
Solution of a General Linear Complementarity Problem using

smooth optimization and its application to bilinear

programming and LCP

�

L. Fernandes

y

A. Friedlander

z

M. Guedes

x

J. J�udice

{

August 18, 1999

Abstract

This paper addresses a General Linear Complementarity Problem (GLCP) that has found

applications in global optimization. It is shown that a solution of the GLCP can be

computed by �nding a stationary point of a di�erentiable function over a set de�ned by

simple bounds on the variables.

The application of this result to the solution of bilinear programs and LCPs is dis-

cussed. Some computational evidence of its usefulness is included in the last part of the

paper.
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1 Introduction

The General Linear Complementarity Problem (GLCP) consists of �nding vectors z 2 IR

n

and y 2 IR

l

such that

q +Mz +Ny � 0 (1)

p+Rz + Sy � 0 (2)

z � 0; y � 0; z

T

(q +Mz +Ny) = 0 (3)

where M;N;R and S are given matrices of orders n� n, n� l, m�n and m� l respectively

and q 2 IR

n

, p 2 IR

m

are given vectors. The GLCP has been studied by many authors as an

ingredient for solving some optimization problems

[19, 20, 22, 24, 25, 26, 28, 36, 38, 45]. This problem is a generalization of the well-known

Linear Complementarity Problem (LCP)

w = q +Mz; z � 0; w � 0; z

T

w = 0 (4)

�
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as it reduces to this latter problem when the variables y

i

and the constraints (2) do not exist.

It is known that the LCP can be solved in polynomial-time when M is a positive semi-

de�nite (PSD) matrix, that is, if M satis�es x

T

Mx � 0 for all x 2 IR

n

[31, 43]. On the

other hand, it was shown in [29] that the GLCP is NP-hard when M is not a PSD matrix.

However, the GLCP can be solved in polynomial-time if M is a PSD matrix and R = 0 in

its constraint (2) [29, 53]. In this paper we denote this latter type of problem by PGLCP.

The complexity of the LCP has motivated the search for techniques that exploit its reduction

into a global optimization problem. Recently, many authors have investigated the solution of

linear and nonlinear complementarity problems by �nding stationary points of di�erentiable

and nondi�erentiable functions under linear constraints

[10, 11, 14, 15, 18, 37, 42, 50]. The easiest of these forms is to put the nonlinear constraint

z

T

w = 0 in an objective function and get the following Joint Bilinear Program (JBLP)

Minimize z

T

w

subject to w = q +Mz (5)

z � 0; w � 0

It is then obvious that a LCP has a solution if and only if this JBLP has a global minimum

with zero value. An enumerative algorithm has been proposed in [1, 24] for solving the LCP

by �nding a feasible solution of this JBLP with zero objective value. It has been shown [10]

that a solution of the LCP can be found by computing a stationary point of this quadratic

program provided M is a Row Su�cient (RS) matrix, that is, if the following implication

holds

x

i

(M

T

x)

i

� 0 for all i = 1; : : : ; n ) x

i

(M

T

x)

i

= 0 for all i = 1; : : : ; n (6)

This result has been extended to the GLCP under the same hypothesis on the matrixM and

R = 0 [29]. It is important to add that any PSD matrix is also RS, whence this result has

applications on the solution of PGLCPs.

Due to the large variety of e�cient algorithms for nonlinear programs with simple bounds,

there has been great e�ort on �nding merit functions for which their stationary points on

these simple sets lead into solutions of the LCP [11, 14, 18, 42]. In this paper we extend these

results and introduce the following merit function for the GLCP with R = 0

�(z; y; w; v) = jjw � q �Mz �Nyjj

2

+ jjv � p� Syjj

2

+ (

n

X

i=1

(z

i

w

i

)

g

)

h

(7)

where jj jj denotes the euclidean norm and g � 1, h � 1 are real numbers such that g > 1 if

h = 1. We show in section 2 that any stationary point of this function on the set de�ned by

zero lower-bounds on the variables is a solution of the GLCP provided M is a RS matrix.

On the other hand, it has been shown recently that a LCP can be transformed into a

bilinear program [2, 39]. By using this reduction, we prove that any LCP is equivalent to

a PGLCP with a further condition on one of its variables. This PGLCP is an important

tool for �nding global minima of bilinear programming problems (BLP), as any BLP can be

cast as the problem of minimizing a linear function on a PGLCP [24, 28]. This last problem

is denoted by MINGLCP. As we explain later in this paper, we believe that these results

may have important implications on the solution of bilinear programs and NP-hard LCPs.

The theoretical analysis of the minimization approach requires conditions that imply that
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eventually, a bounded level set of the merit function can be reached. Otherwise, the existence

of a convergent subsequence of the iterates cannot be guaranteed. In [4, 5] reformulations

for the LCP considering the merit function in [18] and the Fischer-Burmeister merit function

[12] are discussed. Conditions on the problem are given, so that bounded level sets result.

