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Abstract

The multifocus moveout of Gelchinsky and coworkers is a powerful tool for stacking multi-

coveraged data in arbitrary con�gurations. Based on general ray theoretical assumptions and on

attractively simple geometrical considerations, the multifocus moveout is designed to express the

traveltimes of neighboring rays arbitrarily located around a �xed central, primary re
ected or even

di�racted, ray. In this work, the basic derivations and results concerning the multifocus approach

are reviewed. A higher-order multifocus moveout expression that generalizes the corresponding

one of Gelchinsky is obtained from slight modi�cations of the original derivation. An alternative

form of the obtained multifocus expression that is best suited for numerical implementation is

also provided. By means of a simple numerical experiment, we also coment on the accuracy of the

multifocus traveltime approximations.

Introduction

Accurate and reliable traveltime moveout expressions are of prime importance in seismic pro-

cessing and imaging because of their use in producing stacked sections. The most famous moveout

expression is the normal and dip moveout (NMO/DMO) designed to describe the traveltime of

primary re
ections of common-midpoint (CMP) data. In many seismically relevant situations, the

NMO/DMO process has been able to produce stacked sections with signi�cant reduction of noise,

also attenuating multiples and other undesirable events. Although CMP stacking under NMO/DMO
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is a routine step in practically all seismic processing sequences in the oil industry, also a number

of shortcomings of the method have been recognized. Being designed for gently dipping re
ectors

and small lateral velocity variations in the overburden, and moreover, for not too large o�sets, the

NMO/DMO moveout expression is no longer accurate when these conditions are severely violated.

A second shortcoming is its dependence on the CMP con�guration. In modern acquisition surveys,

CMP data often represent only a fraction of the acquired data. As a consequence, moveout expres-

sions that use arbitrary locations of source and receiver pairs around a �xed central point (that

may even be a CMP point) are able to make a much better use of the available date and to pro�t

from the signi�cantly greater redundancy that is o�ered.

Several traveltime moveout formulas already exist in the literature that describe traveltimes

along neighboring rays of a �xed central zero-o�set (or normal) ray, with arbitrary locations of the

source and receiver around the central point. These are the classical parabolic/hyperbolic moveouts

(see, e.g., Ursin, 1982;

�

Cerven�y, 1985; Schleicher et al., 1993), the optical stack moveout of de

Baz�elaire (1988), the multifocus moveout of Gelchinsky (1988) and the recent common re
ection

surface (CRS)moveout of H�ocht (1998). All the above traveltime moveout formulas are coincident in

the second-order approximation of source and receiver o�sets. An actual and objective comparison

between them is not an easy task and remains a challenging problem. With the exception of the

classical hyperbolic and parabolic moveouts, all the other formulas are, up to now, two-dimensional,

which means that sources and receivers are located on a single seismic line and the medium does

not vary in the out-of-plane direction.

The common goal of all these traveltime formulas is to provide stacking surfaces along which

the multicoverage data can be optimally stacked in order to obtain the best possible simulated

zero-o�set section. Like in a standard velocity analysis by NMO stack, the parameters de�ning

the traveltime surface allow for inversion for the medium velocity that may now, however, vary

laterally.

In this note, we concentrate on the geometrically appealling multifocus moveout of Gelchinsky

and coworkers. We feel it has not attracted the attention it deserves in the seismic literature

and, perhaps, a great deal of its potential has not yet been su�ciently exploited. By reviewing

the multifocus original derivations and results, as provided in several publications since the �rst

presentation of Gelchinsky (1988) and summarized in Gelchinsky et al. (1997), we introduce a new

expression of Gelchinsky's multifocus parameter that is not only slightly more general but also
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implementationally more stable. Substitution into the original multifocus moveout formula leads to

a higher-order approximation expression in terms of source and receiver o�sets. The new parameter

reduces to its previous counterpart by natural approximations. As a second contribution of the

present analysis, we introduce a modi�cation in the de�nition of Gelchinsky's asymmetry parameter,

so as to have it dimensionless. Moreover, working with the reciprocal of the multifocus parameter

leads to an alternative, mathematically equivalent moveout formula, which is more amenable for

numerical implementation. By means of a simple illustrative numerical experiment, we comment

on the performance of the multifocus traveltime formulas.

