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Abstrat

We obtain, using the generalized derivative operators, the seond order

Casimir invariant operator assoiated to the Fantappi�e-de Sitter group, iso-

morphi to the 5-dimensional pseudorotation group, whih is the group of

motions admitted by the massless Robertson-Walker osmologial spaetimes.
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1 Introdution

The de Sitter spaetime is the urved spaetime whih has been most studied by

quantum �eld theorists beause, together with the anti-de Sitter spaetime and

Minkowski spaetime, it is the unique maximally symmetri urved spaetime [1, 2℄.

The symmetry group of de Sitter spaetime is the ten parameter group SO (4; 1)

of homogeneous Lorentz transformations [3℄. The group SO(3; 2) is the symmetry

group of anti-de Sitter spaetime, and the Poinar�e group is the symmetry group of

Minkowski spaetime, both with ten parameter.

In this paper we obtain the generalized di�erential equation assoiated to the so

alled Fantappi�e-de Sitter group [4℄ using the methodology proposed by Aridiaono,

and generalize the metri of Beltrami [5℄ by introduing a parameter k suh that

the line element on the spatial setions is spherial in the de Sitter ase, at in the

Minkowski ase and hyperboli in the anti-de Sitter ase

1

.

By using the seond order Casimir invariant operator assoiated to the group we

derive the Klein-Gordon wave equation, a result that generalizes a previous result

obtained by the authors [6℄. Finally, when the radius of the de Sitter or anti-de Sitter

spaetime goes to in�nity, we obtain again the results assoiated to the Minkowski

spaetime [7℄.

This paper is organized as follows: in setion 2 we disuss the massless Robertson-

Walker spaetimes, that is, de Sitter spaetime, Minkowski spaetime and anti-de

Sitter spaetime; in setion 3 we disuss the relation between the two formulations

i.e., how to pass from 5-dimensional Pitagorian metri to 4-dimensional Beltrami

metri. In setion 4 we present the so alled Fantappi�e-de Sitter group and its

invariants and in setion 5 we obtain the seond order Casimir invariant operator

assoiated to this group.

2 Massless Robertson-Walker spaetimes

The Copernian Priniple | the requirement of a homogeneous and isotropi spae

| is valid in the so alled omoving oordinates. It is satis�ed by the solutions of

Einstein's �eld equations with osmologial onstant � in the absene of matter and

radiation, whih are given as follows
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k = 1; k = 0 and k = �1, respetively.
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This is the de Sitter spaetime, a spae with onstant urvature R, and may

be visualized as the sphere of radius R in the spae R

(4;1)

��

2

0

+ �

2

1

+ �

2

2

+ �

2

3

+ �

2

4

= R

2

: (1)

� � = 0 (Minkowski spaetime).
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This is the Minkowski spaetime expressed in spherial oordinates, a spae

with null urvature.

� � < 0 (anti-de Sitter spaetime).
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This is the anti-de Sitter spaetime, a spae with onstant urvature �R, and

may be visualized as the sphere of radius �R in the spae R

(3;2)
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These three spaetimes are the only maximally symmetri spaes [1, 2℄.

3 Beltrami oordinates and derivatives

In this setion we onsider how to pass from 5-dimensional homogeneous oordinates
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of the de Sitter and anti-de Sitter spaetimes. We use the summation onvention

in this and the following setions, in whih repeated Greek subsripts are summed

over.
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the de

Sitter spaetime and the anti-de Sitter spaetime | eq.(1) and eq.(2) | are formally

represented as a sphere

4

X

A=0

�

A

�

A

= (�

0

)

2

+ (�

1

)

2

+ (�

2

)

2

+ (�

3

)

2

+ (�

4

)

2

= R

2

: (3)

The relation between Beltrami oordinates x

�

and homogeneous oordinates is

given by [4℄
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x
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where � = 0; 1; 2; 3: (4)

Let us introdue the notation
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where k = 1; 0 or �1 is a parameter related to the de Sitter spaetime, Minkowski

spaetime and anti-de Sitter spaetime, respetively. We an thus eliminate the �

4

oordinate and we have the following relations:
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In these oordinates the de Sitter and anti-de Sitter line elements are
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We note that when k = 1 the line element redues to the line element of Beltrami

metri [5℄.

