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Abstract

We discuss right ‘complex’ eigenvalues equations for n-dimensional matrix quater-
nionic and complex linear operators in quaternionic vector spaces. The quaternionic
linear operators spectrum takes n-complex eigenvalues. A necessary and sufficient con-
dition to diagonalize quaternionic matrix representations is given. We also extend our
discussion to complex linear quaternionic operators and introduce left /right ‘quaternionic’
eigenvalues equations.

1 Introduction

After the fundamental works of Finkelstein et al. on Foundations of Quaternionic Quantum
Mechanics [1] and Quaternionic Gauge Theories [2], in the last decade we have witnessed a
renewed interest in algebrization and geometrization of Physical Theories by non commuta-
tive fields [3]. Among the numerous references on this subject we recall the important paper
of Horwitz and Biedenharn [4], where the authors showed that the assumption of a complex
scalar product, complex geometry [5], permits the definition of a suitable tensor product [6]
between single-particle quaternionic wave functions. We also mention quaternionic applica-
tions in Special Relativity [7], Group Representations [8, 9, 10], Non Relativistic Scatter-
ing [11, 12], Electroweak [13] and Grand Unification Theories [14], Preonic Model [15]. A
clear and detailed discussion of Quaternionic Quantum Mechanics is found in the recent book
of Adler [16], where in the final chapter we find an interesting list of issues relating to the
role of quaternions in Physics and possible topics for future developments.

The aim of this paper is to study the right complex eigenvalues problem in Quater-
nion Quantum Mechanics (QQM): Given quaternionic and complex linear operators on n-
dimensional quaternionic vector spaces, we wish to determine a systematic way to obtain



eigenvalues and the corresponding eigenvectors. In discussing such a problem, we find two
obstacles: the first one is related to the difficulty in obtaining a suitable definition of determi-
nant for quaternionic matrices, the second one is represented by the loss, for non-commutative
fields, of the fundamental theorem of the Algebra. The lack of these tools, essentials in
solving the eigenvalues problem in the complex world, make the problem over quaternionic
fields a complicated puzzle. We overcome difficulties in approaching the eigenvalues prob-
lem in a quaternionic world by discussing eigenvalues equations for 2n-dimensional complex
matrices, which represent the ‘complex’ counterpart of n-dimensional quaternionic matrix
operators. We shall show that quaternionic and complex linear operators, on quaternionic
Hilbert space with quaternionic geometry, are diagonalizable if and only if the corresponding
translated complex operators are diagonalizable. The spectral theorems, extended to quater-
nionic Hilbert spaces [1], are recovered in a more general context. We also give a practical
method to diagonalize operators on finite dimension quaternionic vector spaces and to relate
ani-hermitian to hermitian quaternionic operators.

This paper is organized as follows: In Section 2, we introduce basic notations and mathe-
matical tools. In Section 3 we approach the right eigenvalues problem by discussing the eigen-
values spectrum for 2n-dimensional complex matrices obtained by translating n-dimensional
quaternionic matrix representations, and give a practical method to diagonalize quaternionic
linear operators. We also discuss the right eigenvalues problem for complex linear quater-
nionic operators and analyze the results within a QQM with complex geometry. In Section 4,
we introduce left /right quaternionic eigenvalues equations. In Appendix, we explicitly solve
eigenvalues equations for two-dimensional quaternionic and complex linear operators. Our
conclusions and out-looks are drawn in the final section.

2 Basic notations and mathematical tools
A quaternion, g € H, is expressed by four real quantities [17]
g=a+ib+jc+kd, a,b,c,d € R (1)

and three imaginary units
=7 =k=ijk=-1.

The quaternion skew-field H is an associative but non-commutative algebra of rank 4 over
R, endowed with an involutory antiautomorphism

q—>q=a—1ib—jc—kd . (2)
This conjugation implies a reversed order product, namely
pg=4qp, p,qcl

Every nonzero quaternion is invertible, and the unique inverse is given by 1/g = q/|q|*, where
the quaternionic norm |q| is defined by

g’ =qg=0a’+ 0+ +d.
Two quaternions g and p belong to the same eigenclass when the following relation

g=s'ps, s €M,



is satisfied. It is easily verify that quaternions of the same eigenclass have the same real part
and the same norm,

Re(q) =Re(s 'ps) =Re(p), lq|=|s"ps|=1p|,

consequently they have the same absolute value of the imaginary part. The previous equations
can be rewritten in terms of unitary quaternions as follows

q=s pSZipi:ﬂpu, ueH, wu=1.
EIRE]

Likewise complex numbers can be constructed from real numbers by
z=a+1f, a,BER,

we can construct quaternions from complex numbers by adopting the so-called symplectic
decomposition
q=z+jw, z,w € C.

Due to the non-commutative nature of quaternions we must distinguish between
ql_i and l_iq , h= (i,7,k) .

