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Abstract

Practical quasi-Newton methods for solving nonlinear systems are sur-
veyed. The definition of quasi-Newton methods that includes Newton’s method
as a particular case is adopted. However, especial emphasis is given to the
methods that satisfy the secant equation at every iteration, which are called
here, as usually, secant methods. The least-change secant update (LCSU) the-
ory is revisited and convergence results of methods that do not belong to the
LCSU family are discussed. The family of methods reviewed in this survey in-
cludes Broyden’s methods, structured quasi-Newton methods, methods with
direct updates of factorizations, row-scaling methods and column-updating
methods. The implementation of the algorithms of most practical relevance is
described. The survey includes a discussion on global convergence tools and
linear-system implementations of Broyden’s methods. In the final section,
practical and theoretical perspectives of this area are discussed.

1 Introduction
In this survey we consider nonlinear systems of equations
F(z) =0, (1)

where F' : IR™ — IR™ has continuous first partial derivatives. We denote F' =
(fi,---, fu)" and J(x) = F'(x) for all x € IR™.
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All practical algorithms for solving (1) are iterative. Given an initial approx-
imation z¢y € IR", a sequence of iterates zx,k = 0,1,2,... is generated in such a
way that, hopefully, the approximation to some solution is progressively improved.
Newton’s is the most widely used method in applications. See [22, 50, 75, 87]. The
Newtonian iteration is defined whenever J(xy) is nonsingular. In this case, the
iterate that follows zy is given by

Thar = vp — J () F (). (2)

The Jacobian inverse J(x;)~! does not need to be calculated. Instead, s, € IR"
results from solving

and the new iterate is defined by

Tg+1 = Tk + Sk (4)

Newton’s method has very attractive theoretical and practical properties: if x, is a
solution of (1) at which J(z,) is nonsingular and z; is close enough to z,, then xy
converges superlinearly to x,. This means that, given an arbitrary norm || - || in R,

e =)
o ok — |

0. (5)

Moreover, if J(x) satisfies the Lipschitz condition
1J(x) = J(z)|| < Lz — .|| (6)

for all x close enough to x,, the convergence is quadratic, so the error at iteration
k + 1 is proportional to the square of the error at iteration k. In other words, the
number of correct digits of the approximation xy,; tends to double the number of
correct, digits of x.

Another remarkable property of Newton’s method is its invariancy with respect
to linear transformations both in the range-space as in the domain space. Invariancy
in the range-space means that, given any nonsingular matrix A, the iterates of the
method applied to

AF(z) =0

coincide with the iterates of the method applied to (1). Domain-space invariancy
means that the iterates of the method applied to

F(Ay) =0



are given by A~'z;, provided that yy = A7 'z, where {x} is the sequence generated
by (2). The main consequence of invariancy is that bad scaling of the variables or the
components of the system cannot affect the performance of the method, if rounding
errors (which can affect the quality of the solution of (3)) are disregarded.

The Newton iteration can be costly, since partial derivatives must be computed
and the linear system (3) must be solved at every iteration. This fact motivated the
development of quasi-Newton methods, which are defined as the generalizations of
(2) given by

T4l = T — Bk_lF(l‘k) (7)

In quasi-Newton methods, the matrices By are intended to be approximations of
J(zx). In many cases, the computation of (7) does not involve computing derivatives
at all. Moreover, many times Bk’il is obtained from Bk’1 using simple procedures
thanks to which the linear algebra cost involved in (7) is much less than the one
involved in (3).

According to definition (7), Newton’s method is a quasi-Newton method. So is
the stationary Newton method, where By = J(zy) forall k = 0,1,2,... and Newton’s
method “with p refinements”, in which By, = J(x) when k is a multiple of p + 1,
whereas B, = Bjy_; otherwise. The “discrete Newton” method is a quasi-Newton
method too. It consists in defining

B, — (F(xk + hgaer — Fxy) F(zy + hinen) — F(xk)> (8)

e
P 1 Pk,

where {eq,...,e,} is the canonical basis of IR" and hy, j # 0 is a discretization param-
eter. This parameter must be small enough so that the difference approximation to
the derivatives is reliable but large enough so that rounding errors in the differences
(8) are not important.

Many times, J(x) is a sparse matrix, whose sparsity pattern is known. In this
case, a procedure given in [15] and refined in [14] (see also [13, 52]) allows one
to compute a finite difference approximation to J(x) using less than n auxiliary
functional evaluations.

In the sixties it was common to justify the existence of most quasi-Newton meth-
ods saying that the task of computing derivatives is prone to human errors. In fact, it
is. However, automatic differentiation techniques have been developed in the last 20
years that, in practice, eliminates the possibility of error. See [26, 40, 45, 80, 81, 82]
and many others. Moreover, in most cases, the computation of derivatives using
automatic differentiation is not expensive. This implies that, in modern practice,
interesting quasi-Newton methods are those in which the Jacobian approximations
are defined in such a way that much linear algebra is saved per iteration. Usually,



in large and sparse problems, the resolution of (3) using direct methods [27, 32, 97
is expensive but not prohibitive. (When it is prohibitive it is probably better to
use inexact-Newton methods [17, 50].) In these cases, to use By = J(xg) generating
By, k > 1 using cheap-linear-algebra quasi-Newton techniques is worthwhile.

The name “quasi-Newton” was used after 1965 to describe methods of the form
(7) such that the equation

Byyisk = Yk = Fwp) — Fag) 9)

was satisfied for all £k = 0,1,2,... Equation (9) was called “fundamental equation of
quasi-Newton methods”. After the Dennis-Schnabel book [22] most authors prefer to
call quasi-Newton to all the methods of the form (7), whereas the class of methods
that satisfy (9) are called “secant methods”. Accordingly, (9) is called “secant
equation”.

The iteration (7) admits an interesting and pedagogical interpretation. Assume
that, for all £ =0,1,2,... we approximate F'(x) by a “linear model”

F(z) =~ Lg(z) = F(xy) + B(v — x). (10)

Then, x4 is the unique solution of the simpler problem Lg(z) = 0. By (10) we
also have that

Ly(zg) = F(zg) forall £=0,1,2,... (11)
It is easy to see that (9) implies that
Ly(vg—1) = F(zg—y) forall k=1,2,... (12)

Therefore, the affine function Ly (x) interpolates F'(x) at zy and x_,. “Multipoint”
secant methods can be defined satisfying

Li(z;) = F(x;) forall je I, (13)

where {k — 1,k} C I for all k = 1,2,... See [2, 3, 8, 9, 31, 37, 46, 53, 60, 61, 75,
85, 87, 96].

