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Abstra
t

Pra
ti
al quasi-Newton methods for solving nonlinear systems are sur-

veyed. The de�nition of quasi-Newton methods that in
ludes Newton's method

as a parti
ular 
ase is adopted. However, espe
ial emphasis is given to the

methods that satisfy the se
ant equation at every iteration, whi
h are 
alled

here, as usually, se
ant methods. The least-
hange se
ant update (LCSU) the-

ory is revisited and 
onvergen
e results of methods that do not belong to the

LCSU family are dis
ussed. The family of methods reviewed in this survey in-


ludes Broyden's methods, stru
tured quasi-Newton methods, methods with

dire
t updates of fa
torizations, row-s
aling methods and 
olumn-updating

methods. The implementation of the algorithms of most pra
ti
al relevan
e is

des
ribed. The survey in
ludes a dis
ussion on global 
onvergen
e tools and

linear-system implementations of Broyden's methods. In the �nal se
tion,

pra
ti
al and theoreti
al perspe
tives of this area are dis
ussed.

1 Introdu
tion

In this survey we 
onsider nonlinear systems of equations

F (x) = 0; (1)

where F : IR

n

! IR

n

has 
ontinuous �rst partial derivatives. We denote F =

(f

1

; : : : ; f

n

)

T

and J(x) = F

0

(x) for all x 2 IR

n

.
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All pra
ti
al algorithms for solving (1) are iterative. Given an initial approx-

imation x

0

2 IR

n

, a sequen
e of iterates x

k

; k = 0; 1; 2; : : : is generated in su
h a

way that, hopefully, the approximation to some solution is progressively improved.

Newton's is the most widely used method in appli
ations. See [22, 50, 75, 87℄. The

Newtonian iteration is de�ned whenever J(x

k

) is nonsingular. In this 
ase, the

iterate that follows x

k

is given by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

): (2)

The Ja
obian inverse J(x

k

)

�1

does not need to be 
al
ulated. Instead, s

k

2 IR

n

results from solving

J(x

k

)s

k

= �F (x

k

) (3)

and the new iterate is de�ned by

x

k+1

= x

k

+ s

k

: (4)

Newton's method has very attra
tive theoreti
al and pra
ti
al properties: if x

�

is a

solution of (1) at whi
h J(x

�

) is nonsingular and x

0

is 
lose enough to x

�

, then x

k


onverges superlinearly to x

�

. This means that, given an arbitrary norm k � k in IR

n

,

lim

k!1

kx

k+1

� x

�

k

kx

k

� x

�

k

= 0: (5)

Moreover, if J(x) satis�es the Lips
hitz 
ondition

kJ(x)� J(x

�

)k � Lkx� x

�

k (6)

for all x 
lose enough to x

�

, the 
onvergen
e is quadrati
, so the error at iteration

k + 1 is proportional to the square of the error at iteration k. In other words, the

number of 
orre
t digits of the approximation x

k+1

tends to double the number of


orre
t digits of x

k

.

Another remarkable property of Newton's method is its invarian
y with respe
t

to linear transformations both in the range-spa
e as in the domain spa
e. Invarian
y

in the range-spa
e means that, given any nonsingular matrix A, the iterates of the

method applied to

AF (x) = 0


oin
ide with the iterates of the method applied to (1). Domain-spa
e invarian
y

means that the iterates of the method applied to

F (Ay) = 0
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are given by A

�1

x

k

, provided that y

0

= A

�1

x

0

, where fx

k

g is the sequen
e generated

by (2). The main 
onsequen
e of invarian
y is that bad s
aling of the variables or the


omponents of the system 
annot a�e
t the performan
e of the method, if rounding

errors (whi
h 
an a�e
t the quality of the solution of (3)) are disregarded.

The Newton iteration 
an be 
ostly, sin
e partial derivatives must be 
omputed

and the linear system (3) must be solved at every iteration. This fa
t motivated the

development of quasi-Newton methods, whi
h are de�ned as the generalizations of

(2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

): (7)

In quasi-Newton methods, the matri
es B

k

are intended to be approximations of

J(x

k

). In many 
ases, the 
omputation of (7) does not involve 
omputing derivatives

at all. Moreover, many times B

�1

k+1

is obtained from B

�1

k

using simple pro
edures

thanks to whi
h the linear algebra 
ost involved in (7) is mu
h less than the one

involved in (3).

A

ording to de�nition (7), Newton's method is a quasi-Newton method. So is

the stationary Newtonmethod, where B

k

= J(x

0

) for all k = 0; 1; 2; : : : and Newton's

method \with p re�nements", in whi
h B

k

= J(x

k

) when k is a multiple of p + 1,

whereas B

k

= B

k�1

otherwise. The \dis
rete Newton" method is a quasi-Newton

method too. It 
onsists in de�ning

B

k

=

�

F (x

k

+ h

k;1

e

1

� F (x

k

)

h

k;1

; : : : ;

F (x

k

+ h

k;n

e

n

)� F (x

k

)

h

k;n

�

(8)

where fe

1

; : : : ; e

n

g is the 
anoni
al basis of IR

n

and h

k;j

6= 0 is a dis
retization param-

eter. This parameter must be small enough so that the di�eren
e approximation to

the derivatives is reliable but large enough so that rounding errors in the di�eren
es

(8) are not important.

Many times, J(x) is a sparse matrix, whose sparsity pattern is known. In this


ase, a pro
edure given in [15℄ and re�ned in [14℄ (see also [13, 52℄) allows one

to 
ompute a �nite di�eren
e approximation to J(x) using less than n auxiliary

fun
tional evaluations.

In the sixties it was 
ommon to justify the existen
e of most quasi-Newton meth-

ods saying that the task of 
omputing derivatives is prone to human errors. In fa
t, it

is. However, automati
 di�erentiation te
hniques have been developed in the last 20

years that, in pra
ti
e, eliminates the possibility of error. See [26, 40, 45, 80, 81, 82℄

and many others. Moreover, in most 
ases, the 
omputation of derivatives using

automati
 di�erentiation is not expensive. This implies that, in modern pra
ti
e,

interesting quasi-Newton methods are those in whi
h the Ja
obian approximations

are de�ned in su
h a way that mu
h linear algebra is saved per iteration. Usually,
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in large and sparse problems, the resolution of (3) using dire
t methods [27, 32, 97℄

is expensive but not prohibitive. (When it is prohibitive it is probably better to

use inexa
t-Newton methods [17, 50℄.) In these 
ases, to use B

0

= J(x

0

) generating

B

k

; k � 1 using 
heap-linear-algebra quasi-Newton te
hniques is worthwhile.

The name \quasi-Newton" was used after 1965 to des
ribe methods of the form

(7) su
h that the equation

B

k+1

s

k

= y

k

� F (x

k+1

)� F (x

k

) (9)

was satis�ed for all k = 0; 1; 2; : : : Equation (9) was 
alled \fundamental equation of

quasi-Newton methods". After the Dennis-S
hnabel book [22℄ most authors prefer to


all quasi-Newton to all the methods of the form (7), whereas the 
lass of methods

that satisfy (9) are 
alled \se
ant methods". A

ordingly, (9) is 
alled \se
ant

equation".