Thus, it is appropriate to consider left and right-actions for our imaginary units 7, 7 and k.
Let us define the operators

-

L = (L, Lj, L), (3)
and
R = (R;, Rj, Ry,) (4)
which act on quaternionic states in the following way
L:H—>H, Lg=hqeH, (5)
and
R: H—H, Rgq=qheH. (6)

The algebra of left /right generators can be concisely expressed by
L = L;- =L} =L;LjL, = R} = R; =R} = R R;R; = -1,
and by the commutation relations
[Lijk, Rijk]=0.
From these operators we can counstruct the following vector space
H, ® Hg,

whose generic element will be characterized by left and right actions of quaternionic imaginary
units ¢, 7, k. In this paper we will work with two sub-spaces of H;, ® H, namely

H* and H®CH,



whose elements are represented respectively by left actions of 7, 7, k
a+b-L €H, a,beR,

and by left actions of ¢, j, k£ and right action of the only imaginary unit ¢

-

a+b-L+cRi+d-LR; eH*®C*, abecdeR.

Let us now introduce two different types of operators: Operators H-linear and C-linear
from the right. For simplicity of notation we denote

Ox: VH—>VH,

to represent quaternionic operators right-linear on the X-field. Operators which act only
from the left on quaternionic Hilbert spaces, Vi, represented by Oy are obviously H-linear
from the right

Ou(ld > q) = (Ouly >)g, qeH.

By considering the right action of the i-complex imaginary unit we obtain right C-linear
operators, Oc, which satisfy

Oc(l$ > A) =(Oclp >)A,  AreC.

Right H and C linear operators are R-linear from the left. From now on, in order to lighten
our presentation, we will use the terminology quaternionic and complex linear operators to
indicate linear operators on H and C from the right.

The use of such left/right operators give new intersting opportunities in Quaternionic
Group Theory [10]. Let us observe as follows: The so-called symplectic complex representa-
tion of a quaternion state |1 > can be represented by the following complex column matrix

> =z > +jly> (2) (7)

The operator representation of L;, L; and Ly consistent with the above identification

v 0 ) 0 -1 . 0 - )
LiH(O _Z.>:ZU3, LjH(l 0>:—202, LkH(—'L’ 0>:—ZUI, (8)

has been known since the discovery of quaternions. It permits any quaternionic number
or matrix to be translated into a complex matrix, but not necessarily vice-versa. Eight
real numbers are required to define the most general 2 x 2 complex matrix but only four are
needed to define the most general quaternion. In fact since every (non-zero) quaternion has an
inverse, only a subclass of invertible 2 x 2 complex matrices are identifiable with quaternions.
Complex linear quaternionic operators complete the translation [18]. The right quaternionic

imaginary unit
1 0
R; < ( 0 i > ) (9)

adds four additional degrees of freedom, obtained by matrix multiplication of the correspond-
ing matrices,

R;, LiR; , LiR; , L;R; ,

and so we have a set of rules for translating from any 2 x 2 complex matrices to complex
linear operators, O¢.



3 The right complex eigenvalues problem in QQM

Before to discussing right quaternionic eigenvalues equations, we give the basic framework of
Quaternionic Quantum Mechanics [16], where such equations find their natural application.
First of all, due to non-commutative nature of quaternionic multiplication, we must specify
whether the quaternionic Hilbert space is to be formed by right or by left multiplication of
vectors by quaternionic scalars. The two different conventions give isomorphic versions of
the Theory [19]. We approach the Adler convention of right multiplication by scalars, since
this is the one appropriate to usual conventions of matrix operations and to Dirac bra and
ket notations for state vectors [16].
The right eigenvalue equation for a generic quaternionic linear operator, Oy, is written
as
Ou|l¥ >=|¥ >q, (10)

where
¥ >e€ Vi, qgeH.

By adopting quaternionic scalar products in our quaternionic Hilbert spaces, Vi, we find
states in one to one correspondence with unit rays of the form

e >={|¥ > u} (11)

where |U > is a unit normalized vector and u a quaternionic phase of magnitude unity. The
state vector, |¥ > u, corresponding to the same physical state | >, is an Op eigenvector
with eigenvalue uqu

Oul¥ > u=|¥ > u(uqu) .

So, quaternionic linear operators are characterized by an infinite eigenvalues spectrum
{q7 quul PR Ezquz ) }

with w; unitary quaternions. The corresponding eigenvectors set
{|\I/> U >uy e, >, }

represents a ray and so we can characterize our spectrum by choosing a ray rappresentative
| >=|¥ > u, .
For this state the right eigenvalues equation becomes
Ol >= |y > X, (12)

with
v >eVm, AeC.

We now give a systematic method to determine the complex eigenvalues of quaternionic
matrix representations for Oy operators.