This survey is organized as follows. In Section 2 we sketch a local convergence
theory that applies to most secant methods introduced after 1965. In Section 3 we
give the most used examples of least-change secant-update methods. In Section 4 we
introduce interesting quasi-Newton methods that cannot be justified by the theory
of Section 2. In Section 5 we discuss large-scale implementations. In Section 6 we
show how to deal with possible singularity of the matrices By. In Section 7 we
discuss procedures used for obtaining global convergence. In Section 8 we study the
behavior of some quasi-Newton methods for linear systems. In Section 9 we survey
a few numerical studies on large-scale problems. Finally, in Section 10, we discuss
the prospective of the area and we formulate some open problems.
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2 Least-change update theory

Most practical quasi-Newton methods can be analyzed under the framework of a
general theory introduced in [66]. In [67] it was proved that the family of methods
whose convergence can be proved using this theory strictly contains those included
a previous theory by Dennis and Walker [24]. A generalization for more general
problems can be found in [69]. A (slight) simplification of the theory of [66, 67] will
be reviewed here.

We consider, as always, the problem (1). Assume that £ is a finite-dimensional
space and that, for all z,z € IR", (-,-);. is a scalar product on £. We denote
|E|Z. = (E,E)y, for all E € £. For all 2,z € IR" let V(z,2) C € be an affine
subspace. Assume, also, that ¢ : IR" x & — IR™*". The general algorithm analyzed
in this section is defined by (7), where

By = Qo(xkka)v (14)

the initial approximations zy € IR"™ and E, € £ are arbitrary, and the parameters
are generated by

Eri1 = Pi(Ey). (15)
In (15), Py = Py, 4., is the projection operator on V (2, 7441), with respect to the
norim || ' ||$k,$k+1'

The most simple example of (14,15) is Broyden’s “good” method (BGM) [5],
which is defined by

E=R"", (16)
|||z, = || - ||[r = the Frobenius norm for all z, z € R", (17)
oz, EY=FE forallz e R", E €& (18)
and
V(z,z) ={B € R"" | B(z—x) =F(z) — F(x)}. (19)

Broyden’s sparse (or Schubert’s) method [6, 86] is defined by (7,16,18) and
V(z,2) ={BeS|B(z—x)=F(z) = F(z)}, (20)

where S is the set of matrices that have the sparsity pattern of J(z). See [4] for a
variation of this method.
Broyden’s “bad” method (BBM) is defined by (7,16,17),

o(x,E)=E ' forallz € R", E € &, E nonsingular (21)



and

V(z,z) ={H € R"" | H[F(z) — F(x)] = z — z}. (22)
Many other examples are given in [66, 67]. In most cases || - ||, = || - || for all
x,z € IR". However, situations where || - ||,, changes appear when one analyzes

quasi-Newton (or variable metric) methods for function minimization.

Under several assumptions, which we will consider below, methods defined by
(7,14,15) are locally (and “quickly”) convergent. The first two are assumptions on
the functional F' and the remaining ones are assumptions on the method. A con-
vergence analysis for Broyden’s method in a situation where the first assumption is
violated can be found in [16].

Assumption 1. There exists x, € IR" such that F(z,) =0 and J(x,) is nonsingu-
lar.

Assumption 2. There exist L > 0 such that, for some vector norm |- |,
| J(2) = J ()| < Lz — .| (23)
if x belongs to some neighborhood of x,.

Assumption 3. There exists E, € €, r, € [0,1) such that ¢ is well defined and
continuous in a neighborhood of (x., E.). Moreover, p(x,, E,) is nonsingular and

I — o(z,, B) 7 I (2,)] < 7. (24)

Assumption 3 implies that we could define an ideal iteration, given by

Ty = @ — (@, BT (2), (25)
with good convergence properties, in the sense that

|Tpr1 —

lim zy =2, and limsup <, (26)

k—o0 k—o00 |37k - 37*|

if xy is close enough to z.. Of course, the ideal method defined by (25) cannot
be implemented in practice. However, the least change update theory consists in
showing that some implementable methods enjoy the property (26). Observe that,
in the case r, = 0, (26) means superlinear convergence.



Assumption 4. For all x,z close enough to x, there exists E € V(x,z), ¢, > 0
such that
||E - E*H S CIU(J“J Z), (27)

where o(x,2) = maz {|x — x|, |2 — x|}

In the description of the algorithm, we saw that Ejy,, is a projection of Ej; on
V (g, Tr+1). Assumption 4 says that the distance between E, and this affine sub-
space is of the same order as the maximum distance between {xy,zry1} and z,.
In other words, we are projecting on manifolds that are not far from the ideal pa-
rameter E,. An algorithm where projections are performed on the intersection of
manifolds with boxes can be found in [11]. Clearly, we can use any norm | - ||
in (27). The relation between the different norms used in the projections is given
by Assumption 5.

Assumption 5. There exists co > 0 such that, for all x,z close enough to x,,
Eeg,

1Bl <1+ c20(z, )][|E]] and [[E|| <1+ c20(z, 2)][| .., (28)

where || - || is a norm associated to the scalar product (-,-).

Assumption 5 says that the different norms tend to be the same when z and
z are close to x,. Assumptions 4 and 5 do not guarantee that the approximation
of By to E, improves through consecutive iterations. (This would be the case if
E. € V(xk,vk41).) In fact, Ejy; might be a worse approximation to E, than FEj.
However, using these assumptions one can prove that the deterioration of Ey,, as
an approximation to E, is bounded in such a way that the “error” ||Eyy; — E.|| is
less than the error || Ey — E.|| plus a term which is proportional to the error |z) — .|
This is a typical “bounded deterioration principle”, as introduced in [7]. See, also,
[20, 21, 24, 84] and many others. By bounded deterioration, the parameters Fj
cannot escape from a neighborhood of E, for which it can be guaranteed that local
convergence holds. Assumptions 1 to 5 are sufficient to prove the following theorem
[66].

Theorem 1. Let r € (ry,1). If Assumptions 1 to 5 hold and {zy} is generated by
(7,14,15), there exist € > 0,6 > 0 such that, if |xo — x| < 0 and |Ey — E,|| < 0, the
sequence 1s well-defined, converges to x, and satisfies

k1 — @] <rlag — . (29)



forall k=0,1,2,...
Moreowver,
k—o00 k—o00

At a first sight, the result (29) is disappointing. In fact, the same result can
be obtained (with r. = 0) if one uses (7) with By = J(xp) for all £ = 0,1,2,...
It could be argued that there is no reason for modifying By at every iteration if
one can obtain the same result not modifying this Jacobian approximation at all.
Obviously, (30) also holds for this stationary-Newton choice of B.

