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Abstrat

Pratial quasi-Newton methods for solving nonlinear systems are sur-

veyed. The de�nition of quasi-Newton methods that inludes Newton's method

as a partiular ase is adopted. However, espeial emphasis is given to the

methods that satisfy the seant equation at every iteration, whih are alled

here, as usually, seant methods. The least-hange seant update (LCSU) the-

ory is revisited and onvergene results of methods that do not belong to the

LCSU family are disussed. The family of methods reviewed in this survey in-

ludes Broyden's methods, strutured quasi-Newton methods, methods with

diret updates of fatorizations, row-saling methods and olumn-updating

methods. The implementation of the algorithms of most pratial relevane is

desribed. The survey inludes a disussion on global onvergene tools and

linear-system implementations of Broyden's methods. In the �nal setion,

pratial and theoretial perspetives of this area are disussed.

1 Introdution

In this survey we onsider nonlinear systems of equations

F (x) = 0; (1)

where F : IR

n

! IR

n

has ontinuous �rst partial derivatives. We denote F =

(f

1

; : : : ; f

n

)

T

and J(x) = F

0

(x) for all x 2 IR

n

.

�
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All pratial algorithms for solving (1) are iterative. Given an initial approx-

imation x

0

2 IR

n

, a sequene of iterates x

k

; k = 0; 1; 2; : : : is generated in suh a

way that, hopefully, the approximation to some solution is progressively improved.

Newton's is the most widely used method in appliations. See [22, 50, 75, 87℄. The

Newtonian iteration is de�ned whenever J(x

k

) is nonsingular. In this ase, the

iterate that follows x

k

is given by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Jaobian inverse J(x

k

)

�1

does not need to be alulated. Instead, s

k

2 IR

n

results from solving

J(x

k

)s

k

= �F (x

k

) (3)

and the new iterate is de�ned by

x

k+1

= x

k

+ s

k

: (4)

Newton's method has very attrative theoretial and pratial properties: if x

�

is a

solution of (1) at whih J(x

�

) is nonsingular and x

0

is lose enough to x

�

, then x

k

onverges superlinearly to x

�

. This means that, given an arbitrary norm k � k in IR

n

,

lim

k!1

kx

k+1

� x

�

k

kx

k

� x

�

k

= 0: (5)

Moreover, if J(x) satis�es the Lipshitz ondition

kJ(x)� J(x

�

)k � Lkx� x

�

k (6)

for all x lose enough to x

�

, the onvergene is quadrati, so the error at iteration

k + 1 is proportional to the square of the error at iteration k. In other words, the

number of orret digits of the approximation x

k+1

tends to double the number of

orret digits of x

k

.

Another remarkable property of Newton's method is its invariany with respet

to linear transformations both in the range-spae as in the domain spae. Invariany

in the range-spae means that, given any nonsingular matrix A, the iterates of the

method applied to

AF (x) = 0

oinide with the iterates of the method applied to (1). Domain-spae invariany

means that the iterates of the method applied to

F (Ay) = 0
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are given by A

�1

x

k

, provided that y

0

= A

�1

x

0

, where fx

k

g is the sequene generated

by (2). The main onsequene of invariany is that bad saling of the variables or the

omponents of the system annot a�et the performane of the method, if rounding

errors (whih an a�et the quality of the solution of (3)) are disregarded.

The Newton iteration an be ostly, sine partial derivatives must be omputed

and the linear system (3) must be solved at every iteration. This fat motivated the

development of quasi-Newton methods, whih are de�ned as the generalizations of

(2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (7)

In quasi-Newton methods, the matries B

k

are intended to be approximations of

J(x

k

). In many ases, the omputation of (7) does not involve omputing derivatives

at all. Moreover, many times B

�1

k+1

is obtained from B

�1

k

using simple proedures

thanks to whih the linear algebra ost involved in (7) is muh less than the one

involved in (3).

Aording to de�nition (7), Newton's method is a quasi-Newton method. So is

the stationary Newtonmethod, where B

k

= J(x

0

) for all k = 0; 1; 2; : : : and Newton's

method \with p re�nements", in whih B

k

= J(x

k

) when k is a multiple of p + 1,

whereas B

k

= B

k�1

otherwise. The \disrete Newton" method is a quasi-Newton

method too. It onsists in de�ning

B

k

=

�

F (x

k

+ h

k;1

e

1

� F (x

k

)

h

k;1

; : : : ;

F (x

k

+ h

k;n

e

n

)� F (x

k

)

h

k;n

�

(8)

where fe

1

; : : : ; e

n

g is the anonial basis of IR

n

and h

k;j

6= 0 is a disretization param-

eter. This parameter must be small enough so that the di�erene approximation to

the derivatives is reliable but large enough so that rounding errors in the di�erenes

(8) are not important.

Many times, J(x) is a sparse matrix, whose sparsity pattern is known. In this

ase, a proedure given in [15℄ and re�ned in [14℄ (see also [13, 52℄) allows one

to ompute a �nite di�erene approximation to J(x) using less than n auxiliary

funtional evaluations.

In the sixties it was ommon to justify the existene of most quasi-Newton meth-

ods saying that the task of omputing derivatives is prone to human errors. In fat, it

is. However, automati di�erentiation tehniques have been developed in the last 20

years that, in pratie, eliminates the possibility of error. See [26, 40, 45, 80, 81, 82℄

and many others. Moreover, in most ases, the omputation of derivatives using

automati di�erentiation is not expensive. This implies that, in modern pratie,

interesting quasi-Newton methods are those in whih the Jaobian approximations

are de�ned in suh a way that muh linear algebra is saved per iteration. Usually,
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in large and sparse problems, the resolution of (3) using diret methods [27, 32, 97℄

is expensive but not prohibitive. (When it is prohibitive it is probably better to

use inexat-Newton methods [17, 50℄.) In these ases, to use B

0

= J(x

0

) generating

B

k

; k � 1 using heap-linear-algebra quasi-Newton tehniques is worthwhile.

The name \quasi-Newton" was used after 1965 to desribe methods of the form

(7) suh that the equation

B

k+1

s

k

= y

k

� F (x

k+1

)� F (x

k

) (9)

was satis�ed for all k = 0; 1; 2; : : : Equation (9) was alled \fundamental equation of

quasi-Newton methods". After the Dennis-Shnabel book [22℄ most authors prefer to

all quasi-Newton to all the methods of the form (7), whereas the lass of methods

that satisfy (9) are alled \seant methods". Aordingly, (9) is alled \seant

equation".

The iteration (7) admits an interesting and pedagogial interpretation. Assume

that, for all k = 0; 1; 2; : : : we approximate F (x) by a \linear model"

F (x) � L

k

(x) � F (x

k

) +B

k

(x� x

k

): (10)

Then, x

k+1

is the unique solution of the simpler problem L

k

(x) = 0. By (10) we

also have that

L

k

(x

k

) = F (x

k

) for all k = 0; 1; 2; : : : (11)

It is easy to see that (9) implies that

L

k

(x

k�1

) = F (x

k�1

) for all k = 1; 2; : : : (12)

Therefore, the aÆne funtion L

k

(x) interpolates F (x) at x

k

and x

k�1

. \Multipoint"

seant methods an be de�ned satisfying

L

k

(x

j

) = F (x

j

) for all j 2 I

k

; (13)

where fk � 1; kg � I

k

for all k = 1; 2; : : : See [2, 3, 8, 9, 31, 37, 46, 53, 60, 61, 75,

85, 87, 96℄.

