Solution of a General Linear Complementarity Problem using smooth optimization and its application to bilinear programming and LCP *

L. Fernandes ${ }^{\dagger}$
A. Friedlander ${ }^{\ddagger} \quad$ M. Guedes ${ }^{\S}$ J. Júdice ${ }^{\S}$

August 18, 1999

Abstract

This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables.

The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper.

Keywords: Global optimization, linear complementarity problems, bilinear programming, box constrained optimization.

1 Introduction

The General Linear Complementarity Problem (GLCP) consists of finding vectors $z \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{l}$ such that

$$
\begin{align*}
q+M z+N y & \geq 0 \tag{1}\\
p+R z+S y & \geq 0 \tag{2}\\
z \geq 0, y \geq 0, \quad z^{T}(q+M z+N y) & =0 \tag{3}
\end{align*}
$$

where M, N, R and S are given matrices of orders $n \times n, n \times l, m \times n$ and $m \times l$ respectively and $q \in \mathbb{R}^{n}, p \in \mathbb{R}^{m}$ are given vectors. The GLCP has been studied by many authors as an ingredient for solving some optimization problems
$[19,20,22,24,25,26,28,36,38,45]$. This problem is a generalization of the well-known Linear Complementarity Problem (LCP)

$$
\begin{equation*}
w=q+M z, \quad z \geq 0, \quad w \geq 0, \quad z^{T} w=0 \tag{4}
\end{equation*}
$$

[^0]as it reduces to this latter problem when the variables y_{i} and the constraints (2) do not exist.
It is known that the LCP can be solved in polynomial-time when M is a positive semidefinite (PSD) matrix, that is, if M satisfies $x^{T} M x \geq 0$ for all $x \in \mathbb{R}^{n}$ [31, 43]. On the other hand, it was shown in [29] that the GLCP is NP-hard when M is not a PSD matrix. However, the GLCP can be solved in polynomial-time if M is a PSD matrix and $R=0$ in its constraint (2) [29,53]. In this paper we denote this latter type of problem by PGLCP. The complexity of the LCP has motivated the search for techniques that exploit its reduction into a global optimization problem. Recently, many authors have investigated the solution of linear and nonlinear complementarity problems by finding stationary points of differentiable and nondifferentiable functions under linear constraints
$[10,11,14,15,18,37,42,50]$. The easiest of these forms is to put the nonlinear constraint $z^{T} w=0$ in an objective function and get the following Joint Bilinear Program (JBLP)
\[

$$
\begin{array}{cc}
\text { Minimize } & z^{T} w \\
\text { subject to } & w=q+M z \tag{5}\\
& z \geq 0, \quad w \geq 0
\end{array}
$$
\]

It is then obvious that a LCP has a solution if and only if this JBLP has a global minimum with zero value. An enumerative algorithm has been proposed in [1, 24] for solving the LCP by finding a feasible solution of this JBLP with zero objective value. It has been shown [10] that a solution of the LCP can be found by computing a stationary point of this quadratic program provided M is a Row Sufficient (RS) matrix, that is, if the following implication holds

$$
\begin{equation*}
x_{i}\left(M^{T} x\right)_{i} \leq 0 \text { for all } i=1, \ldots, n \Rightarrow x_{i}\left(M^{T} x\right)_{i}=0 \text { for all } i=1, \ldots, n \tag{6}
\end{equation*}
$$

This result has been extended to the GLCP under the same hypothesis on the matrix M and $R=0$ [29]. It is important to add that any PSD matrix is also RS, whence this result has applications on the solution of PGLCPs.

Due to the large variety of efficient algorithms for nonlinear programs with simple bounds, there has been great effort on finding merit functions for which their stationary points on these simple sets lead into solutions of the LCP [11, 14, 18, 42]. In this paper we extend these results and introduce the following merit function for the GLCP with $R=0$

$$
\begin{equation*}
\phi(z, y, w, v)=\|w-q-M z-N y\|^{2}+\|v-p-S y\|^{2}+\left(\sum_{i=1}^{n}\left(z_{i} w_{i}\right)^{g}\right)^{h} \tag{7}
\end{equation*}
$$

where \|\| \|enotes the euclidean norm and $g \geq 1, h \geq 1$ are real numbers such that $g>1$ if $h=1$. We show in section 2 that any stationary point of this function on the set defined by zero lower-bounds on the variables is a solution of the GLCP provided M is a RS matrix.

On the other hand, it has been shown recently that a LCP can be transformed into a bilinear program [2,39]. By using this reduction, we prove that any LCP is equivalent to a PGLCP with a further condition on one of its variables. This PGLCP is an important tool for finding global minima of bilinear programming problems (BLP), as any BLP can be cast as the problem of minimizing a linear function on a PGLCP [24, 28]. This last problem is denoted by MINGLCP. As we explain later in this paper, we believe that these results may have important implications on the solution of bilinear programs and NP-hard LCPs. The theoretical analysis of the minimization approach requires conditions that imply that
eventually, a bounded level set of the merit function can be reached. Otherwise, the existence of a convergent subsequence of the iterates cannot be guaranteed. In [4, 5] reformulations for the LCP considering the merit function in [18] and the Fischer-Burmeister merit function [12] are discussed. Conditions on the problem are given, so that bounded level sets result. It is also shown that these conditions are sharp by presenting counter-examples. As LCP is a particular case of GLCP the conditions in this case cannot be relaxed. If these conditions are also sufficient for GLCP is a question that we are currently trying to answer.

Interior point methods have also been proposed for solving LCP. Kojima, Mizuno and Yoshise in [33] introduce an $O(\sqrt{n} L)$ iteration potential reduction algorithm closely related to the path-following algorithm discussed by Megiddo in [40], Kojima, Mizuno and Yoshise [32] and Kojima, Megiddo and Noma in [30]. A unified interior point method (UIP) for both the path-following and potential reduction algorithms for solving LCP with M a PSD matrix is presented by these authors and is deeply studied in [31], where M belongs to the class of the P_{0} matrices. More recent interior point algorithms for solving LCP appear in [21, 41, 46, 51, 54, 55].

Interior-point algorithms are considered to be quite efficient in practice for solving LCPs with RS matrices, but they are usually unable to find a solution of the LCP when the matrix M does not belong to this class [27]. To our knowledge, the only interior-point algorithm for the GLCP has been introduced by Ye in [53]. The method seeks a stationary point of the associated quadratic program

$$
\begin{aligned}
\text { Minimize } & z^{T} w \\
\text { subject to } & w=q+M z+N y \\
& z \geq 0, y \geq 0, w \geq 0
\end{aligned}
$$

As stated before, such a stationary point is a solution of the GLCP provided M is a RS matrix. The existence of the equality constraints $w=q+M z+N y$ in this quadratic program, turns the interior-point approach less attractive for processing the GLCP. An interior-point algorithm that works directly with the constraints of the GLCP is still to be designed.

It seems possible that the combination of a local search method for finding a stationary point of the merit function (7) on the set defined by zero lower bounds on the variables together with some heuristic procedure to move from one stationary point to other, will be able to compute global minima of the bilinear program and solutions of the LCP in a reasonable amount of work.