It is also shown that these conditions are sharp by presenting counter-examples. As LCP is

a particular case of GLCP the conditions in this case cannot be relaxed. If these conditions

are also su�cient for GLCP is a question that we are currently trying to answer.

Interior point methods have also been proposed for solving LCP. Kojima, Mizuno and

Yoshise in [33] introduce an O(

p

nL) iteration potential reduction algorithm closely related

to the path-following algorithm discussed by Megiddo in [40], Kojima, Mizuno and Yoshise

[32] and Kojima, Megiddo and Noma in [30]. A uni�ed interior point method (UIP) for

both the path-following and potential reduction algorithms for solving LCP with M a PSD

matrix is presented by these authors and is deeply studied in [31], where M belongs to the

class of the P

0

matrices. More recent interior point algorithms for solving LCP appear in

[21, 41, 46, 51, 54, 55].

Interior-point algorithms are considered to be quite e�cient in practice for solving LCPs

with RS matrices, but they are usually unable to �nd a solution of the LCP when the matrix

M does not belong to this class [27]. To our knowledge, the only interior-point algorithm for

the GLCP has been introduced by Ye in [53]. The method seeks a stationary point of the

associated quadratic program

Minimize z

T

w

subject to w = q +Mz +Ny

z � 0; y � 0; w � 0

As stated before, such a stationary point is a solution of the GLCP provided M is a RS

matrix. The existence of the equality constraints w = q+Mz+Ny in this quadratic program,

turns the interior-point approach less attractive for processing the GLCP. An interior-point

algorithm that works directly with the constraints of the GLCP is still to be designed.

It seems possible that the combination of a local search method for �nding a stationary

point of the merit function (7) on the set de�ned by zero lower bounds on the variables

together with some heuristic procedure to move from one stationary point to other, will

be able to compute global minima of the bilinear program and solutions of the LCP in a

reasonable amount of work.

The structure of the paper is as follows. In section 2 we establish our main result that

associates the GLCP with stationary points of the function (7) on a set de�ned by zero lower

bounds on the variables and we prove a result for LCPs that permits application of this

technique in this case. Some numerical experience with PGLCPs associated with bilinear

programs and LCPs is presented in section 3. Finally, some conclusions are drawn in the last

section of the paper.
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2 PGLCP and stationary points of the merit function

Consider again the GLCP de�ned by (1), (2) and (3) with R = 0. By introducing the slack

variables w

i

and v

i

for the linear constraints (1) and (2), we can write the GLCP in the form

w = q +Mz +Ny (8)

v = p+ Sy (9)

z � 0; y � 0; w � 0; v � 0 (10)

z

T

w = 0 (11)

Let K be the feasible set consisting of the linear constraints (8), (9) and (10). As stated

before, consider the following nonlinear program

(NLP)

Minimize f(z; y; w; v) = jjw � q �Mz �Nyjj

2

+ jjv � p� Syjj

2

+ (

P

n

i=1

(z

i

w

i

)

g

)

h

subject to z; w; y; v � 0

(12)

where jj jj denotes the euclidean norm and g; h � 1 are real numbers such that g > 1 if h = 1.

Then we can establish the following property.

Theorem 1 If K 6= ; and M is a RS matrix, then any stationary point of NLP is a solution

of the GLCP (8){(11).

Proof: If (�z; �w; �y; �v) is a stationary point of the NLP (12), then there exist Lagrange mul-

tipliers �� 2 IR

n

;

�

� 2 IR

n

; �
 2 IR

l

and �� 2 IR

m

such that (�z; �w; �y; �v; ��;

�

�; �
; ��) satis�es the

following conditions:

�

k

= 2[w � q �Mz �Ny]

k

+ gh[

n

X

i=1

(z

i

w

i

)

g

]

h�1

z

g

k

w

g�1

k

; k = 1; : : : ; n (13)

�

k

= �2[M

T

(w � q �Mz �Ny)]

k

+ gh[

n

X

i=1

(z

i

w

i

)

g

]

h�1

z

g�1

k

w

g

k

; k = 1; : : : ; n (14)


 = �2N

T

(w � q �Mz �Ny)� 2S

T

(v � p� Sy) (15)

� = 2(v � p� Sy) (16)

z; w; y; v; �; �; 
; � � 0 (17)

�

k

w

k

= z

k

�

k

= 0; k = 1; : : : ; n (18)

y

T


 = �

T

v = 0 (19)

Let

� = w � q �Mz �Ny 2 IR

n

� = gh[

n

X

i=1

(z

i

w

i

)

g

]

h�1

2 IR

1

Then by (13) and (14)