This survey is organized as follows. In Setion 2 we sketh a loal onvergene

theory that applies to most seant methods introdued after 1965. In Setion 3 we

give the most used examples of least-hange seant-update methods. In Setion 4 we

introdue interesting quasi-Newton methods that annot be justi�ed by the theory

of Setion 2. In Setion 5 we disuss large-sale implementations. In Setion 6 we

show how to deal with possible singularity of the matries B

k

. In Setion 7 we

disuss proedures used for obtaining global onvergene. In Setion 8 we study the

behavior of some quasi-Newton methods for linear systems. In Setion 9 we survey

a few numerial studies on large-sale problems. Finally, in Setion 10, we disuss

the prospetive of the area and we formulate some open problems.
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2 Least-hange update theory

Most pratial quasi-Newton methods an be analyzed under the framework of a

general theory introdued in [66℄. In [67℄ it was proved that the family of methods

whose onvergene an be proved using this theory stritly ontains those inluded

a previous theory by Dennis and Walker [24℄. A generalization for more general

problems an be found in [69℄. A (slight) simpli�ation of the theory of [66, 67℄ will

be reviewed here.

We onsider, as always, the problem (1). Assume that E is a �nite-dimensional

spae and that, for all x; z 2 IR

n

, h�; �i

x;z

is a salar produt on E . We denote

kEk

2

x;z

= hE;Ei

x;z

for all E 2 E . For all x; z 2 IR

n

let V (x; z) � E be an aÆne

subspae. Assume, also, that ' : IR

n

� E ! IR

n�n

. The general algorithm analyzed

in this setion is de�ned by (7), where

B

k

= '(x

k

; E

k

); (14)

the initial approximations x

0

2 IR

n

and E

0

2 E are arbitrary, and the parameters

are generated by

E

k+1

= P

k

(E

k

): (15)

In (15), P

k

� P

x

k

;x

k+1

is the projetion operator on V (x

k

; x

k+1

), with respet to the

norm k � k

x

k

;x

k+1

.

The most simple example of (14,15) is Broyden's \good" method (BGM) [5℄,

whih is de�ned by

E = IR

n�n

; (16)

k � k

x;z

= k � k

F

= the Frobenius norm for all x; z 2 IR

n

; (17)

'(x; E) = E for all x 2 IR

n

; E 2 E (18)

and

V (x; z) = fB 2 IR

n�n

j B(z � x) = F (z)� F (x)g: (19)

Broyden's sparse (or Shubert's) method [6, 86℄ is de�ned by (7,16,18) and

V (x; z) = fB 2 S j B(z � x) = F (z)� F (x)g; (20)

where S is the set of matries that have the sparsity pattern of J(x). See [4℄ for a

variation of this method.

Broyden's \bad" method (BBM) is de�ned by (7,16,17),

'(x; E) = E

�1

for all x 2 IR

n

; E 2 E ; E nonsingular (21)
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and

V (x; z) = fH 2 IR

n�n

j H[F (z)� F (x)℄ = z � xg: (22)

Many other examples are given in [66, 67℄. In most ases k � k

x;z

= k � k for all

x; z 2 IR

n

. However, situations where k � k

x;z

hanges appear when one analyzes

quasi-Newton (or variable metri) methods for funtion minimization.

Under several assumptions, whih we will onsider below, methods de�ned by

(7,14,15) are loally (and \quikly") onvergent. The �rst two are assumptions on

the funtional F and the remaining ones are assumptions on the method. A on-

vergene analysis for Broyden's method in a situation where the �rst assumption is

violated an be found in [16℄.

Assumption 1. There exists x

�

2 IR

n

suh that F (x

�

) = 0 and J(x

�

) is nonsingu-

lar.

Assumption 2. There exist L > 0 suh that, for some vetor norm j � j,

jJ(x)� J(x

�

)j � Ljx� x

�

j (23)

if x belongs to some neighborhood of x

�

.

Assumption 3. There exists E

�

2 E, r

�

2 [0; 1) suh that ' is well de�ned and

ontinuous in a neighborhood of (x

�

; E

�

). Moreover, '(x

�

; E

�

) is nonsingular and

jI � '(x

�

; E

�

)

�1

J(x

�

)j � r

�

: (24)

Assumption 3 implies that we ould de�ne an ideal iteration, given by

x

k+1

= x

k

� '(x

�

; E

�

)

�1

F (x

k

); (25)

with good onvergene properties, in the sense that

lim

k!1

x

k

= x

�

and lim sup

k!1

jx

k+1

� x

�

j

jx

k

� x

�

j

� r

�

(26)

if x

0

is lose enough to x

�

. Of ourse, the ideal method de�ned by (25) annot

be implemented in pratie. However, the least hange update theory onsists in

showing that some implementable methods enjoy the property (26). Observe that,

in the ase r

�

= 0, (26) means superlinear onvergene.
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Assumption 4. For all x; z lose enough to x

�

there exists E 2 V (x; z), 

1

> 0

suh that

kE � E

�

k � 

1

�(x; z); (27)

where �(x; z) � max fjx� x

�

j; jz � x

�

jg.

In the desription of the algorithm, we saw that E

k+1

is a projetion of E

k

on

V (x

k

; x

k+1

). Assumption 4 says that the distane between E

�

and this aÆne sub-

spae is of the same order as the maximum distane between fx

k

; x

k+1

g and x

�

.

In other words, we are projeting on manifolds that are not far from the ideal pa-

rameter E

�

. An algorithm where projetions are performed on the intersetion of

manifolds with boxes an be found in [11℄. Clearly, we an use any norm k � k

in (27). The relation between the di�erent norms used in the projetions is given

by Assumption 5.

Assumption 5. There exists 

2

> 0 suh that, for all x; z lose enough to x

�

,

E 2 E,

kEk

x;z

� [1 + 

2

�(x; z)℄kEk and kEk � [1 + 

2

�(x; z)℄kEk

x;z

; (28)

where k � k is a norm assoiated to the salar produt h�; �i.

Assumption 5 says that the di�erent norms tend to be the same when x and

z are lose to x

�

. Assumptions 4 and 5 do not guarantee that the approximation

of E

k

to E

�

improves through onseutive iterations. (This would be the ase if

E

�

2 V (x

k

; x

k+1

).) In fat, E

k+1

might be a worse approximation to E

�

than E

k

.

However, using these assumptions one an prove that the deterioration of E

k+1

as

an approximation to E

�

is bounded in suh a way that the \error" kE

k+1

� E

�

k is

less than the error kE

k

�E

�

k plus a term whih is proportional to the error jx

k

�x

�

j.

This is a typial \bounded deterioration priniple", as introdued in [7℄. See, also,

[20, 21, 24, 84℄ and many others. By bounded deterioration, the parameters E

k

annot esape from a neighborhood of E

�

for whih it an be guaranteed that loal

onvergene holds. Assumptions 1 to 5 are suÆient to prove the following theorem

[66℄.