The iteration (7) admits an interesting and pedagogi
al interpretation. Assume

that, for all k = 0; 1; 2; : : : we approximate F (x) by a \linear model"

F (x) � L

k

(x) � F (x

k

) +B

k

(x� x

k

): (10)

Then, x

k+1

is the unique solution of the simpler problem L

k

(x) = 0. By (10) we

also have that

L

k

(x

k

) = F (x

k

) for all k = 0; 1; 2; : : : (11)

It is easy to see that (9) implies that

L

k

(x

k�1

) = F (x

k�1

) for all k = 1; 2; : : : (12)

Therefore, the aÆne fun
tion L

k

(x) interpolates F (x) at x

k

and x

k�1

. \Multipoint"

se
ant methods 
an be de�ned satisfying

L

k

(x

j

) = F (x

j

) for all j 2 I

k

; (13)

where fk � 1; kg � I

k

for all k = 1; 2; : : : See [2, 3, 8, 9, 31, 37, 46, 53, 60, 61, 75,

85, 87, 96℄.

This survey is organized as follows. In Se
tion 2 we sket
h a lo
al 
onvergen
e

theory that applies to most se
ant methods introdu
ed after 1965. In Se
tion 3 we

give the most used examples of least-
hange se
ant-update methods. In Se
tion 4 we

introdu
e interesting quasi-Newton methods that 
annot be justi�ed by the theory

of Se
tion 2. In Se
tion 5 we dis
uss large-s
ale implementations. In Se
tion 6 we

show how to deal with possible singularity of the matri
es B

k

. In Se
tion 7 we

dis
uss pro
edures used for obtaining global 
onvergen
e. In Se
tion 8 we study the

behavior of some quasi-Newton methods for linear systems. In Se
tion 9 we survey

a few numeri
al studies on large-s
ale problems. Finally, in Se
tion 10, we dis
uss

the prospe
tive of the area and we formulate some open problems.
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2 Least-
hange update theory

Most pra
ti
al quasi-Newton methods 
an be analyzed under the framework of a

general theory introdu
ed in [66℄. In [67℄ it was proved that the family of methods

whose 
onvergen
e 
an be proved using this theory stri
tly 
ontains those in
luded

a previous theory by Dennis and Walker [24℄. A generalization for more general

problems 
an be found in [69℄. A (slight) simpli�
ation of the theory of [66, 67℄ will

be reviewed here.

We 
onsider, as always, the problem (1). Assume that E is a �nite-dimensional

spa
e and that, for all x; z 2 IR

n

, h�; �i

x;z

is a s
alar produ
t on E . We denote

kEk

2

x;z

= hE;Ei

x;z

for all E 2 E . For all x; z 2 IR

n

let V (x; z) � E be an aÆne

subspa
e. Assume, also, that ' : IR

n

� E ! IR

n�n

. The general algorithm analyzed

in this se
tion is de�ned by (7), where

B

k

= '(x

k

; E

k

); (14)

the initial approximations x

0

2 IR

n

and E

0

2 E are arbitrary, and the parameters

are generated by

E

k+1

= P

k

(E

k

): (15)

In (15), P

k

� P

x

k

;x

k+1

is the proje
tion operator on V (x

k

; x

k+1

), with respe
t to the

norm k � k

x

k

;x

k+1

.

The most simple example of (14,15) is Broyden's \good" method (BGM) [5℄,

whi
h is de�ned by

E = IR

n�n

; (16)

k � k

x;z

= k � k

F

= the Frobenius norm for all x; z 2 IR

n

; (17)

'(x; E) = E for all x 2 IR

n

; E 2 E (18)

and

V (x; z) = fB 2 IR

n�n

j B(z � x) = F (z)� F (x)g: (19)

Broyden's sparse (or S
hubert's) method [6, 86℄ is de�ned by (7,16,18) and

V (x; z) = fB 2 S j B(z � x) = F (z)� F (x)g; (20)

where S is the set of matri
es that have the sparsity pattern of J(x). See [4℄ for a

variation of this method.

Broyden's \bad" method (BBM) is de�ned by (7,16,17),

'(x; E) = E

�1

for all x 2 IR

n

; E 2 E ; E nonsingular (21)
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and

V (x; z) = fH 2 IR

n�n

j H[F (z)� F (x)℄ = z � xg: (22)

Many other examples are given in [66, 67℄. In most 
ases k � k

x;z

= k � k for all

x; z 2 IR

n

. However, situations where k � k

x;z


hanges appear when one analyzes

quasi-Newton (or variable metri
) methods for fun
tion minimization.

Under several assumptions, whi
h we will 
onsider below, methods de�ned by

(7,14,15) are lo
ally (and \qui
kly") 
onvergent. The �rst two are assumptions on

the fun
tional F and the remaining ones are assumptions on the method. A 
on-

vergen
e analysis for Broyden's method in a situation where the �rst assumption is

violated 
an be found in [16℄.

Assumption 1. There exists x

�

2 IR

n

su
h that F (x

�

) = 0 and J(x

�

) is nonsingu-

lar.

Assumption 2. There exist L > 0 su
h that, for some ve
tor norm j � j,

jJ(x)� J(x

�

)j � Ljx� x

�

j (23)

if x belongs to some neighborhood of x

�

.

Assumption 3. There exists E

�

2 E, r

�

2 [0; 1) su
h that ' is well de�ned and


ontinuous in a neighborhood of (x

�

; E

�

). Moreover, '(x

�

; E

�

) is nonsingular and

jI � '(x

�

; E

�

)

�1

J(x

�

)j � r

�

: (24)

Assumption 3 implies that we 
ould de�ne an ideal iteration, given by

x

k+1

= x

k

� '(x

�

; E

�

)

�1

F (x

k

); (25)

with good 
onvergen
e properties, in the sense that

lim

k!1

x

k

= x

�

and lim sup

k!1

jx

k+1

� x

�

j

jx

k

� x

�

j

� r

�

(26)

if x

0

is 
lose enough to x

�

. Of 
ourse, the ideal method de�ned by (25) 
annot

be implemented in pra
ti
e. However, the least 
hange update theory 
onsists in

showing that some implementable methods enjoy the property (26). Observe that,

in the 
ase r

�

= 0, (26) means superlinear 
onvergen
e.
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Assumption 4. For all x; z 
lose enough to x

�

there exists E 2 V (x; z), 


1

> 0

su
h that

kE � E

�

k � 


1

�(x; z); (27)

where �(x; z) � max fjx� x

�

j; jz � x

�

jg.

In the des
ription of the algorithm, we saw that E

k+1

is a proje
tion of E

k

on

V (x

k

; x

k+1

). Assumption 4 says that the distan
e between E

�

and this aÆne sub-

spa
e is of the same order as the maximum distan
e between fx

k

; x

k+1

g and x

�

.

In other words, we are proje
ting on manifolds that are not far from the ideal pa-

rameter E

�

. An algorithm where proje
tions are performed on the interse
tion of

manifolds with boxes 
an be found in [11℄. Clearly, we 
an use any norm k � k

in (27). The relation between the di�erent norms used in the proje
tions is given

by Assumption 5.

