A family of maximal noncontrollable Lie wedges with empty interior

Luiz A. B. San Martin*
Instituto de Matemática
Universidade Estadual de Campinas
Cx.Postal 6065
13081-970 Campinas SP, Brasil

Abstract

Let S_k be the semigroup of matrices in $\mathrm{Sl}(n,\mathbb{R})$ having non-negative k-minors. Its Lie wedge $\mathcal{L}(S_k)$ generates $\mathfrak{sl}(n,\mathbb{R})$, is noncontrollable, and has empty interior if 1 < k < n-1. Moreover, $\mathcal{L}(S_k)$ is maximal if k and n are even.

Let G be a connected Lie group with Lie algebra \mathfrak{g} . A Lie wedge $W \subset \mathfrak{g}$ is said to be noncontrollable (NC) in G provided the semigroup generated by $\exp(W)$ is not G. It is generating noncontrollable (GNC) if W generates \mathfrak{g} , as a Lie algebra and is noncontrollable. Also, W and is MGNC if it is maximal with these properties.

From the characterization of maximal semigroups provided by J. Lawson [3] it is known that if \mathfrak{g} is solvable and G simply connected then a MGNC $W \subset \mathfrak{g}$ is a half-space bounded by a hyperplane subalgebra. In particular the MGNC Lie wedges have nonempty interior in \mathfrak{g} . A similar fact holds for the $Sl(2,\mathbb{R})$: Up to conjugation there is just one Lie wedge in $\mathfrak{sl}(2,\mathbb{R})$ which is noncontrollable with respect to $Sl(2,\mathbb{R})$, namely $W = \{(x_{ij}) : x_{12}, x_{21} \geq 0\}$ (see [2]), which has nonempty interior. On the other hand D. Mittenhuber [5] pointed out to the fact that for general semi-simple groups the situation is not so clear. There are pathologies: As is showed in [5] there are, already in rank one Lie groups, Lie semigroups whose Lie

^{*}Research partially supported by CNPq grant n° 301060/94 - 0

wedge is MGNC but has empty interior in the Lie algebra $\mathfrak{su}(1,n)$. In this note we reinforce the discovery of [5] by providing an example of a Lie wedge in $\mathfrak{sl}(n,\mathbb{R})$, n > 2 even, which has empty interior and is MGNC with respect to $Sl(n,\mathbb{R})$.

1 Lie Wedges

Let $\{e_1, \ldots, e_n\}$ be the standard basis in \mathbb{R}^n . For each k multi-index $I = (1 \leq i_1 < \cdots < i_k \leq n)$ put $e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$. The set $\{e_I\}$ with I running through the k multi-indices is a basis of the k-fold exterior product $\bigwedge^k := \bigwedge^k \mathbb{R}^n$. We endow \bigwedge^k with the standard inner product $\langle \cdot, \cdot \rangle$, which makes $\{e_I\}$ an orthonormal basis. Denote by $\mathcal{O}_k \subset \bigwedge^k$ the positive orthant with respect to this basis:

$$\mathcal{O}_k = \{ \sum a_I e_I : a_I \ge 0 \}.$$

Let $G = \mathrm{Sl}(n,\mathbb{R})$ and consider its natural representation on \bigwedge^k . Define the compression semigroup

$$S_k = \{ g \in G : g\mathcal{O}_k \subset \mathcal{O}_k \}.$$

Of course $g \in S_k$ if and only if its matrix with respect to the standard basis of \mathbb{R}^n has non-negative k-minors.

Let $\operatorname{Gr}_k^+(n) \subset \bigwedge^k$ stand for the subset of norm one decomposable vectors of \bigwedge^k . This notation is in accordance to the fact that $\operatorname{Gr}_k^+(n)$ is in bijection to the Grassmannian of oriented k-dimensional subspaces of \mathbb{R}^n . The compression semi-group S_k can be defined within $\operatorname{Gr}_k^+(n)$. In fact, put $C_k = \mathcal{O}_k \cap \operatorname{Gr}_k^+(n)$. Since $e_I \in \operatorname{Gr}_k^+(n)$, and \mathcal{O}_k is the cone spanned by $\{e_I\}$ it follows that $gC_k \subset C_k$ if and only if $g \in S_k$.