Theorem 1. Let r 2 (r

�

; 1). If Assumptions 1 to 5 hold and fx

k

g is generated by

(7,14,15), there exist " > 0; Æ > 0 suh that, if jx

0

� x

�

j � Æ and kE

0

�E

�

k � Æ, the

sequene is well-de�ned, onverges to x

�

and satis�es

jx

k+1

� x

�

j � rjx

k

� x

�

j (29)
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for all k = 0; 1; 2; : : :

Moreover,

lim

k!1

kE

k+1

� E

k

k = lim

k!1

jB

k+1

� B

k

j = 0: (30)

At a �rst sight, the result (29) is disappointing. In fat, the same result an

be obtained (with r

�

= 0) if one uses (7) with B

k

= J(x

0

) for all k = 0; 1; 2; : : :

It ould be argued that there is no reason for modifying B

k

at every iteration if

one an obtain the same result not modifying this Jaobian approximation at all.

Obviously, (30) also holds for this stationary-Newton hoie of B

k

.

Fortunately, some additional results help us to prove that, under some om-

putable onditions, the ideal speed of onvergene (26) an be reahed. From a

well-known theorem of Dennis and Walker [24℄ the following result an be obtained.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that

lim

k!1

j['(x

k

; E

k

)� '(x

�

; E

�

)℄(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0: (31)

Then, (26) holds.

Theorem 2 orresponds, in the ase r

�

= 0, to the well-known Dennis-Mor�e on-

dition [19℄, whih haraterizes the superlinear onvergene of sequenes generated

by (7). Now, by (30), Theorem 2 implies the following more pratial result.

Theorem 3. Assume the hypotheses of Theorem 1, and

lim

k!1

j['(x

k+1

; E

k+1

)� '(x

�

; E

�

)℄(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0: (32)

Then, (26) holds.

Theorem 3 has important onsequenes. Sine E

k+1

is omputed after the om-

putation of x

k+1

, algorithmi hoies of this parameter an be de�ned so that (32) is

neessarily satis�ed. The most popular situation orresponds to the ase '(x

�

; E

�

) =

J(x

�

) and onsists in de�ning V (x; z) in suh a way that B

k+1

� '(x

k+1

; E

k+1

) sat-

is�es the seant equation (9). In this ase, (32) is equivalent to

lim

k!1

jF (x

k+1

)� F (x

k

)� J(x

�

)(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0
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and this identity holds, if x

k

! x

�

, due to the assumption (23).

None of the theorems above imply that, even when r

�

= 0, E

k

onverges to E

�

.

In fat, simple ounter-examples an be shown where this is not true. Moreover,

nothing guarantees that E

k

is onvergent at all. Even in the ase of BGM, the best

studied least-hange seant-update method, it is not known if, under the onditions

that are suÆient to prove loal-superlinear onvergene, the sequene of matries

B

k

is onvergent. This seems to be a diÆult open problem.

3 Some least-hange seant-update methods

3.1 Broyden's methods

Broyden's good method is de�ned by (7) and (14{19). A simple quadrati program-

ming exerise shows that, for this method,

B

k+1

= B

k

+

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

: (33)

Moreover, the relation between the inverses of B

k

and B

k+1

is, in this ase,

B

�1

k+1

= B

�1

k

+

(s

k

�B

�1

k

y

k

)s

T

k

B

�1

k

s

T

k

B

�1

k

y

k

: (34)

Formula (34) shows that the iteration (7) an be omputed without solving a lin-

ear system at eah iteration. In fat, for omputing B

�1

k+1

we only need to perform

O(n

2

) operations, whereas O(n

3

) operations are neessary for solving a (dense) lin-

ear system. It is generally believed that the most stable way in whih BGM an be

implemented (when the number of variables is small) requires to store the QR fa-

torization of B

k

. Sine B

k+1

di�ers from B

k

by a rank-one matrix, the fatorization

of B

k+1

an be obtained using O(n) plane rotations. See [74℄.

Broyden's bad method is given by (7), (16), (17), (21) and (22). As in the ase

of BGM, after some linear algebra the alulations an be organized so that the

de�nition of the method beomes:

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)y

T

k

y

T

k

y

k

(35)

for all k = 0; 1; 2; : : : Moreover, aording to (35) we have:

B

k+1

= B

k

+

(y

k

� B

k

s

k

)y

T

k

B

k

y

T

k

B

k

s

k

: (36)
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There exists an obvious duality between the formulae that de�ne both Broyden's

methods. >From (34) it is easy to dedue that, if the proper hoies are made on

the initial point and the initial Jaobian approximation, Broyden's good method is

invariant under linear transformations in the range spae. From (35) we see that

Broyden's-bad has the same property in the domain spae. Therefore, if rounding

errors are not onsidered and the behavior of Broyden's-good for F (x) = 0 is satis-

fatory, it must also be satisfatory for solving AF (x) = 0. On the other hand, if

Broyden's bad method works well on F (x) = 0, it will also work on F (Ax) = 0.

The reasons why BGM is good and BBM is bad are not well understood. In

fat, it is not lear that, in pratie, BGM is really better than BBM. In [70℄ it was

observed that, for BGM, sine B

k

s

k�1

= y

k�1

, we have, if k � 1,

B

k+1

s

k�1

� y

k�1

=

(y

k

�B

k

s

k

)s

T

k

s

k�1

s

T

k

s

k

:

Analogously, for BBM,

B

k+1

s

k�1

� y

k�1

=

(y

k

� B

k

s

k

)y

T

k

y

k�1

y

T

k

B

k

s

k

:

Therefore, the \seant error"B

k+1

s

k�1

�y

k�1

is, in both ases, a multiple of y

k

�B

k

s

k

.

It is natural to onjeture that the BGM iteration will be better than the BBM

iteration when

js

T

k

s

k�1

j

s

T

k

s

k

<

jy

T

k

y

k�1

j

jy

T

k

B

k

s

k

j

: (37)

An analogous reasoning involving B

�1

k+1

y

k�1

� s

k�1

leads to onjeture that BGM is

better than BBM when

js

T

k

s

k�1

j

js

T

k

(B

k

)

�1

y

k

j

<

jy

T

k

y

k�1

j

y

T

k

y

k

: (38)

In [70℄ a ombined method was implemented that hooses BGM or BBM a-

ording to the test (38). This method was tested using a set of small problems and

turned out to be superior to both BGM and BBM. By (37-38) BGM tends to be

better than BBM if B

k

underestimates the true Jaobian. This means that, if B

0

is

arbitrarily hosen and the true Jaobian is \larger than B

0

", Broyden's good method

tends to be better than Broyden's bad. This is also on�rmed by small numerial

experiments.

3.2 Diret updates of fatorizations

Suppose that, for all x 2 IR

n

, J(x) an be fatorized in the form

J(x) = M(x)

�1

N(x); (39)
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where N(x) 2 S

1

, M(x) 2 S

2

for all x 2 IR

n

, and S

1

; S

2

are aÆne subspaes of

IR

n�n

. A least-hange seant update method assoiated to the fatorization (39)

an be de�ned by

x

k+1

= x

k

�N

�1

k

M

k

F (x

k

); (40)

where (N

k+1

;M

k+1

) is the row-by-row orthogonal projetion of (N

k

;M

k

) on the aÆne

subspae of IR

n�n

� IR

n�n

de�ned by

V = f(N;M) 2 S

1

� S

2

j Ns

k

= My

k

g (41)

If, in a neighborhood of a solution x

�

, M(x) and N(x) are ontinuous, the theory

of Setion 3 an be applied to this family of methods, so that they are loally

and superlinearly onvergent. See [65℄. If (39) represents the LU fatorization, we

obtain the method introdued in [47℄. If we take into aount possible sparsity of

L

�1

and U we obtain a method introdued in [12℄. Orthogonal fatorizations and

strutured situations were onsidered in [65℄. In this paper it was also shown that

the Dennis-Marwil method [18℄ is a limit method in the family (40-41). Finally, it is

easy to show that Broyden's methods are also partiular ases of (40-41). Nontrivial

methods based on (40-41) an be useful when the system

N

k

s

k

= �M

k

F (x

k

) (42)

is easy to solve.