Gelchinsky's multifocus moveout

We assume that the subsurface can be described by a 2-D laterally inhomogeneous isotropic

layered earth model. In this model, we further assume that the kinematics of body waves is well

described by zero-order ray theory (see, e.g.,

�

Cerven�y, 1985). We use Cartesian coordinates (x; z)

and suppose that a dense multi-coverage seismic experiment has been carried out on a single seismic

line along the x-axis. This implies that each point on the seismic line is surrounded by a set of shot-

receiver pairs (within a certain range of o�sets). The discreteness of real-world data may require

trace interpolation to replace missing traces.

Referring to Figure 1, we consider a �xed target re
ector � in depth, as well as a �xed

central point X

0

on the seismic line, considered to be the location of a coincident source-receiver

pair S

0

= G

0

= X

0

. Also shown in Figure 1 is the two-way zero-o�set re
ection ray, called from

now on the central ray. It hits the re
ector at point R

0

, known as the normal-incident-point (NIP).

Figure 1 �nally shows a pair of source and receiver points (S;G) together with its corresponding

primary re
ected ray SRG, relative to the target re
ector �. The source and receiver pair (S;G)

will be considered a generic description of all source-receiver pairs in the vicinity of the central

point. We note incidently that the central ray, as well as the re
ection ray SRG focus at point P

in depth. This fact will be of importance later on. We use the horizontal coordinates x

0

, x

S

and

x

G

to specify the location of the central point X

0

, the source S and the receiver G, respectively.

The relative distances from a given source-receiver pair (S;G) to the �xed central point X

0

,

�x

S

= x

S

� x

0

and �x

G

= x

G

� x

0

; (1)

are called the source and receiver o�sets, respectively.
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Referring again to Figure 1, it is our aim to �nd an approximation of the traveltime of the

re
ection ray SRG in the vicinity of the central, zero-o�set re
ection ray X

0

R

0

X

0

. We assume

that the traveltime of the latter, as well as the medium velocity at the central point are given by

the quantities T

0

and v

0

, respectively. Suppose, as depicted in Figure 1, that the two rays SRG

and X

0

R

0

X

0

cross at the unknown point P . Without loss of generality, we assume P to be on the

source ray segment SR. The multifocus approach makes use of a hypothetical wave that originates

at point P . This hypothetical wave is depicted in Figure 1 by two of its wavefronts. One, denoted by

�

S

, contains X

0

and has traveled up from P to the source point S. The other, denoted by �

G

, also

contains X

0

and has traveled from P down to the re
ector � and from there towards the receiver

point G. We denote the curvatures of these two wavefronts by K

S

and K

G

, respectively. Note that

a true wave originating at S with an initial curvature of �K

S

focuses at P and emerges at G with

curvature K

G

. We will refer to this wave as the focusing wave.

By construction, the traveltime of the focusing wave from the wavefront �

S

to the wavefront

�

G

, is the given zero-o�set traveltime T

0

. As a consequence, we can express the traveltime for the

ray SRG in the form

T = T

0

+�T

S

+�T

G

; (2)

where �T

S

and �T

G

are the multifocus source and receiver moveouts. Let the medium velocity in

the vicinity of the central point X

0

be constant and denoted by v

0

. Under the assumption that the

wavefronts �

S

and �

G

can be approximated by circles with radii R

S

= 1=K

S

and R

G

= 1=K

G

and

centers C

S

and C

G

, respectively, it can be shown by simple geometrical considerations that the

above multifocus moveouts can be determined. In Figure 2, the situation is explained at the source

point S. An analogous construction is valid at the receiver point G. The multifocus moveout �T

