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Abstract

One of the procedures in nonparametric regression is to estimate the re-

gression curve by using a combination of basis functions and smoothing tech-

niques. A Bayesian approach is considered to estimate the number of knots,

the smoothing parameter and the knots' positions. The method to obtain the

estimate of the regression curve is the reversible jump MCMC (Green, 1995).

1 Introduction

Since the pioneer work of Craven and Wahba (1979) using splines for nonparamet-

ric regression several methods were suggested. Recently, Luo and Wahba (1997)
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and Dias (1999) proposed more adaptive methods to obtain good estimates of the

regression curves. The H-splines method introduced by Dias (1998) in the case

of nonparametric density estimation, Luo and Wahba (1997) and Dias (1999) in

the context of nonparametric regression, combines ideas from regression splines and

smoothing splines methods by �nding the number of basis functions and the smooth-

ing parameter iteratively. Under the Bayesian scheme, Denison, Mallick and Smith

(1998) suggest selecting regression models by using reversible jump MCMC.

The set up for splines nonparametric regression relies on the fact that a unknown

function g of one or more variables and a set of measurements are given such that:

y

i

= L

i

g + "

i

where L

1

; : : : ;L

n

are linear functionals de�ned on some linear space H containing

g, and "

1

; : : : ; "

n

are measurement errors usually assumed to be independently iden-

tically normal distributed with mean zero and unknown variance �

2

. Typically, the

L

i

will be point evaluation of the function g.

Straight forward least square �tting is often appropriate but it produces a func-

tion which is not su�ciently smooth for some data �tting problems. In such cases,

it may be better to look for a function which minimizes a criterion that involves

a combination of goodness of �t and an appropriate measure of smoothness. Such

criterion is the well known penalized least square problem de�ned as the following:

Finding the minimizer of the penalized least square equation which is,

A

�

(g) =

n

X

i=1

(y

i

� L

i

g)

2

+ �J(g); (1.1)

where J(g) is the penalty term usually taken as

R

(g

00

)

2

with g 2 W

2

2

= fg :

g

0

abs. continous and

R

(g

00

)

2

< 1g and � is the smoothing parameter which con-

trols the trade o� between �delity to the data and smoothness.
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It is well known that the minimizer ĝ is necessarily a natural cubic spline with

knots at t

i

(see, for example, Silverman and Green (1994), Wahba (1981) and Craven

and Wahba (1979)). Note that the roughness penalty

R

b

a

(g

00

(t))

2

dt has the property

of reducing the problem of choosing g from an in�nite-dimensional class of functions

to a �nite class of functions since ĝ can be written as linear combination of basis

functions. Although this fact might lead someone to think that the nonparametric

regression problem becomes a parametric problem, one notices that the number of

parameters can be as large as the number of observations, and there may be di�-

culties in interpreting a curve or surface g. Moreover, if the number of observations

is large, the system of linear equations for exact solution is too expensive to solve.

In the smoothing techniques the number of basis functions is chosen to be as large

as the number of observations and then let the choice of the smoothing parameter

to control the 
exibility of the �tting (Bates and Wahba, 1982). The H-splines

method (Luo and Wahba (1997), Dias (1998) and Dias (1999)) combines ideas from

regression splines and smoothing splines methods by �nding the number of basis

functions and the smoothing parameter iteratively. By taking the point evaluation

functionals L

i

g = g(x

i

) the equation (1.1) becomes,

L

�

(g) = jjy� gjj

2

+ �

Z

(g

00

)

2

; (1.2)

where y = (y

1

; : : : ; y

n

)

T

and g = (g(x

1

); : : : ; g(x

n

))

T

.

Assume that g � g

K

=

P

K

i=1

�

i

B

i

= X� so that g

K

2 H

K

, where H

K

denotes

the space of natural cubic splines (NCS) spanned by the basis functions fB

i

g

K

i=1

and

X is a n � K matrix with entries X

ij

= B

i

(x

j

), for i = 1; : : : ; K and j = 1; : : : ; n.

Then, the numerical problem is to �nd a vector � = (�

1

; : : : ; �

K

)

T

that minimizes,

L

�

�

(�) = ky�X�k

2

2

+ ��

T


�;
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where 
 is K�K matrix with entries 


ij

=

R

B

00

i

(t)B

00

j

(t)dt . Standard calculations

(de Boor, 1978) provide � as a solution of the following linear system (X

T

X +

�
)�

�

= X

T

y. Note that the linear system now involves K �K matrices instead of

using n� n matrices which is the case of smoothing splines. Both K and � controls

the trade o� between smoothness and �delity to the data. In particular, when

� = 0 we have the regression spline case, where K is the parameter that controls

the 
exibility of the �tting. To exemplify the action of K on the estimated curve,

let us consider an example by simulation with y(x) = exp(�x) sin(�x=2) cos(�x)+"

with " � N(0; :05).
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Figure 1 shows the e�ect of varying the number of basis functions on the es-

timation of the true curve. Note that the number of basis functions is the same
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as the number of knots since it is assumed that we are dealing with natural cubic

splines space. Observe that small values of K make smoother the estimate and

hence oversmoothing may occur. Large values of K may cause undersmoothing.