Assumption 5. There exists 


2

> 0 su
h that, for all x; z 
lose enough to x

�

,

E 2 E,

kEk

x;z

� [1 + 


2

�(x; z)℄kEk and kEk � [1 + 


2

�(x; z)℄kEk

x;z

; (28)

where k � k is a norm asso
iated to the s
alar produ
t h�; �i.

Assumption 5 says that the di�erent norms tend to be the same when x and

z are 
lose to x

�

. Assumptions 4 and 5 do not guarantee that the approximation

of E

k

to E

�

improves through 
onse
utive iterations. (This would be the 
ase if

E

�

2 V (x

k

; x

k+1

).) In fa
t, E

k+1

might be a worse approximation to E

�

than E

k

.

However, using these assumptions one 
an prove that the deterioration of E

k+1

as

an approximation to E

�

is bounded in su
h a way that the \error" kE

k+1

� E

�

k is

less than the error kE

k

�E

�

k plus a term whi
h is proportional to the error jx

k

�x

�

j.

This is a typi
al \bounded deterioration prin
iple", as introdu
ed in [7℄. See, also,

[20, 21, 24, 84℄ and many others. By bounded deterioration, the parameters E

k


annot es
ape from a neighborhood of E

�

for whi
h it 
an be guaranteed that lo
al


onvergen
e holds. Assumptions 1 to 5 are suÆ
ient to prove the following theorem

[66℄.

Theorem 1. Let r 2 (r

�

; 1). If Assumptions 1 to 5 hold and fx

k

g is generated by

(7,14,15), there exist " > 0; Æ > 0 su
h that, if jx

0

� x

�

j � Æ and kE

0

�E

�

k � Æ, the

sequen
e is well-de�ned, 
onverges to x

�

and satis�es

jx

k+1

� x

�

j � rjx

k

� x

�

j (29)
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for all k = 0; 1; 2; : : :

Moreover,

lim

k!1

kE

k+1

� E

k

k = lim

k!1

jB

k+1

� B

k

j = 0: (30)

At a �rst sight, the result (29) is disappointing. In fa
t, the same result 
an

be obtained (with r

�

= 0) if one uses (7) with B

k

= J(x

0

) for all k = 0; 1; 2; : : :

It 
ould be argued that there is no reason for modifying B

k

at every iteration if

one 
an obtain the same result not modifying this Ja
obian approximation at all.

Obviously, (30) also holds for this stationary-Newton 
hoi
e of B

k

.

Fortunately, some additional results help us to prove that, under some 
om-

putable 
onditions, the ideal speed of 
onvergen
e (26) 
an be rea
hed. From a

well-known theorem of Dennis and Walker [24℄ the following result 
an be obtained.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that

lim

k!1

j['(x

k

; E

k

)� '(x

�

; E

�

)℄(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0: (31)

Then, (26) holds.

Theorem 2 
orresponds, in the 
ase r

�

= 0, to the well-known Dennis-Mor�e 
on-

dition [19℄, whi
h 
hara
terizes the superlinear 
onvergen
e of sequen
es generated

by (7). Now, by (30), Theorem 2 implies the following more pra
ti
al result.

Theorem 3. Assume the hypotheses of Theorem 1, and

lim

k!1

j['(x

k+1

; E

k+1

)� '(x

�

; E

�

)℄(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0: (32)

Then, (26) holds.

Theorem 3 has important 
onsequen
es. Sin
e E

k+1

is 
omputed after the 
om-

putation of x

k+1

, algorithmi
 
hoi
es of this parameter 
an be de�ned so that (32) is

ne
essarily satis�ed. The most popular situation 
orresponds to the 
ase '(x

�

; E

�

) =

J(x

�

) and 
onsists in de�ning V (x; z) in su
h a way that B

k+1

� '(x

k+1

; E

k+1

) sat-

is�es the se
ant equation (9). In this 
ase, (32) is equivalent to

lim

k!1

jF (x

k+1

)� F (x

k

)� J(x

�

)(x

k+1

� x

k

)j

jx

k+1

� x

k

j

= 0

8



and this identity holds, if x

k

! x

�

, due to the assumption (23).

None of the theorems above imply that, even when r

�

= 0, E

k


onverges to E

�

.

In fa
t, simple 
ounter-examples 
an be shown where this is not true. Moreover,

nothing guarantees that E

k

is 
onvergent at all. Even in the 
ase of BGM, the best

studied least-
hange se
ant-update method, it is not known if, under the 
onditions

that are suÆ
ient to prove lo
al-superlinear 
onvergen
e, the sequen
e of matri
es

B

k

is 
onvergent. This seems to be a diÆ
ult open problem.

3 Some least-
hange se
ant-update methods

3.1 Broyden's methods

Broyden's good method is de�ned by (7) and (14{19). A simple quadrati
 program-

ming exer
ise shows that, for this method,

B

k+1

= B

k

+

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

: (33)

Moreover, the relation between the inverses of B

k

and B

k+1

is, in this 
ase,

B

�1

k+1

= B

�1

k

+

(s

k

�B

�1

k

y

k

)s

T

k

B

�1

k

s

T

k

B

�1

k

y

k

: (34)

Formula (34) shows that the iteration (7) 
an be 
omputed without solving a lin-

ear system at ea
h iteration. In fa
t, for 
omputing B

�1

k+1

we only need to perform

O(n

2

) operations, whereas O(n

3

) operations are ne
essary for solving a (dense) lin-

ear system. It is generally believed that the most stable way in whi
h BGM 
an be

implemented (when the number of variables is small) requires to store the QR fa
-

torization of B

k

. Sin
e B

k+1

di�ers from B

k

by a rank-one matrix, the fa
torization

of B

k+1


an be obtained using O(n) plane rotations. See [74℄.

Broyden's bad method is given by (7), (16), (17), (21) and (22). As in the 
ase

of BGM, after some linear algebra the 
al
ulations 
an be organized so that the

de�nition of the method be
omes:

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)y

T

k

y

T

k

y

k

(35)

for all k = 0; 1; 2; : : : Moreover, a

ording to (35) we have:

B

k+1

= B

k

+

(y

k

� B

k

s

k

)y

T

k

B

k

y

T

k

B

k

s

k

: (36)
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There exists an obvious duality between the formulae that de�ne both Broyden's

methods. >From (34) it is easy to dedu
e that, if the proper 
hoi
es are made on

the initial point and the initial Ja
obian approximation, Broyden's good method is

invariant under linear transformations in the range spa
e. From (35) we see that

Broyden's-bad has the same property in the domain spa
e. Therefore, if rounding

errors are not 
onsidered and the behavior of Broyden's-good for F (x) = 0 is satis-

fa
tory, it must also be satisfa
tory for solving AF (x) = 0. On the other hand, if

Broyden's bad method works well on F (x) = 0, it will also work on F (Ax) = 0.