The structure of the paper is as follows. In section 2 we establish our main result that associates the GLCP with stationary points of the function (7) on a set defined by zero lower bounds on the variables and we prove a result for LCPs that permits application of this technique in this case. Some numerical experience with PGLCPs associated with bilinear programs and LCPs is presented in section 3. Finally, some conclusions are drawn in the last section of the paper.

2 PGLCP and stationary points of the merit function

Consider again the GLCP defined by (1), (2) and (3) with $R=0$. By introducing the slack variables w_{i} and v_{i} for the linear constraints (1) and (2), we can write the GLCP in the form

$$
\begin{array}{r}
w=q+M z+N y \\
v=p+S y \\
z \geq 0, y \geq 0, w \geq 0, v \geq 0 \\
z^{T} w=0 \tag{11}
\end{array}
$$

Let \mathcal{K} be the feasible set consisting of the linear constraints (8), (9) and (10). As stated before, consider the following nonlinear program
(NLP)

subject to $\quad z, w, y, v \geq 0$
where \|\| \| denotes the euclidean norm and $g, h \geq 1$ are real numbers such that $g>1$ if $h=1$. Then we can establish the following property.

Theorem 1 If $\mathcal{K} \neq \emptyset$ and M is a RS matrix, then any stationary point of NLP is a solution of the GLCP (8)-(11).

Proof: If $(\bar{z}, \bar{w}, \bar{y}, \bar{v})$ is a stationary point of the NLP (12), then there exist Lagrange multipliers $\bar{\alpha} \in \mathbb{R}^{n}, \bar{\beta} \in \mathbb{R}^{n}, \bar{\gamma} \in \mathbb{R}^{l}$ and $\bar{\mu} \in \mathbb{R}^{m}$ such that $(\bar{z}, \bar{w}, \bar{y}, \bar{v}, \bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\mu})$ satisfies the following conditions:

$$
\begin{array}{r}
\alpha_{k}=2[w-q-M z-N y]_{k}+g h\left[\sum_{i=1}^{n}\left(z_{i} w_{i}\right)^{g}\right]^{h-1} z_{k}^{g} w_{k}^{g-1}, \quad k=1, \ldots, n \\
\beta_{k}=-2\left[M^{T}(w-q-M z-N y)\right]_{k}+g h\left[\sum_{i=1}^{n}\left(z_{i} w_{i}\right)^{g}\right]^{h-1} z_{k}^{g-1} w_{k}^{g}, k=1, \ldots, n \\
\gamma=-2 N^{T}(w-q-M z-N y)-2 S^{T}(v-p-S y) \\
\mu=2(v-p-S y) \\
z, w, y, v, \alpha, \beta, \gamma, \mu \geq 0 \\
\alpha_{k} w_{k}=z_{k} \beta_{k}=0, k=1, \ldots, n \\
y^{T} \gamma=\mu^{T} v=0 \tag{19}
\end{array}
$$

Let

$$
\begin{aligned}
& \theta=w-q-M z-N y \in \mathbb{R}^{n} \\
& \eta=g h\left[\sum_{i=1}^{n}\left(z_{i} w_{i}\right)^{g}\right]^{h-1} \in \mathbb{R}^{1}
\end{aligned}
$$

Then by (13) and (14)

$$
\begin{gathered}
\theta_{k}=\frac{1}{2}\left[\alpha_{k}-\eta z_{k}^{g} w_{k}^{g-1}\right] \\
\left(M^{T} \theta\right)_{k}=-\frac{1}{2}\left[\beta_{k}-\eta z_{k}^{g-1} w_{k}^{g}\right]
\end{gathered}
$$

for $k=1, \ldots, n$. Hence for each $k=1, \ldots, n$ we have

$$
\begin{equation*}
\theta_{k}\left(M^{T} \theta\right)_{k}=-\frac{1}{4}\left[\alpha_{k} \beta_{k}+\eta^{2}\left(z_{k} w_{k}\right)^{2 g-1}-\eta z_{k}^{g-1} w_{k}^{g-1}\left(w_{k} \alpha_{k}+z_{k} \beta_{k}\right)\right] \tag{20}
\end{equation*}
$$

Now, by (18), $w_{k} \alpha_{k}+z_{k} \beta_{k}=0$ for each $k=1, \ldots, n$. Furthermore, all the variables are nonnegative by (17) and this implies

$$
\theta_{k}\left(M^{T} \theta\right)_{k} \leq 0 \text { for all } k=1, \ldots, n
$$

Since M is a RS matrix then

$$
\theta_{k}\left(M^{T} \theta\right)_{k}=0 \text { for all } k=1, \ldots, n
$$

Then by (20), we have

$$
\alpha_{k} \beta_{k}+\eta^{2}\left(z_{k} w_{k}\right)^{2 g-1}=0
$$

and

$$
\alpha_{k} \beta_{k}=z_{k} w_{k}=0 \text { for all } k=1, \ldots, n .
$$

Since $g, h \geq 1$ and $g>1$ if $h=1$, then $z_{k} w_{k}=0$ for all $k=1, \ldots, n$, implies

$$
\left[\sum_{i=1}^{n}\left(z_{i} w_{i}\right)^{g}\right]^{h-1} z_{k}^{g-1} w_{k}^{g-1}=0 \text { for all } k=1, \ldots, n
$$

Hence (13) and (14) take the form

$$
\alpha_{k}=2[w-q-M z-N y]_{k}, \quad \beta_{k}=-2\left[M^{T}(w-q-M z-N y)\right]_{k}
$$

Therefore the conditions (13)-(19) for a stationary point of the NLP can be rewritten as follows

$$
\begin{align*}
& \alpha=2(w-q-M z-N y) \\
& \beta=-2 M^{T}[w-q-M z-N y] \\
& \gamma=-2 N^{T}[w-q-M z-N y]-2 S^{T}[v-p-S y] \tag{21}\\
& \mu=2(v-p-S y) \\
& z, w, y, v, \alpha, \beta, \gamma, \mu \geq 0 \\
& \alpha^{T} w=z^{T} \beta=y^{T} \gamma=\mu^{T} v=0
\end{align*}
$$

But these are the necessary and sufficient optimality conditions for the convex quadratic program

$$
\begin{array}{lc}
\text { Minimize } & \|w-q-M z-N y\|^{2}+\|v-p-S y\|^{2} \\
\text { subject to } & w, y, z, v \geq 0 \tag{22}
\end{array}
$$

Since the constraint set of the GLCP is nonempty, this quadratic program has an optimal solution with value zero. Due to the equivalence between the conditions (21) and the optimal solution of the quadratic program (22), the stationary point $(\bar{z}, \bar{y}, \bar{w}, \bar{v})$ of NLP satisfies

$$
\begin{gathered}
w-q-M z-N y=0 \\
v-p-S y=0 \\
w, z, y, v \geq 0
\end{gathered}
$$

But we have shown before that $(\bar{z}, \bar{y}, \bar{w}, \bar{v})$ also satisfies $\bar{z}^{T} \bar{w}=0$. So $(\bar{z}, \bar{y}, \bar{w}, \bar{v})$ is a solution of the GLCP and this proves the theorem.

