A Family of Partition Identities Proved Combinatorially

José Plínio O. Santos
and
Paulo Mondek

Abstract

We present an infinite family of partitions identities that resembles one given by Bressoud in [2]. In his family Bressoud includes only the first of the two Rogers-Ramanujan identities. Our family is proved combinatorially and gives a description not only for the first but also for the second RogersRamanujan identity.

1. Introduction

The Rogers-Ramanujan identities in its analytical forms are given by:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q)_{n}}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-1}\right)\left(1-q^{5 n-4}\right)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q)_{n}}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-2}\right)\left(1-q^{5 n-3}\right)} \tag{2}
\end{equation*}
$$

where we are using the standard notation

$$
(a)_{0}=1
$$

and

$$
(a)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)
$$

One well known arithmetical interpretation for these two identities is
"The number of partitions of n with parts differing by at least 2 and greater than i equals the number of partitions of n in parts $\equiv \pm(i+1)(\bmod 5), i=0,1$."

We mention that there is an important generalization of this theorem given by Gordon [3] as follows:
"Let $B_{k, i}(n)$ denote the number of partitions of n of the form $\left(b_{1}, b_{2}, \ldots, b_{s}\right)$, where $b_{j}-b_{j+k-1} \geq 2$, and at most $i-1$ of the b_{j} equal 1 . Let $A_{k, i}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm i(\bmod 2 k+1)$. Then $A_{k, i}(n)=B_{k, i}(n)$ for all n."

Another arithmetical interpretation for the Rogers-Ramanujan identities was given by Mondek and Santos [5] namely
"The number of partitions of m in distinct parts of the form $m=\left(a_{1}+a_{2}+\cdots+\right.$ $\left.a_{n}\right)+\left(b_{1}+b_{2}+\cdots+b_{s}\right)$ where a_{j} is odd and b_{i} even with $a_{j} \not \equiv a_{j+1}(\bmod 4), a_{n} \equiv(2 \lambda-$ $1)(\bmod 4)$ equals to the number of partitions of m in parts $\equiv \pm \lambda(\bmod 5), \lambda=1,2$."

The general theorem that we are going to prove in the next section presents two combinatorial interpretations for each one of the Rogers-Ramanujan identities. The two interpretations for the first identity were given, previously, by Bressoud [2].

2. The Theorem

Let $a(1), a(2), \ldots, a(k)$ be a complete residue system modulo k with $0 \leq a(i)<k$ for all $i=1,2, \ldots, k$.

Theorem 1. For $\ell \geq 0, k \geq 2$ let $A(n, k, \ell)$ be the number of partitions of n of the form $n=b_{1}+b_{2}+\cdots+b_{s}$ with $b_{s}>\ell$ and $b_{j}-b_{j+1} \geq k$ and $B(n, k, \ell)$ be the number of partitions of n in distinct parts that are greater than ℓ and for each $i, 1 \leq i<k$ the smallest part $\equiv \ell+a(i)+1(\bmod k)$ is $>k\left[\sum_{j=i+1}^{k} r_{j}\right]+\ell+a(i)$ where r_{j} is the number of parts $\equiv \ell+a(j)+1(\bmod k), 1<j \leq k$.

Then $A(n, k, \ell)=B(n, k, \ell)$ and the generating function for $A(n, k, \ell)$ is given by:

$$
\sum_{s=0}^{\infty} \frac{q^{\frac{s}{2}(k s-k+2)+\ell s}}{(q)_{s}} .
$$

Proof. We consider a partition π enumerated by $A(n, k, \ell)$. We represent π with a modified Ferrers graph in which we indent each row by k nodes. Considering that each part is greater than ℓ we have a graph similar to:

Figure 1
If we substract $\ell+1$ from $b_{s}, \ell+k+1$ from $b_{s-1}, \ell+2 k+1$ from $b_{s-2}, \ldots, \ell+$ $(s-1) k+1$ from b_{1} we are left with a partition of

$$
n-((\ell+1)+(\ell+1+k)+\cdots+\ell+1+(s-1) k)=n-s(\ell+1)-\frac{k}{2} s(s-1)
$$

in at most s parts that is generated by

$$
\frac{q^{\frac{s}{2}(k s-k+2)+\ell s}}{(q)_{s}} .
$$

Then the generating function for $A(n, k, \ell)$ is

$$
\sum_{s=0}^{\infty} \frac{q^{\frac{s}{2}(k s-k+2)+\ell s}}{(q)_{s}}
$$

Now in order to prove that $A(n, k, \ell)=B(n, k, \ell)$ we are going to construct a bijection between the two sets of partitions.

The part of the graph on the left of Block B has, from botton to top, respectively $\ell+1, \ell+k+1, \ell+2 k+1, \ldots, \ell+(s-1) k+1$ nodes.

Lets assume that in Block B there are r_{j} parts $\equiv a(j)(\bmod k), 1 \leq j \leq k$. Then, in π, there are r_{j} parts $\equiv \ell+a(j)+1(\bmod k)$.