S

is the traveltime from S to S

0

, assuming the segment SS

0

to be a straight line. Within the triangle

d

SC

S

X

0

we have by the law of cosines that

SC

S

2

= SX

0

2

+ C

S

X

0

2

� 2SX

0

C

S

X

0

cos(

�

2

+ �

0

) ; (3)

where �

0

denotes the emergence angle of the central ray. The sign of �

0

is de�ned as negative when

the central ray impinges from the right as in Figure 2. Identifying SX

0

= �x

S

, C

S

S

0

= C

S

X

0

=

R

S

= 1=K

S

, and SC

S

= R

S

+ SS

0

, solving equation (3) for SS

0

, and dividing by v

0

, we arrive at

�T

S

=

1

v

0

K

S

�

q

1 + 2K

S

sin�

0

�x

S

+ (K

S

�x

S

)

2

� 1

�

; (4)
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where we have chosen the sign of the square root according to the physical condition that �T

S

has

to be positive for positive curvature K

S

. The same formula with all indices S changed to G holds

for �T

G

.

The two fundamental eigenwaves

As shown by Gelchinsky et al. (1997) using basic dynamic ray tracing arguments (see Ap-

pendix), the curvatures K

S

= 1=R

S

and K

G

= 1=R

G

of the down- and upgoing wavefronts of the

hypothetical focusing wave satisfy the relationships

K

S

=

K

NIP

� �K

N

1� �

and K

G

=

K

NIP

+ �K

N

1 + �

: (5)

In the above formula, K

N

and K

NIP

are the curvatures of the classical normal (N) wave and the

normal-incidence-point (NIP ) wave introduced by Hubral (1983) in connection with true-amplitude

migration. Moreover, � is a modi�ed version of the focusing parameter of Gelchinsky et al. (1997).

It is de�ned as the reciprocal of the original focusing parameter 
 introduced by Gelchinsky, i.e.,

� = 1=
. The mentioned N and NIP waves are two hypothetical waves de�ned as follows: (a) The

N wave starts as a wavefront that coincides with the target re
ector �, propagates upwards with

half the medium velocity and arrives at the central point X

0

at time T

0

. (b) The NIP wave starts

at the target re
ector � as a point source at the NIP point R

0

, propagates upwards with half the

medium velocity and arrives at the central pointX

0

also at time T

0

. As is well known (Hubral, 1983)

both these waves are eigenwaves in the following sense: If their wavefronts propagate downwards,

re
ect at � and propagate upwards to the surface, their arriving wavefronts at the central point X

0

coincide with their corresponding initial wavefronts. Moreover, the relative geometrical-spreading

factors of the N and NIP waves are plus or minus unity at X

0

, respectively.

The modi�ed focusing parameter � controls the location along the central ray (or along its

continuation) of the focusing point P which is determined by the central ray and the neighboring

re
ecting ray SRG. In other words, for neighboring re
ecting rays, we have a one-to-one correspon-

dence between the value of the focusing parameter and the location of the focusing point. This is

the reason why the present approximation formulas are called multifocus. Let us see how this relates

to the N and NIP waves introduced above. Up to second-order approximation of the traveltime

with respect to the source and receiver o�sets, the N wave can be considered as a wave focusing at

the center of curvature of the re
ector, because neighboring rays to the central ray are also normal
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rays. This wave is described by setting the focusing parameter � = �

N

= 1. Substitution into

equation (5) yields K

S

= K

G

= K

N

as expected. In the same approximation, the NIP wave can

be considered as a wave focusing at the NIP point R

0

. The focusing parameter for this wave is

� = �

NIP

= 0. We �nd from equation (5), K

S

= K

G

= K

NIP

, as required. With the introduction

of the modi�ed focusing parameter �, the physical interpretation for the N and NIP waves are

much more appealing. For instance, one can directly observe from the above that for positive �,

the focus point P falls below the re
ector { or, in other words, onto the upgoing ray segment RG

{ and for negative �, P is above the re
ector or on the segment SR.