If k = 1 then S_k is the semigroup $\mathrm{Sl}^+(n,\mathbb{R})$ of matrices with positive entries. On the other hand S_{n-1} is conjugate to S_1^{-1} , as can be easily seen by identifying \bigwedge^{n-1} with the dual $(\bigwedge^1)^*$.

Denote by $\mathcal{L}(S_k) \subset \mathfrak{sl}(n,\mathbb{R})$ the Lie wedge of S_k . Then $X \in \mathcal{L}(S_k)$ if and only if $\langle Xe_I, e_J \rangle \geq 0$ for all pair of k multi-indices $I \neq J$. From this one can get an explicitly description of $\mathcal{L}(S_k)$ for all k:

First the subalgebra \mathfrak{a} of diagonal matrices is contained in $\mathcal{L}(S_k)$ for all k, because e_I is an eigenvector of all $H \in \mathfrak{a}$. Since $\mathcal{L}(S_k)$ is invariant under $\mathrm{Ad}(A)$, $A = \exp \mathfrak{a}$, it follows that if $X = (x_{ij}) \in \mathcal{L}(S_k)$ then $x_{ij}E_{ij} \in \mathcal{L}(S_k)$ for all $i \neq j$. Here E_{ij} is the basic matrix with 1 in the i, j-entry and zero otherwise. Therefore, in order to get $\mathcal{L}(S_k)$ it is enough to check whether $\pm E_{ij} \in \mathcal{L}(S_k)$, for the various i, j with $i \neq j$. Consider the cases:

- If k = 1 it follows (and is well known) that $X = (x_{ij}) \in L(S_1)$ if and only if $x_{ij} \geq 0$ for $i \neq j$.
- Assume k = n 1. Pick E_{ij} with i < j, and a multi-index I. If $i \in I$ or if $j \notin I$ then $E_{ij}e_I = 0$. Suppose then that $i \notin I$ and $j \in I$. Then $E_{ij}e_I$ is the k-fold exterior product of the basic elements with e_i in place of e_j . Thus let $F = (I \setminus \{j\}) \cup \{i\}$, with the indices in the right order. Then

$$E_{ij}e_I = (-1)^{j-i-1}e_F.$$

Therefore $E_{ij} \in \mathcal{L}(S_{n-1})$ if j-i is odd and $-E_{ij} \in \mathcal{L}(S_{n-1})$ if j-i is even. By a similar reasoning with j < i (or using the fact that $\mathcal{L}(S_k)$ is invariant under transposition), we get that $X = (x_{ij}) \in \mathcal{L}(S_{n-1})$ if and only if $x_{ij} \geq 0$ if |i-j| is odd, and $x_{ij} \leq 0$ if $i \neq j$ and |i-j| is even.

• Take k with 1 < k < n-1. Let E_{ij} be such that 1 < j-i < n-1 (the last inequality amounts to $(i,j) \neq (1,n)$). Let us check that $\pm E_{ij} \notin \mathcal{L}(S_k)$. Let I be a multi-index with $i \notin I$ and $j \in I$. Then

$$E_{ij}e_I = (-1)^{\nu(i,j,I)} e_F$$

where $\nu\left(i,j,I\right)$ is the number of indices of the open interval int $(i,j) = \{l : i < l < j\}$ that are in I, and $F = (I \setminus \{j\}) \cup \{i\}$, arranged in the proper order.

Now we construct two multi-indices I, J, that do not contain i and contain j, such that $\nu(i, j, I) + \nu(i, j, J)$ is odd. This implies that $\pm E_{ij} \notin \mathcal{L}(S_k)$.