The reasons why BGM is good and BBM is bad are not well understood. In

fa
t, it is not 
lear that, in pra
ti
e, BGM is really better than BBM. In [70℄ it was

observed that, for BGM, sin
e B

k

s

k�1

= y

k�1

, we have, if k � 1,

B

k+1

s

k�1

� y

k�1

=

(y

k

�B

k

s

k

)s

T

k

s

k�1

s

T

k

s

k

:

Analogously, for BBM,

B

k+1

s

k�1

� y

k�1

=

(y

k

� B

k

s

k

)y

T

k

y

k�1

y

T

k

B

k

s

k

:

Therefore, the \se
ant error"B

k+1

s

k�1

�y

k�1

is, in both 
ases, a multiple of y

k

�B

k

s

k

.

It is natural to 
onje
ture that the BGM iteration will be better than the BBM

iteration when

js

T

k

s

k�1

j

s

T

k

s

k

<

jy

T

k

y

k�1

j

jy

T

k

B

k

s

k

j

: (37)

An analogous reasoning involving B

�1

k+1

y

k�1

� s

k�1

leads to 
onje
ture that BGM is

better than BBM when

js

T

k

s

k�1

j

js

T

k

(B

k

)

�1

y

k

j

<

jy

T

k

y

k�1

j

y

T

k

y

k

: (38)

In [70℄ a 
ombined method was implemented that 
hooses BGM or BBM a
-


ording to the test (38). This method was tested using a set of small problems and

turned out to be superior to both BGM and BBM. By (37-38) BGM tends to be

better than BBM if B

k

underestimates the true Ja
obian. This means that, if B

0

is

arbitrarily 
hosen and the true Ja
obian is \larger than B

0

", Broyden's good method

tends to be better than Broyden's bad. This is also 
on�rmed by small numeri
al

experiments.

3.2 Dire
t updates of fa
torizations

Suppose that, for all x 2 IR

n

, J(x) 
an be fa
torized in the form

J(x) = M(x)

�1

N(x); (39)

10



where N(x) 2 S

1

, M(x) 2 S

2

for all x 2 IR

n

, and S

1

; S

2

are aÆne subspa
es of

IR

n�n

. A least-
hange se
ant update method asso
iated to the fa
torization (39)


an be de�ned by

x

k+1

= x

k

�N

�1

k

M

k

F (x

k

); (40)

where (N

k+1

;M

k+1

) is the row-by-row orthogonal proje
tion of (N

k

;M

k

) on the aÆne

subspa
e of IR

n�n

� IR

n�n

de�ned by

V = f(N;M) 2 S

1

� S

2

j Ns

k

= My

k

g (41)

If, in a neighborhood of a solution x

�

, M(x) and N(x) are 
ontinuous, the theory

of Se
tion 3 
an be applied to this family of methods, so that they are lo
ally

and superlinearly 
onvergent. See [65℄. If (39) represents the LU fa
torization, we

obtain the method introdu
ed in [47℄. If we take into a

ount possible sparsity of

L

�1

and U we obtain a method introdu
ed in [12℄. Orthogonal fa
torizations and

stru
tured situations were 
onsidered in [65℄. In this paper it was also shown that

the Dennis-Marwil method [18℄ is a limit method in the family (40-41). Finally, it is

easy to show that Broyden's methods are also parti
ular 
ases of (40-41). Nontrivial

methods based on (40-41) 
an be useful when the system

N

k

s

k

= �M

k

F (x

k

) (42)

is easy to solve.

3.3 Stru
tured methods

Suppose that J(x) = C(x) +D(x) for all x 2 IR

n

, where C(x) is easy to 
ompute

whereas D(x) is not. In this 
ase, it is natural to introdu
e the quasi-Newton

iteration:

x

k+1

= x

k

� [C(x

k

) +D

k

℄

�1

F (x

k

); (43)

where, for ea
h k = 0; 1; 2; : : :, D

k+1

is a proje
tion of D

k

on the aÆne subspa
e

V

full

= fD 2 IR

n�n

j Ds

k

= y

k

� C(x

k+1

)s

k

g: (44)

Writing �y

k

= y

k

� C(x

k+1

)s

k

and 
onsidering the Frobenius proje
tion, we see that

D

k+1

= D

k

+

(�y

k

�D

k

s

k

)s

T

k

s

T

k

s

k

: (45)

If C(x

k

)

�1

is easy to 
ompute (perhaps be
ause C(x) has a ni
e sparsity stru
ture)

and k is small, some linear algebra 
an be saved in the 
omputation of [C(x

k

) +

D

k

℄

�1

F (x

k

) using the te
hniques that will be explained in Se
tion 5.
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Sometimes one also knows that D(x) belongs to some �xed aÆne subspa
e S for

all x 2 IR

n

. In this 
ase, we 
an de�ne D

k+1

as the proje
tion of D

k

on

V

stru
tured

= fD 2 S j Ds

k

= �y

k

� y

k

� C(x

k+1

)s

k

g; (46)

but the formula (45) is not valid anymore, even for Frobenius proje
tions. Moreover,

the aÆne subspa
e given by (46) 
an be empty so that the method only makes sense

if this de�nition is 
onveniently modi�ed. In fa
t, we rede�ne:

V

minimizers

= f Minimizers of kDs

k

� �y

k

k

2

subje
t to D 2 Sg: (47)

The aÆne subspa
e given by (47) is obviously nonempty and, so, it is possible to

proje
t on it. Algorithms for 
omputing this proje
tion were given in [21℄. De�ning

s = z � x, y = F (z)� F (x), �y = y � C(z)s and

V (x; z) = f Minimizers of kDs� �yk

2

subje
t to D 2 Sg (48)

we 
an apply the theory of Se
tion 3 so that the resulting method turns out to

be lo
ally and superlinearly 
onvergent. In prin
iple, Assumption 4 is ne
essary for

proving superlinear 
onvergen
e. See, also, [24℄. However, it 
an be 
onje
tured that

this assumption 
an be dedu
ed, in this 
ase, from the de�nitions (46) and (47).

Examples of applied stru
tured quasi-Newton methods 
an be found, among

others, in [1, 41, 42, 51, 55, 56℄.

4 Other se
ant methods

The Column-Updating method (COLUM) was introdu
ed in [63℄ with the aim of

redu
ing the 
omputational 
ost of BGM. The idea is that, at ea
h iteration, only

the j-th 
olumn of B

k

is 
hanged, where j is de�ned by ks

k

k

1

= j[s

k

℄

j

j. So, COLUM

is de�ned by (7) and

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

T

j

k

e

T

j

k

s

k

(49)

where fe

1

; : : : ; e

n

g is the 
anoni
al basis of IR

n

and je

T

j

k

s

k

j = ks

k

k

1

. The QR and

the LU fa
torizations of B

k+1


an be obtained from the 
orresponding fa
torizations

of B

k

using the te
hniques 
lassi
ally used in linear programming. By (49), we have

that

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)e

T

j

k

B

�1

k

e

T

j

k

B

�1

k

y

k

: (50)

Partial 
onvergen
e results for COLUM were given in [34, 63, 68℄. It has been

proved that COLUM enjoys lo
al and superlinear 
onvergen
e in the same sense

12



as BGM if the method is restarted (taking B

k

= J(x

k

)) every m iterations, where

m is an arbitrary positive integer. Moreover, it has been proved that when the

method (with or without restarts) 
onverges, the 
onvergen
e is r�superlinear and

2n � q�quadrati
. Finally, COLUM (without restarts) is 
onvergent in the same

sense as BGM if n = 2.