For the relationship between the multifocus parameter 
 and any actual source and receiver

o�sets �x

S

and �x

G

, Gelchinsky et al. (1997) obtained the approximation [see their eq. (17), here

corrected for a wrong sign and a factor 2]


 =

�x

G

��x

S

�x

G

+�x

S

�K

NIP

sin�

0

�x

G

�x

S

: (6)

This formula is valid to second-order approximation in �x

S

and �x

G

. The corresponding �rst-order

approximation is given by the simpler expression


 = 


0

=

�x

G

��x

S

�x

G

+�x

S

: (7)

The above formula has been also obtained by Tygel et al. (1997) by an independent method, but

following the same multifocusing principles.

Alternative multifocus expressions

In this section, we introduce some alternative de�nitions and expressions that relate to the

multifocus moveout. The main objective of the new formulas is to have them in a most accurate

and useful form, especially for direct numerical implementation. The obtained results followed

upon slight modi�cations of the derivations of the original multifocus expressions, as presented in

Gelchisnky et al. (1997).
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The modi�ed focusing parameter

The alternative multifocus moveout expression to be presented below will be given in terms

of the modi�ed focusing parameter, � = 1=
. As shown in the Appendix, we �nd for the modi�ed

focusing parameter the expression

� = �

0

+

�

2

(1� �

2

0

) ; (8)

where �

0

is the reciprocal of the zero-order approximation of the original multifocus parameter (see

equation (7))

�

0

=

1




0

=

�x

G

+�x

S

�x

G

��x

S

: (9)

Also, � is given by

� = �(1 + �) ; (10)

where � is the modi�ed asymmetry parameter given by

� =

1

2

(�x

G

��x

S

)K

NIP

sin�

0

: (11)

The modi�ed asymmetry parameter � de�ned above is nothing else than a dimensionless counter-

part of the original asymmetry parameter � = K

NIP

sin�

0

introduced by Gelchinsky (1988) in the

description of the Common Re
ection Element (CRE) Method. The asymmetry parameter plays a

signi�cant role in the selection of source-receiver pairs for which the corresponding re
ection rays

re
ect on a single point. The modi�cation of the asymmetry parameter deserves an explanation.

In the derivation of the formula for the traveltime, we have to perform some Taylor expansions

for small values of the asymmetry parameter. Therefore, it is necessary to have it dimensionless in

order to have a well-de�ned meaning for \small".

Reduction to previous formulas.|We consider the approximation of the modi�ed focusing

parameter � when the modi�ed asymmetry parameter � becomes small. Comparing formulas (7)

and (6) with the new approximation (8), we readily recognize that the former ones are the zero-order

(� = 0) and �rst-order (� = �) approximations, respectively, of the latter.
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General multifocus formula

To present the multifocus traveltime expression suitable for numerical implementation, we

start by rewriting formula (4) for the multifocus moveout �T

j

as

�T

j

=

�x

j

v

0

k

j

h

q

1 + 2k

j

sin�

0

+ k

2

j

� 1

i

; j = S;G ; (12)

where we have introduced the dimensioneless curvatures

k

j

= �x

j

K

j

; j = S;G : (13)

The proposed alternative, mathematically equivalent multifocus traveltime expression (compare

with equations (2) and (4)) is

T = T

0

+

1

v

0

[M

S

�x

S

+M

G

�x

G

] ; (14)

where

M

j

=

k

j

+ 2 sin�

0

1 +

q

1 + k

j

(k

j

+ 2 sin�

0

)

; (15)

and

k

j

=

�x

G

��x

S

2� �(�

0

� 1)

[�K

N

�K

NIP

] : (16)

Here, the upper sign holds for j = S and the lower one for j = G. In zero-order approximation

(� = 0) the above expression (16) for k

j

reduces to

k

j

=

(�x

G

+�x

S

)

2

K

N

�

(�x

G

��x

S

)

2

K

NIP

: (17)

The motivation behind the above formulas is that in numerical computations dimensionless quan-

tities and large positive denominators are welcome, in order to prevent for over
ow or under
ow

problems. In particular, for K

j

� 0 the above expression is more stable than the corresponding

original multifocus formulas (2) to (4).