3.1 Quaternionic linear operators and quaternionic geometry

In n-dimensional quaternionic vector spaces, H", quaternionic linear operator, Oy, are rep-
resented by n x n quaternionic matrices, M, (HY), with elements in H*. Such quaternionic
matrices admit 2n-dimensional complex counterparts by the translation rules given in Eq. (8).
Such complex matrices characterize a subset of the 2n-dimensional complex matrices

M,,(C) ¢ M,,(C) .
The eigenvalues equation for Op reads
Myl >= | > X, (13)

where

Mg eM,H"), |vp>eH", NeC.

e The one-dimensional eigenvalues problem

In order to introduce the reader to our general method of quaternionic matrix diagonalization,
let us discuss one-dimensional right complex eigenvalues equations. In this case Eq. (13)
becomes

Quly >=|¢ > A, (14)

where
Qu=a+b-L eH", |[p>=z>+jly>eH, NeC.

By using the translation rules, given in Section 2, we find the following complex counterpart

of Eq.(14) *
()6 6) a

Z:a_l_/l:bl, w:bz_ibgec-

The translated complex operator admits A and \* as eigenvalues. To prove that, we take the
complex conjugate of Eq.(15) and then apply a similarity transformation by the matrix

S = ((1) ;) .
D))

For A # A* € C, we obtain the eigenvalues spectrum {A, \*}. What happens when A € R
7 In this case the eigenvalues spectrum will be determined by two equal eigenvalues A. To
show that, we remark that eigenvectors

G ()

associated to the same eigenvalues A, are linearly independent. In fact,

In this way, we find

T

y =lzI°+y’=0 ifandonlyifz=y=0.

Y
T*



So in the quaternionic world, by translation, we find two complex eigenvalues respectively A
and \*, associated to the following quaternionic eigenvectors

| > and [¢p>j5 € |r> .

The infinite quaternionic eigenvalue spectrum can be characterized by the complex eigenvalue
A and the ray rappresentative will be |1 >. Thus, the problem of eigenvalues doubling in the
complex translation is soon overcome. In the next Section, by using the same method, we
will discuss eigenvalue equations in n-dimensional quaternionic vector spaces.

e The n-dimensional eigenvalues problem

Let us formulate two theorems which allow to generalize the previous results for quaternionic
n-dimensional eigenvalues problems. The first theorem analyzes the eigenvalues spectrum of
the 2n-dimensional complex matrix M, complex counterpart of n-dimensional quaternionic
matrix Mpy. The second one discusses linear independence for My eigenvectors.
T1 - TH@REM

Let M be the complex counterpart of a generic n X n quaternionic matric Myg. Its
etgenvalues appear in conjugate pairs.

Let .

Mg, >=Alg, > (17)

be the eigenvalues equation for M , where

o
Y1
MeM,,(C), |pr>=|": eC™, xeC.

Yn

By taking the complex conjugate of Eq. (17),
M*|gy >* = Ny >"

and applying a similarity transformation by the matrix
0 -1
S - ]ln ® (1 0) ?

SM*S™1S|hy > = A"S|py >* . (18)

we obtaln

From the blocks structure of the complex matrix M it is easily checked that
SM*S~' = M,
and consequently Eq. (18) reads

M |pre >= XNy > (19)



where

|¢>\* > = S|¢>\ >* =

Let us show that the eigenvalues appear in conjugate pairs (this implies a double multiplicity
for real eigenvalues). To do it, we need to prove that |¢, > and |p,+ > are linearly inde-
pendent. In order to demonstrate the linear independence of such eigenvectors, trivial for
A # A*, we observe that linear dependence, possible in the case A = A*, should require

T Yy

*

v :|$l|2+|yl|2:0 i:17"'7n )
v i

verified only for null eigenvectors. The linear independence of |¢, > and |¢p,+ > ensures an
even multiplicity for real eigenvalues H.

We shall use the results of the first theorem to obtain informations about the My right
complex eigenvalues spectrum. Due to non-commutativity nature of the quaternionic field we
cannot give a suitable definition of determinant for quaternionic matrices and consequently
we cannot write a characteristic polynomial P()) for Mpy. Another difficulty it is represented
by the right position of the complex eigenvalue A.
T2 - THEOREM
My admits n linearly independent eigenvectors on H if and only if its complex counterpart
M admits 2n linearly independent eigenvectors on C .

Let

{|¢>\1 > |¢A’{ >y e |¢An > |¢>\2 >} (20)

be a set of 2n M. -eigenvectors, linearly independent on C, and
o, B 1=1,...,n

be generic complex coeflicients. By definition

n

Z(aﬂfﬁxi >+ Bilg; >> =0 & a=p#=0. (21)

=1

By translating the complex eigenvectors set (20) in quaternionic formalism we find

{W}Al > WJA’{ >y e |¢>\n > |¢>\; >}' (22)

By eliminating the eigenvectors, |¢x; > = |1py, > j, corresponding for complex eigenvalues to
ones with negative imaginary part, linearly dependent with [¢,, > on H, we obtain

{|¢)\1 > 5 ottty |1,[)>\n >}.

