximum value in [0; 1℄�

[0; 1℄ is u

�

p

max

� 0:7:

2. Starting the MIM with the onstant super-solution u



(s; t) � 5 the

sequene onverged to the same solution u

�

p

(s; t) of item 1:
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Sine starting with a super-solution and with a sub-solution the onver-

gene was to the same solution, by the remarks made after Theorem 2.1, we

onlude that this problem has a unique positive solution.

This is a very interesting and speial feature of the MIM: we an use

its numerial results to onlude uniqueness (or nonuniqueness) of solution.

Notie that this analysis is a very important and not suh an easy task, in

general.

Example 5 :

The last example of this Setion shows another very important feature of the

MIM: for the problems above, the MIM is a good tool to �nd an appropriate

initial approximation for Newton's Method.

We have had used Newton's Method for problem (10) of Example 4 start-

ing with the same sub-solutions u

1

(s; t) used there and in all the ases the

sequenes onverged to the trivial solution u

�

(s; t) � 0:We also started New-

ton's Method with the onstant super-solution u



(s; t) � 5 and the method

did not onverge. So we used a ombination of the MIM and Newton's

method, that onsists of:

(i) running the MIM starting with y

0

� 5; � = 35 until kF (�y

k

)k � 10

�2

(MINIC);

(ii) using the �y

k

of (i) as initial approximation, run Newton'sMethod

(and also the MIM).(MIM/MIM for the ombination MIM and MIM and

MIM/NEW for the ombination MIM and Newton).

Table 10 shows how this ombination works. The stopping riterion for

both methods was kF (~y

k

)k

1

� 10

�6

and Sol � k~y

k

k

1

: Finally Dl means

the number of interior points in eah axis.

MINIC MIM/MIM MIM/NEW

Dl Sol It Sol It Time Sol It Time

3 0.6899 26 0.6890 35 0.17 0.6890 2 0.06

7 0.6728 28 0.6719 37 0.55 0.6719 2 0.11

9 0.6693 28 0.6684 38 0.82 0.6684 2 0.17

19 0.6641 29 0.6633 37 3.79 0.6633 2 0.88

24 0.6614 29 0.6606 37 6.37 0.6606 2 1.81

29 0.6631 29 0.6623 37 10.65 0.6623 2 13.51

Table 10: The ombination of the MIM and Newton's Method.

Looking at the last line of Table 10 we an see that, when we inrease

the number of mesh points, the ellapsed time for the MIM turns out to be

16



smaller then that of Newton's Method whih is natural to happen beause

eah Newton's iteration is muh more expensive then the MIM's iterations.

As we have pointed out, when we use the MIM, the matrix of the linear

system that we have to solve at eah step is the same.

4 Cooperative Ellipti Systems

In the ase of ellipti systems we an prove a result similar to Theorem 3.1

provided we assume that the nonlinearity satis�es a ooperative ondition.

For 2� 2 systems the problem is:

�L(x; u) + f(x; u; v) = 0 on 
; Bu = 0 on �


�M(x; v) + g(x; u; v) = 0 on 
; Bv = 0 on �


(11)

where 
 is as before, f; g : 
 � R � R :! R are given ontinuous funtions

whih are C

1

in u; v and H�older ontinuous in x and

L(x; u) =

N

X

i=1;j=1

a

ij

(x)

�

2

u

�x

i

�x

j

+

N

X

i=1

b

i

(x)

�u

�x

i

� 

0

(x)u(x)

and

M(x; v) =

N

X

i=1;j=1

~a

ij

(x)

�

2

v

�x

i

�x

j

+

N

X

i=1

~

b

i

(x)

�v

�x

i

� ~

0

(x)v(x)

are given seond order uniformly ellipti operators with suÆiently regular

real oeÆients and the boundary ondition is as in Theorem 3.1.

If we de�ne a vetor U = (u; v) then system (11) an be written as

�N(x; U) +H(x; U) = 0; on 
; BU = 0 on �
;

where N(x; U) = (L(x; u);M(x; v)), H(x; U) = (f(x; u; v); g(x; u; v)) and

BU = (Bu;Bv).

De�nition. A C

2

funtion � : 
! R� R is a sub-solution of (11) if

�N(x;�(x)) +H(x;�(x)) � 0 on 
 and B�(x) � 0 on �


The inequality holds omponentwise here.

A super-solution 	(x) is de�ned in a similar way.

17



Theorem 4.1. Suppose that �(x) and 	(x) are sub-solution and super-

solution, respetively, of (11) suh that �(x) � 	(x) for any x 2 
. Suppose

also that

�f(x; u; v)

�v

� 0 and

�g(x; u; v)

�u

� 0 for any (x; u; v) suh that

�(x) � U � 	(x). Let � > 0 be a real number suh that � + 

0

(x) > 0 ,

� + ~

0

(x) > 0 for any x in 
 and

�f(x; u; v)

�u

� �,

�g(x; u; v)

�v

� � for any

(x; U) = (x; u; v) suh that �(x) � U � 	(x).