�

k

=

1

2

[�

k

� �z

g

k

w

g�1

k

]

(M

T

�)

k

= �

1

2

[�

k

� �z

g�1

k

w

g

k

]
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for k = 1; : : : ; n. Hence for each k = 1; : : : ; n we have

�

k

(M

T

�)

k

= �

1

4

[�

k

�

k

+ �

2

(z

k

w

k

)

2g�1

� �z

g�1

k

w

g�1

k

(w

k

�

k

+ z

k

�

k

)] (20)

Now, by (18), w

k

�

k

+ z

k

�

k

= 0 for each k = 1; : : : ; n. Furthermore, all the variables are

nonnegative by (17) and this implies

�

k

(M

T

�)

k

� 0 for all k = 1; : : : ; n:

Since M is a RS matrix then

�

k

(M

T

�)

k

= 0 for all k = 1; : : : ; n:

Then by (20), we have

�

k

�

k

+ �

2

(z

k

w

k

)

2g�1

= 0

and

�

k

�

k

= z

k

w

k

= 0 for all k = 1; : : : ; n:

Since g; h � 1 and g > 1 if h = 1, then z

k

w

k

= 0 for all k = 1; : : : ; n, implies

[

n

X

i=1

(z

i

w

i

)

g

]

h�1

z

g�1

k

w

g�1

k

= 0 for all k = 1; : : : ; n:

Hence (13) and (14) take the form

�

k

= 2[w � q �Mz �Ny]

k

; �

k

= �2[M

T

(w � q �Mz �Ny)]

k

Therefore the conditions (13){(19) for a stationary point of the NLP can be rewritten as

follows

� = 2(w � q �Mz �Ny)

� = �2M

T

[w � q �Mz �Ny]


 = �2N

T

[w � q �Mz �Ny]� 2S

T

[v � p� Sy]

� = 2(v � p� Sy)

z; w; y; v; �; �; 
; � � 0

�

T

w = z

T

� = y

T


 = �

T

v = 0

(21)

But these are the necessary and su�cient optimality conditions for the convex quadratic

program

Minimize jjw � q �Mz �Nyjj

2

+ jjv � p� Syjj

2

subject to w; y; z; v � 0

(22)

Since the constraint set of the GLCP is nonempty, this quadratic program has an optimal

solution with value zero. Due to the equivalence between the conditions (21) and the optimal

solution of the quadratic program (22), the stationary point (�z; �y; �w; �v) of NLP satis�es

w � q �Mz �Ny = 0

v � p� Sy = 0

w; z; y; v � 0

But we have shown before that (�z; �y; �w; �v) also satis�es �z

T

�w = 0. So (�z; �y; �w; �v) is a solution

of the GLCP and this proves the theorem. 2
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It is important to add that the merit function (12) can be seen as an extension of two

merit functions that have been discussed before for the LCP. In fact, by �xing g = 2 and

h = 1 we get the so-called Natural Merit Function

�

1

(z; w; y; v) = jjw � q �Mz �Nyjj

2

+ jjv � p� Syjj

2

+

n

X

i=1

z

2

i

w

2

i

(23)

This function is an extension for the GLCP of the function

�

1

(z; w) = jjw � q �Mzjj

2

+

n

X

i=1

z

2

i

w

2

i

that has been used by many authors for the solution of the LCP [42, 49]. Theorem 1 implies

that any stationary point of the program

Minimize �

1

(z; w)

subject to z � 0; w � 0

(24)

is a solution of the LCP provided the LCP is feasible and M is RS matrix. This property

extends for the RS matrices the results established in [42].

On the other hand, if g = 1, we get the function

�

2

(z; w; y; v) = jjw � q �Mz �Nyjj

2

+ jjv � p� Syjj

2

+ (z

T

w)

h

(25)

that has been introduced in [18] for the LCP. Therefore theorem 1 extends for the GLCP the

result presented in [18].

Since any PSD matrix is also a RS matrix, then the result mentioned in this section is

also valid for the PGLCP.

Next we prove a result that enables to apply the previous result for solving LCPs (4). It

is known that the complexity of the solution of this problem is related with the class of the

matrix M [10, 43]. If M is a RS matrix, there is a number of direct and iterative algorithms

that process e�ciently the LCP [10]. Furthermore the LCP can be solved in polynomial time

if M is a PSD [31, 43, 52]. In general the LCP is a NP-hard problem [22, 43] and only an

enumerative algorithm is able to �nd a solution or to show that none exists [1, 24, 48].

Recently the following Disjoint Bilinear Programming formulation of the LCP has received

some interest [1, 39]

Minimize e

T

z + q

T

x+ x

T

(M � I)z

subject to Mz � �q; 0 � x � e

z � 0

(26)

The LCP has a solution if and only if the optimal value of the BLP is zero.

