A Family of Partition Identities Proved Combinatorially

José Plínio O. Santos and Paulo Mondek

Abstract

We present an infinite family of partitions identities that resembles one given by Bressoud in [2]. In his family Bressoud includes only the first of the two Rogers-Ramanujan identities. Our family is proved combinatorially and gives a description not only for the first but also for the second Rogers-Ramanujan identity.

1. Introduction

The Rogers-Ramanujan identities in its analytical forms are given by:

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q)_n} = \prod_{n=1}^{\infty} \frac{1}{(1 - q^{5n-1})(1 - q^{5n-4})}$$
 (1)

and

$$\sum_{n=0}^{\infty} \frac{q^{n^2+n}}{(q)_n} = \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n-2})(1-q^{5n-3})}$$
 (2)

where we are using the standard notation

$$(a)_0 = 1$$

and

$$(a)_n = (1-a)(1-aq)\dots(1-aq^{n-1}).$$

One well known arithmetical interpretation for these two identities is

"The number of partitions of n with parts differing by at least 2 and greater than i equals the number of partitions of n in parts $\equiv \pm (i+1) \pmod{5}$, i=0,1."

We mention that there is an important generalization of this theorem given by Gordon [3] as follows:

"Let $B_{k,i}(n)$ denote the number of partitions of n of the form (b_1, b_2, \ldots, b_s) , where $b_j - b_{j+k-1} \geq 2$, and at most i-1 of the b_j equal 1. Let $A_{k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm i \pmod{2k+1}$. Then $A_{k,i}(n) = B_{k,i}(n)$ for all n."

Another arithmetical interpretation for the Rogers-Ramanujan identities was given by Mondek and Santos [5] namely

"The number of partitions of m in distinct parts of the form $m = (a_1 + a_2 + \cdots + a_n) + (b_1 + b_2 + \cdots + b_s)$ where a_j is odd and b_i even with $a_j \not\equiv a_{j+1} \pmod{4}$, $a_n \equiv (2\lambda - 1) \pmod{4}$ equals to the number of partitions of m in parts $\equiv \pm \lambda \pmod{5}$, $\lambda = 1, 2$."

The general theorem that we are going to prove in the next section presents two combinatorial interpretations for each one of the Rogers-Ramanujan identities. The two interpretations for the first identity were given, previously, by Bressoud [2].

2. The Theorem

Let $a(1), a(2), \ldots, a(k)$ be a complete residue system modulo k with $0 \le a(i) < k$ for all $i = 1, 2, \ldots, k$.

Theorem 1. For $\ell \geq 0, k \geq 2$ let $A(n,k,\ell)$ be the number of partitions of n of the form $n = b_1 + b_2 + \cdots + b_s$ with $b_s > \ell$ and $b_j - b_{j+1} \geq k$ and $B(n,k,\ell)$ be the number of partitions of n in distinct parts that are greater than ℓ and for each $i, 1 \leq i < k$

the smallest part $\equiv \ell + a(i) + 1 \pmod{k}$ is $> k \left[\sum_{j=i+1}^{k} r_j \right] + \ell + a(i)$ where r_j is the number of parts $\equiv \ell + a(j) + 1 \pmod{k}, 1 < j \leq k$.

Then $A(n, k, \ell) = B(n, k, \ell)$ and the generating function for $A(n, k, \ell)$ is given by:

$$\sum_{s=0}^{\infty} \frac{q^{\frac{s}{2}(ks-k+2)+\ell s}}{(q)_s}.$$

Proof. We consider a partition π enumerated by $A(n, k, \ell)$. We represent π with a modified Ferrers graph in which we indent each row by k nodes. Considering that each part is greater than ℓ we have a graph similar to:

Figure 1

If we substract $\ell + 1$ from $b_s, \ell + k + 1$ from $b_{s-1}, \ell + 2k + 1$ from $b_{s-2}, \ldots, \ell + (s-1)k + 1$ from b_1 we are left with a partition of

$$n - ((\ell+1) + (\ell+1+k) + \dots + \ell+1 + (s-1)k) = n - s(\ell+1) - \frac{k}{2}s(s-1)$$

in at most s parts that is generated by

$$\frac{q^{\frac{s}{2}(ks-k+2)+\ell s}}{(q)_s}.$$

Then the generating function for $A(n, k, \ell)$ is

$$\sum_{s=0}^{\infty} \frac{q^{\frac{s}{2}(ks-k+2)+\ell s}}{(q)_s}.$$

Now in order to prove that $A(n, k, \ell) = B(n, k, \ell)$ we are going to construct a bijection between the two sets of partitions.

The part of the graph on the left of Block B has, from botton to top, respectively $\ell + 1$, $\ell + k + 1$, $\ell + 2k + 1$, ..., $\ell + (s - 1)k + 1$ nodes.

Lets assume that in Block B there are r_j parts $\equiv a(j) \pmod{k}$, $1 \leq j \leq k$. Then, in π , there are r_j parts $\equiv \ell + a(j) + 1 \pmod{k}$.

Now we reorder the rows that are in Block B putting first the r_1 rows that are $\equiv a(1) \pmod{k}$ (in descending order), then the r_2 rows $\equiv a(2) \pmod{k}$ (in descending order), and so on, up to the r_k rows $\equiv a(k) \pmod{k}$. We observe that after reording the smallest part in the first r_1 rows is $> k(s-r_1)+\ell+a(1)$, that the smallest part in the next r_2 rows is $> k(s-r_1-r_2)+\ell+a(2)$ and that, in general, the smallest

part among the
$$r_i$$
 parts $\equiv \ell + a(i) + 1 \pmod{k}$ is $> k \left[s - \sum_{j=1}^{i} r_j \right] + \ell + a(i) = k \sum_{j=i+1}^{k} r_j + \ell + a(i)$ since $s = r_1 + r_2 + \dots + r_k$.

