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Abstract

Let Si be the semigroup of matrices in Sl (n,R) having non-negative k-
minors. Its Lie wedge L (Sj) generates sl (n,R), is noncontrollable, and has
empty interior if 1 < k < n — 1. Moreover, L (Si) is maximal if k& and n are
even.

Let G be a connected Lie group with Lie algebra g. A Lie wedge W C g is said to
be noncontrollable (NC) in G provided the semigroup generated by exp (W) is not
G. It is generating noncontrollable (GNC) if W generates g, as a Lie algebra and is
noncontrollable. Also, W and is MGNC if it is maximal with these properties.

From the characterization of maximal semigroups provided by J. Lawson [3] it
is known that if g is solvable and G simply connected then a MGNC W C g is
a half-space bounded by a hyperplane subalgebra. In particular the MGNC Lie
wedges have nonempty interior in g. A similar fact holds for the S1(2,R): Up
to conjugation there is just one Lie wedge in sl (2, R) which is noncontrollable with
respect to SI (2, R), namely W = {(x;;) : 12, 221 > 0} (see [2]), which has nonempty
interior. On the other hand D. Mittenhuber [5] pointed out to the fact that for
general semi-simple groups the situation is not so clear. There are pathologies: As
is showed in [5] there are, already in rank one Lie groups, Lie semigroups whose Lie
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wedge is MGNC but has empty interior in the Lie algebra su (1,n). In this note we
reinforce the discovery of [5] by providing an example of a Lie wedge in sl (n,R),
n > 2 even, which has empty interior and is MGNC with respect to Sl (n, R).

1 Lie Wedges

Let {ei1,...,e,} be the standard basis in R". For each k& multi-index I = (1 <i; <
<o < i < n) put ef = e, A---ANe;. The set {e;} with I running through the
k multi-indices is a basis of the k-fold exterior product A* := A*R". We endow
A" with the standard inner product (-,-), which makes {e;} an orthonormal basis.
Denote by Oy C /\k the positive orthant with respect to this basis:

O = {Z arer a; > 0}

Let G = SI(n,R) and consider its natural representation on A". Define the
compression semigroup

Sk:{QEGQOkCOk}

Of course g € S; if and only if its matrix with respect to the standard basis of R”
has non-negative k-minors.

Let Gry (n) € A" stand for the subset of norm one decomposable vectors of
A" This notation is in accordance to the fact that Grj (n) is in bijection to the
Grassmannian of oriented k-dimensional subspaces of R”. The compression semi-
group Sy, can be defined within Gr} (n). In fact, put Cy = Op N Gr (n). Since
er € Gr} (n), and O is the cone spanned by {e;} it follows that gCj, C Cj if and
only if g € Sk.

If kK = 1 then S} is the semigroup SI* (n,R) of matrices with positive entries. On
the other hand S,_; is conjugate to Sy ', as can be easily seen by identifying /\”71
with the dual (/\1)>k

Denote by L (S) C sl(n,R) the Lie wedge of Sx. Then X € L (Sj) if and only
if (Xey,e;) > 0 for all pair of £ multi-indices I # J. From this one can get an
explicitly description of £ (Sy) for all k:

First the subalgebra a of diagonal matrices is contained in £ (Sy,) for all k£, because
ey is an eigenvector of all H € a. Since L (Sk) is invariant under Ad (4), A =expa,
it follows that if X = (l‘l]) € E(Sk) then l‘ijEij e L (Sk) for all ¢ 7§ J. Here Eij
is the basic matrix with 1 in the 7, j-entry and zero otherwise. Therefore, in order
to get L (Sy) it is enough to check whether £F£;; € £ (Sy), for the various 4, j with
t # j. Consider the cases:



e If £ =1 it follows (and is well known) that X = (z;;) € L(51) if and only if
$Z]20f0rl§£]

e Assume k = n — 1. Pick Ej; with ¢ < j, and a multi-index I. If i € I or if
j ¢ I then Ejje; = 0. Suppose then that ¢ ¢ I and j € I. Then Ejje; is the
k-fold exterior product of the basic elements with e; in place of ¢;. Thus let
F = (I\{j})u{i}, with the indices in the right order. Then

Eijel = (—l)jiiil Er.