This set is formed by n linearly independent vectors on H. In fact, by taking an arbitrary
quaternionic linear combination of such vectors, we have

n n

Z [W’Ai > (o +j5i)] = Z(W’Ai > a; + [y > 51) =0 & o=p6=0. (23)

i=1 i=1



Note that Eq. (23) represents the quaternionic counterpart of Eq. (21) H.
The My complex eigenvalues spectrum is thus obtained by taking from the 2n dimen-
sional M-eigenvalues spectrum

{A, AT, o, A, AL
the reduced n-dimensional spectrum

Dy s AL

We stress here the fact that, the choice of positive, rather than negative, imaginary part is
a simple convention. In fact, from the quaternionic eigenvectors set (22), we can extract
different sets of quaternionic linearly independent eigenvectors

{[WM > or |ty > 5 s [ltha, > or |4y >]} ,

and consequently we have a free choice in characterizing the n-dimensional Mp-eigenvalues
spectrum. A direct consequence of the previous theorems, is the following corollary.
T2 - COROLLARY

Two My quaternionic eigenvectors with complex eigenvalues, A, and X\, with |A;| # |A.],
are linearly independent on H.

Let

|'¢>\1 > (al +j/61) + |1/’>\2 > (052 +j/62) (24)

be a quaternionic linear combination of such eigenvectors. By taking the complex translation
of Eq. (24), we obtain

ay|px, >+ Bilpar > +aw|ds, >+ Boldny > - (25)

The set of M- -eigenvectors

{|¢)\1 > ) |¢>\I > ) |¢)\2 > ) |¢)\5 >}

is linear independent on C. In fact, the first theorem, T-1, ensures linear independence
between eigenvectors associated to conjugate pairs of eigenvalues, and the condition |A,| #
|Az] (= AL # A;) complete the proof by assuring the linear independence between

{|¢x1 >, |¢x{ >}
{|¢>\2 > |¢)\§ >} .

Thus the linear combination in Eq. (25), complex counterpart of Eq. (24), is null if and only
if a,, = B, = 0, and consequently the quaternionic linear eigenvectors [¢,, > and [, >
are linear independent on H H.

and



e A brief discussion about the spectrum choice

What happens on the eigenvalues spectrum when we have two simultaneous diagonalizable
quaternionic linear operators? We show that for complex operators the choice of a common
quaternionic eigenvectors set reproduce in QQM the standard results of Complex Quantum

Mechanics (CQM). Let
1 0 h (i O
A, = (0 z) E and A,= 2 (0 —i) (26)

be anti-hermitian complex operators associated respectively to energy a nd spin. In CQM,
the corresponding eigenvalues spectrum is

{iE, ZE} and {ZE , —ZE} , (27)
A 2 2) 4y

and physically we can describe a particle with positive energy E and spm . What happens
in QQM with quaternionic geometry? The complex operators in Eq. (26) also represent two-
dimensional quaternionic linear operators and so we can translate them in the complex world
and then extract the eigenvalues spectrum. By following the method given this Section, we
find the following eigenvalues

{z’E, iE | iE ZE} and {z@ , il , i , —iﬁ} ,
A 27 20 20 2,

and adopting the positive imaginary part convention we extract

{iE, 1B } and {ZE , ZE} .
Ar 2 2 Az

It seems that we lose the physical meaning of %—spin particle with positive energy. How can
we recover the different sign in the spin eigenvalues? The solution to this apparent puzzle
is represented by the choice of a common quaternionic eigenvectors set. In fact, we observe
that the previous eigenvalues spectra are related to the following eigenvectors sets

) 01, = 0 G,

By fixing a common eigenvectors set

(ORI m)

we recover the standard results of Eq. (27). Obviously,

ORNO U G PRI G R
0RO/ U Gt PRI G R
0RO} {—ZE e o {5
W) O, = g, g,

10



represent equivalent choices. Thus, in this particular case, the different possibilities in choos-
ing our quaternionic eigenvectors set will give the following outputs

Energy : +FE, +F and %—spin : T, 0l
+E, - F and T, 1
-E, +F and $, 4
-FE, - F and $, 1

Thus, we can also describe a ——spln particle with positive energy by re-interpretating spin
up/down negative energy as spin down/up positive energy solutions

£, td) = E, LM,

e A practical rule for diagonalization

We know that 2n-dimensional complex operators, are diagonalizable if and only if they admit
2n linear independent eigenvectors. It is easy to demonstrate that the diagonalization matrix
for M . .

So, MS;} =M% |

is given by
[ [0 xgm g 2N
y?“ g y?") yiw
S,, = Inverse : o : : . (29)
O ZOD aOn) %)
Oyt e 0w

Such a matrix is in the same subset of M, ie. S,, € M,,(C). In fact, by recalling the
relationship between |¢, > and |¢p,- >, we can rewrite the previous diagonalization matrix
as

(A1) * (A1) (An) * (An)
A T R T
y?l) t,L,’l"(M) yi)\n) x’f()\n)
S,, = Inverse : : S : . (30)
I5L>\1) _y: (Al) s :L-ELATL) _y:‘ (>\n)
Yo D gOm) g Gn)