Start with I. There are the possibilities:

- 1. $\nu(i, j, I) = 0$. Then $j 1 \notin I$ and $j 1 \neq i$. Moreover, since $2 \leq k$, it follows that there is some $l \in I$ with either l < i or l > j. Then take J to be $J = (I \setminus \{l\}) \cup \{j 1\}$. It satisfies $i \notin J$, $j \in J$ and $\nu(i, j, J) = 1$.
- 2. $\nu(i, j, I) > 0$. This means that there exists $l \in \text{int}(i, j) \cap I$. There are still two possibilities:
 - (a) There is some p < i or > j such that $p \notin I$. Then $J = (I \setminus \{l\}) \cup \{p\}$ is such that $\nu(i, j, J) = \nu(i, j, I) + 1$.
 - (b) For all $p \notin I$, $i \leq p < j$. Then there exists an index $t \in I$ with either t < i or t > j, because $(i, j) \neq (1, n)$. Since $k \leq n 2$ there is $p \in \text{int}(i, j)$ outside I. Replacing t by p, we get a multi-index J with $\nu(i, j, I) + \nu(i, j, J)$ is odd.

Therefore, $E_{ij} \notin \mathcal{L}(S_k)$.

Now, consider E_{1n} . The only possibility for $E_{1n}e_I$ to be different from zero is that I ends with n. In this case

$$E_{1n}e_I = (-1)^{k-1} e_F$$

where $F = (I \setminus \{n\}) \cup \{1\}$, arranged in the right order. Hence

- 1. If k is odd $E_{1n} \in \mathcal{L}(S_k)$.
- 2. If k is even $-E_{1n} \in \mathcal{L}(S_k)$.

Finally consider $E_{i,i+1}$. If $i \notin I$ and $i+1 \in I$ then $E_{i,i+1}e_I = e_F$ where $F = (I \setminus \{j\}) \cup \{i\}$ so that $E_{i,i+1} \in \mathcal{L}(S_k)$.

Taking transpositions in this last case we can sum up and state:

Proposition 1 The Lie wedges of the semigroups S_k are

- 1. $\mathcal{L}(S_1) = \{(x_{ij}) : x_{ij} \geq 0 \text{ if } i \neq j\}$
- 2. $\mathcal{L}(S_{n-1}) = \{(x_{ij}) : (-1)^{|i-j|-1} x_{ij} \ge 0 \text{ if } i \ne j\}.$
- 3. If 1 < k < n 1 then

$$\mathcal{L}(S_k) = \{(x_{ij}) : x_{ij} \ge 0 \text{ if } |i-j| = 1, x_{ij} = 0 \text{ if } 2 < |i-j| < n-1, (-1)^{k-1} x_{ij} \ge 0 \text{ if } |i-j| = n-1\}.$$

2 Maximality

Of course, $\mathcal{L}(S_k)$ has empty interior unless k = 1 or n - 1. Moreover, $\mathcal{L}(S_k)$ is GNC for any k. Also,

Proposition 2 $\mathcal{L}(S_1)$ is MGNC.

Proof: Denote by T_1 the semigroup generated by $\mathcal{L}(S_1)$, $T_1 = \langle \exp(\mathcal{L}(S_1)) \rangle$. In the projective space \mathbb{P}^{n-1} there are just two control sets for T_1 , namely the subset C corresponding to the positive orthant \mathcal{O}_1 , which is the invariant control set, and its complementary $\mathbb{P}^{n-1} \setminus C$, which is the minimal control set. To see this note that $[e_1]$ belongs to the invariant control set because e_1 is the principal eigenvector of

some $H \in \mathcal{L}(S_1)$. Furthermore any [x], with $x \in \mathcal{O}_1$ can be reached from $[e_1]$ by an element of T. Since C is T_1 -invariant it follows that it is indeed the invariant control set. Similarly $[e_1]$ belongs to the invariant control set of T_1^{-1} . This invariant control set is a union of orthants because T_1 contains the subgroup A of diagonal matrices. Now, we show that any orthant, besides the positive one, is reachable from $[e_1]$ by T_1^{-1} . Put, for $x \in \mathbb{R}^{n-1}$,