The Inverse Column-Updating method (ICUM), introdu
ed in [72℄, is given by

(7) and

B

�1

k+1

= B

�1

k

+

(s

k

�B

�1

k

y

k

)e

T

j

k

e

T

j

k

y

k

; (51)

where je

T

j

k

y

k

j = ky

k

k

1

. Therefore, B

�1

k+1

is identi
al to B

�1

k

ex
ept on the j

k

-th


olumn. So,

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

T

j

k

B

k

e

T

j

k

B

k

s

k

: (52)

Similar lo
al 
onvergen
e results to those of COLUM were given in [54, 72℄.

It is easy to see that COLUM and ICUM have the invarian
y properties of BGM

and BBM respe
tively. Probably, 
ombined methods in the sense of [70℄ 
an also be

eÆ
ient.

The dis
ussion on BGM, BBM, COLUM and ICUM suggests the introdu
tion

of quasi-Newton methods of the form

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (53)

where v

k

? s

k�1

, or

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

; (54)

where w

k

? y

k�1

. These methods are 
lose to the multipoint se
ant methods studied

in [2, 3, 8, 9, 31, 37, 46, 53, 60, 61, 75, 85, 87, 96℄ in the sense that they satisfy an

additional interpolatory 
ondition. Their 
onvergen
e analysis using the te
hniques

of the above 
ited papers must be easy, but their pra
ti
al eÆ
ien
y does not seem

to have been studied. Some authors [91, 44℄ 
hoose the parameter w

k

in (54) with

the aim of maintaining well-
onditioning properties of the matrix B

k

.

The �rst quasi-Newton method with dire
t updates of fa
torizations was intro-

du
ed by Dennis and Marwil in [18℄. It modi�es the upper-triangular fa
tor of

the LU fa
torization of B

k

at ea
h iteration, so that the se
ant equation is always

satis�ed (with some stability safeguards). See, also, [77, 92℄. Convergen
e results

for the Dennis-Marwil method are even weaker than the ones that 
an be proved

for the Stationary Newton method 
ommented in Se
tion 1. The work [18℄ in-

spired the introdu
tion of other methods with dire
t updates of fa
torizations with

13



stronger 
onvergen
e results. We have already mentioned the least 
hange se
ant

update methods introdu
ed in [65℄, whi
h enjoy lo
al and superlinear 
onvergen
e.

Other methods, having the same theoreti
al 
onvergen
e properties as the Station-

ary Newton method, were introdu
ed in [36, 62, 64℄. The Row-S
aling method (see

[36℄) is parti
ularly simple and, sometimes, quite e�e
tive. It 
onsists in the updat-

ing B

k+1

= D

k

B

k

, where D

k

is diagonal and it is 
hosen so that the se
ant equation

is satis�ed, when this is possible.

We �nish this se
tion mentioning the quasi-Newton method introdu
ed by Thomas

[93℄, whi
h is given by

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)d

T

k

B

�1

k

d

T

k

B

�1

k

y

k

; (55)

where

d

k

= [R

k

+ (ks

k

k

2

=2)I℄s

k

and

R

k+1

= (1 + ks

k

k

2

(ks

k

k

2

I +R

k

�

d

k

d

T

k

d

T

k

s

k

):

The properties of this method are not yet well understood. However, in spite of its

larger 
ost per iteration, very good numeri
al results have been reported in several

works. See, for example [43℄.

5 Large-s
ale implementations

The best known general-purpose modern implementations of quasi-Newton methods

for solving large nonlinear systems are based on rank-one 
orre
tion formulae like

BGM, BBM, COLUM and ICUM. See [34, 36, 58℄. Unfortunately, the methods

based on dire
t updates of fa
torizations whi
h have pleasant 
onvergent properties

[65℄ need sparsity of the L

�1

fa
tor in the LU de
omposition of the true Ja
obian,

a property that holds only in very stru
tured problems.

A 
ru
ial de
ision involves the 
hoi
e of the initial Ja
obian approximation B

0

.

The most favorable situation o

urs when one is able to 
ompute a good approxima-

tion of J(x

0

) (perhaps using automati
 di�erentiation or CPR te
hniques [14, 15℄)

and the LU fa
torization of this approximation is sparse. In this 
ase, after possible

permutations of rows and variables, we 
ompute

B

0

= LU (56)

and we use this sparse fa
torization throughout the 
al
ulations.
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If a sparse fa
torization of a suitable approximation of J(x

0

) is not possible, it

is sensible to use

B

�1

0

=

�

rf

1

(x

0

)

krf

1

(x

0

)k

2

2

; : : : ;

rf

n

(x

0

)

krf

n

(x

0

)k

2

2

�

; (57)

where J(x

0

) = (rf

1

(x

0

); : : : ;rf

n

(x

0

))

T

. In (57), B

0

approximates J(x

0

) in the

sense that the J(x

0

)B

�1

0

has only 1's on the diagonal. With this 
hoi
e the initial

iteration is s
ale-invariant and the ve
tor s

0

is a des
ent dire
tion for kF (x)k

2

2

(see

Se
tion 7). Of 
ourse, some alternative 
hoi
e must be employed for a 
olumn of

B

�1

0

if the involved gradient is null.

In BGM and COLUM, we have

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (58)

and, 
onsequently,

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)v

T

k

v

T

k

B

�1

k

y

k

B

�1

k

: (59)

Therefore,

B

�1

k+1

= (I + u

k

v

T

k

)B

�1

k

; (60)

where u

k

= (s

k

� B

�1

k

y

k

)=v

T

k

B

�1

k

y

k

. Thus,

B

�1

k

= (I + u

k�1

v

T

k�1

) : : : (I + u

0

v

T

0

) B

�1

0

: (61)

Formula (61) shows that methods of the form (58) 
an be implemented asso
iated

to (56) or (57) adding O(n) operations and storage positions per iteration. In the


ase of COLUM, it is obvious that only one additional ve
tor is needed per iteration.

For BGM, a 
lever tri
k given in [25℄ allows one to implement (7, 61) storing only

one additional ve
tor per iteration. See [34, 36, 38, 73℄.

In BBM and ICUM we have

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

: (62)

Therefore, de�ning u

k

= (s

k

�B

�1

k

y

k

)=w

T

k

y

k

, we obtain:

B

�1

k+1

= B

�1

0

+ u

0

w

T

0

+ : : :+ u

k

w

T

k

; (63)

whi
h suggests straightforward asso
iations of (62) with (56) or (57). A re
ent nu-

meri
al study by Luk�san and Vl�
ek [58℄ indi
ates that ICUM 
ould be the most
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e�e
tive se
ant method for large-s
ale problems with the initial 
hoi
e (56). There-

fore, the implementation of (63) in the ICUM 
ase deserves additional attention.