The linear independence of the 2n complex eigenvectors of M guarantees the existence of § 1
and the isomorphism between the group of n X n invertible quatermomc matrices GL(n, IHI)

and the complex counterpart group GL(2n C) ensures S e M. Zn((C). So, the quaternionic
n-dimensional matrix which diagonalizes My

—1 dia
Su MpuSy, = My,

can be directly obtained by translating Eq. (30) in

(>\1) _i_]y(Al) :L.g)\n) +]y§)\n)
Sm, = Inverse : . (31)
I(Xl) + ]y(kl) . :L-(ATL) + ]y(ATL)

11



In translating complex matrices in quaternionic language, we remember that an appropriate
mathematical notation should require the use of the left/right quaternionic operators Lj; ;
and R;. In this case, due to the particular form of our complex matrices,

M7 §2n7 g;nl E ]En(c) 9

their quaternionic translation is performed by left operators and so we use the simplified
notation ¢, j, k instead of L;, L;, L.

This diagonalization quaternionic matrix is strictly related to the choice of a particular
set of quaternionic linear independent eigenvectors

{W;Al > 0y |, >} .
So, the diagonalized quaternionic matrix reads
M =diag {A,, ..., A} -

The choice of a different quaternionic eigenvectors set

{[|¢A1 > or |¢)\’f >] 3ottt [|'¢)\n > or |1,[)>\:L >:|} R

will give a different diagonalization matrix and consequently a different diagonalized quater-
nionic matrix

M = ding {[A or X] ., by or AL}

In conclusion, -
My diagonalizable < M diagonalizable ,

and the diagonalization quaternionic matrix can be easily obtained from the quaternionic
eigenvectors set.

3.2 Complex linear operators and complex geometry

In this Section, we discuss right eigenvalues equation for complex linear operators. In n-
dimensional quaternionic vector spaces, H", complex linear operator, O¢, are represented
by n X n quaternionic matrices, M, (H" ® H?), with elements in H* ® H?. Such quater-
nionic matrices admit 2n-dimensional complex counterparts which recover the full set of
2n-dimensional complex matrices, M,, (C). It is immediate to check that quaternionic matri-
ces Mg € M, (H*) are characterized by 4n? real parameters and so a natural translation gets
the complex matrix M,,(C) C M,,(C), whereas a generic 2n-dimensional complex matrix
M € M,,(C), characterized by 8n? real parameters needs to double the 4n? real parame-
ters of My. By allowing right-action for the imaginary units ¢ we recover the missing real
parameters. So, the 2n-dimensional complex eigenvalues equation

Mlp>= Ay >, (32)

with
Me M, (C), |¢p>C*™, XeC,

becomes, in quaternionic formalism,

Meclyp >=¢p > A, (33)

12



where

MceM,(H @HY), |p>eH", NeC.

The right position of the complex eigenvalue A is justified by the translation rule
Z']l2n R a Rl]]-n .

By solving the complex eigenvalue problem of Eq. (32), we find 2n eigenvalues and we nave no
possibilities to classify or characterize such a complex eigenvalues spectrum . Is it possible to
extract a suitable quaternionic eigenvectors set? What happens when the complex spectrum
is characterized by 2n different complex eigenvalues? To give satisfactory answers to these
questions we must adopt a complex geometry [4, 5]. In this case

> and | >j

represent orthogonal vectors and so we cannot kill the eigenvectors |¢p > j. So, for n-
dimensional quaternionic matrices M¢ we must consider the full eigenvalues spectrum

Pt (34)

The corresponding quaternionic eigenvectors set is then given by

{ml ST >} , (35)

which represents the quaternionic translation of the M-eigenvectors set

{|¢>\1 > y et |¢>\2n >} . (36)

In conclusion within a Quaternionic Quantum Mechanics with complex geometry [20]
we find for quaternionic linear operators, My, and complex linear operators, Mc, a 2n-
dimensional complex eigenvalues spectrum and consequently 2n quaternionic eigenvectors.
Let us now give a practical method to diagonalize complex linear operators. Complex 2n-
dimensional matrices, M, are diagonalizable if and only if admit 2n linear independent eigen-
vectors. The diagonalizable matrix can be written in terms of M-eigenvectors as follows

B . A c
g g gt D)
(A1) (A9) (A2p—1) (A2p)
(TP TP T T
Son, = Inverse : o : : (37)
g gl gt pOun)
\yQv g0 gl e
This matrix admits a quaternionic counterpart [18] by complex linear operators
1,2 1,2] . 2n—1,2n 2n—1,2n| .
q[+7,}1 - qE+J1ZRi QLf,l I £+,1 ]'LRi
Sc, = Inverse : : , (38)
1,2 1,2] . 2n—1,2n 2n—1,2n| .
q-[f——,}n - q[——f—,}nZRZ q—[f——,n ] - q[—+,n ]ZRl
where (Am) (An) * (Am) (An) *
[m] T Y LY "
q+—,i - 2 +.7 2 )

13



and (Am) (An) * (
[mon] _ i Y - Yi

i = +
q +, 2 J 9
To simplify the notation we use ¢ j, k instead of L;, L;, Ly. The right operator R; indicates
the right action of the imaginary unit ¢. The diagonalized quaternionic matrix reproduces

the quaternionic translation of the complex matrix

Am) + ml@n) *

M4 =diag {\, , ...y Ao}

into

2 . 2n .
— R, ..., 5 5 R;

2 29 (39)

MG = diag {)\1 T + ATt Aonos A, + Ao = 3 } .