Fortunately, some additional results help us to prove that, under some com-
putable conditions, the ideal speed of convergence (26) can be reached. From a
well-known theorem of Dennis and Walker [24] the following result can be obtained.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that

ko0 |Th1 — @i

=0. (31)
Then, (26) holds.

Theorem 2 corresponds, in the case r, = 0, to the well-known Dennis-Moré con-
dition [19], which characterizes the superlinear convergence of sequences generated
by (7). Now, by (30), Theorem 2 implies the following more practical result.

Theorem 3. Assume the hypotheses of Theorem 1, and

lim |[Q0($k+1, Ek-i—l) - QO(:E*; E*)](J:]H_l — l'k)|
k— o0 |:Ek‘+1 — */L‘k|

= 0. (32)
Then, (26) holds.

Theorem 3 has important consequences. Since Ej; is computed after the com-
putation of xy, algorithmic choices of this parameter can be defined so that (32) is
necessarily satisfied. The most popular situation corresponds to the case ¢(z., E,) =
J(z,) and consists in defining V'(x, z) in such a way that By11 = @(2g41, Fri1) sat-
isfies the secant equation (9). In this case, (32) is equivalent to

i | E @) = Flag) = J (@) (@rn — )]

=0
k—o0 |Tp1 — 2]
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and this identity holds, if z; — x,, due to the assumption (23).

None of the theorems above imply that, even when r, = 0, £} converges to FE..
In fact, simple counter-examples can be shown where this is not true. Moreover,
nothing guarantees that Fj is convergent at all. Even in the case of BGM, the best
studied least-change secant-update method, it is not known if, under the conditions
that are sufficient to prove local-superlinear convergence, the sequence of matrices
By, is convergent. This seems to be a difficult open problem.

3 Some least-change secant-update methods

3.1 Broyden’s methods

Broyden’s good method is defined by (7) and (14-19). A simple quadratic program-
ming exercise shows that, for this method,
(y& — Brsw)si,

B =B —_ 33
k41 kT stk (33)

Moreover, the relation between the inverses of By and By is, in this case,

Sp — Bk_lyk)szk_1

B*l :Bfl + (
k+1 k S%“Bk—lyk

(34)

Formula (34) shows that the iteration (7) can be computed without solving a lin-
ear system at each iteration. In fact, for computing B, +11 we only need to perform
O(n?) operations, whereas O(n?) operations are necessary for solving a (dense) lin-
ear system. It is generally believed that the most stable way in which BGM can be
implemented (when the number of variables is small) requires to store the QR fac-
torization of By. Since By, differs from By by a rank-one matrix, the factorization
of By, can be obtained using O(n) plane rotations. See [74].

Broyden’s bad method is given by (7), (16), (17), (21) and (22). As in the case
of BGM, after some linear algebra the calculations can be organized so that the
definition of the method becomes:

(sk — By 'yr)ui

Bil,=B;'+ 35
k+1 k y;{yk ( )
for all £ =0,1,2,... Moreover, according to (35) we have:
- B I'p
Byor = By + W= Besolui Br (36)

Yt Bysk



There exists an obvious duality between the formulae that define both Broyden’s
methods. jFrom (34) it is easy to deduce that, if the proper choices are made on
the initial point and the initial Jacobian approximation, Broyden’s good method is
invariant under linear transformations in the range space. From (35) we see that
Broyden’s-bad has the same property in the domain space. Therefore, if rounding
errors are not considered and the behavior of Broyden’s-good for F(z) = 0 is satis-
factory, it must also be satisfactory for solving AF(z) = 0. On the other hand, if
Broyden’s bad method works well on F'(x) = 0, it will also work on F'(Az) = 0.

The reasons why BGM is good and BBM is bad are not well understood. In
fact, it is not clear that, in practice, BGM is really better than BBM. In [70] it was
observed that, for BGM, since Bgsg_1 = yr_1, we have, if £ > 1,

(?Jk - Bksk)sfsk—l
stsy, '

ByiiSg—1— Yk-1 =

Analogously, for BBM,

(yk - Bksk)ylzyk—l
ykTBkSk

Bii1Sg—1 — Yp—1 =

Therefore, the “secant error” By 15,_1—yk—_1 18, in both cases, a multiple of y,— By si.
It is natural to conjecture that the BGM iteration will be better than the BBM
iteration when
|5k sk-1] Yk Yk—1]
Sk Sk |y Brsi|

(37)

An analogous reasoning involving Bk_jlykq — S_1 leads to conjecture that BGM is
better than BBM when
|5k Sk—1] Yk Y1
sk (Br) "kl Yk yn
In [70] a combined method was implemented that chooses BGM or BBM ac-
cording to the test (38). This method was tested using a set of small problems and
turned out to be superior to both BGM and BBM. By (37-38) BGM tends to be
better than BBM if By underestimates the true Jacobian. This means that, if By is
arbitrarily chosen and the true Jacobian is “larger than B,”, Broyden’s good method
tends to be better than Broyden’s bad. This is also confirmed by small numerical
experiments.

(38)

3.2 Direct updates of factorizations

Suppose that, for all x € IR", J(z) can be factorized in the form
J(x) = M(2)™'N(x), (39)

10



where N(z) € S;, M(z) € S, for all x € IR", and S;, S, are affine subspaces of
IR" ™. A least-change secant update method associated to the factorization (39)
can be defined by

Tyl = T — Nk_leF(LL’k), (40)

where (Ngi1, Mg 1) is the row-by-row orthogonal projection of (N, M) on the affine
subspace of IR™*™ x IR" " defined by

V={(N,M)€S xS | Nsp =My} (41)

If, in a neighborhood of a solution z,, M (z) and N(z) are continuous, the theory
of Section 3 can be applied to this family of methods, so that they are locally
and superlinearly convergent. See [65]. If (39) represents the LU factorization, we
obtain the method introduced in [47]. If we take into account possible sparsity of
L~! and U we obtain a method introduced in [12]. Orthogonal factorizations and
structured situations were considered in [65]. In this paper it was also shown that
the Dennis-Marwil method [18] is a limit method in the family (40-41). Finally, it is
easy to show that Broyden’s methods are also particular cases of (40-41). Nontrivial
methods based on (40-41) can be useful when the system

is easy to solve.