$$v_x = \left(\begin{array}{c} 1\\ x \end{array}\right) \in \mathbb{R}^n.$$

If all entries of x are strictly negative then

$$g = \left(\begin{array}{cc} 1 & 0 \\ x & 1 \end{array}\right) \in T_1,$$

and $g[e_1] = [v_x]$. Hence the corresponding orthant is reachable from $[e_1]$ under T_1^{-1} . On the other hand suppose that $y \in \mathbb{R}^{n-1}$ has at least two strictly negative entries, say y_r and y_s with r < s. For every $a \le 0$, the matrix $1 + aE_{r+1,s+1}$ belongs to T_1^{-1} . Moreover, $(1 + aE_{r+1,s+1})v_y = v_z$, and z has the same entries as y except for the r position which is $y_r + ay_s$. Since $y_r, y_s < 0$, there exists a < 0 such that $y_r + ay_s > 0$. Hence we can apply an induction procedure to show that every orthant different from the positive one is reachable from $[e_1]$, by means of T_1^{-1} . Therefore, $\mathbb{P}^{n-1} \setminus C$ is the minimal control set of T_1 .

Now, if $X \notin \mathcal{L}(S_1)$ then $\exp(t_0X)C \cap (\mathbb{P}^{n-1} \setminus C) \neq \emptyset$ for some $t_0 > 0$. Hence the semigroup generated by $\exp(tX)$, $t \geq 0$, and T_1 is controllable in \mathbb{P}^{n-1} , showing that $\mathcal{L}(S_1)$ is MGNC.

Note that $\mathcal{L}(S_{n-1}) = -h\mathcal{L}(S_1) h^{-1}$ where

$$h=\mathrm{diag}\{1,-1,1,\ldots\}.$$

Hence $\mathcal{L}(S_{n-1})$ is MGNC as well.

On the other hand $\mathcal{L}(S_k)$ is properly contained in $\mathcal{L}(S_1)$ if k is odd and $\neq 1, n-1$. Hence for these values of k, $\mathcal{L}(S_k)$ is not MGNC. Also, if k is even and n is odd then $\mathcal{L}(S_k) \subset \mathcal{L}(S_{n-1})$, so that $\mathcal{L}(S_k)$ is not MGNC.

We proceed now to prove that if k < n-1 and n are even then $\mathcal{L}(S_k)$ is MGNC. Of course only maximality remains to be proved. Put

$$T_k = \langle \exp(\mathcal{L}(S_k)) \rangle.$$

For $X \in \mathfrak{sl}(n,\mathbb{R})$ denote by $T_k(X)$ the semigroup generated by T_k and $\exp(tX)$, $t \geq 0$. We must show that $T_k(X) = G$ if $X \notin \mathcal{L}(S_k)$.

In order to prove that a semigroup of $\mathrm{Sl}(n,\mathbb{R})$ is controllable it is enough to show that it is not of type r for any $r=1,\ldots,n-1$. Here a semigroup being of type r means that its invariant control set in the Grassmannian $\mathrm{Gr}_r(n)$ is contained in the open Bruhat cells associated to the regular real elements in its interior. This implies that the semigroup leaves invariant a pointed cone in \bigwedge^r . Hence to check that a semigroup is not of type r it is enough to show that there exists $\xi \in \mathrm{Gr}_r^+(n)$ such that both $\pm \xi$ belong to an invariant control set of the semigroup in $\mathrm{Gr}_r^+(n)$ (see [6, Prop. 2.5]).

Now, the following fact about the invariant control sets of T_k is required.

Lemma 3 There are at most two invariant control sets of T_k in $Gr_r^+(n)$. One of them contains the basic vectors e_I , with I running though r-multi-indices..

Proof: There is just one invariant control set of T_k in $Gr_r(n)$. Since $Gr_r^+(n)$ is a double covering of $Gr_r(n)$, it follows that there are at most two invariant control sets in $Gr_r^+(n)$.

There are different ways of proving that one of them contains the basic vectors. A quick way is by appealing to known properties of the semigroup $T = S_1 \cap \cdots \cap S_{n-1}$ of totally positive matrices (see Ando [1], Lusztig [4]). It is well known that T is infinitesimally generated and

$$\mathcal{L}(T) = \{(x_{ij}) : x_{ij} \ge 0 \text{ if } |i-j| = 1, x_{ij} = 0 \text{ if } |i-j| \ge 2\}.$$