Now we reorder the rows that are in Block B putting first the r_{1} rows that are $\equiv a(1)(\bmod k)$ (in descending order), then the r_{2} rows $\equiv a(2)(\bmod k)$ (in descending order), and so on, up to the r_{k} rows $\equiv a(k)(\bmod k)$. We observe that after reording the smallest part in the first r_{1} rows is $>k\left(s-r_{1}\right)+\ell+a(1)$, that the smallest part in the next r_{2} rows is $>k\left(s-r_{1}-r_{2}\right)+\ell+a(2)$ and that, in general, the smallest
part among the r_{i} parts $\equiv \ell+a(i)+1(\bmod k)$ is $>k\left[s-\sum_{j=1}^{i} r_{j}\right]+\ell+a(i)=$ $k \sum_{j=i+1}^{k} r_{j}+\ell+a(i)$ since $s=r_{1}+r_{2}+\cdots+r_{k}$.

After reording, as described above, we consider the new rows as parts of a transformed partition that is enumerated by $B(n, k, \ell)$.

It is immediate from our construction that all parts are distinct and that this process is clearly reversible since that, given a partition enumerated by $B(n, k, \ell)$ we may order its parts by taking first the ones $\equiv \ell+1+a(1)(\bmod k)$ (in descending order), after the ones $\equiv \ell+1+a(2)(\bmod k)$ (in descending order) and so on, up to the ones $\equiv \ell+1+a(k)(\bmod k)$ (in descending order). After reording as described above we represent the partition in a graphic form like the one in Figure 1. We finish this operation by reording only the rows that are in Block B. We have then a bijection between the partitions enumerated by $A(n, k, \ell)$ and $B(n, k, \ell)$.

To illustrate the procedure described in the theorem we consider $k=9, \ell=3, s=$ $6 ; a(1)=2 ; a(2)=0 ; a(3)=4 ; a(4)=8 ; a(5)=6 ; a(6)=7 ; a(7)=3 ; a(8)=1$ and $a(9)=5$.

Let $71+50+39+27+15+5$ be an element enumerated by $A(207,9,3)$.
that is an element enumerated by $B(207,9,3)$.

There are some special cases of great interest. If we take $k=2, \ell=0$, and $a(1)=1, a(2)=0($ or $a(1)=0, a(2)=1)$ in the theorem we have:

Corollary 1. The number of partitions of n with parts differing by at least 2 equals the number of partitions of n into distinct parts where the smallest even (odd) part is greater twice the number of odd (even) parts.

Considering, now, $k=2, \ell=1$ and $a(1)=0, a(2)=1$ (or $a(1)=1, a(2)=0)$ we have:

Corollary 2. The number of partitions of n with parts greater than 1 and differing by at least 2 equals the number of partitions of n into distinct parts >1 wherein each even (odd) part is larger than (2 plus) twice the number of odd (even) parts.

We mention that the two interpretation for the first Rogers-Ramanujan identity given in corollary 1 has been given, also, by Bressoud in [2].

In the next tables we list the bijection described in our theorem for $n=15, k=$ $2, \ell=0$ and $n=15, k=2, \ell=1$, with $a(i)=i$.

$A(15,2,0)$		$B(15,2,0)$
15	\longleftrightarrow	15
$14+1$	\longleftrightarrow	$14+1$
$13+2$	\longleftrightarrow	$11+4$
$12+3$	\longleftrightarrow	$12+3$
$11+4$	\longleftrightarrow	$9+6$
$10+5$	\longleftrightarrow	$10+5$
$9+6$	\longleftrightarrow	$8+7$
$11+3+1$	\longleftrightarrow	$11+3+1$
$10+4+1$	\longleftrightarrow	$10+4+1$
$9+5+1$	\longleftrightarrow	$9+5+1$
$8+6+1$	\longleftrightarrow	$8+6+1$
$9+4+2$	\longleftrightarrow	$6+5+4$
$8+5+2$	\longleftrightarrow	$8+4+3$
$7+5+3$	\longleftrightarrow	$7+5+3$

Table 1

$A(15,2,1)$		$B(15,2,1)$
15	\longleftrightarrow	15
$13+2$	\longleftrightarrow	$13+2$
$12+3$	\longleftrightarrow	$10+5$
$11+4$	\longleftrightarrow	$11+4$
$10+5$	\longleftrightarrow	$8+7$
$9+6$	\longleftrightarrow	$9+6$
$9+4+2$	\longleftrightarrow	$9+4+2$
$8+5+2$	\longleftrightarrow	$7+6+2$
$7+5+3$	\longleftrightarrow	$7+5+3$

Table 2

References

[1] Andrews, G. E. and Askey, R. Enumeration of Partitions, Proceeding of the NATO Advanced Study Institute Higher Combinatorics, Berlin, Sept. 1-10, 1976, ed. by M. Aigner, publ. by Reidel, Dordrecht.
[2] Bressoud, D.M., A New Family of Partition Identities, Pacific Journal of Mathematics, vol. 77, $\mathrm{n}^{\mathrm{O}} 1,1978$.
[3] Gordon, B., A Combinatorial Generalization of the Rogers-Ramanujan Identities, Amer. J. Math. 83, 393-399, 1961.
[4] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, fifth edition, Oxford, 1988
[5] Mondek, P. and Santos, J. P. O., A New Combinatorial Interpretation for the Rogers-Ramanujan Identities. Relatório Técnico noㅡ 08/99 IMECC-UNICAMP, 1999.

IMECC-UNICAMP Cx.P. 6065
13083-970 - Campinas - SP - Brasil
email:josepli@ime.unicamp.br

CCET - UFMS Cx.P. 549
79070-900 - Campo Grande - MS - Brasil email:mondek@hilbert.dmt.ufms.br