3.3 Structured methods

Suppose that J(z) = C(z) + D(x) for all x € IR", where C'(z) is easy to compute
whereas D(x) is not. In this case, it is natural to introduce the quasi-Newton
iteration:

Tp1 = xp — [Clag) + Dy " F (), (43)
where, for each £ =0,1,2,..., Di,, is a projection of Dy on the affine subspace
Vi = {D € R"™" | Dsy = yj, — C(z)11)s"}. (44)

Writing 3x = y, — C(zx41)s* and considering the Frobenius projection, we see that

(gk — Dysg)st

Dyy1 = Dy + T

(45)
If C'(zx)~" is easy to compute (perhaps because C'(x) has a nice sparsity structure)
and k is small, some linear algebra can be saved in the computation of [C'(zy) +

Dy] ' F(xy) using the techniques that will be explained in Section 5.
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Sometimes one also knows that D(z) belongs to some fixed affine subspace S for
all x € IR". In this case, we can define Dy, as the projection of Dy on

Vstructured - {D €S | Dsk = gk =Yk — C(xk—l—l)sk}a (46)

but the formula (45) is not valid anymore, even for Frobenius projections. Moreover,
the affine subspace given by (46) can be empty so that the method only makes sense
if this definition is conveniently modified. In fact, we redefine:

Vininimizers = { Minimizers of ||Dsy — gk ||2 subject to D € S}. (47)

The affine subspace given by (47) is obviously nonempty and, so, it is possible to
project on it. Algorithms for computing this projection were given in [21]. Defining
s=z—x,y=F(z) — F(z),y=y — C(z)s and

V(z, z) = { Minimizers of ||Ds — g||» subject to D € S} (48)

we can apply the theory of Section 3 so that the resulting method turns out to
be locally and superlinearly convergent. In principle, Assumption 4 is necessary for
proving superlinear convergence. See, also, [24]. However, it can be conjectured that
this assumption can be deduced, in this case, from the definitions (46) and (47).

Examples of applied structured quasi-Newton methods can be found, among
others, in [1, 41, 42, 51, 55, 56].

4 Other secant methods

The Column-Updating method (COLUM) was introduced in [63] with the aim of
reducing the computational cost of BGM. The idea is that, at each iteration, only
the j-th column of By, is changed, where j is defined by ||sx|| = |[sk];|- S0, COLUM
is defined by (7) and

(yx — Brsk)el

where {e,...,e,} is the canonical basis of R" and |e] si| = [[sk/|oo. The QR and
the LU factorizations of Bjy1 can be obtained from the corresponding factorizations
of By, using the techniques classically used in linear programming. By (49), we have
that

(s, — B,;lyk)ekak’l

B, =B '+
k+1 k eg;B];lyk

(50)

Partial convergence results for COLUM were given in [34, 63, 68]. It has been
proved that COLUM enjoys local and superlinear convergence in the same sense

12



as BGM if the method is restarted (taking By = J(xy)) every m iterations, where
m is an arbitrary positive integer. Moreover, it has been proved that when the
method (with or without restarts) converges, the convergence is r—superlinear and
2n — g—quadratic. Finally, COLUM (without restarts) is convergent in the same
sense as BGM if n = 2.

The Inverse Column-Updating method (ICUM), introduced in [72], is given by
(7) and
(sk — By, 'yr)e],

Bl =B '+ : 51
k+1 k eg;yk ( )
where [e] yx| = ||ykllso- Therefore, Byl is identical to B;' except on the jj-th
column. So,
— Bysy)el B
By = By + e~ Brswen B (52)

6}; Bksk
Similar local convergence results to those of COLUM were given in [54, 72].
It is easy to see that COLUM and ICUM have the invariancy properties of BGM
and BBM respectively. Probably, combined methods in the sense of [70] can also be
efficient.
The discussion on BGM, BBM, COLUM and ICUM suggests the introduction
of quasi-Newton methods of the form

(yr — Brsg)vp
vk sy,

Byi1 = By + , (53)
where v, L s,_q, or

(sk — By 'ye)wi

Wi Yk

where wy L yr_1. These methods are close to the multipoint secant methods studied
in [2, 3, 8,9, 31, 37, 46, 53, 60, 61, 75, 85, 87, 96 in the sense that they satisfy an
additional interpolatory condition. Their convergence analysis using the techniques
of the above cited papers must be easy, but their practical efficiency does not seem
to have been studied. Some authors [91, 44] choose the parameter wy in (54) with
the aim of maintaining well-conditioning properties of the matrix By.

The first quasi-Newton method with direct updates of factorizations was intro-
duced by Dennis and Marwil in [18]. It modifies the upper-triangular factor of
the LU factorization of By at each iteration, so that the secant equation is always
satisfied (with some stability safeguards). See, also, [77, 92]. Convergence results
for the Dennis-Marwil method are even weaker than the ones that can be proved
for the Stationary Newton method commented in Section 1. The work [18] in-
spired the introduction of other methods with direct updates of factorizations with

Bl =B+ : (54)
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stronger convergence results. We have already mentioned the least change secant
update methods introduced in [65], which enjoy local and superlinear convergence.
Other methods, having the same theoretical convergence properties as the Station-
ary Newton method, were introduced in [36, 62, 64]. The Row-Scaling method (see
[36]) is particularly simple and, sometimes, quite effective. It consists in the updat-
ing By1 = DyBy, where Dy is diagonal and it is chosen so that the secant equation
is satisfied, when this is possible.
We finish this section mentioning the quasi-Newton method introduced by Thomas

[93], which is given by

(sk — By 'yk)di B!

Bfl :Bfl_i_ , 59
k+1 k ngglyk ( )
where
dy = [Ry. + (|lskll2/2)1]sw
and dd?
Ricr = (14 Isillolsella] + Re — 75).
k Sk

The properties of this method are not yet well understood. However, in spite of its
larger cost per iteration, very good numerical results have been reported in several
works. See, for example [43].

5 Large-scale implementations

The best known general-purpose modern implementations of quasi-Newton methods
for solving large nonlinear systems are based on rank-one correction formulae like
BGM, BBM, COLUM and ICUM. See [34, 36, 58]. Unfortunately, the methods
based on direct updates of factorizations which have pleasant convergent properties
[65] need sparsity of the L™! factor in the LU decomposition of the true Jacobian,
a property that holds only in very structured problems.

A crucial decision involves the choice of the initial Jacobian approximation By.
The most favorable situation occurs when one is able to compute a good approxima-
tion of J(zy) (perhaps using automatic differentiation or CPR techniques [14, 15])
and the LU factorization of this approximation is sparse. In this case, after possible
permutations of rows and variables, we compute

By = LU (56)
and we use this sparse factorization throughout the calculations.

