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Abstract

We obtain, using the generalized derivative operators, the second order
Casimir invariant operator associated to the Fantappié-de Sitter group, iso-
morphic to the 5-dimensional pseudorotation group, which is the group of
motions admitted by the massless Robertson-Walker cosmological spacetimes.
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1 Introduction

The de Sitter spacetime is the curved spacetime which has been most studied by
quantum field theorists because, together with the anti-de Sitter spacetime and
Minkowski spacetime, it is the unique maximally symmetric curved spacetime [1, 2].
The symmetry group of de Sitter spacetime is the ten parameter group SO (4,1)
of homogeneous Lorentz transformations [3]. The group SO(3,2) is the symmetry
group of anti-de Sitter spacetime, and the Poincaré group is the symmetry group of
Minkowski spacetime, both with ten parameter.

In this paper we obtain the generalized differential equation associated to the so
called Fantappié-de Sitter group [4] using the methodology proposed by Arcidiacono,
and generalize the metric of Beltrami [5] by introducing a parameter k such that
the line element on the spatial sections is spherical in the de Sitter case, flat in the
Minkowski case and hyperbolic in the anti-de Sitter case!.

By using the second order Casimir invariant operator associated to the group we
derive the Klein-Gordon wave equation, a result that generalizes a previous result
obtained by the authors [6]. Finally, when the radius of the de Sitter or anti-de Sitter
spacetime goes to infinity, we obtain again the results associated to the Minkowski
spacetime [7].

This paper is organized as follows: in section 2 we discuss the massless Robertson-
Walker spacetimes, that is, de Sitter spacetime, Minkowski spacetime and anti-de
Sitter spacetime; in section 3 we discuss the relation between the two formulations
i.e., how to pass from 5-dimensional Pitagorian metric to 4-dimensional Beltrami
metric. In section 4 we present the so called Fantappié-de Sitter group and its
invariants and in section 5 we obtain the second order Casimir invariant operator
associated to this group.

2  Massless Robertson-Walker spacetimes

The Copernican Principle — the requirement of a homogeneous and isotropic space
— is valid in the so called comoving coordinates. It is satisfied by the solutions of
Einstein’s field equations with cosmological constant A in the absence of matter and
radiation, which are given as follows

e A > 0 (de Sitter spacetime).

ds® = R*{—dr?* + cosh? 7[dx* + sin® x(d#” + sin® 0d¢?)]}.
'k =1,k =0 and k = —1, respectively.




This is the de Sitter spacetime, a space with constant curvature R, and may
be visualized as the sphere of radius R in the space Ry )

—GHIF GGG =R (1)
e A =0 (Minkowski spacetime).

ds® = —d7? + dr*r*(d6” + sin® 0d¢?).

This is the Minkowski spacetime expressed in spherical coordinates, a space
with null curvature.

e A < 0 (anti-de Sitter spacetime).

ds® = R*{—dr® + cos® 7[dx* + sinh® x(d6* + sin” d¢?)]}.

This is the anti-de Sitter spacetime, a space with constant curvature —R, and
may be visualized as the sphere of radius — R in the space R )

—G+E+E+E -6 =R (2)

These three spacetimes are the only maximally symmetric spaces [1, 2|.

3 Beltrami coordinates and derivatives

In this section we consider how to pass from 5-dimensional homogeneous coordinates
&€ = (&,&1,8,8,&) to the Beltrami 4-dimensional coordinates © = (g, 1, T2, T3)
of the de Sitter and anti-de Sitter spacetimes. We use the summation convention
in this and the following sections, in which repeated Greek subscripts are summed
over.

