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Abstract

Given a random sample from a density f , the logistic transformation is

applied and a log density estimate is provided by using B-splines. The log

density estimate maximizes the likelihood function which has equivalent solu-

tion when subject to a constraint that guarantees identi�ability of the model.

The number of basis functions is the smoothing parameter and is estimated

by minimizing a proxy of the Kullback-Leibler distance which equivalent to

get the maximum likelihood cross-validation.

Keywords: density estimation; B-splines; likelihood ratio test; partitions of unity.

1 Introduction

Let X

1

; : : : ; X

n

be i.i.d. random variables with an unknown probability density

�
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function f on a �nite domain X . The goal of this paper is to estimate the density

f from the data X

i

. Since f is a probability density function, any estimate must be

positive and integrate to one. To enforce the positivity and unity constraints on f ,

we use the logistic transformation (Leonard, 1978) f = e

g

=(

R

e

g

). It is easy to see

that this transformation is not one-to-one, since g

1

= g+c implies f = e

g

1

=(

R

e

g

1

) =

e

g

=(

R

e

g

). Gu (1993) and Dias (1998a) have used a side condition on g, such as

g(x

0

) = 0; x

0

2 X or

R

X

g = 0, needed to determine this transformation uniquely.

The search for the function g will be in a in�nite dimensional space which is, in

general, not computable. Therefore, a �nite approximation is necessary.

A well known method to �nd a good estimate for f is the penalized loglikelihood

(Silverman, 1982; Gu, 1993), which has been used in problems of smoothing and re-

quires a high computational cost, in general O(n

3

) where n is the sample size. Dias

(1998a) and Dias (1998b) suggested adaptive procedures to reduce the computa-

tional cost by introducing the H-splines method that combines ideas from regression

and smoothing splines approaches. Both approaches rely on the estimation of the

smoothing parameter. This parameter needs to be estimate and the estimation pro-

cedures require computational intensive methods. Di�erently from other smoothing

methods, the proposed procedure does not penalize the likelihood function and the

general solution for this optimization problem is equivalent to optimization with

constraint that enforces identi�ability to the model. Section 2 introduces a method

completely based on Basis functions where the number of basis acts as the smooth-

ing parameter. Section 3 shows how the procedure determines K, the number of

basis functions, by a proxy of the Kullback-Leibler distance which is shown to be

equivalent to maximum likelihood cross validation, the coe�cients of the expansion

are found by maximizing the likelihood. Section 4 presents some simulation results
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using a code written in Splus and R that does not require dynamic loading, therefore

regarding portability it can be used in any personal computer.

2 Finite Approximation

Let G be the set of real function g on X for which:

1. log

R

e

g

<1 ;

2. The (m � 1)th derivatives of g exist and are piecewise di�erentiable, for

m=1,2,....

Consider N , the set of functions g which are linear combinations of cubic B-splines,

that is, g = h�;Mi

K

=

P

K

j=1

�

j

M

j

, where M

j

are the well known normalized

cubic B-splines (see de Boor (1978)). It is easy to check that N � G. Given

the data X

1

; : : : ; X

n

i.i.d. random variables on a �nite domain X , assume that

f = e

g

=

R

e

g

; g 2 N , that is, f can be written as

f(xj�;K) =

e

h�;M(x)i

K

R

e

h�;M(x)i

K

dx

:

Hence, the loglikelihood equation is,

L

K

(�) =

1

n

n

X

i=1

h�;M(X

i

)i

K

� log

Z

e

h�;M(x)i

K

dx: (2.1)

Observe that, by considering g 2 N , we reduce the problem of choosing g from

an in�nite-dimensional class of functions to a �nite class of functions N since the

dimension of N is �nite (see de Boor (1978) for details). The optimization problem

is to �nd, for a �xed K, a vector

^

� =

^

�

(K)

= (�

1

; : : : ; �

K

) 2 � � R

K

the maximizer

of L

K

(�). Our estimate will be f

K

= e

ĝ�log

R

e

ĝ

such that, ĝ = h

^

�;Mi

K

. To make
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the logistic transformation one-to-one we have to enforce the side condition

R

g = 0

which implies that

P

n

j=1

�

j

= 0, since

R

M

j

= 1 (normalized cubic B-splines) for

j = 1; : : : ; K. Let �

0

= f� 2 � � R

K

:

P

K

j

�

j

= 0g

Lemma 2.1 For a �xed K, L

K

(�) is concave in �. Moreover, L

K

(�) is strictly

concave for � 2 �

0

. Hence there exists at most one maximizer on �

0

Proof. It is enough to show that � log

R

e

h�;M(x)i

K

is concave in �. For this, take

�

1

; �

2

2 � an open set in R

K

, and �, � > 0, � + � = 1. We have, by applying

Holder's inequality,

log

Z

e

�h�

1

;Mi+�h�

2

;Mi

K

� � log

Z

e

h�

1

;Mi

K

+ � log

Z

e

h�

2

;Mi

K

<1: (2.2)

Note that, the equality holds in (2.2) if e

h�

1

;Mi

K

= j
je

h�

2

;Mi

K

for some 
 which

amounts to �

2

= �

1

+ c, where c is a constant. Thus, L

K

(�) is strictly concave if

we restrict � to the subspace �

0

. Moreover, it is not di�cult to show that L

K

(�) is

continuous and at least twice di�erentiable in � for a �xed K. Thus, restrict to �

0

one may guarantee a unique density estimate. 2

The next theorem shows the relationship between the maximizers

^

� in � and �

�

in �

0

.

Theorem 2.1 If the vector of parameters

^

� maximizes L

K

(�) then �

�

=

^

��

1

K

P

K

j=1

^

�

j

maximizes L

K

(�) subject to

P

K

j=1

�

j

= 0. Moreover, �

�

is unique.

Proof. For all c

�

: � � R

K

! R, K � 1,

L

K

(� + c

�

) =

1

n

n

X

i=1

h(� + c

�

;M(X

i

)i

K

� log

Z

e

h�+c

�

;M(x)i

K

dx

=

1

n

n

X

i=1

h�;M(X

i

)i

K

+ c

�

h1;M(X

i

)i

K

� log

Z

e

h�;M(x)i

K

+c

�

h1;M(x)i

K

dx

= L

K

(�); (2.3)
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since, by the partition of unity property, we have

h1;M(x)i

K

=

K

X

j=1

M

j

(x) = 1; 8x:

As a consequence of (2.3), we have,

max

�

L

K

(�) = max

�:c

�

=0

L

K

(�):

Therefore, if

^

� is such that L

K

(

^

�) = max

�

L

K

(�), then L

K

(�

�

) � L

K

(�), for all � so

that,

P

K

j=1

�

j

= 0. In fact, by (2.3)

L

K

(�

�

) = L

K

(

^

� �

1

K

K

X

j=1

^

�

j

)

= L

K

(

^

�) � L

K

(�) 8�: (2.4)

To see that �

�

is the unique, we have to recall the properties of B-splines and the

fact that the maximum log likelihood function is strictly concave on �

0

, hence if the

maximum likelihood estimator exists then it is unique. Let t

1

; : : : ; t

p

be sequence

of knots such that �1; < t

1

; < t

2

< � � � < t

p�1

< t

p

< 1. Suppose (�1; t

1

] and

[t

p

;1) have at least one observed value and four or more observations lie in the

compact sets [t

1

; t

2

]; : : : [t

p�1

; t

p

], then

^

� = �

K

exists.

3 Computing the number of basis functions

One may notice the density estimate f

K

strongly depends on the number of basis

functions K which regularizes the optimization problem (2.1). In order to provide

an appropriate K a test statistic

f(X)

f

K

(X)

based on the likelihood ratio test is taken.

For (

^

�;K) this statistic should be close to 1, and consequently E[log(f(X)=f

K

(X))]

5



roughly 0. This approach is equivalent to minimize de Kullback-Leibler distance (not

a metric, for using Hellinger pseudo metric see Dias (1999)). For this, given any

density f , let g = log f and consider the Kullback-Leibler measure for the di�erence

between f and f

K

d

KL

(f; f

K

) =

Z

(log f � log f

K

)f (3.1)

=

Z

(g � g

K

)e

g

Of course, we cannot compute d

KL

(f; f

K

) from the data, since it requires the

knowledge of f . But theoretically we can investigate this distance for the choice of an

appropriateK. Then, one may de�ne the bestK as

^

K = argmin

K2f1;:::;ng

d

KL

(f; f

K

).