14



If a sparse factorization of a suitable approximation of .J(xy) is not possible, it

is sensible to use Bl < V f1(z) V ful(zo) > (57)
’ IVfilzo)ll3” IV fa(o) 3/

where J(zy) = (Vfi(xg),...,Vfu(z))'. In (57), By approximates J(zy) in the
sense that the J(x)B; ' has only 1’s on the diagonal. With this choice the initial
iteration is scale-invariant and the vector sq is a descent direction for |F(x)[|2 (see
Section 7). Of course, some alternative choice must be employed for a column of

By' if the involved gradient is null.
In BGM and COLUM, we have

- B T
By = By + (v TkSk)Uk ) (58)

and, consequently,

o B*lyk)UT
B*l _ B*l (Sk k k Bfl. 59
k+1 kT T B Ty k (59)
Therefore,
Byt = (I +wevi) By, (60)
where uy = (s, — B, "yk) /v By, yr. Thus,
Byt = (I +up 1ot ). (I +uewl) Byt (61)

Formula (61) shows that methods of the form (58) can be implemented associated
to (56) or (57) adding O(n) operations and storage positions per iteration. In the
case of COLUM, it is obvious that only one additional vector is needed per iteration.
For BGM, a clever trick given in [25] allows one to implement (7, 61) storing only
one additional vector per iteration. See [34, 36, 38, 73].

In BBM and ICUM we have

(s — By 'yr)wi

Byl =B;' + 62
k+1 k w;{yk ( )

Therefore, defining uy, = (s, — By 'yx) /wiyk, we obtain:
Byl = Byt +ugwg + ...+ upwi (63)

which suggests straightforward associations of (62) with (56) or (57). A recent nu-
merical study by Luksan and Vléek [58] indicates that ICUM could be the most

15



effective secant method for large-scale problems with the initial choice (56). There-
fore, the implementation of (63) in the ICUM case deserves additional attention.
Observe, first, that

up = sp — Bylyr = =By, ' F(xg11) (64)
and define, for ICUM,

A =uowl + .. Fupwi | = uoeﬁ +...+ queﬁfl, (65)
where ||y,|lc = €] y,| for all v = 0,1,..., k. The columns of A; will be denoted
ai,...,a,. The large-scale ICUM algorithm can be described (with some abuse of
notation) as follows.

Step 0. Set k <+ 0 and I, = (.
Step 1. If k£ =0, compute (using (56) or (57))
so = —By ' F(x0). (66)
Else, compute
sk = up—1 — € F(g) up_1. (67)
Step 2. Compute
T = Tk + Sk, Yo = F(2p1) — F(a),
and
ue = =By Fag1) — Y €] F(wpe1) a;. (68)

Jelk
Step 4. Define ji, by |[yxllec = l€] yil. If ji € Iy, define Iyyy = I, and
Qjp, < Qg + Upg.
Otherwise, define I1; = I}, U {jx} and
aj, < Ug.

Set k < k41 and go to Step 1.

At each iteration of the algorithm described above, the (at most & — 1) nonnull
columns of A; must be stored. The computational cost of each iteration is dominated
by (68), which involves the (inexpensive) fixed-cost calculation —Bj ™ F(y41) plus a
linear combination of the nonnull columns of A;. Therefore each iteration requires
at most n+O(1) flops in addition to the previous one. If practical convergence does
not occur after a reasonably small number of iterations, it is sensible to restart the
whole computation. Other restarting criteria can mimic the ones usually used in
the Stationary Newton method. See [75, 88].
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6 Dealing with singularity

The quasi-Newton iteration (7) is well defined only if By is nonsingular. Local
convergence theories usually assume that J(z,) is nonsingular and that By is close
to J(z,). Under these conditions it can usually be proved that By is nonsingular
for all k. However, in practice, the initial choice of By could be singular and,
moreover, By, could be singular even when By, is not.

Singularity of By might occur when one chooses By = J(xg) (or some very good
approximation of the Jacobian). Since the (nonsingular) Newton step minimizes
|J(z0)s + F(x¢l|, it is natural, in the singular case, to choose sy as any minimizer
of [|[J(xg)s + F(xq]|3. Choosing the minimum-norm minimizer, we obtain:

sb = —J (o) F (wy), (69)

where J(z)" is the Moore-Penrose pseudoinverse of the initial Jacobian (see [33]).
Using a well-known approximation of the pseudoinverse, we can also compute, for
some p > 0,

so(p) = = (T (@0)" T (w0)) + pd) =" T (20) " F (o). (70)

When 11 — 0, so(p) tends to s). The step so() can be interpreted as the minimizer
of ||J(x¢)s + F(xo|]2 on a ball whose radius is smaller than ||s}|[s.

In practical computations, singularity of J(zy) is detected during the LU factor-
ization of this matrix: at some stage of the LU algorithm it is impossible to choose
a safe nonnull pivot. When the problem is large, and J(zy) is possibly sparse, com-
puting (70) is expensive and, so, this device is seldom used. It is usually preferred to
continue the LU factorization replacing the null or very small pivot by some suitable
nonnull quantity that takes into account the scaling of the matrix. See [36]. There
is no strong justification for this procedure except that, perhaps, it is not necessary
to be very careful when xj is far from the solution. (Even this statement can be
argued.)

On the other hand, a singular By, can appear even if By is nonsingular.

When By, is obtained from By by means of a secant rank-one correction,

— Bysi)vl
Bk-l—l = Bk + (yk ’UTSI; k) b ) (71)
k

as in the case of BGM and COLUM, we have, by (71), that

vI'B 1
det(Bys1) = ’:}Ti’;ky’“ det(By). (72)
k
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T p—1
If |U’“—UBTE#| is very small or very large then, either the scaling of By, is very dif-
k
ferent from that of By or their stability characteristics are very different. In fact,
conservative small-variation arguments recommend us to impose

1
o| det(By)| < [det(By)| < —[det(By)], (73)

where o € (0,1) is small (say, o ~ 0.1). By (72), if |“55%| ¢ [5,1/], the
k
inequalities (73) do not hold and By must be modified. Following [74], we can
replace (71) by
(yx — Brsk)vi

Biy1 = B + T : (74)

where 7, € [0,1]. Clearly, (73) is satisfied if 7, = 0, but 1 = 1 is the best choice in

the sense that By satisfies the secant equation. Therefore, it is natural to choose

N as the maximum 7 € [0, 1] such that (73) is satisfied. This leads to compute
vl Bi gy 1 }

= cl0,1] o< |(1— il B LA
e =max{n € 0,1 [0 < (1) 497 < 2

(75)

In “inverse” rank-one correction methods like BBM and ICUM, it is easier to

write directly
(sx — By 'ye)wi
Wi Yk '

An analogous reasoning to the one used to choose (75) leads us to the modification

Bij,=B,'+ (76)

(sk — By, 'ye)wi

By =B+ 7
k+1 k k wkTyk ( )
and, consequently, to the choice
wi Bys 1
me=max{n € [0,1] |0 < (L= ) + 7“5 2%) < 2, (78)
Wi, Yk o

Both in the initial iteration as in the updated ones a close-to-singular matrix By,
usually generates a very large increment s;. Very simple step-control procedures
are always associated to the implementation of quasi-Newton methods. In practical
problems, it has been verified that opportunistic ways of controlling the step-length
may prevent many divergence situations. See Section 9.

