# A family of maximal noncontrollable Lie wedges with empty interior 

Luiz A. B. San Martin*<br>Instituto de Matemática<br>Universidade Estadual de Campinas<br>Cx.Postal 6065<br>13081-970 Campinas SP, Brasil


#### Abstract

Let $S_{k}$ be the semigroup of matrices in $\mathrm{Sl}(n, \mathbb{R})$ having non-negative $k$ minors. Its Lie wedge $\mathcal{L}\left(S_{k}\right)$ generates $\mathfrak{s l}(n, \mathbb{R})$, is noncontrollable, and has empty interior if $1<k<n-1$. Moreover, $\mathcal{L}\left(S_{k}\right)$ is maximal if $k$ and $n$ are even.


Let $G$ be a connected Lie group with Lie algebra $\mathfrak{g}$. A Lie wedge $W \subset \mathfrak{g}$ is said to be noncontrollable (NC) in $G$ provided the semigroup generated by $\exp (W)$ is not $G$. It is generating noncontrollable (GNC) if $W$ generates $\mathfrak{g}$, as a Lie algebra and is noncontrollable. Also, $W$ and is MGNC if it is maximal with these properties.

From the characterization of maximal semigroups provided by J. Lawson [3] it is known that if $\mathfrak{g}$ is solvable and $G$ simply connected then a MGNC $W \subset \mathfrak{g}$ is a half-space bounded by a hyperplane subalgebra. In particular the MGNC Lie wedges have nonempty interior in $\mathfrak{g}$. A similar fact holds for the $\mathrm{Sl}(2, \mathbb{R})$ : Up to conjugation there is just one Lie wedge in $\mathfrak{s l}(2, \mathbb{R})$ which is noncontrollable with respect to $\mathrm{Sl}(2, \mathbb{R})$, namely $W=\left\{\left(x_{i j}\right): x_{12}, x_{21} \geq 0\right\}$ (see [2]), which has nonempty interior. On the other hand D. Mittenhuber [5] pointed out to the fact that for general semi-simple groups the situation is not so clear. There are pathologies: As is showed in [5] there are, already in rank one Lie groups, Lie semigroups whose Lie

[^0]wedge is MGNC but has empty interior in the Lie algebra $\mathfrak{s u}(1, n)$. In this note we reinforce the discovery of [5] by providing an example of a Lie wedge in $\mathfrak{s l}(n, \mathbb{R})$, $n>2$ even, which has empty interior and is MGNC with respect to $\mathrm{Sl}(n, \mathbb{R})$.

## 1 Lie Wedges

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis in $\mathbb{R}^{n}$. For each $k$ multi-index $I=\left(1 \leq i_{1}<\right.$ $\cdots<i_{k} \leq n$ ) put $e_{I}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$. The set $\left\{e_{I}\right\}$ with $I$ running through the $k$ multi-indices is a basis of the $k$-fold exterior product $\Lambda^{k}:=\bigwedge^{k} \mathbb{R}^{n}$. We endow $\Lambda^{k}$ with the standard inner product $\langle\cdot, \cdot\rangle$, which makes $\left\{e_{I}\right\}$ an orthonormal basis. Denote by $\mathcal{O}_{k} \subset \bigwedge^{k}$ the positive orthant with respect to this basis:

$$
\mathcal{O}_{k}=\left\{\sum a_{I} e_{I}: a_{I} \geq 0\right\} .
$$

Let $G=\mathrm{Sl}(n, \mathbb{R})$ and consider its natural representation on $\Lambda^{k}$. Define the compression semigroup

$$
S_{k}=\left\{g \in G: g \mathcal{O}_{k} \subset \mathcal{O}_{k}\right\} .
$$

Of course $g \in S_{k}$ if and only if its matrix with respect to the standard basis of $\mathbb{R}^{n}$ has non-negative $k$-minors.