It is important to add that the merit function (12) can be seen as an extension of two merit functions that have been discussed before for the LCP. In fact, by fixing $g=2$ and $h=1$ we get the so-called Natural Merit Function

$$
\begin{equation*}
\phi_{1}(z, w, y, v)=\|w-q-M z-N y\|^{2}+\|v-p-S y\|^{2}+\sum_{i=1}^{n} z_{i}^{2} w_{i}^{2} \tag{23}
\end{equation*}
$$

This function is an extension for the GLCP of the function

$$
\phi_{1}(z, w)=\|w-q-M z\|^{2}+\sum_{i=1}^{n} z_{i}^{2} w_{i}^{2}
$$

that has been used by many authors for the solution of the LCP [42, 49]. Theorem 1 implies that any stationary point of the program

$$
\begin{array}{lc}
\text { Minimize } & \phi_{1}(z, w) \tag{24}\\
\text { subject to } & z \geq 0, w \geq 0
\end{array}
$$

is a solution of the LCP provided the LCP is feasible and M is RS matrix. This property extends for the RS matrices the results established in [42].

On the other hand, if $g=1$, we get the function

$$
\begin{equation*}
\phi_{2}(z, w, y, v)=\|w-q-M z-N y\|^{2}+\|v-p-S y\|^{2}+\left(z^{T} w\right)^{h} \tag{25}
\end{equation*}
$$

that has been introduced in [18] for the LCP. Therefore theorem 1 extends for the GLCP the result presented in [18].

Since any PSD matrix is also a RS matrix, then the result mentioned in this section is also valid for the PGLCP.

Next we prove a result that enables to apply the previous result for solving LCPs (4). It is known that the complexity of the solution of this problem is related with the class of the matrix $M[10,43]$. If M is a RS matrix, there is a number of direct and iterative algorithms that process efficiently the LCP [10]. Furthermore the LCP can be solved in polynomial time if M is a PSD [31, 43, 52]. In general the LCP is a NP-hard problem [22, 43] and only an enumerative algorithm is able to find a solution or to show that none exists [1, 24, 48].

Recently the following Disjoint Bilinear Programming formulation of the LCP has received some interest [1, 39]

$$
\begin{array}{lc}
\text { Minimize } & e^{T} z+q^{T} x+x^{T}(M-I) z \\
\text { subject to } & M z \geq-q, 0 \leq x \leq e \tag{26}\\
z \geq 0
\end{array}
$$

The LCP has a solution if and only if the optimal value of the BLP is zero.
This BLP can be transformed into the following MINGLCP [24]

$$
\begin{align*}
\text { Minimize } & \begin{array}{l}
e^{T} z-e^{T} u \\
\text { subject to }
\end{array} \begin{aligned}
& {\left[\begin{array}{c}
w \\
\beta
\end{array}\right]=} {\left[\begin{array}{l}
q \\
e
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]+\left[\begin{array}{c}
M-I \\
0
\end{array}\right] z } \\
& \alpha z
\end{aligned} \\
& {\left[\begin{array}{l}
x \\
u
\end{array}\right], z,\left[\begin{array}{l}
w \\
\beta
\end{array}\right], \alpha \geq 0 }
\end{align*}
$$

where the matrix corresponding to the complementary variables is PSD. So we can find a solution to the LCP by computing a solution of the PGLCP with $e^{T} z-e^{T} u=0$. We can obviously add this constraint to the PGLCP but this destroys the structure of the PGLCP and the problem becomes NP-hard. A simple alternative way is to introduce the constraint

$$
\gamma_{0}=e^{T} z-e^{T} u
$$

and a column with a parameter $\lambda_{0} \geq 0$ that is complementary to γ_{0}. This leads into the following GLCP

It is easy to see that the matrix corresponding to the complementary variables

$$
\left[\begin{array}{ccc}
0 & I & 0 \tag{29}\\
-I & 0 & -e \\
0 & e^{T} & 0
\end{array}\right]
$$

is PSD. Hence the problem reduces to a PGLCP of the form discussed in this section . It is now important to know when a solution of this PGLCP leads into a solution of the LCP. To do this, let

$$
\mathcal{K}=\left\{z \in \mathbb{R}^{n}: q+M z \geq 0, \quad z \geq 0\right\}
$$

be the feasible set of the LCP. Then the following result holds:
Theorem 2 If $\mathcal{K} \neq \emptyset$ then the PGLCP has solution $\left(\bar{x}, \bar{z}, \bar{u}, \overline{\lambda_{0}}, \bar{w}, \bar{\beta}, \overline{\gamma_{0}}, \bar{\alpha}\right)$ such that $\overline{\lambda_{0}} \leq 1$. Furthermore (\bar{z}, \bar{w}) is a solution of the LCP provided $\bar{\lambda}_{0}<1$.
Proof: Since $\mathcal{K} \neq \emptyset$, there exists at least a $\bar{z} \geq 0$ such that $q+M \bar{z} \geq 0$. Let

$$
\begin{align*}
& \bar{w}=\bar{\alpha}=q+M \bar{z} \\
& \bar{u}=\bar{z}, \overline{\gamma_{0}}=e^{T} \bar{u}-e^{T} \bar{z}=0 \tag{30}\\
& \lambda_{0}=0, \bar{\beta}=e, \quad \bar{x}=0
\end{align*}
$$

Hence $\left(\bar{x}, \bar{z}, \bar{u}, \overline{\lambda_{0}}, \bar{w}, \bar{\beta}, \overline{\gamma_{0}}, \bar{\alpha}\right)$ belongs to the set $\overline{\mathcal{K}}$ of the linear constraints of the PGLCP (28). Since the matrix (29) is PSD, any stationary point of

$$
\begin{array}{ll}
\text { Minimize } & w^{T} x+\beta^{T} u+\lambda_{0} \gamma_{0} \\
\text { subject to } & \left(x, z, u, \lambda_{0}, w, \beta, \gamma_{0}, \alpha\right) \in \overline{\mathcal{K}} \tag{31}
\end{array}
$$

is a solution of the PGLCP [29]. As the objective function of this program is bounded from below on $\overline{\mathcal{K}}$ and $\overline{\mathcal{K}} \neq \emptyset$ such a stationary point exists [6, 43]. Hence the PGLCP has at least a solution.