Observe, �rst, that

u

k

� s

k

� B

�1

k

y

k

= �B

�1

k

F (x

k+1

) (64)

and de�ne, for ICUM,

A

k

= u

0

w

T

0

+ : : :+ u

k�1

w

T

k�1

= u

0

e

T

j

0

+ : : :+ u

k�1

e

T

j

k�1

; (65)

where ky

�

k

1

= je

T

j

�

y

�

j for all � = 0; 1; : : : ; k. The 
olumns of A

k

will be denoted

a

1

; : : : ; a

n

. The large-s
ale ICUM algorithm 
an be des
ribed (with some abuse of

notation) as follows.

Step 0. Set k  0 and I

k

= ;.

Step 1. If k = 0, 
ompute (using (56) or (57))

s

0

= �B

�1

0

F (x

0

): (66)

Else, 
ompute

s

k

= u

k�1

� e

T

j

k�1

F (x

k

) u

k�1

: (67)

Step 2. Compute

x

k+1

= x

k

+ s

k

; y

k

= F (x

k+1

)� F (x

k

);

and

u

k

= �B

�1

0

F (x

k+1

)�

X

j2I

k

e

T

j

F (x

k+1

) a

j

: (68)

Step 4. De�ne j

k

by ky

k

k

1

= je

T

j

k

y

k

j. If j

k

2 I

k

, de�ne I

k+1

= I

k

and

a

j

k

 a

j

k

+ u

k

:

Otherwise, de�ne I

k+1

= I

k

[ fj

k

g and

a

j

k

 u

k

:

Set k  k + 1 and go to Step 1.

At ea
h iteration of the algorithm des
ribed above, the (at most k � 1) nonnull


olumns of A

k

must be stored. The 
omputational 
ost of ea
h iteration is dominated

by (68), whi
h involves the (inexpensive) �xed-
ost 
al
ulation �B

�1

0

F (x

k+1

) plus a

linear 
ombination of the nonnull 
olumns of A

k

. Therefore ea
h iteration requires

at most n+O(1) 
ops in addition to the previous one. If pra
ti
al 
onvergen
e does

not o

ur after a reasonably small number of iterations, it is sensible to restart the

whole 
omputation. Other restarting 
riteria 
an mimi
 the ones usually used in

the Stationary Newton method. See [75, 88℄.
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6 Dealing with singularity

The quasi-Newton iteration (7) is well de�ned only if B

k

is nonsingular. Lo
al


onvergen
e theories usually assume that J(x

�

) is nonsingular and that B

0

is 
lose

to J(x

�

). Under these 
onditions it 
an usually be proved that B

k

is nonsingular

for all k. However, in pra
ti
e, the initial 
hoi
e of B

0


ould be singular and,

moreover, B

k+1


ould be singular even when B

k

is not.

Singularity of B

0

might o

ur when one 
hooses B

0

= J(x

0

) (or some very good

approximation of the Ja
obian). Sin
e the (nonsingular) Newton step minimizes

kJ(x

0

)s + F (x

0

k, it is natural, in the singular 
ase, to 
hoose s

0

as any minimizer

of kJ(x

0

)s+ F (x

0

k

2

2

. Choosing the minimum-norm minimizer, we obtain:

s

y

0

= �J(x

0

)

y

F (x

0

); (69)

where J(x

0

)

y

is the Moore-Penrose pseudoinverse of the initial Ja
obian (see [33℄).

Using a well-known approximation of the pseudoinverse, we 
an also 
ompute, for

some � > 0,

s

0

(�) = �(J(x

0

)

T

J(x

0

)) + �I)

�1

J(x

0

)

T

F (x

0

): (70)

When �! 0, s

0

(�) tends to s

y

0

. The step s

0

(�) 
an be interpreted as the minimizer

of kJ(x

0

)s+ F (x

0

k

2

on a ball whose radius is smaller than ks

y

0

k

2

.

In pra
ti
al 
omputations, singularity of J(x

0

) is dete
ted during the LU fa
tor-

ization of this matrix: at some stage of the LU algorithm it is impossible to 
hoose

a safe nonnull pivot. When the problem is large, and J(x

0

) is possibly sparse, 
om-

puting (70) is expensive and, so, this devi
e is seldom used. It is usually preferred to


ontinue the LU fa
torization repla
ing the null or very small pivot by some suitable

nonnull quantity that takes into a

ount the s
aling of the matrix. See [36℄. There

is no strong justi�
ation for this pro
edure ex
ept that, perhaps, it is not ne
essary

to be very 
areful when x

0

is far from the solution. (Even this statement 
an be

argued.)

On the other hand, a singular B

k+1


an appear even if B

k

is nonsingular.

When B

k+1

is obtained from B

k

by means of a se
ant rank-one 
orre
tion,

B

k+1

= B

k

+

(y

k

�B

k

s

k

)v

T

k

v

T

k

s

k

; (71)

as in the 
ase of BGM and COLUM, we have, by (71), that

det(B

k+1

) =

v

T

k

B

�1

k

y

k

v

T

k

s

k

det(B

k

): (72)
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If j

v

T

k

B

�1

k

y

k

v

T

k

s

k

j is very small or very large then, either the s
aling of B

k+1

is very dif-

ferent from that of B

k

or their stability 
hara
teristi
s are very di�erent. In fa
t,


onservative small-variation arguments re
ommend us to impose

�j det(B

k

)j � j det(B

k+1

)j �

1

�

j det(B

k

)j; (73)

where � 2 (0; 1) is small (say, � � 0:1). By (72), if j

v

T

k

B

�1

k

y

k

v

T

k

s

k

j =2 [�; 1=�℄, the

inequalities (73) do not hold and B

k+1

must be modi�ed. Following [74℄, we 
an

repla
e (71) by

B

k+1

= B

k

+ �

k

(y

k

� B

k

s

k

)v

T

k

v

T

k

s

k

; (74)

where �

k

2 [0; 1℄. Clearly, (73) is satis�ed if �

k

= 0, but �

k

= 1 is the best 
hoi
e in

the sense that B

k+1

satis�es the se
ant equation. Therefore, it is natural to 
hoose

�

k

as the maximum � 2 [0; 1℄ su
h that (73) is satis�ed. This leads to 
ompute

�

k

= max

�

� 2 [0; 1℄ j � � j(1� �) + �

v

T

k

B

�1

k

y

k

v

T

k

s

k

j �

1

�

�

: (75)

In \inverse" rank-one 
orre
tion methods like BBM and ICUM, it is easier to

write dire
tly

B

�1

k+1

= B

�1

k

+

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

: (76)

An analogous reasoning to the one used to 
hoose (75) leads us to the modi�
ation

B

�1

k+1

= B

�1

k

+ �

k

(s

k

� B

�1

k

y

k

)w

T

k

w

T

k

y

k

(77)

and, 
onsequently, to the 
hoi
e

�

k

= max

�

� 2 [0; 1℄ j � � j(1� �) + �

w

T

k

B

k

s

k

w

T

k

y

k

j �

1

�

�

: (78)

Both in the initial iteration as in the updated ones a 
lose-to-singular matrix B

k

usually generates a very large in
rement s

k

. Very simple step-
ontrol pro
edures

are always asso
iated to the implementation of quasi-Newton methods. In pra
ti
al

problems, it has been veri�ed that opportunisti
 ways of 
ontrolling the step-length

may prevent many divergen
e situations. See Se
tion 9.
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7 Global 
onvergen
e tools

The results presented up to now are lo
al, in the sense that 
onvergen
e to a solution


an be guaranteed if the solution is assumed to exist and both the initial point and

the initial Ja
obian approximation are 
lose enough to the solution and its Ja
obian

respe
tively.