18



7 Global convergence tools

The results presented up to now are local, in the sense that convergence to a solution
can be guaranteed if the solution is assumed to exist and both the initial point and
the initial Jacobian approximation are close enough to the solution and its Jacobian
respectively.

It is of maximal practical importance to analyze what happens with sequences
generated by quasi-Newton methods when no restrictions are made on the initial
approximations. Unfortunately, almost nothing positive can be said about sequences
generated by pure formulae like (7), unless strong assumptions are made on F. New-
tonian sequences can oscillate between neighborhoods of two or more non-solutions
or tend to infinity, even in problems where a unique solution exists. So, if we want
to devise algorithms with global convergence properties, the basic iteration (7) must
be modified.

Usually, modifications of the basic iteration make use of some merit function.
Almost always, some norm of F(z) is used. The squared 2-norm ||F(z)||3 is fre-
quently preferred because of its differentiability properties. We will call f(x) the
(continuous and nonnegative) merit function, whose main property is that f(z) =0
if, and only if, F(z) = 0. Therefore, the problem of solving F(z) = 0 turns out to
be equivalent to the problem of finding a global minimizer of f(z). If, at a global
minimizer, f(x) does not vanish, the original system has no solution at all. For
simplicity, assume that

£() = SIF@B,

Vi(z) = J(x) F(z). (79)

JFrom (79), we see that the Newton direction fits well with the necessity of
decreasing f(z). In fact,

(—J ()" F(x), Vf(2)) = —2f(x) <0.

This implies that it is always possible to decrease f(z) along the Newton direction,
if this direction is well defined and f(x) # 0. Many algorithms can be interpreted as
adaptations of unconstrained optimization techniques (see [22]) to the minimization
of f(x). In particular, the iteration

T4l = Tk — OékJ(J,‘k)ilF(.’Ek) (80)

has been exhaustively analyzed. See [28, 59] and references therein. If oy > 0 is
conveniently chosen so that f(zyy1) is sufficiently smaller than f(zy), then every
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limit point of the sequence generated by (80) either is a solution or a point where
the Jacobian is singular. So, if the Jacobian is nonsingular for all x € IR" and f(z)
has bounded level sets, (80) necessarily finds a solution. Finally, in a vicinity of such
a solution it can be proved that o, = 1 satisfies the sufficient decrease requirements,
therefore the method (80) coincides, ultimately, with (2) and the convergence is
quadratic.

Although Griewank [39] has proved that Broyden’s method, with a suitable line
search, also has global convergence properties in the absence of singular Jacobians,
most attempts for globalization of quasi-Newton methods rely on the exploration of
the good descent properties of Newton. Among these we can cite:

1. Hybrid strategies [74, 79], in which Broyden’s iteration are combined with
special iterations which are, essentially, discretizations of Newton iterations.

2. Nonmonotone strategies [29]: here “ordinary” quasi-Newton iterations are ac-
cepted, even if the merit function is increased during some iterations, but the
algorithm switches to a Newton iteration if a given tolerance is violated.

3. A strategy due to Bonnans and Burdakov [10]: if the sufficient decrease condi-
tion is violated the step-length is reduced, but, at the same time, the Jacobian
approximation is updated using a secant formula. As a result, the search di-
rection changes during the current iteration and, in the limit, is tangent to the
Newton direction. An antecedent of this idea can be found in [78].

A common drawback of all the globalization strategies based on decreasing a
norm is that local-nonglobal minimizers of f(x) are strong attractors of the iterative
process. Other norm-minimization related techniques can be found in [48, 89, 90].
Therefore, globalized algorithms can converge to points in which the Jacobian is sin-
gular. Unfortunately, such points are completely useless from the point of view of
finding solutions of the nonlinear system. It is easy to see that all the observations
related to the Newton direction made in this section, except the ones related to
rapid local convergence, are valid for the choice (57) of the Jacobian approximation.

A completely different source of globalization procedures is the homotopic ap-
proach, by means of which a sequence of slightly modified problems are solved, in
such a way that the first one is trivial and the last one is (1). For example, the
“regularizing homotopy”, used in [94, 95] is

H(z,t) =tF(z)+ (1 — t)(z — xy). (81)

The solution of H(z,0) = 0 is, obviously, zy and the solution of H(z,1) = 0 is the
one required in (1). Many methods for tracing the homotopy path are described
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in the literature. Locally convergent quasi-Newton methods are useful tools in this
case since strategies like (81) deal with several nonlinear systems for which good
initial estimates are available. See, also, [83].

8 Results for linear systems

In this section we assume that F(z) = Az — b, A € R™", b € IR". To study the
behavior of quasi-Newton methods for linear systems is important under different
points of view. One one hand, real-life problems can be linear or nearly linear. On
the other hand, the properties of a method in the linear case usually determine the
local convergence behavior of the method. In fact, in a neighborhood of a solution
where the Jacobian is nonsingular, the linear approximation of F' is dominant and,
so, the generated sequence tends to behave as in the linear case. For example, if
F(z) = Az —b and A is nonsingular, Newton’s method is well defined and converges
in just one iteration. This is the main reason why the local convergence of this
method is quadratic.

Until 1979 it was believed that Broyden’s methods did not enjoy finite conver-
gence when applied to linear systems. However, in [30] it was proved that Broyden’s
method and many other methods of the form (71) or (76) also converge in a finite
number of steps.

In fact, let us consider the method defined by (7) and (71). Choose By, = By
if yp = 0. If y, # 0, take v, € IR™ such that v}'s; # 0 and v} B;'yr # 0. Gay’s
theorem [30] says that, if A and By are nonsingular and xy € IR" is arbitrary, then
F(xy) = 0 for some k < 2n. The convergence of zj to x, = A™'b is far from being
monotone in any sense.