Making &y — &y in Ry, and & — €1, & — 162, &3 — €3 in Rz the de
Sitter spacetime and the anti-de Sitter spacetime — eq.(1) and eq.(2) — are formally
represented as a sphere

4

D €aba = (&)°+ (&) + (&) + (&) + (&) = R (3)

A=0
The relation between Beltrami coordinates x, and homogeneous coordinates is
given by [4]



T, = Rz—: where 1 =0,1,2,3. (4)

Let us introduce the notation

2 2 2 2

A =1+k - , (5)

where £ = 1,0 or —1 is a parameter related to the de Sitter spacetime, Minkowski
spacetime and anti-de Sitter spacetime, respectively. We can thus eliminate the &
coordinate and we have the following relations:
R T
= — and =-E, 6
64 Ak §M Ak ( )
In these coordinates the de Sitter and anti-de Sitter line elements are

Apds® = Aldw,dx, — kR™2 (v,dx,)”
where zo = ict, R2A? = R? 4+ k(r? + 22) and 72 = (21)” + (22)° + (23)°.
We note that when k& = 1 the line element reduces to the line element of Beltrami
metric [5].
To obtain the relations for the partial derivatives we consider a function ¢ (§), a
homogeneous function of degree N in all five variables & = (&, &1, &2, €3, &4) - Using
Euler’s theorem for homogeneous functions we have

ZanAQO (&) =N () , (7)

where we have put 04 = 0/90€4, with A = 0,1,2,3,4. Using the definition of
homogeneous function we can write

& o6\ _(R)
v <R54""7R54> - <f4> # &) )
and we finally get the following relation

RYp(€) = (&)" ¢ (z, R) , (9)

where the function in the right hand side is a function obtained from ¢ (£4) with
the substitutions §, — R and &, — .
Differentiating eq.(9) with respect to & and &, we obtain respectively,
0

Ra—&<ﬂ (&) = Allc_N (N = 2,0,) ¢ (2, R) (10)



and

9.,

0&,,
where Aj is given by eq. (5) and 0, = 0/0x,,.
Introducing the function 1) (x) defined by

(€) = A" 0w (. R) (11)

Y (z) = 47 (2, R) (12)
in the two equations above we can finally write the derivatives:
R (€)= (5~ A ) v ), (13
e O = (A0~ b ) ), (14
O = (00, 4k ) v o), (15

where v =1,2,3, and p=0,1,2, 3.

Then, we have solved the problem of passing from the 5-dimensional formu-
lation, & = (&, &1,&2,&3,&), to the 4-dimensional spacetime formulation, z =
(xg, 1,9, x3) , i.e., in Cartesian coordinates, also called Beltrami coordinates. The
relations expressed by eqs.(13), (14) and (15) are the link between the two formula-
tions.

4 The Fantappié-de Sitter group

In this section we present the Fantappié-de Sitter group, the symmetry group of
massless Robertson-Walker spacetimes, and write down its invariant operators in
Beltrami coordinates.

The symmetry group of massless Robertson-Walker spacetimes is the pseudorota-
tions group. With imaginary coordinates (placed in adequate form) it is called Fan-
tappié-de Sitter group. The pseudorotations group preserves the equation » | €484 =
R? with & — i& in the de Sitter case and & — i&;, & — &, & — i&3 in the anti-de
Sitter case. Its generators satisfy [3]

—1 [Jli)u J,ul/] = 651/'])\;1 - 6nuJAV + 6/\an1/ - 6/\1/']5;1 )
—1 [T)\; J;w] = 6)\;¢T1/ - 5)\1/Tu )
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1
" R?
where the Greek subscripts take values 0,1,2,3 and 7T}, = %J;A- We note that as
R — oo we have

—i [T, T, = ——J

s

T, = pu,

where p,, is the four dimensional operator associated with the translations of Minkowski
spacetime. In this way we obtain the Lie Algebra of the non homogeneous Lorentz
group, the Poincaré group.

Introducing the correspondence

Pu — —10,

we obtain a representation of the Fantappié-de Sitter group given by the 5-dimensional
angular momentum operators

Jap = —ih <§A% - fB%) = Lagp,

where A, B =0,1,2,3,4. In terms of the Beltrami coordinates, these operators are
given by

Lul/ = TuPy — TPy (16)
and . )
1T\ = ELOA = A’py + ﬁxu[&u' (17)

In these expression the imaginary coordinates were maintained, and thus A? =
1+ > a%/R? with p,v,A=0,1,2,3.
o

We note that in the equations above (where 7), are the analogous of the momen-
tum operators in Minkowski spacetime) linear momentum and angular momentum
are mixed in a unique tensor. This mixing is due to the fact that displacement trans-
formations are the analogous of translations and therefore the energy-momentum
operator is not conserved by the Fantappié-de Sitter group.