This BLP can be transformed into the following MINGLCP [24]

Minimize e

T

z � e

T

u

subject to

"

w

�

#

=

"

q

e

#

+

"

0 I

�I 0

# "

x

u

#

+

"

M � I

0

#

z

� = q + Mz

"

x

u

#

; z;

"

w

�

#

; � � 0

"

x

u

#

T

"

w

�

#

= 0

(27)
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where the matrix corresponding to the complementary variables is PSD. So we can �nd a

solution to the LCP by computing a solution of the PGLCP with e

T

z � e

T

u = 0. We can

obviously add this constraint to the PGLCP but this destroys the structure of the PGLCP

and the problem becomes NP-hard. A simple alternative way is to introduce the constraint




0

= e

T

z � e

T

u

and a column with a parameter �

0

� 0 that is complementary to 


0

. This leads into the

following GLCP

2

6

4

w

�




0

3

7

5

=

2

6

4

q

e

0

3

7

5

+

2

6

4

0 I 0

�I 0 �e

0 e

T

0

3

7

5

2

6

4

x

u

�

0

3

7

5

+

2

6

4

M � I

0

�e

T

3

7

5

z

� = q + Mz

�; z; w; �; 


0

; x; u; �

0

� 0

x

T

w = u

T

� = �

0




0

= 0

(28)

It is easy to see that the matrix corresponding to the complementary variables

2

6

4

0 I 0

�I 0 �e

0 e

T

0

3

7

5

(29)

is PSD. Hence the problem reduces to a PGLCP of the form discussed in this section . It is

now important to know when a solution of this PGLCP leads into a solution of the LCP. To

do this, let

K = fz 2 IR

n

: q +Mz � 0; z � 0g

be the feasible set of the LCP. Then the following result holds:

Theorem 2 If K 6= ; then the PGLCP has solution (�x; �z; �u;

�

�

0

; �w;

�

�; �


0

; ��) such that

�

�

0

� 1.

Furthermore (�z; �w) is a solution of the LCP provided

�

�

0

< 1.

Proof: Since K 6= ;, there exists at least a �z � 0 such that q +M �z � 0. Let

�w = �� = q +M �z

�u = �z; �


0

= e

T

�u� e

T

�z = 0

�

�

0

= 0;

�

� = e; �x = 0

(30)

Hence (�x; �z; �u;

�

�

0

; �w;

�

�; �


0

; ��) belongs to the set

�

K of the linear constraints of the PGLCP

(28). Since the matrix (29) is PSD, any stationary point of

Minimize w

T

x+ �

T

u+ �

0




0

subject to (x; z; u; �

0

; w; �; 


0

; �) 2

�

K

(31)

is a solution of the PGLCP [29]. As the objective function of this program is bounded from

below on

�

K and

�

K 6= ; such a stationary point exists [6, 43]. Hence the PGLCP has at least

a solution.

Now let (�x; �z; �u;

�

�

0

; �w;

�

�; �


0

; ��) be a solution of the PGLCP (28). It follows from the

de�nition of this problem that

0 �

�

�

i

+ �x

i

= 1�

�

�

0

Hence

�

�

0

� 1 and this proves the �rst part of the theorem.

To prove the second part, consider a solution (�x; �z; �u;

�

�

0

; �w;

�

�; �


0

; ��) of the PGLCP (28)

with

�

�

0

< 1. Then there are two possible cases:

7



i) �x

i

> 0. Hence �w

i

= 0 and (q +M �z)

i

+ ( �u

i

� �z

i

) = 0. Then ��

i

+ �u

i

� �z

i

= 0 which implies

�u

i

� �z

i

.

ii) �x

i

= 0. Then

�

�

i

= 1 �

�

�

0

� �x

i

= 1 �

�

�

0

> 0. Hence �u

i

= 0 and �w

i

= (q +M �z)

i

� �z

i

. If

�z

i

> 0 then e

T

�u < e

T

�z and �


0

= e

T

�u� e

T

�z < 0, which is impossible. So �z

i

= 0.

We have then shown that

(

�u

i

� �z

i

for all i such that �x

i

> 0

�u

i

= �z

i

= 0 for all i such that �x

i

= 0

(32)

Since e

T

�u � e

T

�z, then �u = �z and

�w = q + �u+ (M � I)�z = q +M �z = ��

To prove that �z is a solution of the LCP, it is su�cient to show that �z

i

> 0 implies �w

i

= 0.

But if �z

i

> 0 then �u

i

= �z

i

> 0 and

�

�

i

= 0 = 1�

�

�

0

� �x

i

Since

�

�

0

< 1, then �x

i

> 0 and �w

i

= 0. This proves the theorem. 2

This theorem enables us to solve the LCP by processing the PGLCP (28). Since the

matrix (29) is PSD, a solution to this PGLCP can be found by computing a stationary point

of the associated nonlinear program with zero lower bounds . After �nding such a point,

there are two possible cases:

i)

�

�

0

< 1 and (�z; �w) is a solution of the LCP.

ii)

�

�

0

= 1 and (�z; �w) may be a solution of the LCP or not.