Let $\operatorname{Gr}_{k}^{+}(n) \subset \bigwedge^{k}$ stand for the subset of norm one decomposable vectors of $\bigwedge^{k}$. This notation is in accordance to the fact that $\operatorname{Gr}_{k}^{+}(n)$ is in bijection to the Grassmannian of oriented $k$-dimensional subspaces of $\mathbb{R}^{n}$. The compression semigroup $S_{k}$ can be defined within $\operatorname{Gr}_{k}^{+}(n)$. In fact, put $C_{k}=\mathcal{O}_{k} \cap \operatorname{Gr}_{k}^{+}(n)$. Since $e_{I} \in \operatorname{Gr}_{k}^{+}(n)$, and $\mathcal{O}_{k}$ is the cone spanned by $\left\{e_{I}\right\}$ it follows that $g C_{k} \subset C_{k}$ if and only if $g \in S_{k}$.

If $k=1$ then $S_{k}$ is the semigroup $\mathrm{Sl}^{+}(n, \mathbb{R})$ of matrices with positive entries. On the other hand $S_{n-1}$ is conjugate to $S_{1}^{-1}$, as can be easily seen by identifying $\bigwedge^{n-1}$ with the dual $\left(\bigwedge^{1}\right)^{*}$.

Denote by $\mathcal{L}\left(S_{k}\right) \subset \mathfrak{s l}(n, \mathbb{R})$ the Lie wedge of $S_{k}$. Then $X \in \mathcal{L}\left(S_{k}\right)$ if and only if $\left\langle X e_{I}, e_{J}\right\rangle \geq 0$ for all pair of $k$ multi-indices $I \neq J$. From this one can get an explicitly description of $\mathcal{L}\left(S_{k}\right)$ for all $k$ :

First the subalgebra $\mathfrak{a}$ of diagonal matrices is contained in $\mathcal{L}\left(S_{k}\right)$ for all $k$, because $e_{I}$ is an eigenvector of all $H \in \mathfrak{a}$. Since $\mathcal{L}\left(S_{k}\right)$ is invariant under $\operatorname{Ad}(A), A=\exp \mathfrak{a}$, it follows that if $X=\left(x_{i j}\right) \in \mathcal{L}\left(S_{k}\right)$ then $x_{i j} E_{i j} \in \mathcal{L}\left(S_{k}\right)$ for all $i \neq j$. Here $E_{i j}$ is the basic matrix with 1 in the $i, j$-entry and zero otherwise. Therefore, in order to get $\mathcal{L}\left(S_{k}\right)$ it is enough to check whether $\pm E_{i j} \in \mathcal{L}\left(S_{k}\right)$, for the various $i, j$ with $i \neq j$. Consider the cases:

- If $k=1$ it follows (and is well known) that $X=\left(x_{i j}\right) \in L\left(S_{1}\right)$ if and only if $x_{i j} \geq 0$ for $i \neq j$.
- Assume $k=n-1$. Pick $E_{i j}$ with $i<j$, and a multi-index $I$. If $i \in I$ or if $j \notin I$ then $E_{i j} e_{I}=0$. Suppose then that $i \notin I$ and $j \in I$. Then $E_{i j} e_{I}$ is the $k$-fold exterior product of the basic elements with $e_{i}$ in place of $e_{j}$. Thus let $F=(I \backslash\{j\}) \cup\{i\}$, with the indices in the right order. Then

$$
E_{i j} e_{I}=(-1)^{j-i-1} e_{F}
$$

Therefore $E_{i j} \in \mathcal{L}\left(S_{n-1}\right)$ if $j-i$ is odd and $-E_{i j} \in \mathcal{L}\left(S_{n-1}\right)$ if $j-i$ is even. By a similar reasoning with $j<i$ (or using the fact that $\mathcal{L}\left(S_{k}\right)$ is invariant under transposition), we get that $X=\left(x_{i j}\right) \in \mathcal{L}\left(S_{n-1}\right)$ if and only if $x_{i j} \geq 0$ if $|i-j|$ is odd, and $x_{i j} \leq 0$ if $i \neq j$ and $|i-j|$ is even.