Now let $\left(\bar{x}, \bar{z}, \bar{u}, \overline{\lambda_{0}}, \bar{w}, \bar{\beta}, \overline{\gamma_{0}}, \bar{\alpha}\right)$ be a solution of the PGLCP (28). It follows from the definition of this problem that

$$
0 \leq \bar{\beta}_{i}+\overline{x_{i}}=1-\overline{\lambda_{0}}
$$

Hence $\lambda_{0} \leq 1$ and this proves the first part of the theorem.
To prove the second part, consider a solution ($\bar{x}, \bar{z}, \bar{u}, \overline{\lambda_{0}}, \bar{w}, \bar{\beta}, \overline{\gamma_{0}}, \bar{\alpha}$) of the PGLCP (28) with $\overline{\lambda_{0}}<1$. Then there are two possible cases:
i) $\bar{x}_{i}>0$. Hence $\bar{w}_{i}=0$ and $(q+M \bar{z})_{i}+\left(\bar{u}_{i}-\bar{z}_{i}\right)=0$. Then $\bar{\alpha}_{i}+\bar{u}_{i}-\bar{z}_{i}=0$ which implies $\overline{u_{i}} \leq \bar{z}_{i}$.
ii) $\bar{x}_{i}=0$. Then $\bar{\beta}_{i}=1-\bar{\lambda}_{0}-\bar{x}_{i}=1-\bar{\lambda}_{0}>0$. Hence $\bar{u}_{i}=0$ and $\bar{w}_{i}=(q+M \bar{z})_{i}-\bar{z}_{i}$. If $\bar{z}_{i}>0$ then $e^{T} \bar{u}<e^{T} \bar{z}$ and $\overline{\gamma_{0}}=e^{T} \bar{u}-e^{T} \bar{z}<0$, which is impossible. So $\bar{z}_{i}=0$.

We have then shown that

$$
\left\{\begin{array}{l}
\bar{u}_{i} \leq \bar{z}_{i} \text { for all } i \text { such that } \bar{x}_{i}>0 \tag{32}\\
\bar{u}_{i}=\bar{z}_{i}=0 \text { for all } i \text { such that } \bar{x}_{i}=0
\end{array}\right.
$$

Since $e^{T} \bar{u} \geq e^{T} \bar{z}$, then $\bar{u}=\bar{z}$ and

$$
\bar{w}=q+\bar{u}+(M-I) \bar{z}=q+M \bar{z}=\bar{\alpha}
$$

To prove that \bar{z} is a solution of the LCP, it is sufficient to show that $\bar{z}_{i}>0$ implies $\bar{w}_{i}=0$. But if $\bar{z}_{i}>0$ then $\overline{u_{i}}=\bar{z}_{i}>0$ and

$$
\bar{\beta}_{i}=0=1-\overline{\lambda_{0}}-\overline{x_{i}}
$$

Since $\overline{\lambda_{0}}<1$, then $\overline{x_{i}}>0$ and $\bar{w}_{i}=0$. This proves the theorem.
This theorem enables us to solve the LCP by processing the PGLCP (28). Since the matrix (29) is PSD, a solution to this PGLCP can be found by computing a stationary point of the associated nonlinear program with zero lower bounds. After finding such a point, there are two possible cases:
i) $\bar{\lambda}_{0}<1$ and (\bar{z}, \bar{w}) is a solution of the LCP.
ii) $\overline{\lambda_{0}}=1$ and (\bar{z}, \bar{w}) may be a solution of the LCP or not.

In the first case, the procedure has found a solution of the LCP. If in the second case (\bar{z}, \bar{w}) is a not solution of the LCP $\left(\bar{z}_{i} \bar{w}_{i}>0\right.$ for at least one $\left.i\right)$ then another stationary point of the associated nonlinear program has to be computed.

The computation of stationary points for the nonlinear program (12) associated to the PGLCP (28) can nowadays be done in a very efficient way, as there exist good algorithms to perform this task $[6,7,8,9,13,17,42]$. The main problem is to get an initial point for the algorithm that leads into a stationary point that is also a solution of the LCP. Recently there has been some work on the design of procedures that try to find a global minimum for an optimization problem by a clever choice of initial points. A heuristic procedure of this type has to be designed in order to fully exploit theorem 1 for the solution of LCPs. In section 3 we report some computational experience on the solution of PGLCPs with PSD matrices M by finding stationary points of the merit functions ϕ_{1} and ϕ_{2}.

3 Computational Experience

In this section we report some computational experience on a Digital Alpha Server 5/300, running Digital Unix 4.0B, with PGLCPs that arise on the solution of bilinear programs and LCPs by exploiting their reformulations as MINGLCPs. These PGLCPs are solved by computing stationary points of merit functions of the form (12). We have chosen the code

LANCELOT [9] for such a task, since it is nowadays accepted as a robust code for processing these type of nonlinear programs.

The Bilinear Programming Problem (BLP) has been studied by many authors in the past several years $[3,22,23,24,28,34,35,47]$. A number of important applications of this problem has appeared in the literature [34] and many algorithms have been designed for finding a stationary point or a global minimum of the BLP [22, 23, 24, 28, 35, 47]. Despite its simplicity, even the problem of finding a stationary point for a BLP is considered to be NP-hard [44]. As discussed in [24], a BLP is equivalent to a MINGLCP.

The Concave Quadratic Programming Problem is another interesting optimization problem that has found many applications in different areas. Among them, the problem of finding a feasible solution of a Zero-One Integer Program should be mentioned. The so-called knapsack problem is an important example of this last problem. All these problems reduce to MINGLCPs by exploiting their equivalences to BLPs [24, 28]. So all these problems can be solved by finding a finite number of solutions of the PGLCP, which can be done by computing stationary points of the nonlinear program (12). In this section we report some computational experience on solving CQPs and knapsack problems by using the merit functions mentioned before.

In our first experience, we have solved some GLCPs that are the constraint sets of MINGLCPs associated with Concave Quadratic Programs (CQP). We start by describing the test problems $P Q 10, \ldots, P Q 18$ that have been used in our experiences.
i) $P Q 10$ - These are knapsack problems of the form

$$
\begin{array}{ll}
\text { Minimize } & e^{T} x-x^{T} x \\
\text { subject to } & a^{T} x \leq b \\
& a^{T} x \geq b \tag{33}\\
& 0 \leq x \leq e
\end{array}
$$

where $e \in \mathbb{R}^{n}$ is a vector of ones, $a \in \mathbb{R}^{n}$ is a vector whose components are random numbers belonging to the interval $[1,50]$ and b is a positive real number satisfying

$$
b=\sum_{i \in I} a_{i}
$$

Here I is a subset of $\{1, \ldots, n\}$ with cardinal $\frac{n}{4}\left[P Q 10\left(\frac{n}{4}\right)\right], \frac{n}{2}\left[P Q 10\left(\frac{n}{2}\right)\right]$ and $\frac{3 n}{4}$ [PQ10($\left.\frac{3 n}{4}\right)$]. These knapsack problems are transformed into MINGLCPs according to the process explained in section 2. The constraint set of this nonconvex program was the PGLCP to be solved in this experience.
ii) $P Q 11, \ldots, P Q 18$ - These are the CQP test problems described in [16]. As before these CQPs are transformed into MINGLCPs and the PGLCPs to be tested in our experiences are the constraint sets of these nonconvex programs.

The results of the solution of the GLCPs by using the merit functions (23) and (25) are displayed in Table 1 under the headings $O P T 1$ and $O P T 2$ respectively. In this Table, $I T$ and $C P U$ represent the number of iterations and $C P U$ time (in seconds) taken by LANCELOT to get a stationary point for these functions. Furthermore VALUEF gives the value of the corresponding merit function at this stationary point. We recall that in theory this value should be equal to zero. By looking to the figures presented in Table 1, we come to the

Table 1: Solution of PGLCPs associated with Concave Quadratic Programs.