In the �rst case, the procedure has found a solution of the LCP. If in the second case

(�z; �w) is a not solution of the LCP (�z

i

�w

i

> 0 for at least one i) then another stationary point

of the associated nonlinear program has to be computed.

The computation of stationary points for the nonlinear program (12) associated to the

PGLCP (28) can nowadays be done in a very e�cient way, as there exist good algorithms to

perform this task [6, 7, 8, 9, 13, 17, 42]. The main problem is to get an initial point for the

algorithm that leads into a stationary point that is also a solution of the LCP. Recently there

has been some work on the design of procedures that try to �nd a global minimum for an

optimization problem by a clever choice of initial points. A heuristic procedure of this type

has to be designed in order to fully exploit theorem 1 for the solution of LCPs. In section 3

we report some computational experience on the solution of PGLCPs with PSD matrices M

by �nding stationary points of the merit functions �

1

and �

2

.

3 Computational Experience

In this section we report some computational experience on a Digital Alpha Server 5/300,

running Digital Unix 4.0B, with PGLCPs that arise on the solution of bilinear programs

and LCPs by exploiting their reformulations as MINGLCPs. These PGLCPs are solved by

computing stationary points of merit functions of the form (12). We have chosen the code

8



LANCELOT [9] for such a task, since it is nowadays accepted as a robust code for processing

these type of nonlinear programs.

The Bilinear Programming Problem (BLP) has been studied by many authors in the

past several years [3, 22, 23, 24, 28, 34, 35, 47]. A number of important applications of this

problem has appeared in the literature [34] and many algorithms have been designed for

�nding a stationary point or a global minimum of the BLP [22, 23, 24, 28, 35, 47]. Despite

its simplicity, even the problem of �nding a stationary point for a BLP is considered to be

NP-hard [44]. As discussed in [24], a BLP is equivalent to a MINGLCP.

The Concave Quadratic Programming Problem is another interesting optimization prob-

lem that has found many applications in di�erent areas. Among them, the problem of �nding

a feasible solution of a Zero-One Integer Program should be mentioned. The so-called knap-

sack problem is an important example of this last problem. All these problems reduce to

MINGLCPs by exploiting their equivalences to BLPs [24, 28]. So all these problems can be

solved by �nding a �nite number of solutions of the PGLCP, which can be done by computing

stationary points of the nonlinear program (12). In this section we report some computational

experience on solving CQPs and knapsack problems by using the merit functions mentioned

before.

In our �rst experience, we have solved some GLCPs that are the constraint sets of

MINGLCPs associated with Concave Quadratic Programs (CQP). We start by describing

the test problems PQ10; : : : ; PQ18 that have been used in our experiences.

i) PQ10 { These are knapsack problems of the form

Minimize e

T

x� x

T

x

subject to a

T

x � b

a

T

x � b

0 � x � e

(33)

where e 2 IR

n

is a vector of ones, a 2 IR

n

is a vector whose components are random

numbers belonging to the interval [1; 50] and b is a positive real number satisfying

b =

X

i2I

a

i

Here I is a subset of f1; : : : ; ng with cardinal

n

4

[PQ10(

n

4

)],

n

2

[PQ10(

n

2

)] and

3n

4

[PQ10(

3n

4

)]. These knapsack problems are transformed into MINGLCPs according

to the process explained in section 2. The constraint set of this nonconvex program

was the PGLCP to be solved in this experience.

ii) PQ11; : : : ; PQ18 { These are the CQP test problems described in [16]. As before these

CQPs are transformed into MINGLCPs and the PGLCPs to be tested in our experiences

are the constraint sets of these nonconvex programs.

The results of the solution of the GLCPs by using the merit functions (23) and (25) are

displayed in Table 1 under the headings OPT1 and OPT2 respectively. In this Table, IT and

CPU represent the number of iterations and CPU time (in seconds) taken by LANCELOT

to get a stationary point for these functions. Furthermore V ALUEF gives the value of the

corresponding merit function at this stationary point. We recall that in theory this value

should be equal to zero. By looking to the �gures presented in Table 1, we come to the

9



Table 1: Solution of PGLCPs associated with Concave Quadratic Programs.