It is of maximal pra
ti
al importan
e to analyze what happens with sequen
es

generated by quasi-Newton methods when no restri
tions are made on the initial

approximations. Unfortunately, almost nothing positive 
an be said about sequen
es

generated by pure formulae like (7), unless strong assumptions are made on F . New-

tonian sequen
es 
an os
illate between neighborhoods of two or more non-solutions

or tend to in�nity, even in problems where a unique solution exists. So, if we want

to devise algorithms with global 
onvergen
e properties, the basi
 iteration (7) must

be modi�ed.

Usually, modi�
ations of the basi
 iteration make use of some merit fun
tion.

Almost always, some norm of F (x) is used. The squared 2-norm kF (x)k

2

2

is fre-

quently preferred be
ause of its di�erentiability properties. We will 
all f(x) the

(
ontinuous and nonnegative) merit fun
tion, whose main property is that f(x) = 0

if, and only if, F (x) = 0. Therefore, the problem of solving F (x) = 0 turns out to

be equivalent to the problem of �nding a global minimizer of f(x). If, at a global

minimizer, f(x) does not vanish, the original system has no solution at all. For

simpli
ity, assume that

f(x) =

1

2

kF (x)k

2

2

;

so

rf(x) = J(x)

T

F (x): (79)

>From (79), we see that the Newton dire
tion �ts well with the ne
essity of

de
reasing f(x). In fa
t,

h�J(x)

�1

F (x);rf(x)i = �2f(x) < 0:

This implies that it is always possible to de
rease f(x) along the Newton dire
tion,

if this dire
tion is well de�ned and f(x) 6= 0. Many algorithms 
an be interpreted as

adaptations of un
onstrained optimization te
hniques (see [22℄) to the minimization

of f(x). In parti
ular, the iteration

x

k+1

= x

k

� �

k

J(x

k

)

�1

F (x

k

) (80)

has been exhaustively analyzed. See [28, 59℄ and referen
es therein. If �

k

> 0 is


onveniently 
hosen so that f(x

k+1

) is suÆ
iently smaller than f(x

k

), then every
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limit point of the sequen
e generated by (80) either is a solution or a point where

the Ja
obian is singular. So, if the Ja
obian is nonsingular for all x 2 IR

n

and f(x)

has bounded level sets, (80) ne
essarily �nds a solution. Finally, in a vi
inity of su
h

a solution it 
an be proved that �

k

� 1 satis�es the suÆ
ient de
rease requirements,

therefore the method (80) 
oin
ides, ultimately, with (2) and the 
onvergen
e is

quadrati
.

Although Griewank [39℄ has proved that Broyden's method, with a suitable line

sear
h, also has global 
onvergen
e properties in the absen
e of singular Ja
obians,

most attempts for globalization of quasi-Newton methods rely on the exploration of

the good des
ent properties of Newton. Among these we 
an 
ite:

1. Hybrid strategies [74, 79℄, in whi
h Broyden's iteration are 
ombined with

spe
ial iterations whi
h are, essentially, dis
retizations of Newton iterations.

2. Nonmonotone strategies [29℄: here \ordinary" quasi-Newton iterations are a
-


epted, even if the merit fun
tion is in
reased during some iterations, but the

algorithm swit
hes to a Newton iteration if a given toleran
e is violated.

3. A strategy due to Bonnans and Burdakov [10℄: if the suÆ
ient de
rease 
ondi-

tion is violated the step-length is redu
ed, but, at the same time, the Ja
obian

approximation is updated using a se
ant formula. As a result, the sear
h di-

re
tion 
hanges during the 
urrent iteration and, in the limit, is tangent to the

Newton dire
tion. An ante
edent of this idea 
an be found in [78℄.

A 
ommon drawba
k of all the globalization strategies based on de
reasing a

norm is that lo
al-nonglobal minimizers of f(x) are strong attra
tors of the iterative

pro
ess. Other norm-minimization related te
hniques 
an be found in [48, 89, 90℄.

Therefore, globalized algorithms 
an 
onverge to points in whi
h the Ja
obian is sin-

gular. Unfortunately, su
h points are 
ompletely useless from the point of view of

�nding solutions of the nonlinear system. It is easy to see that all the observations

related to the Newton dire
tion made in this se
tion, ex
ept the ones related to

rapid lo
al 
onvergen
e, are valid for the 
hoi
e (57) of the Ja
obian approximation.

A 
ompletely di�erent sour
e of globalization pro
edures is the homotopi
 ap-

proa
h, by means of whi
h a sequen
e of slightly modi�ed problems are solved, in

su
h a way that the �rst one is trivial and the last one is (1). For example, the

\regularizing homotopy", used in [94, 95℄ is

H(x; t) = tF (x) + (1� t)(x� x

0

): (81)

The solution of H(x; 0) = 0 is, obviously, x

0

and the solution of H(x; 1) = 0 is the

one required in (1). Many methods for tra
ing the homotopy path are des
ribed
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in the literature. Lo
ally 
onvergent quasi-Newton methods are useful tools in this


ase sin
e strategies like (81) deal with several nonlinear systems for whi
h good

initial estimates are available. See, also, [83℄.

8 Results for linear systems

In this se
tion we assume that F (x) = Ax � b, A 2 IR

n�n

; b 2 IR

n

. To study the

behavior of quasi-Newton methods for linear systems is important under di�erent

points of view. One one hand, real-life problems 
an be linear or nearly linear. On

the other hand, the properties of a method in the linear 
ase usually determine the

lo
al 
onvergen
e behavior of the method. In fa
t, in a neighborhood of a solution

where the Ja
obian is nonsingular, the linear approximation of F is dominant and,

so, the generated sequen
e tends to behave as in the linear 
ase. For example, if

F (x) = Ax�b and A is nonsingular, Newton's method is well de�ned and 
onverges

in just one iteration. This is the main reason why the lo
al 
onvergen
e of this

method is quadrati
.

Until 1979 it was believed that Broyden's methods did not enjoy �nite 
onver-

gen
e when applied to linear systems. However, in [30℄ it was proved that Broyden's

method and many other methods of the form (71) or (76) also 
onverge in a �nite

number of steps.

In fa
t, let us 
onsider the method de�ned by (7) and (71). Choose B

k+1

= B

k

if y

k

= 0. If y

k

6= 0, take v

k

2 IR

n

su
h that v

T

k

s

k

6= 0 and v

T

k

B

�1

k

y

k

6= 0. Gay's

theorem [30℄ says that, if A and B

0

are nonsingular and x

0

2 IR

n

is arbitrary, then

F (x

k

) = 0 for some k � 2n. The 
onvergen
e of x

k

to x

�

� A

�1

b is far from being

monotone in any sense.