		$O P T 1$			$O P T 2$		
	N	$I T$	$C P U$	$V A L U E F$	$I T$	$C P U$	$V A L U E F$
$P Q 10\left(\frac{n}{4}\right)$	20	6	1.33	$1.54 \mathrm{e}-10$	6	1.00	$1.86 \mathrm{e}-14$
	50	6	5.77	$1.64 \mathrm{e}-10$	11	7.58	$2.57 \mathrm{e}-11$
	100	7	25.33	$2.47 \mathrm{e}-09$	13	17.39	$2.51 \mathrm{e}-11$
	150	5	65.16	$3.31 \mathrm{e}-11$	14	36.45	$4.01 \mathrm{e}-11$
$P Q 10\left(\frac{n}{2}\right)$	20	6	1.43	$1.89 \mathrm{e}-11$	6	1.02	$1.82 \mathrm{e}-11$
	50	6	6.62	$1.68 \mathrm{e}-10$	7	4.21	$1.97 \mathrm{e}-11$
	100	6	27.15	$2.48 \mathrm{e}-10$	7	12.95	$1.18 \mathrm{e}-10$
	150	6	66.79	$3.39 \mathrm{e}-10$	7	32.02	$4.17 \mathrm{e}-11$
$P Q 10\left(\frac{3 n}{4}\right)$	20	6	1.62	$8.20 \mathrm{e}-12$	6	1.06	$1.07 \mathrm{e}-11$
	50	6	7.76	$1.46 \mathrm{e}-09$	7	3.92	$1.30 \mathrm{e}-10$
	100	7	33.89	$4.71 \mathrm{e}-10$	7	10.88	$7.86 \mathrm{e}-11$
	150	7	89.20	$1.90 \mathrm{e}-08$	7	31.93	$1.53 \mathrm{e}-10$
$P Q 11$	7	0.11	$5.03 \mathrm{e}-15$	7	0.11	$2.99 \mathrm{e}-14$	
$P Q 12$	7	0.13	$1.77 \mathrm{e}-27$	9	0.15	$2.16 \mathrm{e}-11$	
$P Q 13$	7	0.50	$1.47 \mathrm{e}-10$	13	0.63	$8.70 \mathrm{e}-11$	
$P Q 14$	10	0.18	$2.17 \mathrm{e}-09$	7	0.13	$1.56 \mathrm{e}-13$	
$P Q 15$	33	4.79	$2.79 \mathrm{e}-02$	34	3.68	$2.79 \mathrm{e}-02$	
$P Q 16$	10	0.77	$1.05 \mathrm{e}-11$	14	0.65	$3.64 \mathrm{e}-03$	
$P Q 17.1$	14	1.68	$6.14 \mathrm{e}-11$	22	2.01	$6.75 \mathrm{e}-12$	
$P Q 17.2$	17	1.97	$2.63 \mathrm{e}-11$	39	2.83	$4.18 \mathrm{e}-12$	
$P Q 17.3$	52	8.56	$2.89 \mathrm{e}-14$	53	4.05	$1.81 \mathrm{e}-12$	
$P Q 17.4$	19	1.36	$4.83 \mathrm{e}-10$	16	1.04	$3.36 \mathrm{e}-13$	
$P Q 17.5$	40	4.78	$2.92 \mathrm{e}-12$	53	4.19	$4.09 \mathrm{e}-02$	
$P Q 18$	20	3.10	$9.65 \mathrm{e}-11$	13	2.47	$2.41 \mathrm{e}-09$	

conclusion that LANCELOT is able to find a stationary point for both the merit functions in a reasonable amount of iterations and $C P U$ time. In fact, only three problems require more than 30 iterations to get a stationary point for the merit function (23). Furthermore LANCELOT usually requires more iterations for finding a stationary point to the merit function (25), but the gap is not large. It is, however, interesting to note that the ratio $\frac{\text { CPUtime }}{I T}$ is usually smaller for this latter function.

In our second experience we have considered some LCPs taken from known sources and their equivalent PGLCPs that are obtained according to the process explained in section 2. As before, these PGLCPs are solved by computing stationary points of the merit functions (23) and (25). We start by describing the test problems used in this second experience.
$P R O B 1$ - This is the LCP discussed in [43], where $q \in \mathbb{R}^{n}$ is a vector with all components equal to -1 and M is a lower triangular $\mathrm{P}-$ matrix defined by

$$
\begin{align*}
& m_{i i}=1, i=1, \ldots, n \\
& m_{i j}=2 \text { for } i>j \tag{34}\\
& m_{i j}=0 \text { for } i<j
\end{align*}
$$

$P R O B 2$ - This LCP also appears in [43] and is defined by $q_{i}=-1$ for all $i=1, \ldots, n$ and $M=L^{T} L$, where L is the matrix of $P R O B 1$. Hence M is a symmetric positive definite matrix.

PROB3 - This LCP has been introduced by Chadrasekaran, Pang and Stone and is also presented in [43]. The vector q also satisfies $q_{i}=-1$ for all $i=1, \ldots, n$ and the matrix M is defined as follows:

$$
\begin{align*}
& m_{i i}=1, i=1, \ldots, n \\
& m_{i j}=2 \text { if } j>i \text { and } i+j \text { is odd } \\
& m_{i j}=-1 \text { if } j>i \text { and } i+j \text { is even } \tag{35}\\
& m_{i j}=-1 \text { if } j<i \text { and } i+j \text { is odd } \\
& m_{i j}=2 \text { if } j<i \text { and } i+j \text { is even }
\end{align*}
$$

It is possible to show that M is a positive semi-definite matrix.
$P R O B 4$ - This problem is also discussed in [43] and considers the vector q such that $q_{i}=-1$ for all $i=1, \ldots, n$ and M to be the well-known Hilbert matrix defined by

$$
m_{i j}=\frac{1}{i+j-1}
$$

for all $i, j=1, \ldots, n$. Again M is a positive semi-definite matrix.
PROB5, 6, 7 - Consider again the knapsack problem

$$
a^{T} z=b, \quad z_{i} \in\{0,1\}, \quad i=1, \ldots, n
$$

where, as before, the components of the vector a are random numbers belonging to the interval $[1,50]$ and b is the positive real number

$$
b=\sum_{i=1}^{\frac{n}{2}} a_{i}
$$

The LCPs of $P R O B 5,6$ and 7 are LCP formulations of this problem that appeared in the literature [31, 43, 44]. To get PROB5, we consider the LCP defined by

$$
q=\left[\begin{array}{c}
e \\
-b \\
b
\end{array}\right], \quad M=\left[\begin{array}{ccc}
-I_{n} & 0 & 0 \\
a^{T} & -\alpha & 0 \\
-a^{T} & 0 & -\beta
\end{array}\right]
$$

where I_{n} is the identity matrix of order n and $e \in \mathbb{R}^{n}$ is a vector of ones. The constants α and β are chosen in order M to be negative semi-definite (NSD) or indefinite (IND). For the first case α and β should satisfy

$$
\alpha>k \frac{a^{T} a}{4}, \beta>k \frac{\alpha a^{T} a}{4 \alpha-a^{T} a}
$$

where k is a real number greater than one. This leads into $\operatorname{PROB5}$ (NSD). On the other hand, M is IND if α and β satisfy

$$
\alpha>k \frac{a^{T} a}{4}, \beta<\frac{1}{k} \frac{\alpha a^{T} a}{4 \alpha-a^{T} a}
$$