Therefore E;; € L£(Sy,—1) if j —i is odd and —E;; € L£(S,—) if j — i is even.
By a similar reasoning with j < ¢ (or using the fact that £ (Sg) is invariant
under transposition), we get that X = (x;;) € £(S,_1) if and only if x;; > 0
if |7 — 7] is odd, and x;; < 0if ¢ # j and |7 — j| is even.

e Take k with 1 < k <n — 1. Let Ej; be such that 1 < j —i <n —1 (the last
inequality amounts to (¢,j) # (1,n)). Let us check that £E;; ¢ £ (Sy). Let [
be a multi-index with i ¢ I and j € I. Then

Eijel = (—].)V(i’j’l) (Fa

where v (i, j, I) is the number of indices of the open interval int (z,5) = {l : i <
[ < j} that are in I, and F' = (I \ {j}) U {i}, arranged in the proper order.

Now we construct two multi-indices I, J, that do not contain ¢ and contain j,
such that v (i,,I) + v (4,7,J) is odd. This implies that £E;; ¢ L (Sk).
Start with I. There are the possibilities:

1. v(i,j,I) =0. Then j —1 ¢ I and j — 1 # i. Moreover, since 2 < k, it
follows that there is some [ € [ with either [ < ¢ or [ > j. Then take J
tobe J=(I\{l{})U{j—1}. It satisfiesi ¢ J, j € J and v (i,5,J) = 1.

2. v(i,7,1) > 0. This means that there exists [ € int (¢,7) N I. There are
still two possibilities:

(a) There is some p < i or > j such that p ¢ I. Then J = (I \ {{})U{p}
is such that v (¢,7,J) = v (i,5,1) + 1.

(b) For all p ¢ I, i < p < j. Then there exists an index ¢ € I with
either t < i or t > j, because (7,j) # (1,n). Since & < n — 2 there
is p € int (7, ) outside I. Replacing ¢t by p, we get a multi-index J
with v (i,7,1) + v (i,7,J) is odd.
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Therefore, E;; ¢ L (Sk).

Now, consider F4,. The only possibility for E;,e; to be different from zero is
that I ends with n. In this case

Erer = (-1)"ep
where F' = (I \ {n}) U {1}, arranged in the right order. Hence

1. If kis odd Ey, € L(Sk).
2. If k is even —FEy,, € L (Sk).

Finally consider E;; ;. If ¢ ¢ I and i +1 € I then E;;;1e; = ep where
F = (I \ {j}) U {Z} so that Ei,i+1 eL (Sk)

Taking transpositions in this last case we can sum up and state:
Proposition 1 The Lie wedges of the semigroups Sy are
1. L(S1) = {(ij) c2yy 2 0 if i # j}
2. L(Su_1) = {(xi;) : (=) ay > 000f 0 £ ).
3. If1 <k <n—1 then
,C(Sk) = {(l‘”) DTy > 0 if |Z—]| =1, Tij = 0if 2 < |Z—]| < n-—1,
(1) wi; > 0 |i—jl=n—1}.
2 Maximality

Of course, L (Si) has empty interior unless k£ = 1 or n—1. Moreover, £ (Si) is GNC
for any k. Also,

Proposition 2 £ (S;) is MGNC.

Proof: Denote by 7) the semigroup generated by L (S1), 71 = (exp (L (S1))). In
the projective space P*~! there are just two control sets for T}, namely the subset
C corresponding to the positive orthant Oy, which is the invariant control set, and
its complementary P"~ !\ C, which is the minimal control set. To see this note that
[e1] belongs to the invariant control set because e; is the principal eigenvector of
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some H € L (S;). Furthermore any [z], with € O; can be reached from [e;] by an
element of T". Since C'is Tij-invariant it follows that it is indeed the invariant control
set. Similarly [e;] belongs to the invariant control set of 7, . This invariant control
set is a union of orthants because 77 contains the subgroup A of diagonal matrices.
Now, we show that any orthant, besides the positive one, is reachable from [e;] by

17t Put, for x € R*1,
Uy = ( 1 ) e R".
X

If all entries of x are strictly negative then

10
g_<l‘1>€T17

and gle;] = [v,]. Hence the corresponding orthant is reachable from [e;] under 7} *.
On the other hand suppose that y € R*~! has at least two strictly negative entries,
say y, and y, with r < s. For every a < 0, the matrix 1 + aF, 541 belongs to Tt
Moreover, (1 + aF, 1 4+1) vy = v, and z has the same entries as y except for the r
position which is y, +ay,. Since y,, ys < 0, there exists a < 0 such that y, +ays > 0.
Hence we can apply an induction procedure to show that every orthant different
from the positive one is reachable from [e,], by means of T, *. Therefore, P*~!\ C
is the minimal control set of T}.

