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Abstrat

We present an in�nite family of partitions identities that resembles one

given by Bressoud in [2℄. In his family Bressoud inludes only the �rst of

the two Rogers-Ramanujan identities. Our family is proved ombinatorially

and gives a desription not only for the �rst but also for the seond Rogers-

Ramanujan identity.

1. Introdution

The Rogers-Ramanujan identities in its analytial forms are given by:
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where we are using the standard notation

(a)

0

= 1

and

(a)

n

= (1� a)(1� aq) : : : (1� aq

n�1

):

One well known arithmetial interpretation for these two identities is

\The number of partitions of n with parts di�ering by at least 2 and greater than

i equals the number of partitions of n in parts � �(i+ 1)(mod 5); i = 0; 1."

We mention that there is an important generalization of this theorem given by

Gordon [3℄ as follows:
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for all n."

Another arithmetial interpretation for the Rogers-Ramanujan identities was

given by Mondek and Santos [5℄ namely

\The number of partitions of m in distint parts of the form m = (a
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1)(mod 4) equals to the number of partitions of m in parts � ��(mod 5); � = 1; 2."

The general theorem that we are going to prove in the next setion presents two

ombinatorial interpretations for eah one of the Rogers-Ramanujan identities. The

two interpretations for the �rst identity were given, previously, by Bressoud [2℄.

2. The Theorem

Let a(1); a(2); : : : ; a(k) be a omplete residue system modulo k with 0 � a(i) < k

for all i = 1; 2; : : : ; k.

Theorem 1. For ` � 0; k � 2 let A(n; k; `) be the number of partitions of n of the

form n = b
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of partitions of n in distint parts that are greater than ` and for eah i; 1 � i < k

the smallest part � ` + a(i) + 1(mod k) is > k
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number of parts � `+ a(j) + 1(mod k); 1 < j � k.

Then A(n; k; `) = B(n; k; `) and the generating funtion for A(n; k; `) is given

by:
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Proof. We onsider a partition � enumerated by A(n; k; `). We represent � with

a modi�ed Ferrers graph in whih we indent eah row by k nodes. Considering that

eah part is greater than ` we have a graph similar to:
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Figure 1

If we substrat ` + 1 from b

s

; ` + k + 1 from b

s�1

; ` + 2k + 1 from b

s�2

; : : : ; ` +

(s� 1)k + 1 from b

1

we are left with a partition of
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Then the generating funtion for A(n; k; `) is
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Now in order to prove that A(n; k; `) = B(n; k; `) we are going to onstrut a

bijetion between the two sets of partitions.

The part of the graph on the left of Blok B has, from botton to top, respetively

`+ 1; `+ k + 1; `+ 2k + 1; : : : ; ` + (s� 1)k + 1 nodes.

Lets assume that in Blok B there are r

j

parts � a(j)(mod k); 1 � j � k. Then,

in �, there are r

j

parts � `+ a(j) + 1(mod k).

Now we reorder the rows that are in Blok B putting �rst the r

1

rows that are

� a(1)(mod k) (in desending order), then the r

2

rows � a(2)(mod k) (in desending

order), and so on, up to the r

k
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in the next r

2

rows is > k(s� r

1

� r

2

) + ` + a(2) and that, in general, the smallest
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After reording, as desribed above, we onsider the new rows as parts of a

transformed partition that is enumerated by B(n; k; `).

It is immediate from our onstrution that all parts are distint and that this

proess is learly reversible sine that, given a partition enumerated by B(n; k; `)

we may order its parts by taking �rst the ones � `+1+ a(1)(modk) (in desending

order), after the ones � `+ 1+ a(2)(mod k) (in desending order) and so on, up to

the ones � ` + 1 + a(k)(mod k) (in desending order). After reording as desribed

above we represent the partition in a graphi form like the one in Figure 1. We

�nish this operation by reording only the rows that are in Blok B. We have then

a bijetion between the partitions enumerated by A(n; k; `) and B(n; k; `).

2

To illustrate the proedure desribed in the theorem we onsider k = 9; ` = 3; s =

6; a(1) = 2; a(2) = 0; a(3) = 4; a(4) = 8; a(5) = 6; a(6) = 7; a(7) = 3; a(8) = 1

and a(9) = 5.

Let 71 + 50 + 39 + 27 + 15 + 5 be an element enumerated by A(207; 9; 3).

71 + 50 + 39 + 27 + 15 + 5$
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;

$ 62 + 51 + 39 + 32 + 14 + 9

that is an element enumerated by B(207; 9; 3).
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There are some speial ases of great interest. If we take k = 2; ` = 0, and

a(1) = 1; a(2) = 0 (or a(1) = 0; a(2) = 1) in the theorem we have:

Corollary 1. The number of partitions of n with parts di�ering by at least 2

equals the number of partitions of n into distint parts where the smallest even

(odd) part is greater twie the number of odd (even) parts.

Considering, now, k = 2; ` = 1 and a(1) = 0; a(2) = 1 (or a(1) = 1; a(2) = 0)

we have:

Corollary 2. The number of partitions of n with parts greater than 1 and di�ering

by at least 2 equals the number of partitions of n into distint parts > 1 wherein

eah even (odd) part is larger than (2 plus) twie the number of odd (even) parts.

We mention that the two interpretation for the �rst Rogers-Ramanujan identity

given in orollary 1 has been given, also, by Bressoud in [2℄.

In the next tables we list the bijetion desribed in our theorem for n = 15; k =

2; ` = 0 and n = 15; k = 2; ` = 1, with a(i) = i.

A(15; 2; 0) B(15; 2; 0)

15  ! 15

14 + 1  ! 14 + 1

13 + 2  ! 11 + 4

12 + 3  ! 12 + 3

11 + 4  ! 9 + 6

10 + 5  ! 10 + 5

9 + 6  ! 8 + 7

11 + 3 + 1  ! 11 + 3 + 1

10 + 4 + 1  ! 10 + 4 + 1

9 + 5 + 1  ! 9 + 5 + 1

8 + 6 + 1  ! 8 + 6 + 1

9 + 4 + 2  ! 6 + 5 + 4

8 + 5 + 2  ! 8 + 4 + 3

7 + 5 + 3  ! 7 + 5 + 3

Table 1
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A(15; 2; 1) B(15; 2; 1)

15  ! 15

13+2  ! 13+2

12+3  ! 10+5

11+4  ! 11+4

10+5  ! 8 + 7

9+6  ! 9 + 6

9+4+2  ! 9+4+2

8+5+2  ! 7+6+2

7+5+3  ! 7+5+3

Table 2
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