After reording, as described above, we consider the new rows as parts of a transformed partition that is enumerated by $B(n, k, \ell)$.

It is immediate from our construction that all parts are distinct and that this process is clearly reversible since that, given a partition enumerated by $B(n,k,\ell)$ we may order its parts by taking first the ones $\equiv \ell+1+a(1)(modk)$ (in descending order), after the ones $\equiv \ell+1+a(2)(mod\ k)$ (in descending order) and so on, up to the ones $\equiv \ell+1+a(k)(mod\ k)$ (in descending order). After reording as described above we represent the partition in a graphic form like the one in Figure 1. We finish this operation by reording only the rows that are in Block B. We have then a bijection between the partitions enumerated by $A(n,k,\ell)$ and $B(n,k,\ell)$.

To illustrate the procedure described in the theorem we consider $k = 9, \ell = 3, s = 6$; a(1) = 2; a(2) = 0; a(3) = 4; a(4) = 8; a(5) = 6; a(6) = 7; a(7) = 3; a(8) = 1 and a(9) = 5.

Let 71 + 50 + 39 + 27 + 15 + 5 be an element enumerated by A(207, 9, 3).

$$71 + 50 + 39 + 27 + 15 + 5 \leftrightarrow \begin{cases} 71 & \leftrightarrow & 46 & 3 & 22 \\ 50 & \leftrightarrow & 37 & 3 & 10 \\ 39 & \leftrightarrow & 28 & 3 & 8 \\ 27 & \leftrightarrow & 19 & 3 & 5 \\ 15 & \leftrightarrow & 10 & 3 & 2 \\ 5 & \leftrightarrow & 1 & 3 & 1 \end{cases}$$

that is an element enumerated by B(207, 9, 3).

There are some special cases of great interest. If we take $k=2, \ \ell=0$, and a(1)=1, a(2)=0 (or a(1)=0, a(2)=1) in the theorem we have:

Corollary 1. The number of partitions of n with parts differing by at least 2 equals the number of partitions of n into distinct parts where the smallest even (odd) part is greater twice the number of odd (even) parts.

Considering, now, k = 2, $\ell = 1$ and a(1) = 0, a(2) = 1 (or a(1) = 1, a(2) = 0) we have:

Corollary 2. The number of partitions of n with parts greater than 1 and differing by at least 2 equals the number of partitions of n into distinct parts > 1 wherein each even (odd) part is larger than (2 plus) twice the number of odd (even) parts.

We mention that the two interpretation for the first Rogers-Ramanujan identity given in corollary 1 has been given, also, by Bressoud in [2].

In the next tables we list the bijection described in our theorem for n=15, k=2, $\ell=0$ and n=15, k=2, $\ell=1$, with a(i)=i.

A(15, 2, 0)		B(15, 2, 0)
15	\longleftrightarrow	15
14 + 1	\longleftrightarrow	14 + 1
13 + 2	\longleftrightarrow	11 + 4
12 + 3	\longleftrightarrow	12 + 3
11 + 4	\longleftrightarrow	9 + 6
10 + 5	\longleftrightarrow	10 + 5
9 + 6	\longleftrightarrow	8 + 7
11 + 3 + 1	\longleftrightarrow	11 + 3 + 1
10 + 4 + 1	\longleftrightarrow	10 + 4 + 1
9 + 5 + 1	\longleftrightarrow	9 + 5 + 1
8 + 6 + 1	\longleftrightarrow	8 + 6 + 1
9 + 4 + 2	\longleftrightarrow	6 + 5 + 4
8 + 5 + 2	\longleftrightarrow	8 + 4 + 3
7 + 5 + 3	\longleftrightarrow	7 + 5 + 3

Table 1

A(15, 2, 1)		B(15, 2, 1)
15	\longleftrightarrow	15
13+2	\longleftrightarrow	13+2
12+3	\longleftrightarrow	10 + 5
11+4	\longleftrightarrow	11 + 4
10+5	\longleftrightarrow	8 + 7
9+6	\longleftrightarrow	9 + 6
9+4+2	\longleftrightarrow	9 + 4 + 2
8+5+2	\longleftrightarrow	7 + 6 + 2
7+5+3	\longleftrightarrow	7 + 5 + 3

Table 2

References

- [1] Andrews, G. E. and Askey, R. *Enumeration of Partitions*, Proceeding of the NATO Advanced Study Institute Higher Combinatorics, Berlin, Sept. 1-10, 1976, ed. by M. Aigner, publ. by Reidel, Dordrecht.
- [2] Bressoud, D.M., A New Family of Partition Identities, Pacific Journal of Mathematics, vol. 77, n^o 1, 1978.
- [3] Gordon, B., A Combinatorial Generalization of the Rogers-Ramanujan Identities, Amer. J. Math. 83, 393-399, 1961.
- [4] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, fifth edition, Oxford, 1988
- [5] Mondek, P. and Santos, J. P. O., A New Combinatorial Interpretation for the Rogers-Ramanujan Identities. Relatório Técnico nº 08/99 IMECC-UNICAMP, 1999.

IMECC-UNICAMP Cx.P. 6065 13083-970 - Campinas - SP - Brasil email:josepli@ime.unicamp.br

CCET - UFMS Cx.P. 549 79070-900 - Campo Grande - MS - Brasil email:mondek@hilbert.dmt.ufms.br