Now, if X ¢ L£(S;) then exp (t,X)C N (P* 1\ C) # () for some ¢y > 0. Hence
the semigroup generated by exp (tX), t > 0, and T} is controllable in P*~!, showing
that £ (S;) is MGNC. O

Note that £ (S, 1) = —hL (S1) h~' where
h = diag{1,-1,1,...}.

Hence £ (S, 1) is MGNC as well.

On the other hand £ (S) is properly contained in £ (S) if k£ is odd and # 1, n—1.
Hence for these values of k, £ (S) is not MGNC. Also, if & is even and n is odd
then £ (Sg) C L(S,_1), so that £ (S) is not MGNC.

We proceed now to prove that if & < n—1 and n are even then £ (Si) is MGNC.
Of course only maximality remains to be proved. Put

Ty, = (exp (£ (S1)-



For X € sl(n,R) denote by T} (X) the semigroup generated by 7} and exp (tX),
t > 0. We must show that 7} (X) =G it X ¢ L (Sk).

In order to prove that a semigroup of Sl (n, R) is controllable it is enough to show
that it is not of type r for any r = 1,...,n — 1. Here a semigroup being of type
r means that its invariant control set in the Grassmannian Gr, (n) is contained in
the open Bruhat cells associated to the regular real elements in its interior. This
implies that the semigroup leaves invariant a pointed cone in A". Hence to check
that a semigroup is not of type r it is enough to show that there exists £ € Gr," (n)
such that both +¢ belong to an invariant control set of the semigroup in Gr, (n)
(see [6, Prop. 2.5]).

Now, the following fact about the invariant control sets of T} is required.

Lemma 3 There are at most two invariant control sets of Ty in Gr,} (n). One of
them contains the basic vectors ey, with I running though r-multi-indices..

Proof: There is just one invariant control set of T in Gr, (n). Since Gr, (n) is a
double covering of Gr, (n), it follows that there are at most two invariant control
sets in Gr;," (n).

There are different ways of proving that one of them contains the basic vectors.
A quick way is by appealing to known properties of the semigroup 7' = S;N---NS,_1
of totally positive matrices (see Ando [1], Lusztig [4]). It is well known that 7" is
infinitesimally generated and

It follows that £ (T") C L (Sk), and hence T' C T}, for any k. So that any T-invariant
control set is contained in an invariant control set of Tj,. Now, O, is T-invariant.
So that C, = O, NGr," (n) contains an invariant control set of 7' (actually it can be
proved that C, is an invariant control set of T"). It follows that C, meets the interior
of an invariant control set of 7. However T} contains the subgroup of diagonal ma-
trices A. Also, an easy computation involving the eigenvalues of a diagonal matrix
show that the basic vectors are contained in the closure of the A-orbit of any & in
the interior of C,. Therefore the basic vectors of A" are contained in an invariant
control set of T}, concluding the proof. O

From this lemma we get easily that

Lemma 4 T}, is not of type r if k is even and r is odd.



Proof: Let D C Grf (n) be the invariant control set containing the basic vector.
Since k is even, —Ey, € L (T}). On the other hand, the fact that r is odd implies
that

Ey(enri1 N New) =€t ANey py1 Ao ANey .

Now exp (—tEy,) =1 — tEy,. Hence

i 1
tlg_noo - eXD (—tE1n) (en—ri1 A Nep) = —e1 ANep_rp1 Ao Aey_g.
Thus the right hand side of this formula belongs to D, showing that +¢ € D for
E=e Ney i1 N---Ney 1. Thus Tk is not of type r. O

Now, take X ¢ L (Sk) and form the semigroup 7} (X). In view of the above
lemma, for the proof that T} (X) = G it remains only to check that T (X) is not of
type r for r even.

Since we are assuming that n is even, r # n — 1. So that £ (S,) = £ (Sk), and
hence T, = T}. By definition of Sk, it follows that the semigroup exp (¢tX), ¢t > 0,
does not leave O, invariant. But O, is the cone generated by the basic vectors. So
that there exists a r-multi-index I and ¢, > 0 such that exp (£¢X)e; ¢ O,, that is,
exp (toX) ey is in another orthant with respect to the standard basis. Now, use the
fact that A C T}, to see that —e; can be approximately reached from e; by means
of Ty. Therefore by Lemma 3 there is an invariant control set for Ty in Gr, (n)
containing +e;. This shows that T} (X) is not of type r, for r even. Therefore
Ty (X) = Sl (n,R), proving the

Proposition 5 If n and k are even then L (Sk) is a MGNC' Lie wedge with empty
wnterior.
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