We de�ne a sequene f�

k

(x)g in the following way: �

0

(x) = �(x) and

�

k+1

(x) is the unique solution of

�L�

k+1

(x) + ��

k+1

(x) = ��

k

(x)�H(x;�

k

(x)) x 2 


with boundary ondition B�

k+1

(x) = 0 on �
.

Similarly we de�ne another sequene f	

k

(x)g by: 	

0

(x) = 	(x) and 	

k+1

(x)

is the unique solution of

�L	

k+1

(x) + �	

k+1

(x) = � 

k

(x)�H(x;	

k

(x)) x 2 


with boundary ondition B	

k+1

(x) = 0 on �
.

Then

�(x) � �

k

(x) � �

k+1

(x) � 	

k+1

(x) � 	

k

(x) � 	(x)

for any x 2 
 and �

k

(x) and 	

k

(x) onverge to solutions U

1

(x) and U

2

(x)

of system (11) satisfying �(x) � U

1

(x) � U

2

(x) � 	(x) for any x 2 
.

Moreover, any solution U(x) of (11) suh that �(x) � U(x) � 	(x) for any

x 2 
 satis�es U

1

(x) � U(x) � U

2

(x) for any x 2 
.

Proof

The proof of Theorem 4.1 follows exatly the proof of Theorem 3.1 be-

ause under the assumptions we have made, �H(x; U) is monotone in the

region �(x) � U � 	(x).

Remark

In Theorem 4.1 we may allow a oupling also in the linear part but, in that

ase, a more ompliate Maximum Priniple is required (see [3℄).

4.1 Numerial Experiments

Among others, a large lass of examples of ooperative ellipti systems is

made of the boundary value problems of the form

��U + �(U) = H(s; t); (s; t) 2 
 (12)
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with homogeneous Dirihlet boundary onditions. We will present one of suh

examples that is the prompt-feedbak reator problem. This problem has

some similarity with various partiular mutualism models in eology, in the

sense that the presene of eah omponent ontributes to faster growth rate

of all other omponents (see [4℄). We present some numerial experiments

with the following two speies mutualism model:

��u

1

� u

1

(a� bu

1

+ u

2

) = 0;

��u

2

� u

2

(e+ fu

1

� gu

2

) = 0; on 
; (13)

u

1

= u

2

= 0 on �
:

Here a; b; ; d; e; f; g; are nonnegative onstants, and u

1

and u

2

are

the onentrations of mutualisti (ooperating) speies. So, the interesting

solutions are the positive ones.

In our �rst experiment we solved a system with a hoie for the parameters

that were taken satisfying the assumptions of the next Theorem (see also [4℄.

Let us reall that the �rst eigenvalue �

1

of the operator �� with Dirihlet

boundary ondition is simple,positive and that the eigenfuntion assoiated

to it is stritly positive on 
.

Theorem 4.2. Suppose that a and e > �

1

; (the smallest eigenvalue of the

Laplaian) that b; g are positive and ; f are nonnegative, satisfying

bg > f:

Then the boundary value problem (13) has a solution �u

1

(s; t); �u

2

(s; t) with

�u

i

(s; t) > 0; i = 1; 2 for (s; t) 2 
:

Before proving Theorem 4.2, let us prove a Lemma that will be useful for

studying uniqueness of solution of (13).

Lemma 4.1. If �

1

< a and �

1

< e and �(s; t) is the eigenfuntion assoiated

to �

1

then there is an �

0

> 0 suh that (��(s; t); ��(s; t)) is a sub-solution of

system (13) for 0 < � � �

0

.

Proof

In fat, (��(s; t); ��(s; t)) to be a sub-solution of system (13) is equivalent

to the two inequalities

��

1

�(s; t)� ��(s; t)(a� b��(s; t) + ��(s; t)) � 0
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��

1

�(s; t)� ��(s; t)(e+ f��(s; t)� g��(s; t)) � 0

whih are equivalent to

�

1

� (a� b��(s; t) + ��(s; t)) � 0

�

1

� (e + f��(s; t)� g��(s; t)) � 0

and these two inequalities are satisi�ed if � is positive and small and this

proves the lemma.

Proof of Theorem 4.2.

Under the assumptions of Theorem 4.2 and in view o Lemma 4.1, we know

that (��(s; t); ��(s; t)) is a sub-solution of system (13) for 0 < � � �

0

. More-

over, an easy alulation show that eah omponent of the solution (u

0

; v

0

)

of the linear system

a� bu + v = 0

e+ fu� gv = 0

is positive and then (u

0

; v

0

) is a onstant super-solution of (13) and in view

of Theorem 4.1, Theorem 4.2 is proved.