3.3 Strutured methods

Suppose that J(x) = C(x) +D(x) for all x 2 IR

n

, where C(x) is easy to ompute

whereas D(x) is not. In this ase, it is natural to introdue the quasi-Newton

iteration:

x

k+1

= x

k

� [C(x

k

) +D

k

℄

�1

F (x

k

); (43)

where, for eah k = 0; 1; 2; : : :, D

k+1

is a projetion of D

k

on the aÆne subspae

V

full

= fD 2 IR

n�n

j Ds

k

= y

k

� C(x

k+1

)s

k

g: (44)

Writing �y

k

= y

k

� C(x

k+1

)s

k

and onsidering the Frobenius projetion, we see that

D

k+1

= D

k

+

(�y

k

�D

k

s

k

)s

T

k

s

T

k

s

k

: (45)

If C(x

k

)

�1

is easy to ompute (perhaps beause C(x) has a nie sparsity struture)

and k is small, some linear algebra an be saved in the omputation of [C(x

k

) +

D

k

℄

�1

F (x

k

) using the tehniques that will be explained in Setion 5.
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Sometimes one also knows that D(x) belongs to some �xed aÆne subspae S for

all x 2 IR

n

. In this ase, we an de�ne D

k+1

as the projetion of D

k

on

V

strutured

= fD 2 S j Ds

k

= �y

k

� y

k

� C(x

k+1

)s

k

g; (46)

but the formula (45) is not valid anymore, even for Frobenius projetions. Moreover,

the aÆne subspae given by (46) an be empty so that the method only makes sense

if this de�nition is onveniently modi�ed. In fat, we rede�ne:

V

minimizers

= f Minimizers of kDs

k

� �y

k

k

2

subjet to D 2 Sg: (47)

The aÆne subspae given by (47) is obviously nonempty and, so, it is possible to

projet on it. Algorithms for omputing this projetion were given in [21℄. De�ning

s = z � x, y = F (z)� F (x), �y = y � C(z)s and

V (x; z) = f Minimizers of kDs� �yk

2

subjet to D 2 Sg (48)

we an apply the theory of Setion 3 so that the resulting method turns out to

be loally and superlinearly onvergent. In priniple, Assumption 4 is neessary for

proving superlinear onvergene. See, also, [24℄. However, it an be onjetured that

this assumption an be dedued, in this ase, from the de�nitions (46) and (47).

Examples of applied strutured quasi-Newton methods an be found, among

others, in [1, 41, 42, 51, 55, 56℄.

4 Other seant methods

The Column-Updating method (COLUM) was introdued in [63℄ with the aim of

reduing the omputational ost of BGM. The idea is that, at eah iteration, only

the j-th olumn of B

k

is hanged, where j is de�ned by ks

k

k

1

= j[s

k

℄

j

j. So, COLUM

is de�ned by (7) and

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

T

j

k

e

T

j

k

s

k

(49)

where fe

1

; : : : ; e

n

g is the anonial basis of IR

n

and je

T

j

k

s

k

j = ks

k

k

1

. The QR and

the LU fatorizations of B

k+1

an be obtained from the orresponding fatorizations

of B

k

using the tehniques lassially used in linear programming. By (49), we have

that

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

B

�1

k

e

T

j

k

B

�1

k

y

k

: (50)

Partial onvergene results for COLUM were given in [34, 63, 68℄. It has been

proved that COLUM enjoys loal and superlinear onvergene in the same sense

12



as BGM if the method is restarted (taking B

k

= J(x

k

)) every m iterations, where

m is an arbitrary positive integer. Moreover, it has been proved that when the

method (with or without restarts) onverges, the onvergene is r�superlinear and

2n � q�quadrati. Finally, COLUM (without restarts) is onvergent in the same

sense as BGM if n = 2.

The Inverse Column-Updating method (ICUM), introdued in [72℄, is given by

(7) and

B

�1

k+1

= B

�1

k

+

(s

k

�B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

; (51)

where je

T

j

k

y

k

j = ky

k

k

1

. Therefore, B

�1

k+1

is idential to B

�1

k

exept on the j

k

-th

olumn. So,

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

T

j

k

B

k

e

T

j

k

B

k

s

k

: (52)

Similar loal onvergene results to those of COLUM were given in [54, 72℄.

It is easy to see that COLUM and ICUM have the invariany properties of BGM

and BBM respetively. Probably, ombined methods in the sense of [70℄ an also be

eÆient.

The disussion on BGM, BBM, COLUM and ICUM suggests the introdution

of quasi-Newton methods of the form

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (53)

where v

k

? s

k�1

, or

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

; (54)

where w

k

? y

k�1

. These methods are lose to the multipoint seant methods studied

in [2, 3, 8, 9, 31, 37, 46, 53, 60, 61, 75, 85, 87, 96℄ in the sense that they satisfy an

additional interpolatory ondition. Their onvergene analysis using the tehniques

of the above ited papers must be easy, but their pratial eÆieny does not seem

to have been studied. Some authors [91, 44℄ hoose the parameter w

k

in (54) with

the aim of maintaining well-onditioning properties of the matrix B

k

.

The �rst quasi-Newton method with diret updates of fatorizations was intro-

dued by Dennis and Marwil in [18℄. It modi�es the upper-triangular fator of

the LU fatorization of B

k

at eah iteration, so that the seant equation is always

satis�ed (with some stability safeguards). See, also, [77, 92℄. Convergene results

for the Dennis-Marwil method are even weaker than the ones that an be proved

for the Stationary Newton method ommented in Setion 1. The work [18℄ in-

spired the introdution of other methods with diret updates of fatorizations with

13



stronger onvergene results. We have already mentioned the least hange seant

update methods introdued in [65℄, whih enjoy loal and superlinear onvergene.

Other methods, having the same theoretial onvergene properties as the Station-

ary Newton method, were introdued in [36, 62, 64℄. The Row-Saling method (see

[36℄) is partiularly simple and, sometimes, quite e�etive. It onsists in the updat-

ing B

k+1

= D

k

B

k

, where D

k

is diagonal and it is hosen so that the seant equation

is satis�ed, when this is possible.

We �nish this setion mentioning the quasi-Newton method introdued by Thomas

[93℄, whih is given by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)d

T

k

B

�1

k

d

T

k

B

�1

k

y

k

; (55)

where

d

k

= [R

k

+ (ks

k

k

2

=2)I℄s

k

and

R

k+1

= (1 + ks

k

k

2

(ks

k

k

2

I +R

k

�

d

k

d

T

k

d

T

k

s

k

):

The properties of this method are not yet well understood. However, in spite of its

larger ost per iteration, very good numerial results have been reported in several

works. See, for example [43℄.

5 Large-sale implementations

The best known general-purpose modern implementations of quasi-Newton methods

for solving large nonlinear systems are based on rank-one orretion formulae like

BGM, BBM, COLUM and ICUM. See [34, 36, 58℄. Unfortunately, the methods

based on diret updates of fatorizations whih have pleasant onvergent properties

[65℄ need sparsity of the L

�1

fator in the LU deomposition of the true Jaobian,

a property that holds only in very strutured problems.