Numerical illustration

In this section, we evaluate the quality of the above traveltime approximations by means of a

simple numerical example. As a �rst numerical test we study their behaviour for the simple earth

model depicted in Figure 3. It consists of two acoustic homogeneous media separated by a smooth
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interface. The velocities above the re
ector is a constant v

0

=4 km/s. The re
ector consists of a

straight line on the left side, a circular element in the center, and an element with varying curvature

on the right side. We consider three di�erent central points at X

0

= �1750 m, 400 m, and 1650 m,

indicated by vertical bars.

Figure 4a shows the true re
ection traveltime surface in the vicinity of X

0

= �1750 m,

together with its approximations by the above formulas, as a function of midpoint and half-o�set.

For reasons of comparison, we also include the hyperbolic traveltime approximation (Tygel et al.,

1997), given by

T

2

=

�

T

0

+

sin�

0

v

0

(�x

S

+�x

G

)

�

2

+

T

0

cos

2

�

0

2v

0

�

K

N

(�x

S

+�x

G

)

2

+K

NIP

(�x

G

��x

S

)

2

�

: (18)

Note that apart from the right-hand side of Figure 4a, all traveltime surfaces seem to coincide

perfectly. Figure 4b shows the relative errors of the di�erent approximations. Since it is hard to

appreciate the results in Figure 4, we show two cross cuts through Figure 4b along the half-o�set

axis at midpoints �1750 m (marked by a cross), i.e., at the chosen central point, and at �1350 m

(marked by an asterisk), i.e., 400 m to the right of the central point. These cross cuts are shown in

the top left and top right graphs of Figure 5.

The hyperbolic traveltime formula (18) is exact for a planar dipping re
ector, which leads to

a zero error in the top left graph of Figure 5. Observe that in the top right graph the error deviates

from zero for half-o�sets larger than 600 m, because the re
ection point is already on the circular

part of the re
ector. As expected, the second-order approximation is better than that of the �rst

order. Interestingly enough, however, the multifocus traveltime formula (14) shows the best �t for

zero order, i.e., for � = 0.

The corresponding cross plots for the central points X

0

= 400 m and X

0

= 1650 m are

shown in the center and bottom parts of Figure 5, respectively. The left graph in each line shows

the results in the CMP section at the respective central point, and the right graph shows those of

the CMP section 400 m to the right, i.e., at 800 m and 2050 m, respectively. We recognize that

on the circular part of the re
ector the zero-order multifocus traveltime approximation yields the

least error. On the most realistic part of the re
ector, where the curvature varies, it is not possible

to decide which approximation is the best. Their behaviour depends on the local properties of the
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medium.

In our experiments, the zero-order multifocus traveltime approximation gave consistentely

better results than the higher-order approximations. Although a more extensive analysis would

have to con�rm this observation for more complex media, our experience so far indicates that the

zero-order multifocus and the hyperbolic formulas provide the best traveltime approximations.

Additional experiments with a constant velocity gradient have shown similar results, and,

hence, have not been included in this paper. In conclusion, outside a certain validity region, where

all approximations yield satisfactory results, it cannot be said from our experiments which ap-

proximation generally represents the best choice. It seems to us that the choice is strongly model

dependent. The actual dependence is still a topic of open research.

Conclusions

We have taken a closer look at the derivations and expressions for the multifocus moveout as

elaborated in the last ten years by Gelchinsky and his coworkers and summarized in Gelchinsky et

al. (1997). The original derivations were reviewed so as to make them more accessible to a broader

audience and to put them into best implementable form. In the process, we obtained a slightly

more general multifocus moveout formula that reduces to the original ones when approximations for

small source and receiver o�sets are taken. We also introduced some modi�cations in the original

asymmetry and multifocus parameters of Gelchinsky with the aim of having the �nal formulas

more amenable to numerical implementation. At this stage, we make no claims the alternative

formulas being better approximations than the original ones. An evaluation of which formula is

more accurate seems to depend on the model. In our opinion, the present study should contribute

to a better understanding of the fundamental as well as geometrically appealling and attractive

multifocus idea, which deserves a better recognition in the seismic literature. As a �nal observation,

we mention that a multifocus moveout formula in three-dimensions is still not available. This is a

topic of ongoing research.
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APPENDIX

Multifocus parameter

Wavefront curvatures

Let us �rst show how equations (5) follow from standard ray-theoretical arguments. This

derivation follows closely the one provided by Gelchinsky et al. (1997) using the basic concepts of

ray theory. For the terminology and results to be used below, the reader is referred to

�

Cerven�y

(1985).