4 Quaternionic eigenvalues equation

By working with quaternions we have different possibilities to write eigenvalues equations.
In fact, in solving such equations, we could consider quaternionic or complex, left or right
eigenvalues. In this Section, we briefly introduce the problematic inherent to quaternionic
eigenvalues equations and emphasize the main difficulties present in such an approach.

4.1 Right quaternionic eigenvalues equation

As remarked in Section 3, the most general right eigenvalues equation for quaternionic linear
operators, Oy, reads

Mulp >=9p>q, qecH.

Such an equation can be converted into a right complex eigenvalues equation by rephasing
the quaternionic eigenvalues, ¢,

Myl >u=|f >utqu= | >\, AeC.
In discussing right quaternionic equations for complex linear operators,
Mclp >=19 >q, (40)

due to the presence of the right imaginary unit ¢, R;, we cannot apply such a similarity
transformation on ¢. Right complex immaginary units, R;, have no a well defined hermiticity
within a QQM with quaternionic geometry. Nevertheless, by adopting a complex geometry,
we recover the anti-hermiticity of such an operator

/dT < YR > = —/ dr [Rilé >] g >
C C

Within a QQM with complex geometry, a generic anti-hermitian operator must satisfy

/ dr < lAclp > = / drlAclp >]' > - (41)
C C

We can immediately find a constraint on our Ac-eigenvalues by putting in the previous
equation |¢p >= ¢ >,

/Cdf<¢|¢>q¢=—/cdfqg<¢|¢ > q, = iay + ju, (42)

14



ad,E]R, wd,EC

Note that the purely quaternionic nature of the Agc- eigenvalues is save because < 9|y >
represents a real quantity and thus commutes with g,. We know that an important property
must be satisfied for anti-hermitians operators, namely eigenvectors |¢ > and |¢ > associated
to different eigenvalues g, # g,, have to be orthogonal. By combining Eq. (41) with the
constraint (42) we find

[ar<at>a.= [ dra.<olv> .
C C

The different position of the quaternionic eigenvalues require a complex projection, (¢)c, to
recover the standard result
Gy — Ay €C.

In conclusion, a consistent QQM with complex geometry needs of right complex eigenvalues
equations.

4.2 Left quaternionic eigenvalues equation

What happens for left quaternionic eigenvalues equations? In solving such equations for
quaternionic and complex linear operators,

{me>=m¢>,
MC|¢>:Q|¢>7 qEHa
we have not a sistematic way to approch the problem. In this case, due to the presence of left
quaternionic eigenvalues (translated in complex formalism by two-dimensional matrices), the
translation trick does not apply and so we must solve directly the problem in the quaternionic
world.

In discussing left quaternionic eigenvalues equations, we underline the difficulty hidden in

diagonalizing such operators. Let us suppose that the matrix representations of our operators
be digonalized by a matrix Sg/c

SuMuSy' = My* and  ScMcSgt = MY .
The eigenvalues equation will be modified in

MG Sl > = SugSy' Sulp > |
M%a98@|¢ > = 8@68(51 Sc |1,D >,

and now, due to the non-commutative nature of ¢,
Suyc 4Sg)c # 4 -

So, we can have operators with the same left quaternionic eigenvalues spectrum but no
similarity transformation relating them. This is explicitly show in Appendix B for a bi-
dimensional quaternionic linear operator. Let us now analyze other difficulties in solving left
quaternionic eigenvalues equation. Hermitian quaternionic linear operators satisfay

/ﬁ7<aﬂmﬁ>=/ﬁﬂﬂm$>mﬁ>.

15



By putting |$ >= |'LZ > in the previous equation we find constraints on the quaternionic
eigenvalues ¢

/dT<«Z|a|«Z>=/dT<«Z|a*|J> .

From this equation we cannot exract the conclusion that ¢ must be real, ¢ = ¢'. In fact
[ dr <dla-an>=o

could admit quaternionic solutions for ¢ (see Appendix B). So, the first complication is
represented by the possibility to find hermitian operators with quaternionic eigenvalues. In
discussing physical problems, we overcame this problem by choosing anti-hermitian operators.
Now,

/dr < FlAeld > = —/dT Ald >TF > |

will imply for |¢ > = |¢ >
[ar <dla@+an>=o.

In this case, (¢ + ¢') represents a real quantity and so commutes with |1,Z >, giving
qg=1ia+jw .