These choices of α and β lead into PROB5(IND).
$P R O B 6$ is the LCP formulation of the knapsack problem discussed in [44] and is given by

$$
q=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n} \\
-b \\
b
\end{array}\right], \quad M=\left[\begin{array}{ccc}
-I_{n} & e & -e \\
e^{T} & -2 n & 0 \\
-e^{T} & 0 & -2 n
\end{array}\right]
$$

where, as before, e is a vector of ones and I_{n} is the identity matrix of order n. As is discussed in [44] the matrix M is symmetric negative semi-definite.
Finally $P R O B 7$ is the LCP formulation discussed in [31] and considers

$$
q=\left[\begin{array}{c}
p \\
p \\
\vdots \\
p \\
-b \\
b
\end{array}\right], \quad M=\left[\begin{array}{cccccc}
B & 0 & \cdots & 0 & 0 & 0 \\
0 & B & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & B & 0 & 0 \\
& & \bar{a}^{T} & & & \\
& & -\bar{a}^{T} & & &
\end{array}\right]
$$

where

$$
p=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{4 n+2}\right)^{T} \in \mathbb{R}^{4 n+2}
$$

with

$$
\bar{a}_{i}= \begin{cases}a_{i} & \text { if } i=4 j-3, \quad j=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

As dicussed in [31] the matrix M has nonnegative principal minors (that is, $M \in P_{0}$), but it is not positive semi-definite.

PROB8,9 - These are structured LCPs that are formulations of nonzero-sum bimatrix games [10, 43]. The LCP of PROB8 takes the form

$$
q=\left[\begin{array}{c}
-e^{m} \\
-e^{r}
\end{array}\right], \quad M=\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]
$$

where e^{j} is a vector of ones of order j and A, B are positive matrices whose elements are random numbers belonging to the interval $[1,50]$. On the other hand the vector q and the matrix M of the LCP corresponding to $P R O B 9$ are given by

$$
q=\left[\begin{array}{c}
-e^{m} \\
e^{r}
\end{array}\right], \quad M=\left[\begin{array}{cc}
0 & A \\
-B & 0
\end{array}\right]
$$

For each one of these LCPs, we have generated four problems differing on its dimension n.

The results of the solution of these LCP test problems by processing their equivalent PGLCPs are displayed in Table 2. We recall that the LCP is equivalent to a PGLCP with a parameter λ_{0}. If $\lambda_{0}<1$ in a solution of this PGLCP, then a solution of the LCP is at hand. Otherwise $\left(\lambda_{0}=1\right)$ no conclusion can be drawn about the existence of a solution to the LCP, but usually the solution of the PGLCP does not lead to a solution of the LCP. As before, the PGLCP is solved by computing the stationary point of the associated merit functions (23) or (25). The computational effort for performing such a task is displayed under the headings $O P T 1$ and $O P T 2$ respectively, by stating the number of iterations (IT) and the CPU time $(C P U)$ that LANCELOT has required to get a stationary point in each one of the cases. In this Table, $V A L U E F$ continues to represent the value of the merit function at this stationary point and $L A M B D A$ gives the value of the variable λ_{0} at this solution. So $L A M B D A<1$ means that a solution of the LCP has been found. Furthermore we write an asterisk when a solution of the LCP has been found in the case of $L A M B D A=1$.

The results displayed in Table 2 lead to conclusions similar to the case of CQPs about the ability of LANCELOT to get stationary points that are solutions of the PGLCP in a small amount of effort. As before, the natural function (23) seems to be a better choice in terms of the number of iterations that LANCELOT requires to get a stationary point that solves the PGLCP. The results also show that in general the solution of the PGLCP is not a solution of the LCP. However, we have only presented the numerical results that have been achieved by using LANCELOT with its recommended starting point. A heuristic procedure to get a good initial point for the local solver (LANCELOT or other) that leads into a stationary point of the merit function that is also a solution of the LCP will certainly be an important topic for future research. This will enable solving NP-hard LCPs and bilinear programs by nonenumerative techniques.

4 Conclusions

In this paper we have showed that a solution of a polynomial General Linear Complementarity Problem (PGLCP) can be found by computing a stationary point of an appropriate merit

Table 2: Solution of PGLCPs associated with LCPs.