We start by considering a selected planar ray path in a two-dimensional isotropic model. We

assume that the ray is parameterized by the arclength s. Points in the vicinity of this central ray

will be described in ray-centered coordinates (s; q), in which q is the transverse coordinate along

the ray. The dynamic description of this ray is provided by the scalar quantities P = P (s) and

Q = Q(s) computed along the ray, which satisfy the dynamic ray tracing system

d

ds

2

6

4

P

Q

3

7

5

=

2

6

4

0 �

v

qq

v

v 0

3

7

5

2

6

4

P

Q

3

7

5

(A-1)

Here, v

qq

= v

qq

(s) denotes the second derivative of the medium velocity with respect to the trans-

verse coordinate q, evaluated at the point of the ray determined by s. As well known, the quantity

Q = Q(s) is the square of the point-source, relative geometrical spreading along the ray.

The central ray under consideration is the zero-o�set primary re
ection ray introduced in

the text (see Figure 1). This ray starts and ends at the central point X

0

. For de�nitness, the

(coincident) source and receiver points will be parametrized by s = 0 and s = `, respectively. We

have, of course, that v(0) = v(`) = v

0

.

In terms of quantities P (s) and Q(s), the wavefront curvature K(s) along the ray can be

expressed by

K(s) = v(s)

P (s)

Q(s)

: (A-2)
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From general properties of linear systems, the general solution of the dynamic ray system

(A-1) can be written as a linear combination

2

6

4

P

Q

3

7

5

= a

2

6

4

P

1

Q

1

3

7

5

+ b

2

6

4

P

2

Q

2

3

7

5

; (A-3)

of two independent, arbitrarily �xed solutions (P

1

; Q

1

) and (P

2

; Q

2

), a and b being constants. Each

basic solution pair (P

i

(s); Q

i

(s)) (i = 1; 2) de�nes an elementary wave that propagates in the

vicinity of the central ray (

�

Cerven�y, 1985). It turns out that, within the validity of the paraxial ray

theory, any elementary wave that propagates in the vicinity of the central ray and is of the same

type as the elementary wave propagating along that ray is described by a solution pair (P (s); Q(s))

of the form (A-3). Using equation (A-3) we can rewrite equation (A-2) for the curvature at each

point of the ray as

K(s) =

q(s)K

1

(s) +K

2

(s)

1 + q(s)

; (A-4)

where

K

i

(s) = v(s)

P

i

(s)

Q

i

(s)

; i = 1; 2 and q(s) =

a

b

Q

1

(s)

Q

2

(s)

: (A-5)

Let us now consider the particular focusing wave that starts at S with wavefront curvature

K(0) = �K

S

and emerges at G with wavefront curvature K(`) = K

G

(see Figure 1). From equation

(A-4) we �nd

K

S

= �K(0) = �

q(0)K

1

(0) +K

2

(0)

1 + q(0)

(A-6)

and

K

G

= K(`) =

q(`)K

1

(`) +K

2

(`)

1 + q(`)

; (A-7)

in which

q(0) =

a

b

Q

1

(0)

Q

2

(0)

and q(`) =

a

b

Q

1

(`)

Q

2

(`)

: (A-8)

As a natural choice for the basic solutions, we select the pairs (P

N

; Q

N

) and (P

NIP

; Q

NIP

) that

correspond to the N and NIP eigenwaves introduced by Hubral (1983).

These very special elementary waves are characterized by the following two properties:

1. Both waves start and end at the central point X

0

, their �nal wavefronts being coincident

with the respective initial ones. Because of the opposite direction of propagation at the initial

and endpoints, each eigenwave has curvatures of equal modulus but opposite signs at the

coincident source and receiver points;

13



2. The relative geometrical-spreading factors of the N and NIP waves at the end point X

0

are

plus or minus one, respectively.