We could work with anti-hermitian operators and choose |g| as physical output. A partic-
ular case of left/right eigenvalues equation for a two-dimensional anti-hermitian operators
is presented in Appendix B. The result emphasizes an important difference between such
operators. Left and right eigenvalues have different absolute value and so cannot represent
the same physical quantity.

5 Conclusions

The study undertaken in this paper demonstrates the possibility to construct a pratical
method to diagonalize quaternionic and complex linear operators on quaternionic vector
spaces. Quaternionic eigenvalues equations have to be ‘right’ eigenvalues equations. As
shown in our paper, the choice of a right position for quaternionic eigenvalues is fundamental
in searching for a diagonalization method. A left position of quaternionic eigenvalues gives
unwished surprises : Operators with the same eigenvalues which are not related by similarity
transformation, Hermitian operators with quaternionic eigenvalues; etc.

Quaternionic linear operators in n-dimensional vector spaces take infinite spectra of
quaternionic eigenvalues. Neverthless, the complex translation trick ensures that such spectra
are related by similarity transformations and this gives the possibility to choose n rappre-
sentative complex eigenvalues to perform calculations,

fu g

The complete set of quaternionic eigenvalues spectra can be generated from this complex

eigenvalues spectrum,
{ﬂl)\lul s e U,J\nun}
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Such a simmetry is broken when we consider more diagonalizable operators. In this case
the freedom in constructing the eigenvalue spectrum for the first operator, and consequently
the free choice in determining an eigenvectors basis, will fix the eigenvalues spectrum for the
other operators.

The powerfull of the complex traslation trick gives the possibility to study general prop-
erties for quaternionic and complex linear operators. The last ones play an important role
with a QQM with complex geometry by reproducing the standard complex results in reduced
quaternionic vector spaces [20]. Our method of diagonalization becomes very important in
the resolution of quaternionic differential equations [21] and consequently in the study of
quaternionic potentials in the Schréedinger equation [22].

Mathematical topics to be developed are represented by the discussion of eigenvalues
equations for real linear quaternionic operators, O, operators characterized by right ac-
tions of the quaternionic immaginary units ¢, j,k and by a detailed discussion about left
quaternionic eigenvalues equations.

We conclude by remarking an important difference between the structure of an anti-
hermitian operator in complex and in quaternionic Quantum mechanics. In complex Quam-
tum Mechanics, we can always trivially relate an anti-hermitian operator, A to an hermitian
operator, H, by removing a factor ¢

A=1iH.

In quaternionic Quantum Mechanics, we must take care. For example,

(i3
A_<3j z)

is an anti-hermitian operator, nevertheless, iA does not represent an hermitian operator.
The reason is simple: In writing the spectral representations for 4 and ‘H we take

A=Z|a>ai(a| and 'H=Z|a>a(a| a€R.

Due to the non-commutative nature of |a), we cannot extract the complex imaginary unit
i. Our approach to quaternionic eigenvalues equations contains a pratical method to find
eigenvectors |a) and eigenvalues ia and consequently solves the problem to determine, given
a quaternionic anti-hermitian operator, the corresponding hermitian operator. An easy com-
putation show that

ja = {2i,4i) and |a>:{<;><lf>}

So, the hermitian operator related to A is
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Appendix A
Two dimensional right complex eigenvalues equations

In this Appendix we explicitly solve the right eigenvalues equations for quaternionic, O,
and complex Oc, linear operators, in two-dimensional quaternionic vector spaces.

¢ Quaternionic linear operators

My = (,i J) (43)

be the quaternionic matrix representation associated to a quaternionic linear operator in a
bi-dimensional quaternionic vector space. Its complex counterpart reads

Let

1 0 0 -1
—~ 0 -2 1 0
M= 0 -2 ¢ O
-2 0 0 -2

In order to solve the right eigenvalues problem
Mglp>=p>X, XeC,
let us determine the M- -eigenvalues spectrum. From the constraint
det [JTI— >\]14] ~0,
we find for the M- -eigenvalues the following solutions

1 ;3 1 -3 -3 1 ;3
* * _ Tl T o—lgT T o—lgT Il
{Al , ALy A, )\2} = {246 8" | 21e 8" —21e'8" | —2ie's }

M

The M. -eigenvectors set is given by

—1+i\, 0 0 —1—i\
0 —1— X! 1—iA? 0
0 ’ -1 ’ 1 ’ 0
1 0 0 1 —

M

The Mpg-eigenvalues spectrum is soon obtained from that one of M. For example by adopting
the positive imaginary part convention we find

{Al, ,\2} - {2%61%”, —2%e—i%ﬂ} : (44)
M]H[ M]H[

and the corresponding quaternionic eigenvectors set reads

{<_1J;M1> | (j(1_1w)> }MH_ (45)
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The quaternionic matrix which diagonalizes My is

B —14ix j-ax)\]_ 1 iIXF g [+ )P
Su = Inverse [( j 1 ERETWEAUSY D — ]2 . (46)

As remarked in the paper, we have infinite possibilities of diagonalization

{Ul)\lul , Ezkguz} .