- Take $k$ with $1<k<n-1$. Let $E_{i j}$ be such that $1<j-i<n-1$ (the last inequality amounts to $(i, j) \neq(1, n))$. Let us check that $\pm E_{i j} \notin \mathcal{L}\left(S_{k}\right)$. Let $I$ be a multi-index with $i \notin I$ and $j \in I$. Then

$$
E_{i j} e_{I}=(-1)^{\nu(i, j, I)} e_{F}
$$

where $\nu(i, j, I)$ is the number of indices of the open interval int $(i, j)=\{l: i<$ $l<j\}$ that are in $I$, and $F=(I \backslash\{j\}) \cup\{i\}$, arranged in the proper order.
Now we construct two multi-indices $I$, $J$, that do not contain $i$ and contain $j$, such that $\nu(i, j, I)+\nu(i, j, J)$ is odd. This implies that $\pm E_{i j} \notin \mathcal{L}\left(S_{k}\right)$.
Start with $I$. There are the possibilities:

1. $\nu(i, j, I)=0$. Then $j-1 \notin I$ and $j-1 \neq i$. Moreover, since $2 \leq k$, it follows that there is some $l \in I$ with either $l<i$ or $l>j$. Then take $J$ to be $J=(I \backslash\{l\}) \cup\{j-1\}$. It satisfies $i \notin J, j \in J$ and $\nu(i, j, J)=1$.
2. $\nu(i, j, I)>0$. This means that there exists $l \in \operatorname{int}(i, j) \cap I$. There are still two possibilities:
(a) There is some $p<i$ or $>j$ such that $p \notin I$. Then $J=(I \backslash\{l\}) \cup\{p\}$ is such that $\nu(i, j, J)=\nu(i, j, I)+1$.
(b) For all $p \notin I, i \leq p<j$. Then there exists an index $t \in I$ with either $t<i$ or $t>j$, because $(i, j) \neq(1, n)$. Since $k \leq n-2$ there is $p \in \operatorname{int}(i, j)$ outside $I$. Replacing $t$ by $p$, we get a multi-index $J$ with $\nu(i, j, I)+\nu(i, j, J)$ is odd.

Therefore, $E_{i j} \notin \mathcal{L}\left(S_{k}\right)$.
Now, consider $E_{1 n}$. The only possibility for $E_{1 n} e_{I}$ to be different from zero is that $I$ ends with $n$. In this case

$$
E_{1 n} e_{I}=(-1)^{k-1} e_{F}
$$

where $F=(I \backslash\{n\}) \cup\{1\}$, arranged in the right order. Hence

1. If $k$ is odd $E_{1 n} \in \mathcal{L}\left(S_{k}\right)$.
2. If $k$ is even $-E_{1 n} \in \mathcal{L}\left(S_{k}\right)$.

Finally consider $E_{i, i+1}$. If $i \notin I$ and $i+1 \in I$ then $E_{i, i+1} e_{I}=e_{F}$ where $F=(I \backslash\{j\}) \cup\{i\}$ so that $E_{i, i+1} \in \mathcal{L}\left(S_{k}\right)$.

Taking transpositions in this last case we can sum up and state:
Proposition 1 The Lie wedges of the semigroups $S_{k}$ are

1. $\mathcal{L}\left(S_{1}\right)=\left\{\left(x_{i j}\right): x_{i j} \geq 0\right.$ if $\left.i \neq j\right\}$
2. $\mathcal{L}\left(S_{n-1}\right)=\left\{\left(x_{i j}\right):(-1)^{|i-j|-1} x_{i j} \geq 0\right.$ if $\left.i \neq j\right\}$.
3. If $1<k<n-1$ then
$\mathcal{L}\left(S_{k}\right)=\left\{\left(x_{i j}\right): x_{i j} \geq 0\right.$ if $|i-j|=1, x_{i j}=0$ if $2<|i-j|<n-1$, $(-1)^{k-1} x_{i j} \geq 0$ if $\left.|i-j|=n-1\right\}$.