OPT1 OPT2

N IT CPU V ALUEF IT CPU V ALUEF

PQ10(

n

4

) 20 6 1.33 1.54e-10 6 1.00 1.86e-14

50 6 5.77 1.64e-10 11 7.58 2.57e-11

100 7 25.33 2.47e-09 13 17.39 2.51e-11

150 5 65.16 3.31e-11 14 36.45 4.01e-11

PQ10(

n

2

) 20 6 1.43 1.89e-11 6 1.02 1.82e-11

50 6 6.62 1.68e-10 7 4.21 1.97e-11

100 6 27.15 2.48e-10 7 12.95 1.18e-10

150 6 66.79 3.39e-10 7 32.02 4.17e-11

PQ10(

3n

4

) 20 6 1.62 8.20e-12 6 1.06 1.07e-11

50 6 7.76 1.46e-09 7 3.92 1.30e-10

100 7 33.89 4.71e-10 7 10.88 7.86e-11

150 7 89.20 1.90e-08 7 31.93 1.53e-10

PQ11 7 0.11 5.03e-15 7 0.11 2.99e-14

PQ12 7 0.13 1.77e-27 9 0.15 2.16e-11

PQ13 7 0.50 1.47e-10 13 0.63 8.70e-11

PQ14 10 0.18 2.17e-09 7 0.13 1.56e-13

PQ15 33 4.79 2.79e-02 34 3.68 2.79e-02

PQ16 10 0.77 1.05e-11 14 0.65 3.64e-03

PQ17:1 14 1.68 6.14e-11 22 2.01 6.75e-12

PQ17:2 17 1.97 2.63e-11 39 2.83 4.18e-12

PQ17:3 52 8.56 2.89e-14 53 4.05 1.81e-12

PQ17:4 19 1.36 4.83e-10 16 1.04 3.36e-13

PQ17:5 40 4.78 2.92e-12 53 4.19 4.09e-02

PQ18 20 3.10 9.65e-11 13 2.47 2.41e-09

10



conclusion that LANCELOT is able to �nd a stationary point for both the merit functions

in a reasonable amount of iterations and CPU time. In fact, only three problems require

more than 30 iterations to get a stationary point for the merit function (23). Furthermore

LANCELOT usually requires more iterations for �nding a stationary point to the merit

function (25), but the gap is not large. It is, however, interesting to note that the ratio

CPUtime

IT

is usually smaller for this latter function.

In our second experience we have considered some LCPs taken from known sources and

their equivalent PGLCPs that are obtained according to the process explained in section 2.

As before, these PGLCPs are solved by computing stationary points of the merit functions

(23) and (25). We start by describing the test problems used in this second experience.

PROB1 { This is the LCP discussed in [43], where q 2 IR

n

is a vector with all components

equal to �1 and M is a lower triangular P{matrix de�ned by

m

ii

= 1; i = 1; : : : ; n

m

ij

= 2 for i > j

m

ij

= 0 for i < j

(34)

PROB2 { This LCP also appears in [43] and is de�ned by q

i

= �1 for all i = 1; : : : ; n and

M = L

T

L, where L is the matrix of PROB1. Hence M is a symmetric positive de�nite

matrix.

PROB3 { This LCP has been introduced by Chadrasekaran, Pang and Stone and is also

presented in [43]. The vector q also satis�es q

i

= �1 for all i = 1; : : : ; n and the matrix

M is de�ned as follows:

m

ii

= 1; i = 1; : : : ; n

m

ij

= 2 if j > i and i+ j is odd

m

ij

= �1 if j > i and i+ j is even

m

ij

= �1 if j < i and i+ j is odd

m

ij

= 2 if j < i and i+ j is even

(35)

It is possible to show that M is a positive semi{de�nite matrix.

PROB4 { This problem is also discussed in [43] and considers the vector q such that q

i

= �1

for all i = 1; : : : ; n and M to be the well{known Hilbert matrix de�ned by

m

ij

=

1

i+ j � 1

for all i; j = 1; : : : ; n. Again M is a positive semi-de�nite matrix.

PROB5; 6; 7 { Consider again the knapsack problem

a

T

z = b; z

i

2 f0; 1g; i = 1; : : : ; n

where, as before, the components of the vector a are random numbers belonging to the

interval [1; 50] and b is the positive real number

b =

n

2

X

i=1

a

i

11



The LCPs of PROB5; 6 and 7 are LCP formulations of this problem that appeared in

the literature [31, 43, 44]. To get PROB5, we consider the LCP de�ned by

q =

2

6

4

e

�b

b

3

7

5

; M =

2

6

4

�I

n

0 0

a

T

�� 0

�a

T

0 ��

3

7

5

where I

n

is the identity matrix of order n and e 2 IR

n

is a vector of ones. The constants

� and � are chosen in order M to be negative semi{de�nite (NSD) or inde�nite (IND).

For the �rst case � and � should satisfy

� > k

a

T

a

4

; � > k

�a

T

a

4� � a

T

a

where k is a real number greater than one. This leads into PROB5(NSD). On the other

hand, M is IND if � and � satisfy

� > k

a

T

a

4

; � <

1

k

�a

T

a

4� � a

T

a

These choices of � and � lead into PROB5(IND).