Now, we consider the explicit form in real coordinates of the ten operators.
Introducing the Ty operator, representing temporal translations, defined by

Loy = R1y = —ih <§0% - 54%) ;



we have

ors TR o

The T, operators, representing spatial translations, are defined by

L= RT, = —ih <§“8§4 648@)

To—h\/_< g0y, 0 ) (18)

whence we obtain " 5 9
) x
T, = E=Lx,
"V (83?# * R? 837,,)
where =1, 2, 3.

Introducing the V), operators, which are related to the center of mass inertia
momentum, given by

LOu = Vu = (fO 8§u 6”8&))

0 0
Y 1
Vﬂ <.’170 81‘u + -’Iju 8;[;0) y ( 9)

we have

where =1, 2, 3.
Finally, we introduce L) operators, representing spatial rotations, defined by

0 0
L;w = L)\ = —ifi (6”8—61 - gva—gu> )

Ly = —ih (37#£ - xyi> : (20)

oz,

and we obtain

where (p, v, A) is any cyclic permutation of (1,2,3) and in the above expressions i
has its usual meaning.

We can write the two invariant operators of the Fantappié-de Sitter group, the
so called Casimir invariant operators, using Tp, T, V, and L, as follows:

I = T2+T2+%(L2+V2)— —M? (21)
and o o | e o2
Li=(L-T) +(HL+TxV) +§<L-V) — _N? (22)



where M? and N? are constants.
We call eq.(21) the Klein-Gordon equation and we note that in the limit R — oo
we have
I, > m? and I —m?s(s+1)

where m and s are respectively the rest mass and the spin that characterize the
representations of the Poincaré group [3]. The representations of the Fantappié-de
Sitter group are labeled by the eigenvalues of I, and I, which generalize the usual
mass and spin. Yet, a particle in a de Sitter universe has not a well defined mass
and spin but eigenvalues of the I, and I, invariant operators.

5 Second order Casimir invariant operator

In this section we introduce a spherical coordinate system (7,6, ¢) and obtain the
explicit form of the second order Casimir invariant operator in these coordinates.

The spherical coordinates are g = xy, £3 = rcosf, ro = rsinfsin¢ and x; =
rsin @ cos ¢, and we define the following operators:

- 0 cosfcosp 0  sing 0
P = sm@cosqﬁar-i- , 00 rsinf 0¢

P, = sianin¢§+wg cosg 0
r

00  rsinf 0¢
0 sinf 0
By = costar = =5
0 0
Q = l‘oa—xo—Fra.

We can write for the translation operators:



83:0 R?
th rsin 6 cos ¢
ih rsin @ sin ¢

7, - £<p3+kﬂg>,

The inertial displacement operators are given by:

Vi = hk (:roPl + rsin @ cos ¢ai
Lo

N——

0
Vo = hk (xOPQ—I-rsinOsinqb%)
0

Vs = hk (:roPg + r cos Qi> .
8370

The spatial rotation operators are given by:

B ) ., 0 cosfBcoso O
Ly = —ih (‘S”“%‘W%)
. 0 cosfsing 0
Ly = - <C°S%—Wa—¢>
0
L3 = _Zh8_¢

Finally, we obtain the explicit form for the second order Casimir invariant oper-
ator introducing the differential operators given above in eq.(21) and taking xy = ct.
The second order Casimir invariant operator is then given by
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1 0? 1
_ 2 A2

where A2 =1+ 72 (r? — ¢*t?), A is the Laplacian in spherical coordinates and L is
the operator

0? 0? 0? 0 0
L=1t"——+2rt I 42— 4+ 2r—.
o " ara e T e T o
We note that when R — oo, the operator I reduces to the D’alembert wave

operator, i.e.,

1 2
hthD:#(A——EJ.
R—
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