## 2 Maximality

Of course, $\mathcal{L}\left(S_{k}\right)$ has empty interior unless $k=1$ or $n-1$. Moreover, $\mathcal{L}\left(S_{k}\right)$ is GNC for any $k$. Also,

Proposition $2 \mathcal{L}\left(S_{1}\right)$ is MGNC.
Proof: Denote by $T_{1}$ the semigroup generated by $\mathcal{L}\left(S_{1}\right), T_{1}=\left\langle\exp \left(\mathcal{L}\left(S_{1}\right)\right)\right\rangle$. In the projective space $\mathbb{P}^{n-1}$ there are just two control sets for $T_{1}$, namely the subset $C$ corresponding to the positive orthant $\mathcal{O}_{1}$, which is the invariant control set, and its complementary $\mathbb{P}^{n-1} \backslash C$, which is the minimal control set. To see this note that [ $e_{1}$ ] belongs to the invariant control set because $e_{1}$ is the principal eigenvector of
some $H \in \mathcal{L}\left(S_{1}\right)$. Furthermore any $[x]$, with $x \in \mathcal{O}_{1}$ can be reached from $\left[e_{1}\right]$ by an element of $T$. Since $C$ is $T_{1}$-invariant it follows that it is indeed the invariant control set. Similarly $\left[e_{1}\right]$ belongs to the invariant control set of $T_{1}^{-1}$. This invariant control set is a union of orthants because $T_{1}$ contains the subgroup $A$ of diagonal matrices. Now, we show that any orthant, besides the positive one, is reachable from $\left[e_{1}\right]$ by $T_{1}^{-1}$. Put, for $x \in \mathbb{R}^{n-1}$,

$$
v_{x}=\binom{1}{x} \in \mathbb{R}^{n} .
$$

If all entries of $x$ are strictly negative then

$$
g=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \in T_{1},
$$

and $g\left[e_{1}\right]=\left[v_{x}\right]$. Hence the corresponding orthant is reachable from $\left[e_{1}\right]$ under $T_{1}^{-1}$. On the other hand suppose that $y \in \mathbb{R}^{n-1}$ has at least two strictly negative entries, say $y_{r}$ and $y_{s}$ with $r<s$. For every $a \leq 0$, the matrix $1+a E_{r+1, s+1}$ belongs to $T_{1}^{-1}$. Moreover, $\left(1+a E_{r+1, s+1}\right) v_{y}=v_{z}$, and $z$ has the same entries as $y$ except for the $r$ position which is $y_{r}+a y_{s}$. Since $y_{r}, y_{s}<0$, there exists $a<0$ such that $y_{r}+a y_{s}>0$. Hence we can apply an induction procedure to show that every orthant different from the positive one is reachable from $\left[e_{1}\right]$, by means of $T_{1}^{-1}$. Therefore, $\mathbb{P}^{n-1} \backslash C$ is the minimal control set of $T_{1}$.

Now, if $X \notin \mathcal{L}\left(S_{1}\right)$ then $\exp \left(t_{0} X\right) C \cap\left(\mathbb{P}^{n-1} \backslash C\right) \neq \emptyset$ for some $t_{0}>0$. Hence the semigroup generated by $\exp (t X), t \geq 0$, and $T_{1}$ is controllable in $\mathbb{P}^{n-1}$, showing that $\mathcal{L}\left(S_{1}\right)$ is MGNC.

Note that $\mathcal{L}\left(S_{n-1}\right)=-h \mathcal{L}\left(S_{1}\right) h^{-1}$ where

$$
h=\operatorname{diag}\{1,-1,1, \ldots\} .
$$

Hence $\mathcal{L}\left(S_{n-1}\right)$ is MGNC as well.
On the other hand $\mathcal{L}\left(S_{k}\right)$ is properly contained in $\mathcal{L}\left(S_{1}\right)$ if $k$ is odd and $\neq 1, n-1$. Hence for these values of $k, \mathcal{L}\left(S_{k}\right)$ is not MGNC. Also, if $k$ is even and $n$ is odd then $\mathcal{L}\left(S_{k}\right) \subset \mathcal{L}\left(S_{n-1}\right)$, so that $\mathcal{L}\left(S_{k}\right)$ is not MGNC.