PROB6 is the LCP formulation of the knapsack problem discussed in [44] and is given

by

q =

2

6

6

6

6

6

6

4

a

1

.

.

.

a

n

�b

b

3

7

7

7

7

7

7

5

; M =

2

6

4

�I

n

e �e

e

T

�2n 0

�e

T

0 �2n

3

7

5

where, as before, e is a vector of ones and I

n

is the identity matrix of order n. As is

discussed in [44] the matrix M is symmetric negative semi{de�nite.

Finally PROB7 is the LCP formulation discussed in [31] and considers

q =

2

6

6

6

6

6

6

6

6

4

p

p

.

.

.

p

�b

b

3

7

7

7

7

7

7

7

7

5

; M =

2

6

6

6

6

6

6

6

6

4

B 0 � � � 0 0 0

0 B � � � 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � B 0 0

�a

T

��a

T

3

7

7

7

7

7

7

7

7

5

where

p =

2

6

6

6

4

0

0

�1

1

3

7

7

7

5

; B =

2

6

6

6

4

0 0 0 0

1 0 0 0

1 1 0 0

�1 0 0 0

3

7

7

7

5

; �a = (�a

1

; : : : ; �a

4n+2

)

T

2 IR

4n+2

with

�a

i

=

(

a

i

if i = 4j � 3 ; j = 1; : : : ; n

0 otherwise

12



As dicussed in [31] the matrix M has nonnegative principal minors (that is, M 2 P

0

),

but it is not positive semi{de�nite.

PROB8; 9 { These are structured LCPs that are formulations of nonzero{sum bimatrix

games [10, 43]. The LCP of PROB8 takes the form

q =

"

�e

m

�e

r

#

; M =

"

0 A

B 0

#

where e

j

is a vector of ones of order j and A, B are positive matrices whose elements

are random numbers belonging to the interval [1; 50]. On the other hand the vector q

and the matrix M of the LCP corresponding to PROB9 are given by

q =

"

�e

m

e

r

#

; M =

"

0 A

�B 0

#

For each one of these LCPs, we have generated four problems di�ering on its dimension

n.

The results of the solution of these LCP test problems by processing their equivalent

PGLCPs are displayed in Table 2. We recall that the LCP is equivalent to a PGLCP with a

parameter �

0

. If �

0

< 1 in a solution of this PGLCP, then a solution of the LCP is at hand.

Otherwise (�

0

= 1) no conclusion can be drawn about the existence of a solution to the LCP,

but usually the solution of the PGLCP does not lead to a solution of the LCP. As before, the

PGLCP is solved by computing the stationary point of the associated merit functions (23)

or (25). The computational e�ort for performing such a task is displayed under the headings

OPT1 and OPT2 respectively, by stating the number of iterations (IT ) and the CPU time

(CPU) that LANCELOT has required to get a stationary point in each one of the cases. In

this Table, V ALUEF continues to represent the value of the merit function at this stationary

point and LAMBDA gives the value of the variable �

0

at this solution. So LAMBDA < 1

means that a solution of the LCP has been found. Furthermore we write an asterisk when a

solution of the LCP has been found in the case of LAMBDA = 1.

The results displayed in Table 2 lead to conclusions similar to the case of CQPs about the

ability of LANCELOT to get stationary points that are solutions of the PGLCP in a small

amount of e�ort. As before, the natural function (23) seems to be a better choice in terms of

the number of iterations that LANCELOT requires to get a stationary point that solves the

PGLCP. The results also show that in general the solution of the PGLCP is not a solution

of the LCP. However, we have only presented the numerical results that have been achieved

by using LANCELOT with its recommended starting point. A heuristic procedure to get

a good initial point for the local solver (LANCELOT or other) that leads into a stationary

point of the merit function that is also a solution of the LCP will certainly be an important

topic for future research. This will enable solving NP{hard LCPs and bilinear programs by

nonenumerative techniques.

4 Conclusions

In this paper we have showed that a solution of a polynomial General Linear Complementarity

Problem (PGLCP) can be found by computing a stationary point of an appropriate merit

13



Table 2: Solution of PGLCPs associated with LCPs.