To obtain the relations for the partial derivatives we onsider a funtion ' (�), a

homogeneous funtion of degree N in all �ve variables � = (�

0
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Euler's theorem for homogeneous funtions we have
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where we have put �
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, with A = 0; 1; 2; 3; 4. Using the de�nition of

homogeneous funtion we an write
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and we �nally get the following relation

R

N

' (�) = (�

4

)

N

' (x;R) ; (9)

where the funtion in the right hand side is a funtion obtained from ' (�
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Di�erentiating eq.(9) with respet to �
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we obtain respetively,
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and
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where A

k

is given by eq. (5) and �
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:

Introduing the funtion  (x) de�ned by
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in the two equations above we an �nally write the derivatives:
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where � = 1; 2; 3, and � = 0; 1; 2; 3.

Then, we have solved the problem of passing from the 5-dimensional formu-

lation, � = (�

0
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) ; to the 4-dimensional spaetime formulation, x =
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1

; x

2

; x

3

) ; i.e., in Cartesian oordinates, also alled Beltrami oordinates. The

relations expressed by eqs.(13), (14) and (15) are the link between the two formula-

tions.

4 The Fantappi�e-de Sitter group

In this setion we present the Fantappi�e-de Sitter group, the symmetry group of

massless Robertson-Walker spaetimes, and write down its invariant operators in

Beltrami oordinates.

The symmetry group of massless Robertson-Walker spaetimes is the pseudorota-

tions group. With imaginary oordinates (plaed in adequate form) it is alled Fan-

tappi�e-de Sitter group. The pseudorotations group preserves the equation
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where the Greek subsripts take values 0; 1; 2; 3 and T
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R!1 we have
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;

where p

�

is the four dimensional operator assoiated with the translations of Minkowski

spaetime. In this way we obtain the Lie Algebra of the non homogeneous Lorentz

group, the Poinar�e group.

Introduing the orrespondene

p
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! �i�

�

we obtain a representation of the Fantappi�e-de Sitter group given by the 5-dimensional

angular momentum operators
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where A;B = 0; 1; 2; 3; 4. In terms of the Beltrami oordinates, these operators are
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In these expression the imaginary oordinates were maintained, and thus A
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with �; �; � = 0; 1; 2; 3:

We note that in the equations above (where T

�

are the analogous of the momen-

tum operators in Minkowski spaetime) linear momentum and angular momentum

are mixed in a unique tensor. This mixing is due to the fat that displaement trans-

formations are the analogous of translations and therefore the energy-momentum

operator is not onserved by the Fantappi�e-de Sitter group.

Now, we onsider the expliit form in real oordinates of the ten operators.

Introduing the T

0

operator, representing temporal translations, de�ned by
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we have
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The T
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operators, representing spatial translations, are de�ned by

L

�4

� RT

�

= �i~

�

�

�

�

��

4

� �

4

�

��

�

�

whene we obtain

T

�

=

i~

p

k

�

�

�x

�

+ k

x

�

R

2

x

�

�

�x

�

�

where � = 1; 2; 3.

Introduing the V
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operators, whih are related to the enter of mass inertia

momentum, given by
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where � = 1; 2; 3:

Finally, we introdue L

�

operators, representing spatial rotations, de�ned by
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where (�; �; �) is any yli permutation of (1; 2; 3) and in the above expressions ~

has its usual meaning.

We an write the two invariant operators of the Fantappi�e-de Sitter group, the

so alled Casimir invariant operators, using T

0

; T

�

; V

�

and L

�

as follows:
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where M

2

and N

2

are onstants.

We all eq.(21) the Klein-Gordon equation and we note that in the limit R!1

we have

I

2

! m

2

and I

4

! m

2

s (s + 1)

where m and s are respetively the rest mass and the spin that haraterize the

representations of the Poinar�e group [3℄. The representations of the Fantappi�e-de

Sitter group are labeled by the eigenvalues of I

2

and I

4

, whih generalize the usual

mass and spin. Yet, a partile in a de Sitter universe has not a well de�ned mass

and spin but eigenvalues of the I

2

and I

4

invariant operators.

5 Seond order Casimir invariant operator

In this setion we introdue a spherial oordinate system (r; �; �) and obtain the

expliit form of the seond order Casimir invariant operator in these oordinates.

The spherial oordinates are x
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:

We an write for the translation operators:
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:

The inertial displaement operators are given by:
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The spatial rotation operators are given by:

L

1

= �i~

�

� sin�

�

��

�

os � os�

sin �

�

��

�

L

2

= �i~

�

os�

�

��

�

os � sin�

sin �

�

��

�

L

3

= �i~

�

��

:

Finally, we obtain the expliit form for the seond order Casimir invariant oper-

ator introduing the di�erential operators given above in eq.(21) and taking x

0

= t:

The seond order Casimir invariant operator is then given by
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), 4 is the Laplaian in spherial oordinates and L is

the operator
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We note that when R ! 1, the operator I

2

redues to the D'alembert wave

operator, i.e.,

lim

R!1
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