We proceed now to prove that if $k<n-1$ and $n$ are even then $\mathcal{L}\left(S_{k}\right)$ is MGNC. Of course only maximality remains to be proved. Put

$$
T_{k}=\left\langle\exp \left(\mathcal{L}\left(S_{k}\right)\right)\right\rangle .
$$

For $X \in \mathfrak{s l}(n, \mathbb{R})$ denote by $T_{k}(X)$ the semigroup generated by $T_{k}$ and $\exp (t X)$, $t \geq 0$. We must show that $T_{k}(X)=G$ if $X \notin \mathcal{L}\left(S_{k}\right)$.

In order to prove that a semigroup of $\mathrm{Sl}(n, \mathbb{R})$ is controllable it is enough to show that it is not of type $r$ for any $r=1, \ldots, n-1$. Here a semigroup being of type $r$ means that its invariant control set in the Grassmannian $\operatorname{Gr}_{r}(n)$ is contained in the open Bruhat cells associated to the regular real elements in its interior. This implies that the semigroup leaves invariant a pointed cone in $\bigwedge^{r}$. Hence to check that a semigroup is not of type $r$ it is enough to show that there exists $\xi \in \operatorname{Gr}_{r}^{+}(n)$ such that both $\pm \xi$ belong to an invariant control set of the semigroup in $\mathrm{Gr}_{r}^{+}(n)$ (see [6, Prop. 2.5]).

Now, the following fact about the invariant control sets of $T_{k}$ is required.
Lemma 3 There are at most two invariant control sets of $T_{k}$ in $\mathrm{Gr}_{r}^{+}(n)$. One of them contains the basic vectors $e_{I}$, with I running though r-multi-indices..

Proof: There is just one invariant control set of $T_{k}$ in $\operatorname{Gr}_{r}(n)$. Since $\mathrm{Gr}_{r}^{+}(n)$ is a double covering of $\operatorname{Gr}_{r}(n)$, it follows that there are at most two invariant control sets in $\mathrm{Gr}_{r}^{+}(n)$.

There are different ways of proving that one of them contains the basic vectors. A quick way is by appealing to known properties of the semigroup $T=S_{1} \cap \cdots \cap S_{n-1}$ of totally positive matrices (see Ando [1], Lusztig [4]). It is well known that $T$ is infinitesimally generated and

$$
\mathcal{L}(T)=\left\{\left(x_{i j}\right): x_{i j} \geq 0 \text { if }|i-j|=1, x_{i j}=0 \text { if }|i-j| \geq 2\right\} .
$$

It follows that $\mathcal{L}(T) \subset \mathcal{L}\left(S_{k}\right)$, and hence $T \subset T_{k}$ for any $k$. So that any $T$-invariant control set is contained in an invariant control set of $T_{k}$. Now, $\mathcal{O}_{r}$ is $T$-invariant. So that $C_{r}=\mathcal{O}_{r} \cap \operatorname{Gr}_{r}^{+}(n)$ contains an invariant control set of $T$ (actually it can be proved that $C_{r}$ is an invariant control set of $T$ ). It follows that $C_{r}$ meets the interior of an invariant control set of $T_{k}$. However $T_{k}$ contains the subgroup of diagonal matrices $A$. Also, an easy computation involving the eigenvalues of a diagonal matrix show that the basic vectors are contained in the closure of the $A$-orbit of any $\xi$ in the interior of $C_{r}$. Therefore the basic vectors of $\bigwedge^{r}$ are contained in an invariant control set of $T_{k}$, concluding the proof.