For a more detailed description and application of the N and NIP eigenwaves, the reader is

referred to Hubral (1983). The above-described properties of the N and NIP eigenwaves translate

mathematically into the relationships

K

N

(`) = v(`)

P

N

(`)

Q

N

(`)

= � v(0)

P

N

(0)

Q

N

(0)

= � K

N

(0) ; (A-9)

and

Q

N

(`)

Q

N

(0)

= 1 ; (A-10)

as well as

K

NIP

(`) = v(`)

P

NIP

(`)

Q

NIP

(`)

= � v(0)

P

NIP

(0)

Q

NIP

(0)

= � K

NIP

(0) ; (A-11)

and

Q

NIP

(`)

Q

NIP

(0)

= �1 : (A-12)

In accordance with equations (A-9) and (A-11), we introduce the notations

K

N

= K

N

(`) = �K

N

(0) and K

NIP

= K

NIP

(`) = �K

NIP

(0) : (A-13)

In accordance with equations (A-10) and (A-12) inserted into equation (A-8), we also introduce

the modi�ed focusing parameter,

� = q(`) =

a

b

Q

N

(`)

Q

NIP

(`)

= �

a

b

Q

N

(0)

Q

NIP

(0)

= � q(0) : (A-14)

Substituting notations (A-13) and (A-14) into the curvature equations (A-6) and (A-7), we �nd

the following expressions for the source and receiver wavefront curvatures of the focusing wave

K

S

= �K(0) =

K

NIP

� �K

N

1� �

and K

G

= K(`) =

K

NIP

+ �K

N

1 + �

: (A-15)

The multifocus condition

The condition that an elementary wave traveling in the vicinity of the central ray focuses at

a point P along the ray (see Figure 1) can be very simply translated into mathematical terms as

the multifocus condition (Gelchinsky et al., 1997)

d�

G

d�

S

=

Q

G

Q

S

: (A-16)
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Here, d�

S

and d�

G

are the arc elements of the wavefront at the source and receiver, respectively.

The above condition follows from the de�nition of the dynamical quantity Q(s) as the square of the

relative geometrical spreading computed at the point of the ray speci�ed by s for a point source

at the focus point P . The consideration of the relative spreadings at the initial and end points of

the central ray relative to the same point source at the focusing point P , leads after some simple

algebra to equation (A-16). We now observe that the above ratio between the Q variables at source

and receiver can be readily computed as

Q

G

Q

S

�

Q(`)

Q(0)

=

aQ

N

(`) + bQ

NIP

(`)

aQ

N

(0) + bQ

NIP

(0)

=

aQ

N

+ bQ

NIP

aQ

N

� bQ

NIP

=

�+ 1

�� 1

: (A-17)

As a consequence, the multifocus condition takes the form

d�

G

d�

S

=

�+ 1

�� 1

: (A-18)

From geometrical considerations in the in�nitesimal triangle SX

0

S

0

(see Figure 2), we have

the relationship

dx

S

d�

S

=

1

cos�

S

: (A-19)

Substituting this expression and the corresponding equation for dx

G

=d�

G

into equation (A-18) we

obtain

dx

G

dx

S

=

�+ 1

�� 1

�

cos �

S

cos �

G

: (A-20)

The above di�erential equation cannot be solved exactly. Therefore, we will approximate the solu-

tion by its Taylor series up to the second-order, i.e.,

�x

G

=

dx

G

dx

S

�

�

�

�

x

0

�x

S

+

1

2

d

2

x

G

dx

2

S

�

�

�

�

�

x

0

�x

2

S

; (A-21)

where he second coe�cient can be determined by the derivative of equation (A-20). Thus, we need

to determine the derivatives of cos�

S

and cos �

G

with respect to x

S

. Again from Figure 2 we see

that

cos �

S

=

R

S

L

S

cos �

0

; (A-22)

where L

S

= SC

S

. Therefore, the derivative with respect to x

S

is

d

dx

S

[cos �

S

] = �

cos �

S

L

S

dL

S

dx

S

: (A-23)

