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Abstract

We present an infinite family of partitions identities that resembles one
given by Bressoud in [2]. In his family Bressoud includes only the first of
the two Rogers-Ramanujan identities. Our family is proved combinatorially

and gives a description not only for the first but also for the second Rogers-
Ramanujan identity.

1. Introduction

The Rogers-Ramanujan identities in its analytical forms are given by:
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where we are using the standard notation

(a)o =1
and
(@) =1 —a)(l—aq)...(1—ag"?).

One well known arithmetical interpretation for these two identities is

“The number of partitions of n with parts differing by at least 2 and greater than
i equals the number of partitions of n in parts = +(i + 1)(mod 5),i =0,1.”

We mention that there is an important generalization of this theorem given by
Gordon [3] as follows:



“Let By ;(n) denote the number of partitions of n of the form (by,bo, ..., bs),
where b; — bj,_1 > 2, and at most ¢ — 1 of the b; equal 1. Let Ay ;(n) denote the
number of partitions of n into parts # 0, £i(mod 2k + 1). Then Ay ;(n) = By,(n)
for all n.”

Another arithmetical interpretation for the Rogers-Ramanujan identities was
given by Mondek and Santos [5] namely

“The number of partitions of m in distinct parts of the form m = (a1 +as+-- -+
an)+ (b1 +ba+- - -+by) where a; is odd and b; even with a; % a;jy1(mod 4), a, = (2A—
1)(mod 4) equals to the number of partitions of m in parts = £A(mod 5), A =1,2.”

The general theorem that we are going to prove in the next section presents two
combinatorial interpretations for each one of the Rogers-Ramanujan identities. The
two interpretations for the first identity were given, previously, by Bressoud [2].

2. The Theorem

Let a(1),a(2),...,a(k) be a complete residue system modulo k£ with 0 < a(i) < k
forall:=1,2,...,k.

Theorem 1. For ¢ > 0,k > 2 let A(n, k, ¢) be the number of partitions of n of the
form n = by +by+- - -+0bs with by > ¢ and b; —b;41 > k and B(n, k, {) be the number
of partitions of n in distinct parts that are greater than ¢ and for each 7,1 <1 < k

k
the smallest part = ¢+ a(i) + 1(mod k) is > k I_ > TjJ + ( + a(i) where r; is the
j=it1
number of parts = ¢ + a(j) + 1(mod k),1 < j < k.
Then A(n,k,¢) = B(n,k,¢) and the generating function for A(n,k, /) is given
by:
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Proof. We consider a partition 7 enumerated by A(n,k, (). We represent 7 with
a modified Ferrers graph in which we indent each row by k£ nodes. Considering that
each part is greater than ¢ we have a graph similar to:
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Figure 1

If we substract ¢ + 1 from by, ¢ + k + 1 from bs_1,0 + 2k + 1 from b;_o, ..., ¢ +
(s — 1)k + 1 from b; we are left with a partition of

n—((€+1)—|—(€+1+k)+'-'+€+1+(8—1)/<;):n—s(€+1)—§s(s—1)

in at most s parts that is generated by

qg(ks—k-i-Z)-l-ls
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Then the generating function for A(n, k, () is
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Now in order to prove that A(n,k,{) = B(n,k,{) we are going to construct a
bijection between the two sets of partitions.

The part of the graph on the left of Block B has, from botton to top, respectively
C+1, 0+k+1, £+2k+1,..., L+ (s—1)k+ 1 nodes.

Lets assume that in Block B there are r; parts = a(j)(mod k),1 < j < k. Then,
in 7, there are r; parts = £ + a(j) + 1(mod k).

Now we reorder the rows that are in Block B putting first the r; rows that are
= a(1)(mod k) (in descending order), then the r, rows = a(2)(mod k) (in descending
order), and so on, up to the r rows = a(k)(mod k). We observe that after reording
the smallest part in the first ry rows is > k(s —r1) + ¢+ a(1), that the smallest part
in the next ry rows is > k(s — r; — r3) + £+ a(2) and that, in general, the smallest
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part among the r; parts = ¢ + a(i) + 1(mod k) is > k [s > 1| + L+ a() =

=1

k
k> rj+0+a(i)since s =ri+ro+ -+

j=i+1

! After reording, as described above, we consider the new rows as parts of a
transformed partition that is enumerated by B(n, k, ¢).

It is immediate from our construction that all parts are distinct and that this
process is clearly reversible since that, given a partition enumerated by B(n,k, ()
we may order its parts by taking first the ones = ¢+ 1+ a(1)(modk) (in descending
order), after the ones = ¢+ 1 + a(2)(mod k) (in descending order) and so on, up to
the ones = ¢ + 1 + a(k)(mod k) (in descending order). After reording as described
above we represent the partition in a graphic form like the one in Figure 1. We
finish this operation by reording only the rows that are in Block B. We have then
a bijection between the partitions enumerated by A(n, k, () and B(n, k,?).

O

To illustrate the procedure described in the theorem we consider k =9,/ = 3,s =
6; a(l) =2; a(2) =0; a(3) =4; a(4) =8; a(b) =6; a(6) =7; a(7) =3; a(8) =1
and a(9) = 5.

Let 71 4 50 + 39 4 27 + 15+ 5 be an element enumerated by A(207,9, 3).

(71 < |46 |3 |22
50 < |37 |3]10
39 < | 28|38
T14+504+39+27T4+ 1545« 97 « 1913715 —
15 <« |10]3| 2
[ 9 < |1 ]3]|1
46 | 3| 2 < 51 )
3713122 < 62
28 13| 8 < 39
> 9T3T10] 32 <~ 62+51+394+32+14+9
10131 ~ 14
1 (35| < 9 )

that is an element enumerated by B(207,9, 3).



There are some special cases of great interest. If we take £ = 2, ¢/ = 0, and
a(l) =1,a(2) =0 (or a(1) = 0,a(2) = 1) in the theorem we have:

Corollary 1. The number of partitions of n with parts differing by at least 2
equals the number of partitions of n into distinct parts where the smallest even
(odd) part is greater twice the number of odd (even) parts.

Considering, now, £ = 2, £ =1 and a(l) = 0,a(2) =1 (or a(l) = 1,a(2) = 0)
we have:

Corollary 2. The number of partitions of n with parts greater than 1 and differing
by at least 2 equals the number of partitions of n into distinct parts > 1 wherein
each even (odd) part is larger than (2 plus) twice the number of odd (even) parts.

We mention that the two interpretation for the first Rogers-Ramanujan identity
given in corollary 1 has been given, also, by Bressoud in [2].
In the next tables we list the bijection described in our theorem for n = 15, k =

2, {=0and n=15 k=2, { =1, with a(i) = i.
A(15,2,0) B(15,2,0)
15 — 15
14+1 — 14+1
13+ 2 — 11+4
12+ 3 — 12+3
1144 — 9+6
10+5 — 10+5
9+6 — 8+ 7
1I+34+1 <+ 11+3+1
10+44+1  <+— 10+4+1
9+5+1 — 9+5+1
8+6+1 — 8+6+1
9+4+4+2 — 6+5+4
8+5+2 —> 8+4+3
7T+5+3 — 7T+5+3
Table 1
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A(15,2,1) B(15,2,1)
15 —> 15
1342 —> 1342
1243 —> 1045
1144 — 11+4
1045 — 8+ 7
9+6 — 94+6
94442 +— 94442
8+5+2 <+—— 74+6+2
+5+3 <+— 7+5+3
Table 2
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