It follows that $\mathcal{L}(T) \subset \mathcal{L}(S_k)$, and hence $T \subset T_k$ for any k. So that any T-invariant control set is contained in an invariant control set of T_k . Now, \mathcal{O}_r is T-invariant. So that $C_r = \mathcal{O}_r \cap \operatorname{Gr}_r^+(n)$ contains an invariant control set of T (actually it can be proved that C_r is an invariant control set of T). It follows that C_r meets the interior of an invariant control set of T_k . However T_k contains the subgroup of diagonal matrices A. Also, an easy computation involving the eigenvalues of a diagonal matrix show that the basic vectors are contained in the closure of the A-orbit of any ξ in the interior of C_r . Therefore the basic vectors of \bigwedge^r are contained in an invariant control set of T_k , concluding the proof.

From this lemma we get easily that

Lemma 4 T_k is not of type r if k is even and r is odd.

Proof: Let $D \subset \operatorname{Gr}_{k}^{+}(n)$ be the invariant control set containing the basic vector. Since k is even, $-E_{1n} \in \mathcal{L}(T_{k})$. On the other hand, the fact that r is odd implies that

$$E_{1n}\left(e_{n-r+1}\wedge\cdots\wedge e_{n}\right)=e_{1}\wedge e_{n-r+1}\wedge\cdots\wedge e_{n-1}.$$

Now $\exp(-tE_{1n}) = 1 - tE_{1n}$. Hence

$$\lim_{t \to +\infty} \frac{1}{t} \exp\left(-tE_{1n}\right) \left(e_{n-r+1} \wedge \cdots \wedge e_n\right) = -e_1 \wedge e_{n-r+1} \wedge \cdots \wedge e_{n-1}.$$

Thus the right hand side of this formula belongs to D, showing that $\pm \xi \in D$ for $\xi = e_1 \wedge e_{n-r+1} \wedge \cdots \wedge e_{n-1}$. Thus T_k is not of type r.

Now, take $X \notin \mathcal{L}(S_k)$ and form the semigroup $T_k(X)$. In view of the above lemma, for the proof that $T_k(X) = G$ it remains only to check that $T_k(X)$ is not of type r for r even.

Since we are assuming that n is even, $r \neq n-1$. So that $\mathcal{L}(S_r) = \mathcal{L}(S_k)$, and hence $T_r = T_k$. By definition of S_k , it follows that the semigroup $\exp(tX)$, $t \geq 0$, does not leave \mathcal{O}_r invariant. But \mathcal{O}_r is the cone generated by the basic vectors. So that there exists a r-multi-index I and $t_0 > 0$ such that $\exp(t_0 X) e_I \notin \mathcal{O}_r$, that is, $\exp(t_0 X) e_I$ is in another orthant with respect to the standard basis. Now, use the fact that $A \subset T_k$ to see that $-e_J$ can be approximately reached from e_I by means of T_k . Therefore by Lemma 3 there is an invariant control set for T_k in $\operatorname{Gr}_r(n)$ containing $\pm e_J$. This shows that $T_k(X)$ is not of type r, for r even. Therefore $T_k(X) = \operatorname{Sl}(n, \mathbb{R})$, proving the

Proposition 5 If n and k are even then $\mathcal{L}(S_k)$ is a MGNC Lie wedge with empty interior.

References

- [1] Ando, T.: Totally positive matrices. Linear Algebra and its Applications, 90 (1987), 165-219.
- [2] Hilgert, J., K.H. Hofmann and J. Lawson: "Lie groups, convex cones, and semi-groups". Oxford University Press (1989).
- [3] Lawson, J.: Maximal subsemigroups of Lie groups that are total. Proceedings of Edinbrough Math. Soc., **30**, (1987), 479-501.

- [4] Lusztig, G.: Introduction to total positivity. In "Positivity in Lie Theory: Open Problems" (Eds. J. Hilgert, J.D. Lawson, K.-H. Neeb and E.B. Vinberg). De Gruyter Expositions in Mathematics **26** (1998), 133-145.
- [5] Mittenhuber, D.: Maximal noncontrollable Lie wedges need not have interior points. Preprint.
- [6] San Martin, L. A. B.: On global controllability of discrete-time control systems. Math. of Control, Signals, and Systems, 8 (1995), 279-297.