For a = 25; b = 5;  = 3; e = 22; f = 2; g = 6; we used both Newton's

Method and the MIM, starting with the onstant super-solution (u

0

; v

0

) =

(9; 6:666:::): For these values the onstant � for the MIM was found to be � =

65: Stopping the proesses when kF (u

k

; v

k

)k

1

� 10

�4

we veri�ed onvergene

of both methods to a positive solution with (u

max

; v

max

) � (2:626; 1:620).

The last experiment we have done was to use again numerial results of

the MIM to help the identi�ation of uniqueness of solution of this kind of

Cooperative Ellipti Systems.

Next we analyse uniqueness of positive solution of system (13) and the

the following a priori estimate is important.

Theorem 4.3. Suppose  < b, f < g and let M = max(

a

b�

;

e

g�f

). If

(u(s; t); v(s; t)) is a positive solution of system then for any (s; t) 2 
 we

have u(s; t) �M and v(s; t) �M .

Proof

Let M

1

> 0 and M

2

> 0 be the maximum of u(s; t) and v(s; t), respe-

tively, and suppose M

2

� M

1

. If we denote by (s

0

; t

0

) the point in the
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interior of 
 where u(s

0

; t

0

) = M

1

then �u(s

0

; t

0

) � 0 and then from the

�rst equation of (13) we see that

a� bu(s

0

; t

0

) + v(s

0

; t

0

) � 0

and, sine v(s

0

; t

0

) � M

2

� M

1

this las inequality gives M

1

�

a

b�

. In a

ompletely similar way, we show that if M

1

� M

2

then M

2

�

e

g�f

and this

proves the Theorem 4.3.

Lemma 4.1 and Theorem 4.3 an be used to verify numerially whether

the positive solution of system (13) is unique or not. In fat, let (u

0

; v

0

) be

a onstant positive super-solution suh that M � u

0

and M � v

0

, where M

is the onstant given by Theorem 4.3. Then, aording to Theorem 4.3 any

positive solution (u(s; t); v(s; t)) has to satisfy u(s; t) � u

0

and v(s; t) � v

0

for any (s; t) 2 
. Moreover, for any suh a solution (u(s; t); v(s; t)) there

is an � > 0 suh that (��(s; t); ��(s; t)) � (u(s; t); v(s; t)). So, in view of

Theorem 4.1, system (13) has a unique positive solution if and only if the

two solutions we get starting at (u

0

; v

0

) and (��(s; t); ��(s; t)) with � small

enough are equal.

For the value of the parameters hosen above we haveM = 12:5, �

0

= 2:5,

(u

0

; v

0

) = (13; 13) and the onstant � an be taken as 65. In that ase our

numerial experiments omprove uniqueness of positive solution.

5 Conlusions

In this work we have presented some theoretial results and we have proven

others for the MIM; we also have made several numerial experiments with

this method, omparing it with Newton's method whose features are very well

known [2℄. Basially Newton's method an be used to solve any equation but

in order to guarantee its onvergene, we have to start at a point whih is

\lose enough" to a solution and, sometimes, this may be diÆult to aom-

plish beause we do not know how to guess where the solution (or solutions)

is. The results proved and the omparisons that we made here lead us to

onlude that the MIM has some limitations and also several good features.

These fats guarantee that both, the MIM and Newton's Method have their

own merit. We think that the following points deserve to be emphasized:

(i) In order to apply the MIM we have to be able to �nd a sub-solution and

a super-solution (this is not always easy) and the onstant � (this is easy).

So, in order to apply the MIM we always need an extra initial work. But

one we have veri�ed all these onditions, we an guarantee the existene of a
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solution and the onvergene of the method, even if we are not lose enough

to a solution in the "Newton's sense".

(ii) The MIM works if a maximum priniple is available. For instane, in

the ase of systems, this requires it to be ooperative. Of ourse this exludes

many interesting problems.

(iii) In some ases, the MIM an be used to guarantee uniqueness (or

nonuniqueness) of solution for ertain type of problems.

(iv) Computationally speaking, the MIM is very heap and so, even if we

start at an approximation of the solution that is reasonable for both methods,

its performane an be better than Newton's, mainly in the ase of thin grids.

(v) In some ases, Newton's method an �nd some solutions that an not

be detet (and found) by the MIM.

Our �nal remark is that several initial guesses that are good initial ap-

proximations for the MIM are very bad for Newton's method, either beause

they are far from a solution or beause the Jaobian matrix is lose to sin-

gular at these points. So, we found that another feature of the MIM is that

it an be used to �nd a good initial guess for Newton's method whih has

been done in Example 5.
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