The local convergence consequences of Gay’s theorem for general nonlinear sys-
tems are that, under the usual assumptions that guarantee local convergence, meth-
ods like BGM, BBM, COLUM and ICUM enjoy 2n-step quadratic convergence.
Therefore, ||T10, — T.||/||zr — z.||* is asymptotically bounded. This property im-
plies r-superlinear convergence. See [75].

The finite convergence theorem [30] sheds light on theoretical properties of rank-
one secant methods but is of little importance for practical large-scale linear prob-
lems. In fact, the intermediate iterations (x; with k£ < 2n) are, usually, very poor
approximations of the solution so that the full cycle of 2n steps is necessary for
obtaining a reasonable approximation of z,. When n is large, a sequence of 2n
iterations is not affordable since, as mentioned in Section 5, the cost of the k-th iter-
ation is proportional to kn, both in terms of time and storage. Therefore, practical
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implementations of rank-one secant methods for linear systems need modifications
of the basic iteration (7). See the discussion in [25].

Some authors [25, 71, 74] studied variations of BGM for linear systems. Here we
survey the results presented in [71], correcting, by the way, some arithmetic typos of
that paper. Given xy € IR" and By € IR"*" nonsingular, the linear Broyden method
is defined by

T4l = T — )\kBk_lF(l‘k), (82)

where Ay # 0 and
(yx — Bsi)si

Bii1 = B+ T (83)
The coefficient 7, € [0.9,1.1] is such that
|det(Byy1)| > 0.1 |det(By)]. (84)

Moré and Trangenstein [74] proved that (84) holds with 7, € [0.9,1.1] defining
e = sk By Y/ st sk, with ng = 1if [y > 0.1, and n = (1 = 0.1sign(yx))/(1 — )
if |vx] < 0.1, where sign(0) = 1. This choice of 7, provides the number closest to
unity such that (84) is satisfied. See [74] and Section 6 of this paper.

Let || - || denote the Frobenius norm. For the method defined by (82), (83) and
(84) it can be proved that

1B — Allr < ||Bo — Allr
forall k=0,1,2,... and
[Besr — Allf < [|Bx — Al — 0.891 || Bey1 — Bl

for all £ = 0,1,2,.... It follows that the series ¥ || B,y — Bgl||% is convergent. So,
|| B.+1 — By|| tends to 0.
It can also be proved that the sequence generated by (82), (83) and (84) satisfies

lzrr — 2ll _ er+ A — 1]
lzn — .|| —

T (85)

for all k =0,1,2,..., where {g;} is a sequence that tends to zero.

Formula (85) explains the behavior of the error z;, —x, independently of the con-
vergence of the sequence. In particular, it shows that the sequence is superlinearly
convergent if Ay, — 1, and that convergence at a linear rate takes place if, eventually,
Ak € 0,2 — o] for some o > 0.
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Finally, in [71] it has been proved that A\; — 1 holds when one chooses Ay as the
(nonnull) minimizer of ||A(xy, + Ady) — b||3 along the direction dy = —B; ' F(xy). If
this Ag is null, we replace it by 1. However, this possible replacement is not necessary
for k£ large enough.

As a result, we have a global and superlinearly convergent BGM-like method for
solving linear nonsingular systems. The proposed choice of A\; has an advantage over
the choice A\, = 1 in the large-scale case. In fact, when A is the one-dimensional
minimizer proposed above, the residual norm at the iterate xj,; is smaller than
the norm of Axy — b. Therefore, in terms of the residual norm, the quality of the
approximation is improved at every iteration, and an acceptable final approxima-
tion can be obtained for £ << 2n. An alternative choice with similar theoretical
properties that, in some sense, minimizes a norm of the error, has been considered

in [25] and [71].

9 Numerical studies

Most numerical studies in the literature are associated to the introduction of a
determined method. In spite of that, we can obtain useful information from many of
them. We are especially interested on experiments regarding quasi-Newton methods
for solving large and possibly sparse nonlinear systems.

The GMM study [36] involves 7 variably dimensioned nonlinear systems. Six
of them are “toy problems” and have been designed with the aim of testing nu-
merical algorithms. The seventh is the discretization of a Poisson equation. The
algorithms tested are Newton’s method, the Stationary Newton method, Broyden’s
good method, Broyden’s sparse (Schubert) method, the Dennis-Marwil method and
three direct-update methods that includes the row-scaling method mentioned in
Section 4. Matrix factorizations use the algorithm of George and Ng [32] and a
nonmonotone globalization procedure is incorporated.

The GKM study [35] uses 3 discretizations of two-dimensional boundary-value
problems with known solutions: Poisson, Bratu and Convection-Diffusion. The
three of them depend on a parameter A according to which the problem is more or
less difficult. If A = 0 the problems are linear. If A\ << 0, noncoercivity is severe
and the discretized problems are very hard. The tested algorithms are Newton,
Stationary Newton, BGM and COLUM. All the algorithms have the option of using
backtracking to improve global convergence.

The FGKMS study [29] solves a set of problems given in [57] having similar char-
acteristics to the set of problems of [36]. In addition, a discretization of the driven
cavity flow problem is also considered, which has a parameter )\, the Reynolds num-
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ber, that controls nonlinearity. Finally, the study includes a Convection-Diffusion
problem and a set of artificial problems where Newton’s method, without step con-
trol, do not converge.

The LV study [58] includes 30 problems. 16 of them are of the type considered in
[36] with some superposition with that set. In addition, the study has countercurrent
reactor problems, second-order boundary value problems (including Poisson and
Convection-Diffusion), problems of flow in a channel, swirling flow problems, porous
medium problems, a nonlinear biharmonic problem and the driven cavity problem.
The objective of this study is to introduce a globalization procedure. The underlying
quasi-Newton methods are the discrete Newton method, the Stationary Newton
method, the sparse Broyden (Schubert) method, the variation due to Bogle and
Perkins [4], Li’s method [52], a combination of Li with Schubert, the row-scaling
method [36], Broyden’s good method, COLUM and ICUM (called LMC and LMI
respectively in that study).

None of the above cited studies contradicts the common belief that Newton’s
method is the most robust algorithm for solving nonlinear systems. Concerning glob-
alization procedures, experiments recommend to be cautions, because many times
the attempts to reduce the sum of squares lead to convergence to local-nonglobal
minimizers. As a matter of fact, the simple stabilization procedure that consists in
not letting the step-length to be too large (see Section 6) is, frequently, very effective
to turn a divergent algorithmic sequence into a convergent one.