Equivalent diagonalized matrices can be obtained from
M%“g = diag{)\l , )\2}

by performing a similarity trasformation

U MBS Y = U METY

Z/lzdiag{u1 , u2} .

The diagonalization matrix given in Eq. (46) becames

and

SH — UTSH.

e Complex linear operators

_ (—iRi+j —kR +1
Me = (—kRi ~1 iR+j ) 47)

be the quaternionic matrix representation associated to a complex linear operator in a bi-
dimensional quaternionic vector space. Its complex counterpart is

Let

1 -1 1 -1
1 -1 -1 1
M=1 41 41 45 4
-1 11

The right complex eigenvalues problem
M(C|1/}>:|¢>>‘7 AEC?

can be solved by determining the M-eigenvalues spectrum

{Al VY >\4} - {2 2,2, —2¢} . (48)
M/Mc M/Mc

Such eigenvalues also determine the Mc-eigenvalues spectrum. The Mc-eigenvectors set is
obtained by translating the complex M-eigenvectors set

1 0 1 -4
0 1 -4 1
o> (1] 1e]’ |-1 ’
-1 0 1 -4

M
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in quaternionic formalism

(). 6. () (o)

The quaternionic matrix which diagonalizes Mc is

1 1+k 1/ 1 j
Sc = Inverse [( S >] == ( I—k L ) , (50)
it 2\% -9
and the diagonalized matrix is given by
Mo =2 ('Zé%i ?) . (51)

This matrix can be directily obtained from the M /M eigenvalues spectrum by translating,
in quaternionic formalism, the matrix

2 0 0 O
- 0 -2 0 0

diag __
M= 0 0 2¢ O
0 0 0 -2

It is interesting to note that equivalent diagonalized matrices can be obtained from M* in
Eq. (51) by the similarity transformation

U Mg“ U .
For example by choosing
(0 &)
=\lo 4k | >
V2
one find .
Mies 2<l§” ?) . (52)
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Appendix B
Two dimensional left quaternionic eigenvalues equations

Let us now examine left quaternionic eigenvalues equations for quaternionic linear operators.

e Hermitian operators
Let
0 k
a4 o)

be the quaternionic matrix representation associated to an hermitian quaternionic linear
operator. We consider its left quaternionic eigenvalue equation

Hulp >=qlp > | (53)

|1Z>:<z~1) ceH?, GeH.

Eq. (53) can be rewritten by the following quaternionic system

where

zeC, BeR, |z2+p=1.

where

The Hpg-eigenvectors set is given by

)1,
'k(z'i'jﬁ)"/}l Hy

It is easy to verify that in this case
<Plg—q )l >=0

is verified for quaternionic eigenvalues ¢ # ¢'.

e Anti-hermitian operators

Let o
_(J
A = (z k)

be the quaternionic matrix representation associated to an anti-hermitian quaternionic linear
operator. Its right complex spectrum is given by

{,\1, AQ}%H: {i\/2—\/§, z‘\/2+\/§}

Hu
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We now consider the left quaternionic eigenvalue equation

Al >=qp > | (54)
where _
i >= {a cH?>, GeH.
s

By solving the following quaternionic system
j&l"‘i{b; :“7721 )
i+ ki =qi,
we find
{~ ~} {i j+k —i+j+k}
91, ¢ = = T = e )
1 2 AH \/i 2 \/§ 2 AH

7:/;} B 1:[}1 )
{<(%+#)¢1> ! ((;_%Jr#m) }H .
{WJWJ=¢;:E,mgwf:¢;:E}

{|61| =1, |¢|= 1} .

Thus, left and right eigenvalues cannot associated to the same physical quantity.

and

We observe that

and

e A new possibility

In order to complete our discussion let us discuss for the quaternionic linear operator given
in Eq. (43) its left quaternionic eigenvalue equation

Mulp >=qlp > (55)
where B
i >= ¥ €cH?, GeH.
s

Eq. (55) can be rewritten by the following quaternionic system
i+ 3= 09
ki + i, =qi, .

The solution gives for the quaternionic eigenvalues spectrum

{q q} _{Z.+j+k Z__j+k}
15 2 MH \/57 \/5 MH7

and for the eigenvectors set
1 1
V2 V2 /) ) g



Let us now counsider the following quaternionic linear operator
i+ k0
NH=< 0 z'—ﬂ)' (58)
V2

This operator represents a diagonal operator and has the same left quaternionic eigenvalues
spectrum of My, notwithstanding such an operator is not equivalent to Mg*. In fact, the
Npg-complex counterpart is characterized by the following eigenvalues spectrum

{z‘\/ﬁ, —iV2, V2, —z‘x/ﬁ} :

N

different from the eigenvalues spectrum of the M-complex counterpart of Mp. Thus, there
is no similarity transformation which relates these two operators in the complex world and
consequently by translation there is no a quaternionic matrix which relates Ng to Mpg. So,
in the quaternionic world, we can have quaternionic linear operators which have a same left
quaternionic eigenvalues spectrum but not related by a similarity transformation.
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