A ruial deision involves the hoie of the initial Jaobian approximation B

0

.

The most favorable situation ours when one is able to ompute a good approxima-

tion of J(x

0

) (perhaps using automati di�erentiation or CPR tehniques [14, 15℄)

and the LU fatorization of this approximation is sparse. In this ase, after possible

permutations of rows and variables, we ompute

B

0

= LU (56)

and we use this sparse fatorization throughout the alulations.
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If a sparse fatorization of a suitable approximation of J(x

0

) is not possible, it

is sensible to use

B

�1

0

=

�

rf

1

(x

0

)

krf

1

(x

0

)k

2

2

; : : : ;

rf

n

(x

0

)

krf

n

(x

0

)k

2

2

�

; (57)

where J(x

0

) = (rf

1

(x

0

); : : : ;rf

n

(x

0

))

T

. In (57), B

0

approximates J(x

0

) in the

sense that the J(x

0

)B

�1

0

has only 1's on the diagonal. With this hoie the initial

iteration is sale-invariant and the vetor s

0

is a desent diretion for kF (x)k

2

2

(see

Setion 7). Of ourse, some alternative hoie must be employed for a olumn of

B

�1

0

if the involved gradient is null.

In BGM and COLUM, we have

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (58)

and, onsequently,

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)v

T

k

v

T

k

B

�1

k

y

k

B

�1

k

: (59)

Therefore,

B

�1

k+1

= (I + u

k

v

T

k

)B

�1

k

; (60)

where u

k

= (s

k

� B

�1

k

y

k

)=v

T

k

B

�1

k

y

k

. Thus,

B

�1

k

= (I + u

k�1

v

T

k�1

) : : : (I + u

0

v

T

0

) B

�1

0

: (61)

Formula (61) shows that methods of the form (58) an be implemented assoiated

to (56) or (57) adding O(n) operations and storage positions per iteration. In the

ase of COLUM, it is obvious that only one additional vetor is needed per iteration.

For BGM, a lever trik given in [25℄ allows one to implement (7, 61) storing only

one additional vetor per iteration. See [34, 36, 38, 73℄.

In BBM and ICUM we have

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

: (62)

Therefore, de�ning u

k

= (s

k

�B

�1

k

y

k

)=w

T

k

y

k

, we obtain:

B

�1

k+1

= B

�1

0

+ u

0

w

T

0

+ : : :+ u

k

w

T

k

; (63)

whih suggests straightforward assoiations of (62) with (56) or (57). A reent nu-

merial study by Luk�san and Vl�ek [58℄ indiates that ICUM ould be the most
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e�etive seant method for large-sale problems with the initial hoie (56). There-

fore, the implementation of (63) in the ICUM ase deserves additional attention.

Observe, �rst, that

u

k

� s

k

� B

�1

k

y

k

= �B

�1

k

F (x

k+1

) (64)

and de�ne, for ICUM,

A

k

= u

0

w

T

0

+ : : :+ u

k�1

w

T

k�1

= u

0

e

T

j

0

+ : : :+ u

k�1

e

T

j

k�1

; (65)

where ky

�

k

1

= je

T

j

�

y

�

j for all � = 0; 1; : : : ; k. The olumns of A

k

will be denoted

a

1

; : : : ; a

n

. The large-sale ICUM algorithm an be desribed (with some abuse of

notation) as follows.

Step 0. Set k  0 and I

k

= ;.

Step 1. If k = 0, ompute (using (56) or (57))

s

0

= �B

�1

0

F (x

0

): (66)

Else, ompute

s

k

= u

k�1

� e

T

j

k�1

F (x

k

) u

k�1

: (67)

Step 2. Compute

x

k+1

= x

k

+ s

k

; y

k

= F (x

k+1

)� F (x

k

);

and

u

k

= �B

�1

0

F (x

k+1

)�

X

j2I

k

e

T

j

F (x

k+1

) a

j

: (68)

Step 4. De�ne j

k

by ky

k

k

1

= je

T

j

k

y

k

j. If j

k

2 I

k

, de�ne I

k+1

= I

k

and

a

j

k

 a

j

k

+ u

k

:

Otherwise, de�ne I

k+1

= I

k

[ fj

k

g and

a

j

k

 u

k

:

Set k  k + 1 and go to Step 1.

At eah iteration of the algorithm desribed above, the (at most k � 1) nonnull

olumns of A

k

must be stored. The omputational ost of eah iteration is dominated

by (68), whih involves the (inexpensive) �xed-ost alulation �B

�1

0

F (x

k+1

) plus a

linear ombination of the nonnull olumns of A

k

. Therefore eah iteration requires

at most n+O(1) ops in addition to the previous one. If pratial onvergene does

not our after a reasonably small number of iterations, it is sensible to restart the

whole omputation. Other restarting riteria an mimi the ones usually used in

the Stationary Newton method. See [75, 88℄.
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6 Dealing with singularity

The quasi-Newton iteration (7) is well de�ned only if B

k

is nonsingular. Loal

onvergene theories usually assume that J(x

�

) is nonsingular and that B

0

is lose

to J(x

�

). Under these onditions it an usually be proved that B

k

is nonsingular

for all k. However, in pratie, the initial hoie of B

0

ould be singular and,

moreover, B

k+1

ould be singular even when B

k

is not.

Singularity of B

0

might our when one hooses B

0

= J(x

0

) (or some very good

approximation of the Jaobian). Sine the (nonsingular) Newton step minimizes

kJ(x

0

)s + F (x

0

k, it is natural, in the singular ase, to hoose s

0

as any minimizer

of kJ(x

0

)s+ F (x

0

k

2

2

. Choosing the minimum-norm minimizer, we obtain:

s

y

0

= �J(x

0

)

y

F (x

0

); (69)

where J(x

0

)

y

is the Moore-Penrose pseudoinverse of the initial Jaobian (see [33℄).

Using a well-known approximation of the pseudoinverse, we an also ompute, for

some � > 0,

s

0

(�) = �(J(x

0

)

T

J(x

0

)) + �I)

�1

J(x

0

)

T

F (x

0

): (70)

When �! 0, s

0

(�) tends to s

y

0

. The step s

0

(�) an be interpreted as the minimizer

of kJ(x

0

)s+ F (x

0

k

2

on a ball whose radius is smaller than ks

y

0

k

2

.

In pratial omputations, singularity of J(x

0

) is deteted during the LU fator-

ization of this matrix: at some stage of the LU algorithm it is impossible to hoose

a safe nonnull pivot. When the problem is large, and J(x

0

) is possibly sparse, om-

puting (70) is expensive and, so, this devie is seldom used. It is usually preferred to

ontinue the LU fatorization replaing the null or very small pivot by some suitable

nonnull quantity that takes into aount the saling of the matrix. See [36℄. There

is no strong justi�ation for this proedure exept that, perhaps, it is not neessary

to be very areful when x

0

is far from the solution. (Even this statement an be

argued.)

On the other hand, a singular B

k+1

an appear even if B

k

is nonsingular.