	N	OPT1				OPT2			
		$I T$	$C P U$	VALUEF	$L A M B D A$	$I T$	CPU	$V A L U E F$	$L A M B D A$
PROB1	20	6	0.08	$1.28 \mathrm{e}-21$	$5.01 \mathrm{e}-01$	9	0.16	$1.84 \mathrm{e}-15$	$4.18 \mathrm{e}-01$
	50	6	0.36	$5.44 \mathrm{e}-19$	$5.83 \mathrm{e}-01$	10	0.72	3.91e-20	$1.00 \mathrm{e}+00$
	100	8	2.27	$5.48 \mathrm{e}-14$	$5.12 \mathrm{e}-01$	9	2.18	$2.15 \mathrm{e}-27$	$1.00 \mathrm{e}+00^{*}$
	150	9	5.59	$2.06 \mathrm{e}-25$	$5.87 \mathrm{e}-01$	10	4.82	$6.78 \mathrm{e}-14$	$6.83 \mathrm{e}-01$
PROB2	20	7	0.11	$2.19 \mathrm{e}-20$	$0.00 \mathrm{e}+00$	9	0.15	$2.70 \mathrm{e}-27$	$0.00 \mathrm{e}+00$
	50	10	0.71	$2.07 \mathrm{e}-14$	$1.00 \mathrm{e}+00^{*}$	5	0.47	$1.16 \mathrm{e}-28$	$1.00 \mathrm{e}+00^{*}$
	100	7	1.98	$2.88 \mathrm{e}-28$	$1.00 \mathrm{e}+00^{*}$	6	1.67	$7.01 \mathrm{e}-28$	$1.00 \mathrm{e}+00^{*}$
	150	9	4.83	$7.64 \mathrm{e}-15$	$1.00 \mathrm{e}+00$	7	5.05	$5.44 \mathrm{e}-27$	$1.00 \mathrm{e}+00^{*}$
PROB3	20	8	0.45	$2.46 \mathrm{e}-09$	$0.00 \mathrm{e}+00$	11	0.55	$7.72 \mathrm{e}-12$	$1.00 \mathrm{e}+00$
	50	7	5.70	$3.39 \mathrm{e}-09$	$2.43 \mathrm{e}-03$	17	8.27	$2.85 \mathrm{e}-12$	$1.00 \mathrm{e}+00$
	100	7	29.93	$7.52 \mathrm{e}-09$	$4.90 \mathrm{e}-01$	21	71.98	$8.82 \mathrm{e}-10$	$6.65 \mathrm{e}-01$
	150	8	85.28	$3.30 \mathrm{e}-08$	$5.05 \mathrm{e}-01$	20	176.98	$1.82 \mathrm{e}-10$	$5.18 \mathrm{e}-01$
PROB4	20	10	0.24	$1.25 \mathrm{e}-10$	$1.00 \mathrm{e}+00$	14	0.40	$9.20 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
	50	11	1.23	$1.80 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	12	1.87	$5.07 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	100	12	7.65	$5.02 \mathrm{e}-12$	$1.00 \mathrm{e}+00$	16	14.53	$1.17 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	150	12	24.41	$2.15 \mathrm{e}-10$	$1.00 \mathrm{e}+00$	21	65.04	$2.59 \mathrm{e}-15$	$1.00 \mathrm{e}+00$
$\begin{gathered} P R O B 5 \\ \text { (NSD) } \end{gathered}$	20	12	0.16	$1.34 \mathrm{e}-12$	$1.00 \mathrm{e}+00$	8	0.23	$2.09 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
	50	8	0.57	$1.29 \mathrm{e}-07$	$1.00 \mathrm{e}+00$	14	1.10	$1.00 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	100	12	4.32	$2.91 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	8	2.95	$2.14 \mathrm{e}-12$	$1.00 \mathrm{e}+00$
	150	10	3.08	$1.02 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	10	7.52	$3.12 \mathrm{e}-15$	$1.00 \mathrm{e}+00$
$\begin{array}{r} P R O B 5 \\ \text { (IND) } \end{array}$	20	12	0.16	$1.34 \mathrm{e}-12$	$1.00 \mathrm{e}+00$	8	0.23	$2.09 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
	50	8	0.57	$1.29 \mathrm{e}-07$	$1.00 \mathrm{e}+00$	14	1.10	$1.00 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	100	12	4.27	$2.91 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	8	2.94	$2.14 \mathrm{e}-12$	$1.00 \mathrm{e}+00$
	150	10	3.06	$1.02 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	10	7.49	$3.12 \mathrm{e}-15$	$1.00 \mathrm{e}+00$
PROB6	20	13	0.18	$1.74 \mathrm{e}-12$	$1.00 \mathrm{e}+00$	11	0.33	$2.77 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	50	13	0.75	$7.97 \mathrm{e}-13$	$1.00 \mathrm{e}+00$	12	1.29	$1.30 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
	100	14	1.77	$9.96 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	32	7.51	$1.89 \mathrm{e}-12$	$1.00 \mathrm{e}+00$
	150	14	4.37	$9.36 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	34	10.70	$6.68 \mathrm{e}-16$	$1.00 \mathrm{e}+00$
PROB7	20	7	0.18	$6.75 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	14	0.49	$1.88 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	50	8	0.43	$1.53 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	8	0.66	$2.31 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	100	7	1.67	$1.02 \mathrm{e}-10$	$1.00 \mathrm{e}+00$	8	1.70	$1.56 \mathrm{e}-14$	$1.00 \mathrm{e}+00$
	150	8	4.72	$2.46 \mathrm{e}-11$	$1.00 \mathrm{e}+00$	11	12.66	$5.72 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
PROB8	20	17	3.06	$1.13 \mathrm{e}-07$	$8.35 \mathrm{e}-01$	13	0.46	$2.14 \mathrm{e}-13$	$1.00 \mathrm{e}+00$
	50	9	8.97	$3.45 \mathrm{e}-15$	$1.00 \mathrm{e}+00$ *	22	11.60	$2.67 \mathrm{e}-14$	$1.00 \mathrm{e}+00^{*}$
	100	20	198.73	$6.88 \mathrm{e}-08$	$8.06 \mathrm{e}-01$	27	75.29	$1.36 \mathrm{e}-06$	$5.23 \mathrm{e}-01$
	150	14	397.49	$3.61 \mathrm{e}-08$	$8.56 \mathrm{e}-01$	30	646.96	1.61e-06	$5.96 \mathrm{e}-01$
PROB9	20	10	1.40	$8.69 \mathrm{e}-15$	$1.00 \mathrm{e}+00^{*}$	12	0.76	$2.06 \mathrm{e}-14$	$1.00 \mathrm{e}+00^{*}$
	50	17	27.92	$1.32 \mathrm{e}-08$	$9.56 \mathrm{e}-01$	18	22.77	$5.17 \mathrm{e}-14$	$1.00 \mathrm{e}+00^{*}$
	100	15	171.00	$5.09 \mathrm{e}-09$	$9.64 \mathrm{e}-01$	27	103.27	$1.57 \mathrm{e}-06$	$5.42 \mathrm{e}-01$
	150	13	282.05	$5.05 \mathrm{e}-08$	$8.58 \mathrm{e}-01$	18	464.32	$2.55 \mathrm{e}-14$	$1.00 \mathrm{e}+00^{*}$

function. This result has important implications on the solution of bilinear and concave quadratic programs and zero-one integer programming problems. We have also showed that any Linear Complementarity Problem (LCP) can be reduced into a PGLCP. Hence, under certain conditions, a solution of the LCP can be found by computing a stationary point of an appropriate merit function.

Some computational experience with concave quadratic programs, knapsack problems and LCPs was included and showed the appropriateness of solving the associated PGLCPs by computing stationary points of the corresponding merit functions. We believe that these conclusions will have an important effect on the solution of these difficult nonconvex problems, particularly if we can design heuristic procedures capable of providing good starting points for the local search techniques that are employed to solve the PGLCP. This is a topic that deserves research in the future.