OPT1 OPT2

N IT CPU V ALUEF LAMBDA IT CPU V ALUEF LAMBDA

PROB1 20 6 0.08 1.28e-21 5.01e-01 9 0.16 1.84e-15 4.18e-01

50 6 0.36 5.44e-19 5.83e-01 10 0.72 3.91e-20 1.00e+00

100 8 2.27 5.48e-14 5.12e-01 9 2.18 2.15e-27 1.00e+00*

150 9 5.59 2.06e-25 5.87e-01 10 4.82 6.78e-14 6.83e-01

PROB2 20 7 0.11 2.19e-20 0.00e+00 9 0.15 2.70e-27 0.00e+00

50 10 0.71 2.07e-14 1.00e+00* 5 0.47 1.16e-28 1.00e+00*

100 7 1.98 2.88e-28 1.00e+00* 6 1.67 7.01e-28 1.00e+00*

150 9 4.83 7.64e-15 1.00e+00 7 5.05 5.44e-27 1.00e+00*

PROB3 20 8 0.45 2.46e-09 0.00e+00 11 0.55 7.72e-12 1.00e+00

50 7 5.70 3.39e-09 2.43e-03 17 8.27 2.85e-12 1.00e+00

100 7 29.93 7.52e-09 4.90e-01 21 71.98 8.82e-10 6.65e-01

150 8 85.28 3.30e-08 5.05e-01 20 176.98 1.82e-10 5.18e-01

PROB4 20 10 0.24 1.25e-10 1.00e+00 14 0.40 9.20e-13 1.00e+00

50 11 1.23 1.80e-11 1.00e+00 12 1.87 5.07e-14 1.00e+00

100 12 7.65 5.02e-12 1.00e+00 16 14.53 1.17e-14 1.00e+00

150 12 24.41 2.15e-10 1.00e+00 21 65.04 2.59e-15 1.00e+00

PROB5 20 12 0.16 1.34e-12 1.00e+00 8 0.23 2.09e-13 1.00e+00

(NSD) 50 8 0.57 1.29e-07 1.00e+00 14 1.10 1.00e-14 1.00e+00

100 12 4.32 2.91e-11 1.00e+00 8 2.95 2.14e-12 1.00e+00

150 10 3.08 1.02e-11 1.00e+00 10 7.52 3.12e-15 1.00e+00

PROB5 20 12 0.16 1.34e-12 1.00e+00 8 0.23 2.09e-13 1.00e+00

(IND) 50 8 0.57 1.29e-07 1.00e+00 14 1.10 1.00e-14 1.00e+00

100 12 4.27 2.91e-11 1.00e+00 8 2.94 2.14e-12 1.00e+00

150 10 3.06 1.02e-11 1.00e+00 10 7.49 3.12e-15 1.00e+00

PROB6 20 13 0.18 1.74e-12 1.00e+00 11 0.33 2.77e-14 1.00e+00

50 13 0.75 7.97e-13 1.00e+00 12 1.29 1.30e-13 1.00e+00

100 14 1.77 9.96e-11 1.00e+00 32 7.51 1.89e-12 1.00e+00

150 14 4.37 9.36e-11 1.00e+00 34 10.70 6.68e-16 1.00e+00

PROB7 20 7 0.18 6.75e-11 1.00e+00 14 0.49 1.88e-14 1.00e+00

50 8 0.43 1.53e-11 1.00e+00 8 0.66 2.31e-14 1.00e+00

100 7 1.67 1.02e-10 1.00e+00 8 1.70 1.56e-14 1.00e+00

150 8 4.72 2.46e-11 1.00e+00 11 12.66 5.72e-13 1.00e+00

PROB8 20 17 3.06 1.13e-07 8.35e-01 13 0.46 2.14e-13 1.00e+00

50 9 8.97 3.45e-15 1.00e+00* 22 11.60 2.67e-14 1.00e+00*

100 20 198.73 6.88e-08 8.06e-01 27 75.29 1.36e-06 5.23e-01

150 14 397.49 3.61e-08 8.56e-01 30 646.96 1.61e-06 5.96e-01

PROB9 20 10 1.40 8.69e-15 1.00e+00* 12 0.76 2.06e-14 1.00e+00*

50 17 27.92 1.32e-08 9.56e-01 18 22.77 5.17e-14 1.00e+00*

100 15 171.00 5.09e-09 9.64e-01 27 103.27 1.57e-06 5.42e-01

150 13 282.05 5.05e-08 8.58e-01 18 464.32 2.55e-14 1.00e+00*
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function. This result has important implications on the solution of bilinear and concave

quadratic programs and zero{one integer programming problems. We have also showed that

any Linear Complementarity Problem (LCP) can be reduced into a PGLCP. Hence, under

certain conditions, a solution of the LCP can be found by computing a stationary point of

an appropriate merit function.

Some computational experience with concave quadratic programs, knapsack problems

and LCPs was included and showed the appropriateness of solving the associated PGLCPs

by computing stationary points of the corresponding merit functions. We believe that these

conclusions will have an important e�ect on the solution of these di�cult nonconvex problems,

particularly if we can design heuristic procedures capable of providing good starting points

for the local search techniques that are employed to solve the PGLCP. This is a topic that

deserves research in the future.
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