2 Bayesian approach

Suppose we have the following regression model,

y

i

= g(x

i

) + "

i

i = 1; : : : ; n:

where "

i

's are uncorrelated with a N(0; �

2

). Moreover, assume that the parametric

form of the regression curve g is unknown. Then the likelihood of g given the

observations y is,

l

y

(g) / (�

�2

)

�n=2

expf�

1

2�

2

jjy� gjj

2

g: (2.1)

The Bayesian justi�cation of penalized maximum likelihhod is to place a prior den-

sity proportional to expf�

1

2

R

(g

00

)

2

g over the space of all smooth functions. One

may see that with this prior the optimization problems 1.2 and 2.1 are equiva-

lents, (see details in Silverman and Green (1994) and Kimeldorf and Wahba (1970)).

However, a in�nite dimensional case has a paradox alluded to Wahba (1983). To

avoid the paradoxes and di�culties involved in the in�nite dimensional case, Sil-

verman (1985) proposed a �nite dimensional Bayesian formulation. For this, let

g

K

=

P

K

i=1

�

i

B

t

i

= X�

K

with a knot sequence t placed at order statistics. Thus the

penalized likelihood is,

l

p

(K; t; �

2

) / (�

�2

)

�n=2

expf�

1

2�

2

jjy � h�

K

; Xijj

2

g � expf�

�

2

(�

T

K


�

K

)g (2.2)

Let p(�) be a prior density such that � = (K; �; �

2

). Hence the posterior density is,

�(�) / l

y

(�)p(�); (2.3)
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where l

y

/ (�

�2

)

�n=2

expf�

1

2�

2

jjy�h�

K

; Xijj

2

g and p(�) / expf�

�

2

(�

T

K


�

K

)g. Then

inference is carried out assuming that g can be approximated by g

K

which is in a

sequence of subspaces with dimension K. The overall parameter space � can be

written as countable union of subspaces � = [

1

k=0

�

k

where �

k

is a subspace R

m

K

.

A complete Bayesian approach would assigned prior distribution to the coe�-

cients of the expansion but this leads to a serious computational di�culties pointed

out by Denison et al. (1998) where a comparative study was developed and showed

that the least square estimates for the vector � leads to a non-signi�cant deteri-

oration in performance for overall curve estimation. Moreover, for a given K the

interior knots are place at order statistics. This is because particular interest are

paid in problems where y(x) =

R

K(x; z)f(z)dz + "

i

which is well known to be a

ill-posed problem (see details in Wahba (1982)). Hence, any change in the knots

positions could cause considerable change in the function y.

Samples from �(�) will be taken by using reversible jump MCMC (Green, 1995).

For this, a prior density for � must be speci�ed. De�ne

p(�) = p(K; �)p(�

2

) = p(�jK)p(K)p(�

2

);

where �

�2

� Gamma(a; b),

p(K) =

expf��g�

K

=K!

1� expf��g(1 + q

max

)

;

where q

max

=

P

1

j=K

max+1

�

j

=j!, and

p(�jK) =  (K) expf� (K)�g;

where  is monotone function of K.
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In order to sample from the posterior �(�) we have to consider a variation of

dimensionality of this problem. Hence we must design move types between subspaces

�

k

. For this, let the transitions be,

(a) movement of the smoothing parameter �,

(b) addition of a basis function and

(c) deletion of a basis function.

Note that only the steps (b) and (c) change the dimension of the model. At each

transition, an independent random choice is made between each of the three move

types. These have probabilities �

K

for step (a), b

K

for step (b) and d

K

for step (c).

Naturally, b

K

+ d

K

+ �

K

= 1 for all K = 1; : : : ; K

max

with b

0

= 1 d

0

= 0 and �

0

= 0.

These probabilities were chosen so that

b

K

= cminf1; p(K + 1)=p(K)g; d

K+1

= cminf1; p(K)=p(K + 1)g

and so, �

K

= 1� (b

K

+ d

K

): In the simulation we set c = 0:4, but other values are

valid. Following the notation of Green (1995) we de�ne,

� = minf1; likelihood� prior ratio� proposal ratiog:

The move (a) is on moving from � to �

0

and the accept probability is given by

�(�; �

0

) = min

n

1;

p(�

0

jK)

p(�jK)

o

:

The step (b) changes the dimension of the parameter space. That is, K ! K+1

and the accept probability is

�(K;K+1) = min

n

1; expf�(1=2�

2

)jjy�X�

K+1

jj�jjy�X�

K

jjg

p(K + 1)

p(K)

d

K

b

K

K

K + 1

o

:
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The acceptance probability for the corresponding deletion of a basis function has

the same form with the appropriate changes and the ratio terms inverted.

Algorithm 2.1

1. Initialize by setting the hyperparameters for the prior p(�) .

2. Generate u from a uniform [0; 1].

3. Go to the move type

i) if u � b

K

then go to the addition step (b);

ii) else if b

K

� u � b

K

+ d

K

then go to deletion step (c);

iii) else go to step (a)
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3 Simulation

In this section we present several typical examples of this method. In all examples

a vague but proper prior was used for �

�2

, namely, Gamma(10

�3

; 10

3

).
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Figure 3.1: One hundred observations with hyperparameters � = 6 and  (K) = K
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Among several other examples, the next two were taken from Denison et al.

(1998) and a comparison with smoothing splines estimate is shown.

Visually, one may observe that this procedure produces a very good estimates

even with such vague priors.
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Figure 3.3: Two hundred observations with hyperparameters � = 20 and  (K) =
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Figure 3.4: Two hundred observations with hyperparameters � = 40 and  (K) =
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