Using that

dL

S

dx

S

=

dSS

0

dx

S

= � sin�

S

; (A-24)
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we �nd

d

dx

S

[cos �

S

] =

sin�

S

cos �

S

L

S

: (A-25)

An analogous equation holds for d cos �

G

=dx

G

. Moreover,

d

dx

S

[cos �

G

] =

d

dx

G

[cos �

G

] �

dx

G

dx

S

=

sin�

G

cos �

S

L

G

�

� + 1

�� 1

: (A-26)

where we have used equation (A-20). The above results readily lead to the relation

d

dx

S

�

cos �

S

cos �

G

�

=

sin�

S

L

S

�

cos �

S

cos �

G

�

sin�

G

L

G

�

�

cos �

S

cos �

G

�

2

�

� + 1

�� 1

: (A-27)

Computing the above expression on the central ray, i.e., �

S

= �

G

= �

0

as well as L

S

= R

S

= 1=K

S

and L

G

= R

G

= 1=K

G

, we obtain

d

dx

S

�

cos�

S

cos �

G

�

=

2K

NIP

sin�

0

1� �

: (A-28)

Hence, in second-order approximation, the solution (A-21) of equation (A-20) reads

�x

G

=

�+ 1

�� 1

�x

S

�

1 +�x

S

K

NIP

sin�

0

1� �

�

: (A-29)

This equation describes the relationship between the source and receiver locations of all rays that

cut the central ray at the same point P . Since K

NIP

and �

0

are parameters of the chosen central

ray, the relation between �x

S

and �x

G

for a given focus point P is solely determined by the value

of �.

Conversely, equation (A-29) can be used to determine the value of � for any given ray with

source at S and receiver at G. Solving equation (A-29) for � we �nd

� = �

0

+ �

�x

S

�x

G

��x

S

(A-30)

where �

0

is given by equation (9) in the text and

� =

q

(1 + ��x

S

=2)

2

� 2��x

G

� (1 + ��x

S

=2) : (A-31)

Here, � is Gelchinsky's asymmetry paramter, i.e.,

� = K

NIP

sin�

0

: (A-32)

Equation (A-30) is, in fact valid, up to second-order only. Thus, for consistency we have to replace

equation (A-31) by its second-order Taylor series. We obtain

� = ��x

G

�

�

1 + �

�x

G

��x

S

2

�

= ��(1 + �)

2�x

G

�x

G

��x

S

; (A-33)
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where we have introduced the modi�ed asymmetry parameter

� = �

�x

G

��x

S

2

: (A-34)

Substituting expression (A-33) into formula (A-30), our �nal result for the multifocus parameter �

is equation (8) in the text, namely

� = �

0

+

�

2

(1 + �) (1� �

2

0

) : (A-35)
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Figure 1: Shown are the central ray X

0

R

0

X

0

and a pair of source and receiver points (S;G)

together with its corresponding primary re
ected ray SRG, relative to the target re
ector �. The

central ray and the re
ection ray focus at point P in depth. Also depicted are two wavefronts of the

focusing wave. One, denoted by �

S

, contains X

0

and has traveled up from P to the source point S.

The other, denoted by �

G

, also contains X

0

and has traveled from P down to the re
ector � and

from there towards the receiver point G. The emergence angle of the central ray is denoted by �

0

.
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. For details see text.
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Figure 3: Earth model for the numerical experiment. Indicated are the normal rays and

three central points at X

0

= �1750 m, 400 m and 1650 m.
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Figure 4: (a) Comparison of approximate and exact traveltime surfaces as functions of

midpoint and half-o�set. (b) Relative error.
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Figure 5: Relative errors of traveltime approximations. Top: Simulation for X

0

= �1750 m;

left: CMP at X

0

, right: CMP at X

0

+400 m. Center: Simulation for X

0

= 400 m; left: CMP at X

0

,

right: CMP at X

0

+400 m. Bottom: Simulation for X

0

= 1650 m; left: CMP at X

0

, right: CMP at

X

0

+ 400 m.
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