References

[1] F. Al-Khayyal. An implicit enumeration procedure for solving all linear complementarity problems. Mathematical Programming Study, 31:1-20, 1987.
[2] F. Al-Khayyal. On solving linear complementarity problems as bilinear programs. Arabian Journal for Science and Engineering, 15:639-646, 1990.
[3] F. Al-Khayyal and J. Falk. Jointly constrained biconvex programming. Mathematics of Operations Research, 8:273-286, 1983.
[4] R. Andreani and J. M. Martínez. A bounded smooth reformulation for complementarity problems. Technical Report 27-98, Department of Applied Mathematics, Campinas State University, Campinas, SP, Brasil, 1998.
[5] R. Andreani and J. M. Martínez. A note on the reformulation of nonlinear complementarity problems using the Fischer-Burmeister function. To appear in Applied Mathematical Letters, 1998.
[6] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, 1995.
[7] T. Coleman and Y. Li. On the convergence of reflective Newton methods for large scale nonlinear minimization subject to bounds. Mathematical Programming, 67:189-224, 1994.
[8] T. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6:418-445, 1996.
[9] A. Conn, N. Gould, and P. Toint. LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization. Springer-Verlag, Berlin, 1992.
[10] R. Cottle, J. Pang, and R. Stone. The Linear Complementarity Problem. Academic Press, New York, 1992.
[11] T. de Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical Programming, 75:407439, 1996.
[12] F. Facchinei, A. Fischer, and C. Kanzow. A semismooth Newton method for variational inequalities: the case of box constraints. In M. C. Ferris and J-S Pang, editors, Complementarity and Variatonal Problems: State of Art, pages 76-90. SIAM, Philadelphia, 1997.
[13] F. Facchinei, J. Júdice, and J. Soares. An active set Newton algorithm for large scale nonlinear programs with box constraints. SIAM Journal on Optimization, 8:158-186, 1998.
[14] F. Facchinei and J. Soares. A new merit function for nonlinear complementarity problems and a related algorithm. SIAM Journal on Optimization, 7:225-247, 1997.
[15] A. Fischer. An NCP function and its use for the solution of complementarity problems. In D. Du, L. Qi, and R. Womersley, editors, Recent Advances of Nonsmooth Optimization, pages 88-105. World Scientific Publishers, Singapore, 1995.
[16] C. Floudas and P.Pardalos. A Collection of Test Problems for Constrained Global Optimization Algorithms. Lecture Notes in Computer Science 455. Springer-Verlag, Berlin, 1990.
[17] A. Friedlander, J. Martinez, and S. Santos. A new trust-region algorithm for bound constrained optimization. Applied Mathematics and Optimization, 30:235-266, 1994.
[18] A. Friedlander, J. Martinez, and S. Santos. Solution of linear complementarity problems using minimization with simple bounds. Journal of Global Optimization, 6:253-257, 1995.
[19] M. Fukushima, J. Pang, and Z. Luo. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints. To appear in Computational Optimization and Applications, 1997.
[20] F. Giannessi and F. Niccolucci. Connections between nonlinear and integer programming problems. Symposia Mathematica, 19:161-176, 1976.
[21] C. C. Gonzaga. The largest step path-following algorithm for monotone linear complementarity problems. Mathematical Programming, 76:299-308, 1997.
[22] R. Horst, P. Pardalos, and N. Thoai. Introduction to Global Optimization. Kluwer Academic Publishers, Boston, 1995.
[23] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer-Verlag, Berlin, 1993.
[24] J. Júdice and A. Faustino. A computational analysis of LCP methods for bilinear and concave quadratic programming. Computers and Operations Research, 18:645-654, 1991.
[25] J. Júdice and A. Faustino. A sequential LCP algorithm for bilevel linear programming. Annals of Operations Research, 34:89-106, 1992.
[26] J. Júdice and A. Faustino. The linear-quadratic bilevel programming problem. Journal of Information Systems and Operational Research, 32:133-146, 1994.
[27] J. Júdice, L. Fernandes, and A. Lima. On the solution of the monotone and nonmonotone linear complementarity problem problem by an infeasible interior point algorithm. In G. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Applications, pages 213-227. Plenum Press, New York, 1996.
[28] J. Júdice and G. Mitra. Reformulations of mathematical programming problems as linear complementarity problems and an investigation of their solution methods. Journal of Optimization Theory and Applications, 57:123-149, 1988.
[29] J. Júdice and L. Vicente. On the solution and complexity of a generalized linear complementarity problem. Journal of Global Optimization, 4:415-424, 1994.
[30] M. Kojima, N. Megiddo, and T. Noma. Homotopy continuation methods for complementarity problems. Research Report RJ 6638(63949), IBM Research, Almaden Research Center, San Jose, CA, USA, 1989.
[31] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior-Point Algorithms for Linear Complementarity Problems. Lecture Notes in Computer Science 538. Springer-Verlag, Berlin, 1991.
[32] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual method interior point algorithm for linear programming. In N. Megiddo, editor, Progress in Mathematical Programming, Interior-Point and Related Methods, pages 29-47. Springer-Verlag, 1989.
[33] M. Kojima, S. Mizuno, and A. Yoshise. An $O(\sqrt{n} L)$ iteration potential reduction algorithm for linear complementarity problems. Mathematical Programming, 50:331-342, 1991.
[34] H. Konno. Bilinear programming - part 2 - applications of bilinear programming. Technical Report 71-10, Department of Operations Research, Stanford University, Stanford, USA, 1971.
[35] H. Konno. A cutting-plane algorithm for solving bilinear programs. Mathematical Programming, 12:173-194, 1977.
[36] Z. Luo, J. Pang, and D. Ralph. Mathematical Programs with Equilibrium Constraints. Academic Press, Cambridge University Press, New York, 1996.
[37] O. Mangasarian. Equivalence of the complementarity problem to a system of nonlinear equations. SIAM Journal on Applied Mathematics, 31:89-92, 1976.
[38] O. Mangasarian. Misclassification minimization. Journal of Global Optimization, 5:309323, 1994.
[39] O. Mangasarian. The linear complementarity problem as a separable bilinear program. Journal of Global Optimization, 61:153-161, 1995.
[40] N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor, Progress in Mathematical Programming, Interior-Point and Related Methods, pages 131158. Springer-Verlag, 1989.
[41] R. Monteiro and S. J. Wright. Superlinear and primal-dual affine scaling algorithms. Mathematical Programming, 69:311-334, 1995.
[42] J. Moré. Global methods for nonlinear complementarity problems. Technical Report, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, USA, 1994.
[43] K. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin, 1988.
[44] K. Murty and J. Júdice. On the complexity of finding stationary points of nonconvex quadratic programs. Operations Research, 33:162-166, 1996.
[45] P. Pardalos and J. Rosen. Constrained Global Optimization: Algorithms and Applications. Lecture Notes in Computer Science 268. Springer-Verlag, Berlin, 1987.
[46] F. A. Potra and R. Sheng. Predictor-corrector algorithm for solving $P_{*}(k)$-matrix linear complementarity problems from arbitrary positive starting points. Mathematical Programming, 76:223-244, 1997.
[47] H. Sherali and A. Alameddine. A new reformulation-linearization technique for solving bilinear programming problems. Journal of Global Optimization, 2:379-410, 1992.
[48] H. Sherali, R. Krishnamurthy, and F. Al-Khayyal. An enhanced intersection cutting plane approach for linear complementarity problems. To appear in Journal of Optimization Theory and Applications, 1997.
[49] E. Simantiraki and D. Shanno. An infeasible interior point method for linear complementarity problems. SIAM Journal on Optimization, 7:620-640, 1997.
[50] P. Tseng, N. Yamashita, and M. Fukushima. Equivalence of linear complementarity problems to differentiable minimization: a unified approach. SIAM Journal on Optimization, 6:446-460, 1996.
[51] S. J. Wright. An infeasible interior point algorithm for linear complementarity problems. Mathematical Programming, 67:29-52, 1994.
[52] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.
[53] Y. Ye. A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem. Mathematics of Operations Research, 18:334-345, 1993.
[54] Y. Ye and K. Anstreicher. On quadratic and $O(\sqrt{n} L)$ convergence of a predictorcorrector algorithm for linear complementarity problems. Mathematical Programming, 62:537-551, 1993.
[55] Y. Zhang. On the convergence of a class of infeasible interior point methods for the horizontal linear complementarity problem. SIAM Journal on Optimization, 4:208-227, 1994.

[^0]: *Support of this work has been provided by project PRAXIS XXI 2/2.1/MAT/346/94, Portugal.
 ${ }^{\dagger}$ Escola Superior de Tecnologia de Tomar, 2300 Tomar, Portugal.
 ${ }^{\ddagger}$ Departamento de Matemática Aplicada, Universidade de Campinas, Campinas, Brasil, supported by CNPq and Fapesp.
 ${ }^{\S}$ Departamento de Matemática Aplicada, Faculdade de Ciencias, Universidade do Porto, 4000 Porto, Portugal
 ${ }^{\boldsymbol{\top}}$ Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal.