When convergence is maintained, quasi-Newton corrections usually improve sub-
stantially the performance of Newton’s method. The amount of this improvement
depends of the Jacobian structure. In the problems considered in the above cited
studies, methods that do not save linear algebra, like Broyden-sparse, must be dis-
carded, since its computational cost per iteration is roughly the same as Newton’s.
Practically all quasi-Newton corrections are more effective than the Stationary New-
ton method. According to [58], ICUM ranks first, but there seems to be little differ-
ence between this method and BGM or COLUM. Up to our knowledge there are no
published numerical studies for large-scale problems where Broyden’s bad method
BBM is included.

10 Conclusions and perspectives

In recent years, quasi-Newton methods for solving square smooth nonlinear systems
have been out of the mainstream of numerical analysis research. A popular scientific
journal on Numerical Analysis published 4 papers on the subject before 1970, 10
between 1971 and 1980, 11 in the eighties and none from 1991 to 1999. Sometimes,
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research in a family of numerical techniques becomes out-of-fashion after its incor-
poration to ordinary practice of problem solvers in Physics, Chemistry, Engineering
and Industry. Other times, promising algorithms are completely forgotten, both in
research and applications.

The situation of the area surveyed in this paper is perhaps intermediate. The
classical paper [20] is cited in most works concerning quasi-Newton methods for
nonlinear systems. While this survey was being written it had been cited 361 times
in indexed scientific journals. The last 100 citations go from 1992 to the present
days. 42 of these citations come from non-mathematical journals. It must be warned
that, many times, the Dennis-Moré paper [20] is cited in connection to quasi-Newton
methods for minimization problems, and not for nonlinear systems. Since the ev-
eryday practice in Physics, Chemistry and Engineering includes the resolution of
nonlinear systems using Newton’s method, we are tempted to conclude that the
penetration of the quasi-Newton technology in applications, although existing, has
not been as intense at the potentiality of the technique deserves.

In the Introduction of most quasi-Newton papers, it was stressed that the their
main motivation was to avoid computation of cumbersome derivatives. However,
even before the boom of automatic differentiation, practitioners found that, for
many of their problems, computing derivatives was not as difficult or costly as
stated in the quasi-Newton literature. They also verified that beginning a quasi-
Newton process with By = I, or some other arbitrary matrix, lead very often to
disastrous results and, so, the computation of an initial Jacobian was almost always
necessary. After writing a Jacobian subroutine, it seemed reasonably to use it at
every iteration (Newton’s method) or every m iterations, repeating the old Jacobian
in the remaining ones (Newton’s method with refinements).

In practical problems in which the Jacobian can be computed but its structure
is too bad for factorization, the modern tendency is to use the inexact-Newton ap-
proach [17], in which an iterative linear solver is used for solving the Newtonian lin-
ear equation J(zg)s = —F'(xy) up to some precision which is sufficient to guarantee
convergence of the nonlinear solver. Moreover, the inexact-Newton technology fits
well with global convergence requirements. Probably, many users felt disappointed
when they tried to globalize quasi-Newton methods by the mere introduction of a
damping parameter and backtracking procedures. See [22].

However, a reasonable scope of problems exists, for which quasi-Newton methods
that save linear algebra are quite effective and, probably, outperform inexact-Newton
algorithms. This is the case of large-scale problems in which the Jacobian can be
computed, its factorization is affordable but it is very costly in comparison to the
single updating procedures of rank-one methods. The recipe for those cases is to
begin with a Newtonian iteration, and to continue with some cheap rank-one method
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as far as this is effective. Unfortunately, a code like that must be prepared to return
to Newtonian iterations, a disappointing fact for those who hoped that quasi-Newton
techniques could always replace Newton.

Quasi-Newton methods for solving large-scale nonlinear systems will be largely
used in applications when both numerical analysts and potential users be conscious
about their real advantages and limitations. Our point of view is that rank-one
algorithms provide, in many cases, efficient and economic ways to refine a basic
(first) Newtonian iteration. If we are right, questions often neglected in the quasi-
Newton literature, as “when should one restart?” must be answered, in spite of its
poor theoretical charm.

We finish this survey stating 10 open problems, some of which were incidentally
mentioned in the text.

1. It is well known that, under the usual nonsingularity and Lipschitz assump-
tions, the matrices By generated by Broyden’s good method do not necessarily
converge to J(z,). Does this sequence of matrices always have a limit? What
happens with the sequences { By} corresponding to other methods?

2. Convergence theorems for least-change update and other quasi-Newton meth-
ods say that there exist €,0 > 0 such that x; — x, superlinearly when-
ever ||xg — .|| and ||By — J(z)|| < 0. Is this superlinear convergence uni-
form? In other words, for which methods can we prove that “there exist
g,0 > 0 and a sequence of positive numbers £ — 0 such that whenever
|lzo — z.|| and ||By — J(z.)|| < 4, the sequence zj converges to z, and
|zks1 — x| < ekllxg — x| for all k77

3. Is it possible to prove local convergence without restarts of methods like
COLUM and ICUM? What about superlinear convergence?

4. Are there reasonable sufficient conditions under which the convergence of
Broyden-like methods for linear systems takes place in less than 2n iterations?

5. It is generally accepted that the Dennis-Marwil method (and some other sim-
ilar direct factorization algorithms) enjoys local convergence only if periodic
Jacobian restarts are performed. However, no counter-example showing that
local convergence without the restarting condition might not hold is known.
Does a counter-example exist in the linear case?

6. Does there exist a cheap and theoretically justified procedure for modifying
the LU factorization of By when a null or very small pivot is found?
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10.

Is it possible to prove that Assumption 4 necessarily holds for the choice (48)
of V(z,2)?

Which are the properties of direct-secant-update and structured quasi-Newton
methods when applied to linear systems?

The order of convergence of Newton’s method with p refinements (the Jaco-
bian is repeated during p consecutive iterations) is 2+p. See [75, 76, 88]. This
means that ||zg,41 — .||/ ]|xk — .]|**? is asymptotically bounded. Can some-
thing better be expected when, instead of repeating the previous Jacobian, we
update it with a secant formula?

Many methods in the flourishing interior point field for mathematical program-
ming can be interpreted as clever damped Newton iterations on an homotopic
basis. Can they be improved by suitable quasi-Newton updates? (Up to our
knowledge, no attempt has been made in this sense, except the one in [23].)
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