When B

k+1

is obtained from B

k

by means of a seant rank-one orretion,

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (71)

as in the ase of BGM and COLUM, we have, by (71), that

det(B

k+1

) =

v

T

k

B

�1

k

y

k

v

T

k

s

k

det(B

k

): (72)

17



If j

v

T

k

B

�1

k

y

k

v

T

k

s

k

j is very small or very large then, either the saling of B

k+1

is very dif-

ferent from that of B

k

or their stability harateristis are very di�erent. In fat,

onservative small-variation arguments reommend us to impose

�j det(B

k

)j � j det(B

k+1

)j �

1

�

j det(B

k

)j; (73)

where � 2 (0; 1) is small (say, � � 0:1). By (72), if j

v

T

k

B

�1

k

y

k

v

T

k

s

k

j =2 [�; 1=�℄, the

inequalities (73) do not hold and B

k+1

must be modi�ed. Following [74℄, we an

replae (71) by

B

k+1

= B

k

+ �

k

(y

k

� B

k

s

k

)v

T

k

v

T

k

s

k

; (74)

where �

k

2 [0; 1℄. Clearly, (73) is satis�ed if �

k

= 0, but �

k

= 1 is the best hoie in

the sense that B

k+1

satis�es the seant equation. Therefore, it is natural to hoose

�

k

as the maximum � 2 [0; 1℄ suh that (73) is satis�ed. This leads to ompute

�

k

= max

�

� 2 [0; 1℄ j � � j(1� �) + �

v

T

k

B

�1

k

y

k

v

T

k

s

k

j �

1

�

�

: (75)

In \inverse" rank-one orretion methods like BBM and ICUM, it is easier to

write diretly

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

: (76)

An analogous reasoning to the one used to hoose (75) leads us to the modi�ation

B

�1

k+1

= B

�1

k

+ �

k

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

(77)

and, onsequently, to the hoie

�

k

= max

�

� 2 [0; 1℄ j � � j(1� �) + �

w

T

k

B

k

s

k

w

T

k

y

k

j �

1

�

�

: (78)

Both in the initial iteration as in the updated ones a lose-to-singular matrix B

k

usually generates a very large inrement s

k

. Very simple step-ontrol proedures

are always assoiated to the implementation of quasi-Newton methods. In pratial

problems, it has been veri�ed that opportunisti ways of ontrolling the step-length

may prevent many divergene situations. See Setion 9.
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7 Global onvergene tools

The results presented up to now are loal, in the sense that onvergene to a solution

an be guaranteed if the solution is assumed to exist and both the initial point and

the initial Jaobian approximation are lose enough to the solution and its Jaobian

respetively.

It is of maximal pratial importane to analyze what happens with sequenes

generated by quasi-Newton methods when no restritions are made on the initial

approximations. Unfortunately, almost nothing positive an be said about sequenes

generated by pure formulae like (7), unless strong assumptions are made on F . New-

tonian sequenes an osillate between neighborhoods of two or more non-solutions

or tend to in�nity, even in problems where a unique solution exists. So, if we want

to devise algorithms with global onvergene properties, the basi iteration (7) must

be modi�ed.

Usually, modi�ations of the basi iteration make use of some merit funtion.

Almost always, some norm of F (x) is used. The squared 2-norm kF (x)k

2

2

is fre-

quently preferred beause of its di�erentiability properties. We will all f(x) the

(ontinuous and nonnegative) merit funtion, whose main property is that f(x) = 0

if, and only if, F (x) = 0. Therefore, the problem of solving F (x) = 0 turns out to

be equivalent to the problem of �nding a global minimizer of f(x). If, at a global

minimizer, f(x) does not vanish, the original system has no solution at all. For

simpliity, assume that

f(x) =

1

2

kF (x)k

2

2

;

so

rf(x) = J(x)

T

F (x): (79)

>From (79), we see that the Newton diretion �ts well with the neessity of

dereasing f(x). In fat,

h�J(x)

�1

F (x);rf(x)i = �2f(x) < 0:

This implies that it is always possible to derease f(x) along the Newton diretion,

if this diretion is well de�ned and f(x) 6= 0. Many algorithms an be interpreted as

adaptations of unonstrained optimization tehniques (see [22℄) to the minimization

of f(x). In partiular, the iteration

x

k+1

= x

k

� �

k

J(x

k

)

�1

F (x

k

) (80)

has been exhaustively analyzed. See [28, 59℄ and referenes therein. If �

k

> 0 is

onveniently hosen so that f(x

k+1

) is suÆiently smaller than f(x

k

), then every
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limit point of the sequene generated by (80) either is a solution or a point where

the Jaobian is singular. So, if the Jaobian is nonsingular for all x 2 IR

n

and f(x)

has bounded level sets, (80) neessarily �nds a solution. Finally, in a viinity of suh

a solution it an be proved that �

k

� 1 satis�es the suÆient derease requirements,

therefore the method (80) oinides, ultimately, with (2) and the onvergene is

quadrati.

Although Griewank [39℄ has proved that Broyden's method, with a suitable line

searh, also has global onvergene properties in the absene of singular Jaobians,

most attempts for globalization of quasi-Newton methods rely on the exploration of

the good desent properties of Newton. Among these we an ite:

1. Hybrid strategies [74, 79℄, in whih Broyden's iteration are ombined with

speial iterations whih are, essentially, disretizations of Newton iterations.

2. Nonmonotone strategies [29℄: here \ordinary" quasi-Newton iterations are a-

epted, even if the merit funtion is inreased during some iterations, but the

algorithm swithes to a Newton iteration if a given tolerane is violated.

3. A strategy due to Bonnans and Burdakov [10℄: if the suÆient derease ondi-

tion is violated the step-length is redued, but, at the same time, the Jaobian

approximation is updated using a seant formula. As a result, the searh di-

retion hanges during the urrent iteration and, in the limit, is tangent to the

Newton diretion. An anteedent of this idea an be found in [78℄.

A ommon drawbak of all the globalization strategies based on dereasing a

norm is that loal-nonglobal minimizers of f(x) are strong attrators of the iterative

proess. Other norm-minimization related tehniques an be found in [48, 89, 90℄.

Therefore, globalized algorithms an onverge to points in whih the Jaobian is sin-

gular. Unfortunately, suh points are ompletely useless from the point of view of

�nding solutions of the nonlinear system. It is easy to see that all the observations

related to the Newton diretion made in this setion, exept the ones related to

rapid loal onvergene, are valid for the hoie (57) of the Jaobian approximation.

A ompletely di�erent soure of globalization proedures is the homotopi ap-

proah, by means of whih a sequene of slightly modi�ed problems are solved, in

suh a way that the �rst one is trivial and the last one is (1). For example, the

\regularizing homotopy", used in [94, 95℄ is

H(x; t) = tF (x) + (1� t)(x� x

0

): (81)

The solution of H(x; 0) = 0 is, obviously, x

0

and the solution of H(x; 1) = 0 is the

one required in (1). Many methods for traing the homotopy path are desribed
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in the literature. Loally onvergent quasi-Newton methods are useful tools in this

ase sine strategies like (81) deal with several nonlinear systems for whih good

initial estimates are available. See, also, [83℄.

8 Results for linear systems

In this setion we assume that F (x) = Ax � b, A 2 IR

n�n

; b 2 IR

n

. To study the

behavior of quasi-Newton methods for linear systems is important under di�erent

points of view. One one hand, real-life problems an be linear or nearly linear. On

the other hand, the properties of a method in the linear ase usually determine the

loal onvergene behavior of the method. In fat, in a neighborhood of a solution

where the Jaobian is nonsingular, the linear approximation of F is dominant and,

so, the generated sequene tends to behave as in the linear ase. For example, if

F (x) = Ax�b and A is nonsingular, Newton's method is well de�ned and onverges

in just one iteration. This is the main reason why the loal onvergene of this

method is quadrati.