From this lemma we get easily that
Lemma $4 T_{k}$ is not of type $r$ if $k$ is even and $r$ is odd.

Proof: Let $D \subset \operatorname{Gr}_{k}^{+}(n)$ be the invariant control set containing the basic vector. Since $k$ is even, $-E_{1 n} \in \mathcal{L}\left(T_{k}\right)$. On the other hand, the fact that $r$ is odd implies that

$$
E_{1 n}\left(e_{n-r+1} \wedge \cdots \wedge e_{n}\right)=e_{1} \wedge e_{n-r+1} \wedge \cdots \wedge e_{n-1}
$$

Now $\exp \left(-t E_{1 n}\right)=1-t E_{1 n}$. Hence

$$
\lim _{t \rightarrow+\infty} \frac{1}{t} \exp \left(-t E_{1 n}\right)\left(e_{n-r+1} \wedge \cdots \wedge e_{n}\right)=-e_{1} \wedge e_{n-r+1} \wedge \cdots \wedge e_{n-1}
$$

Thus the right hand side of this formula belongs to $D$, showing that $\pm \xi \in D$ for $\xi=e_{1} \wedge e_{n-r+1} \wedge \cdots \wedge e_{n-1}$. Thus $T_{k}$ is not of type $r$.

Now, take $X \notin \mathcal{L}\left(S_{k}\right)$ and form the semigroup $T_{k}(X)$. In view of the above lemma, for the proof that $T_{k}(X)=G$ it remains only to check that $T_{k}(X)$ is not of type $r$ for $r$ even.

Since we are assuming that $n$ is even, $r \neq n-1$. So that $\mathcal{L}\left(S_{r}\right)=\mathcal{L}\left(S_{k}\right)$, and hence $T_{r}=T_{k}$. By definition of $S_{k}$, it follows that the semigroup $\exp (t X), t \geq 0$, does not leave $\mathcal{O}_{r}$ invariant. But $\mathcal{O}_{r}$ is the cone generated by the basic vectors. So that there exists a $r$-multi-index $I$ and $t_{0}>0$ such that $\exp \left(t_{0} X\right) e_{I} \notin \mathcal{O}_{r}$, that is, $\exp \left(t_{0} X\right) e_{I}$ is in another orthant with respect to the standard basis. Now, use the fact that $A \subset T_{k}$ to see that $-e_{J}$ can be approximately reached from $e_{I}$ by means of $T_{k}$. Therefore by Lemma 3 there is an invariant control set for $T_{k}$ in $\mathrm{Gr}_{r}(n)$ containing $\pm e_{J}$. This shows that $T_{k}(X)$ is not of type $r$, for $r$ even. Therefore $T_{k}(X)=\operatorname{Sl}(n, \mathbb{R})$, proving the

Proposition 5 If $n$ and $k$ are even then $\mathcal{L}\left(S_{k}\right)$ is a MGNC Lie wedge with empty interior.

## References

[1] Ando, T.: Totally positive matrices. Linear Algebra and its Applications, 90 (1987), 165-219.
[2] Hilgert, J., K.H. Hofmann and J. Lawson:"Lie groups, convex cones, and semigroups". Oxford University Press (1989).
[3] Lawson, J.: Maximal subsemigroups of Lie groups that are total. Proceedings of Edinbrough Math. Soc., 30, (1987), 479-501.
[4] Lusztig, G.: Introduction to total positivity. In "Positivity in Lie Theory: Open Problems" (Eds. J. Hilgert, J.D. Lawson, K.-H. Neeb and E.B. Vinberg). De Gruyter Expositions in Mathematics 26 (1998), 133-145.
[5] Mittenhuber, D.: Maximal noncontrollable Lie wedges need not have interior points. Preprint.
[6] San Martin, L. A. B.: On global controllability of discrete-time control systems. Math. of Control, Signals, and Systems, 8 (1995), 279-297.


[^0]:    *Research partially supported by CNPq grant n ${ }^{\circ} 301060 / 94-0$