Note that to minimize the Kullback-Leibler distance is equivalent also to maxi-

mize the usual cross validation function. To see, denote the leave-one-out estimate

f

�i

K

(X

i

) =

1

n� 1

n

X

l 6=i

exp(h�;M(X

l

)i

K

� a(�));

where a(�) = log

R

exp(h�;M(x)i

K

)dx. Then

n

�1

log

n

Y

i=1

f

�i

K

(X

i

) = n

�1

n

X

i=1

log f

�i

K

(X

i

):

De�ne the maximum likelihood cross validation function to be

CV (K) = n

�1

n

X

i=1

log

^

f

�i

K

(X

i

): (3.2)

Under this procedure the best K would be K

CV

= argmax

K

CV (K). Note

that this procedure is highly computational intensive and might take a considerable

amount of time to get a density estimate. However, it is not di�cult to show that

by disregarding the leave-one-out e�ect

E[CV (K)] � E[

Z

f log

^

f

K

]: (3.3)
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Comparing (3.3) with Kullback-Leibler distance, we can see

E[CV (K)] �

Z

f log f � E[d

KL

(f; f

K

)]:

Noting that the �rst term of the right hand does not depend on K, we can expect to

approximate the optimal K by minimizing d

KL

(f; f

K

). Observe that, the Kullback-

Leibler distance, d

KL

(f; f

K

) =

R

f log f �

R

f log f

K

and

Z

f log f

K

= E[log f

K

(X)]

is the only term which depends on K and it can be approximated by

E[log f

K

(X)] �

1

n

n

X

i=1

log f

K

(X

i

):

Thus, in fact, the optimization relies on a proxy of the Kullback-Leibler.

Placement knots is a very important issue in density estimation via polynomial

splines. In this procedure, the �tting can be done either by equally spaced knots

(cardinal splines) or by putting the knots on the order statistics.

Algorithm 3.1

1. For K 2 f1; : : : ; mg m < n,

2. get the maximizer of L

K

(�) and compute f

K

, and

3. choose

^

K that maximizes

1

n

P

n

i=1

log f

K

(X

i

).

4. Compute the maximizer of L

^

K

(�) and deliver f

^

K

4 Monte Carlo Simulation

In this section we verify the performance of the proposed procedure through typical

examples of the simulations. All the simulated data were generated by Splus and R
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functions. The entirely code is written is Splus and R, does not require any dynamic

loading and it can be implemented in any personal computer where Splus (or R) is

running.

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

data

True
Estimate

100 obs from N(5,1)

Figure 4.1: One hundred observations from N(5,1) and the optimal K is 3.

Figure 4.1 exhibits a comparison between a true density N(5; 1) and the estimate

using 3 basis functions. Visually, we can see this estimate does a good job in

estimating the underlying density.
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0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

y

True
Estimate

100 obs. from Gamma(3)

Figure 4.2: two hundred observations from Gamma(3) and the optimal K is 4.

Figure 4.2 and Figure 4.3 show typical example of data coming from a Gamma

density with shape parameter equal 3 and Beta density with parameters 5 and 3

respectively. Note that the estimates are very close to the true densities in both

cases.
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0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

data

200 obs. from Beta(5,3)

True
Estimate

Figure 4.3: The data contain two hundred observations from Beta(5,3) and the

optimal K is 4.
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Figure 4.4 shows a mixture of two normal distributions with the same variance

but di�erent means. As we can see, the �tting seems to be very good.

Figure 4.5 exhibits a real data example where 7126 magnitude of some stars were

measured.

0.2 0.4 0.6 0.8 1.0

0
1

2
3

data

200 obs from .6*N(.4,.1)+.4*N(.8,.1)

True
Estimate

Figure 4.4: The data contain two hundred observations from mixed normal distri-

butions and K is 7.
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0
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10
^-

6
4*

10
^-

6
6*

10
^-

6

magnitude of some stars

Figure 4.5: Comparison of the density estimate provided by this method and the

histogram for the data Magnitute of stars.
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In conclusion, this procedure is easy to use, easy to implement and easy to un-

derstand. It provides a unique solution for the optimization problem without having

to penalize the likelihood function. Very practical for data analysis when the non-

parametric estimation can be a starting guess for a parametric model. Simulations

have shown that K=3 is appropriate to estimate a single mode. Also, placement

knots on the order statistics is much better when one knows a priori that the data

might have outliers. It does a very good job estimating non pathological data sets.

Certainly, there are more adaptive methods for nonparametric density estimation

(see, for example, Kooperberg and Stone (1991) and Dias (1998a)) but they are

more di�cult to implement.
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