Until 1979 it was believed that Broyden's methods did not enjoy �nite onver-

gene when applied to linear systems. However, in [30℄ it was proved that Broyden's

method and many other methods of the form (71) or (76) also onverge in a �nite

number of steps.

In fat, let us onsider the method de�ned by (7) and (71). Choose B

k+1

= B

k

if y

k

= 0. If y

k

6= 0, take v

k

2 IR

n

suh that v

T

k

s

k

6= 0 and v

T

k

B

�1

k

y

k

6= 0. Gay's

theorem [30℄ says that, if A and B

0

are nonsingular and x

0

2 IR

n

is arbitrary, then

F (x

k

) = 0 for some k � 2n. The onvergene of x

k

to x

�

� A

�1

b is far from being

monotone in any sense.

The loal onvergene onsequenes of Gay's theorem for general nonlinear sys-

tems are that, under the usual assumptions that guarantee loal onvergene, meth-

ods like BGM, BBM, COLUM and ICUM enjoy 2n-step quadrati onvergene.

Therefore, kx

k+2n

� x

�

k=kx

k

� x

�

k

2

is asymptotially bounded. This property im-

plies r-superlinear onvergene. See [75℄.

The �nite onvergene theorem [30℄ sheds light on theoretial properties of rank-

one seant methods but is of little importane for pratial large-sale linear prob-

lems. In fat, the intermediate iterations (x

k

with k < 2n) are, usually, very poor

approximations of the solution so that the full yle of 2n steps is neessary for

obtaining a reasonable approximation of x

�

. When n is large, a sequene of 2n

iterations is not a�ordable sine, as mentioned in Setion 5, the ost of the k-th iter-

ation is proportional to kn, both in terms of time and storage. Therefore, pratial
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implementations of rank-one seant methods for linear systems need modi�ations

of the basi iteration (7). See the disussion in [25℄.

Some authors [25, 71, 74℄ studied variations of BGM for linear systems. Here we

survey the results presented in [71℄, orreting, by the way, some arithmeti typos of

that paper. Given x

0

2 IR

n

and B

0

2 IR

n�n

nonsingular, the linear Broyden method

is de�ned by

x

k+1

= x

k

� �

k

B

�1

k

F (x

k

); (82)

where �

k

6= 0 and

B

k+1

= B

k

+ �

k

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

: (83)

The oeÆient �

k

2 [0:9; 1:1℄ is suh that

jdet(B

k+1

)j � 0:1 jdet(B

k

)j: (84)

Mor�e and Trangenstein [74℄ proved that (84) holds with �

k

2 [0:9; 1:1℄ de�ning



k

= s

T

k

B

�1

k

y

k

=s

T

k

s

k

, with �

k

= 1 if j

k

j � 0:1, and �

k

= (1 � 0:1sign(

k

))=(1� 

k

)

if j

k

j < 0:1, where sign(0) = 1. This hoie of �

k

provides the number losest to

unity suh that (84) is satis�ed. See [74℄ and Setion 6 of this paper.

Let k � k denote the Frobenius norm. For the method de�ned by (82), (83) and

(84) it an be proved that

kB

k

� Ak

F

� kB

0

� Ak

F

for all k = 0; 1; 2; : : : and

kB

k+1

� Ak

2

F

� kB

k

� Ak

2

F

� 0:891 kB

k+1

� B

k

k

2

F

for all k = 0; 1; 2; : : :. It follows that the series

P

kB

k+1

� B

k

k

2

F

is onvergent. So,

kB

k+1

� B

k

k tends to 0.

It an also be proved that the sequene generated by (82), (83) and (84) satis�es

kx

k+1

� x

�

k

kx

k

� x

�

k

�

"

k

+ j�

k

� 1j

1� "

k

(85)

for all k = 0; 1; 2; : : :, where f"

k

g is a sequene that tends to zero.

Formula (85) explains the behavior of the error x

k

�x

�

independently of the on-

vergene of the sequene. In partiular, it shows that the sequene is superlinearly

onvergent if �

k

! 1, and that onvergene at a linear rate takes plae if, eventually,

�

k

2 [�; 2� �℄ for some � > 0.
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Finally, in [71℄ it has been proved that �

k

! 1 holds when one hooses �

k

as the

(nonnull) minimizer of kA(x

k

+ �d

k

)� bk

2

2

along the diretion d

k

� �B

�1

k

F (x

k

). If

this �

k

is null, we replae it by 1. However, this possible replaement is not neessary

for k large enough.

As a result, we have a global and superlinearly onvergent BGM-like method for

solving linear nonsingular systems. The proposed hoie of �

k

has an advantage over

the hoie �

k

= 1 in the large-sale ase. In fat, when �

k

is the one-dimensional

minimizer proposed above, the residual norm at the iterate x

k+1

is smaller than

the norm of Ax

k

� b. Therefore, in terms of the residual norm, the quality of the

approximation is improved at every iteration, and an aeptable �nal approxima-

tion an be obtained for k << 2n. An alternative hoie with similar theoretial

properties that, in some sense, minimizes a norm of the error, has been onsidered

in [25℄ and [71℄.

9 Numerial studies

Most numerial studies in the literature are assoiated to the introdution of a

determined method. In spite of that, we an obtain useful information from many of

them. We are espeially interested on experiments regarding quasi-Newton methods

for solving large and possibly sparse nonlinear systems.

The GMM study [36℄ involves 7 variably dimensioned nonlinear systems. Six

of them are \toy problems" and have been designed with the aim of testing nu-

merial algorithms. The seventh is the disretization of a Poisson equation. The

algorithms tested are Newton's method, the Stationary Newton method, Broyden's

good method, Broyden's sparse (Shubert) method, the Dennis-Marwil method and

three diret-update methods that inludes the row-saling method mentioned in

Setion 4. Matrix fatorizations use the algorithm of George and Ng [32℄ and a

nonmonotone globalization proedure is inorporated.

The GKM study [35℄ uses 3 disretizations of two-dimensional boundary-value

problems with known solutions: Poisson, Bratu and Convetion-Di�usion. The

three of them depend on a parameter � aording to whih the problem is more or

less diÆult. If � = 0 the problems are linear. If � << 0, nonoerivity is severe

and the disretized problems are very hard. The tested algorithms are Newton,

Stationary Newton, BGM and COLUM. All the algorithms have the option of using

baktraking to improve global onvergene.

The FGKMS study [29℄ solves a set of problems given in [57℄ having similar har-

ateristis to the set of problems of [36℄. In addition, a disretization of the driven

avity ow problem is also onsidered, whih has a parameter �, the Reynolds num-
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ber, that ontrols nonlinearity. Finally, the study inludes a Convetion-Di�usion

problem and a set of arti�ial problems where Newton's method, without step on-

trol, do not onverge.

The LV study [58℄ inludes 30 problems. 16 of them are of the type onsidered in

[36℄ with some superposition with that set. In addition, the study has ounterurrent

reator problems, seond-order boundary value problems (inluding Poisson and

Convetion-Di�usion), problems of ow in a hannel, swirling ow problems, porous

medium problems, a nonlinear biharmoni problem and the driven avity problem.

The objetive of this study is to introdue a globalization proedure. The underlying

quasi-Newton methods are the disrete Newton method, the Stationary Newton

method, the sparse Broyden (Shubert) method, the variation due to Bogle and

Perkins [4℄, Li's method [52℄, a ombination of Li with Shubert, the row-saling

method [36℄, Broyden's good method, COLUM and ICUM (alled LMC and LMI

respetively in that study).

None of the above ited studies ontradits the ommon belief that Newton's

method is the most robust algorithm for solving nonlinear systems. Conerning glob-

alization proedures, experiments reommend to be autions, beause many times

the attempts to redue the sum of squares lead to onvergene to loal-nonglobal

minimizers. As a matter of fat, the simple stabilization proedure that onsists in

not letting the step-length to be too large (see Setion 6) is, frequently, very e�etive

to turn a divergent algorithmi sequene into a onvergent one.

When onvergene is maintained, quasi-Newton orretions usually improve sub-

stantially the performane of Newton's method. The amount of this improvement

depends of the Jaobian struture. In the problems onsidered in the above ited

studies, methods that do not save linear algebra, like Broyden-sparse, must be dis-

arded, sine its omputational ost per iteration is roughly the same as Newton's.

Pratially all quasi-Newton orretions are more e�etive than the Stationary New-

ton method. Aording to [58℄, ICUM ranks �rst, but there seems to be little di�er-

ene between this method and BGM or COLUM. Up to our knowledge there are no

published numerial studies for large-sale problems where Broyden's bad method

BBM is inluded.

10 Conlusions and perspetives

In reent years, quasi-Newton methods for solving square smooth nonlinear systems

have been out of the mainstream of numerial analysis researh. A popular sienti�

journal on Numerial Analysis published 4 papers on the subjet before 1970, 10

between 1971 and 1980, 11 in the eighties and none from 1991 to 1999. Sometimes,
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researh in a family of numerial tehniques beomes out-of-fashion after its inor-

poration to ordinary pratie of problem solvers in Physis, Chemistry, Engineering

and Industry. Other times, promising algorithms are ompletely forgotten, both in

researh and appliations.

The situation of the area surveyed in this paper is perhaps intermediate. The

lassial paper [20℄ is ited in most works onerning quasi-Newton methods for

nonlinear systems. While this survey was being written it had been ited 361 times

in indexed sienti� journals. The last 100 itations go from 1992 to the present

days. 42 of these itations ome from non-mathematial journals. It must be warned

that, many times, the Dennis-Mor�e paper [20℄ is ited in onnetion to quasi-Newton

methods for minimization problems, and not for nonlinear systems. Sine the ev-

eryday pratie in Physis, Chemistry and Engineering inludes the resolution of

nonlinear systems using Newton's method, we are tempted to onlude that the

penetration of the quasi-Newton tehnology in appliations, although existing, has

not been as intense at the potentiality of the tehnique deserves.

In the Introdution of most quasi-Newton papers, it was stressed that the their

main motivation was to avoid omputation of umbersome derivatives. However,

even before the boom of automati di�erentiation, pratitioners found that, for

many of their problems, omputing derivatives was not as diÆult or ostly as

stated in the quasi-Newton literature. They also veri�ed that beginning a quasi-

Newton proess with B

0

= I, or some other arbitrary matrix, lead very often to

disastrous results and, so, the omputation of an initial Jaobian was almost always

neessary. After writing a Jaobian subroutine, it seemed reasonably to use it at

every iteration (Newton's method) or every m iterations, repeating the old Jaobian

in the remaining ones (Newton's method with re�nements).

In pratial problems in whih the Jaobian an be omputed but its struture

is too bad for fatorization, the modern tendeny is to use the inexat-Newton ap-

proah [17℄, in whih an iterative linear solver is used for solving the Newtonian lin-

ear equation J(x

k

)s = �F (x

k

) up to some preision whih is suÆient to guarantee

onvergene of the nonlinear solver. Moreover, the inexat-Newton tehnology �ts

well with global onvergene requirements. Probably, many users felt disappointed

when they tried to globalize quasi-Newton methods by the mere introdution of a

damping parameter and baktraking proedures. See [22℄.

However, a reasonable sope of problems exists, for whih quasi-Newton methods

that save linear algebra are quite e�etive and, probably, outperform inexat-Newton

algorithms. This is the ase of large-sale problems in whih the Jaobian an be

omputed, its fatorization is a�ordable but it is very ostly in omparison to the

single updating proedures of rank-one methods. The reipe for those ases is to

begin with a Newtonian iteration, and to ontinue with some heap rank-one method
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as far as this is e�etive. Unfortunately, a ode like that must be prepared to return

to Newtonian iterations, a disappointing fat for those who hoped that quasi-Newton

tehniques ould always replae Newton.

Quasi-Newton methods for solving large-sale nonlinear systems will be largely

used in appliations when both numerial analysts and potential users be onsious

about their real advantages and limitations. Our point of view is that rank-one

algorithms provide, in many ases, eÆient and eonomi ways to re�ne a basi

(�rst) Newtonian iteration. If we are right, questions often negleted in the quasi-

Newton literature, as \when should one restart?" must be answered, in spite of its

poor theoretial harm.

We �nish this survey stating 10 open problems, some of whih were inidentally

mentioned in the text.

1. It is well known that, under the usual nonsingularity and Lipshitz assump-

tions, the matries B

k

generated by Broyden's good method do not neessarily

onverge to J(x

�

). Does this sequene of matries always have a limit? What

happens with the sequenes fB

k

g orresponding to other methods?

2. Convergene theorems for least-hange update and other quasi-Newton meth-

ods say that there exist "; Æ > 0 suh that x

k

! x

�

superlinearly when-

ever kx

0

� x

�

k and kB

0

� J(x

�

)k � Æ. Is this superlinear onvergene uni-

form? In other words, for whih methods an we prove that \there exist

"; Æ > 0 and a sequene of positive numbers "

k

! 0 suh that whenever

kx

0

� x

�

k and kB

0

� J(x

�

)k � Æ, the sequene x

k

onverges to x

�

and

kx

k+1

� x

�

k � "

k

kx

k

� x

�

k for all k"?

3. Is it possible to prove loal onvergene without restarts of methods like

COLUM and ICUM? What about superlinear onvergene?

4. Are there reasonable suÆient onditions under whih the onvergene of

Broyden-like methods for linear systems takes plae in less than 2n iterations?

5. It is generally aepted that the Dennis-Marwil method (and some other sim-

ilar diret fatorization algorithms) enjoys loal onvergene only if periodi

Jaobian restarts are performed. However, no ounter-example showing that

loal onvergene without the restarting ondition might not hold is known.

Does a ounter-example exist in the linear ase?

6. Does there exist a heap and theoretially justi�ed proedure for modifying

the LU fatorization of B

0

when a null or very small pivot is found?
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7. Is it possible to prove that Assumption 4 neessarily holds for the hoie (48)

of V (x; z)?

8. Whih are the properties of diret-seant-update and strutured quasi-Newton

methods when applied to linear systems?

9. The order of onvergene of Newton's method with p re�nements (the Jao-

bian is repeated during p onseutive iterations) is 2+p. See [75, 76, 88℄. This

means that kx

k+p+1

�x

�

k=kx

k

�x

�

k

2+p

is asymptotially bounded. Can some-

thing better be expeted when, instead of repeating the previous Jaobian, we

update it with a seant formula?

10. Many methods in the ourishing interior point �eld for mathematial program-

ming an be interpreted as lever damped Newton iterations on an homotopi

basis. Can they be improved by suitable quasi-Newton updates? (Up to our

knowledge, no attempt has been made in this sense, exept the one in [23℄.)
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