The lo
al 
onvergen
e 
onsequen
es of Gay's theorem for general nonlinear sys-

tems are that, under the usual assumptions that guarantee lo
al 
onvergen
e, meth-

ods like BGM, BBM, COLUM and ICUM enjoy 2n-step quadrati
 
onvergen
e.

Therefore, kx

k+2n

� x

�

k=kx

k

� x

�

k

2

is asymptoti
ally bounded. This property im-

plies r-superlinear 
onvergen
e. See [75℄.

The �nite 
onvergen
e theorem [30℄ sheds light on theoreti
al properties of rank-

one se
ant methods but is of little importan
e for pra
ti
al large-s
ale linear prob-

lems. In fa
t, the intermediate iterations (x

k

with k < 2n) are, usually, very poor

approximations of the solution so that the full 
y
le of 2n steps is ne
essary for

obtaining a reasonable approximation of x

�

. When n is large, a sequen
e of 2n

iterations is not a�ordable sin
e, as mentioned in Se
tion 5, the 
ost of the k-th iter-

ation is proportional to kn, both in terms of time and storage. Therefore, pra
ti
al
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implementations of rank-one se
ant methods for linear systems need modi�
ations

of the basi
 iteration (7). See the dis
ussion in [25℄.

Some authors [25, 71, 74℄ studied variations of BGM for linear systems. Here we

survey the results presented in [71℄, 
orre
ting, by the way, some arithmeti
 typos of

that paper. Given x

0

2 IR

n

and B

0

2 IR

n�n

nonsingular, the linear Broyden method

is de�ned by

x

k+1

= x

k

� �

k

B

�1

k

F (x

k

); (82)

where �

k

6= 0 and

B

k+1

= B

k

+ �

k

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

: (83)

The 
oeÆ
ient �

k

2 [0:9; 1:1℄ is su
h that

jdet(B

k+1

)j � 0:1 jdet(B

k

)j: (84)

Mor�e and Trangenstein [74℄ proved that (84) holds with �

k

2 [0:9; 1:1℄ de�ning




k

= s

T

k

B

�1

k

y

k

=s

T

k

s

k

, with �

k

= 1 if j


k

j � 0:1, and �

k

= (1 � 0:1sign(


k

))=(1� 


k

)

if j


k

j < 0:1, where sign(0) = 1. This 
hoi
e of �

k

provides the number 
losest to

unity su
h that (84) is satis�ed. See [74℄ and Se
tion 6 of this paper.

Let k � k denote the Frobenius norm. For the method de�ned by (82), (83) and

(84) it 
an be proved that

kB

k

� Ak

F

� kB

0

� Ak

F

for all k = 0; 1; 2; : : : and

kB

k+1

� Ak

2

F

� kB

k

� Ak

2

F

� 0:891 kB

k+1

� B

k

k

2

F

for all k = 0; 1; 2; : : :. It follows that the series

P

kB

k+1

� B

k

k

2

F

is 
onvergent. So,

kB

k+1

� B

k

k tends to 0.

It 
an also be proved that the sequen
e generated by (82), (83) and (84) satis�es

kx

k+1

� x

�

k

kx

k

� x

�

k

�

"

k

+ j�

k

� 1j

1� "

k

(85)

for all k = 0; 1; 2; : : :, where f"

k

g is a sequen
e that tends to zero.

Formula (85) explains the behavior of the error x

k

�x

�

independently of the 
on-

vergen
e of the sequen
e. In parti
ular, it shows that the sequen
e is superlinearly


onvergent if �

k

! 1, and that 
onvergen
e at a linear rate takes pla
e if, eventually,

�

k

2 [�; 2� �℄ for some � > 0.

22



Finally, in [71℄ it has been proved that �

k

! 1 holds when one 
hooses �

k

as the

(nonnull) minimizer of kA(x

k

+ �d

k

)� bk

2

2

along the dire
tion d

k

� �B

�1

k

F (x

k

). If

this �

k

is null, we repla
e it by 1. However, this possible repla
ement is not ne
essary

for k large enough.

As a result, we have a global and superlinearly 
onvergent BGM-like method for

solving linear nonsingular systems. The proposed 
hoi
e of �

k

has an advantage over

the 
hoi
e �

k

= 1 in the large-s
ale 
ase. In fa
t, when �

k

is the one-dimensional

minimizer proposed above, the residual norm at the iterate x

k+1

is smaller than

the norm of Ax

k

� b. Therefore, in terms of the residual norm, the quality of the

approximation is improved at every iteration, and an a

eptable �nal approxima-

tion 
an be obtained for k << 2n. An alternative 
hoi
e with similar theoreti
al

properties that, in some sense, minimizes a norm of the error, has been 
onsidered

in [25℄ and [71℄.

9 Numeri
al studies

Most numeri
al studies in the literature are asso
iated to the introdu
tion of a

determined method. In spite of that, we 
an obtain useful information from many of

them. We are espe
ially interested on experiments regarding quasi-Newton methods

for solving large and possibly sparse nonlinear systems.

The GMM study [36℄ involves 7 variably dimensioned nonlinear systems. Six

of them are \toy problems" and have been designed with the aim of testing nu-

meri
al algorithms. The seventh is the dis
retization of a Poisson equation. The

algorithms tested are Newton's method, the Stationary Newton method, Broyden's

good method, Broyden's sparse (S
hubert) method, the Dennis-Marwil method and

three dire
t-update methods that in
ludes the row-s
aling method mentioned in

Se
tion 4. Matrix fa
torizations use the algorithm of George and Ng [32℄ and a

nonmonotone globalization pro
edure is in
orporated.

The GKM study [35℄ uses 3 dis
retizations of two-dimensional boundary-value

problems with known solutions: Poisson, Bratu and Conve
tion-Di�usion. The

three of them depend on a parameter � a

ording to whi
h the problem is more or

less diÆ
ult. If � = 0 the problems are linear. If � << 0, non
oer
ivity is severe

and the dis
retized problems are very hard. The tested algorithms are Newton,

Stationary Newton, BGM and COLUM. All the algorithms have the option of using

ba
ktra
king to improve global 
onvergen
e.

The FGKMS study [29℄ solves a set of problems given in [57℄ having similar 
har-

a
teristi
s to the set of problems of [36℄. In addition, a dis
retization of the driven


avity 
ow problem is also 
onsidered, whi
h has a parameter �, the Reynolds num-
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ber, that 
ontrols nonlinearity. Finally, the study in
ludes a Conve
tion-Di�usion

problem and a set of arti�
ial problems where Newton's method, without step 
on-

trol, do not 
onverge.

The LV study [58℄ in
ludes 30 problems. 16 of them are of the type 
onsidered in

[36℄ with some superposition with that set. In addition, the study has 
ounter
urrent

rea
tor problems, se
ond-order boundary value problems (in
luding Poisson and

Conve
tion-Di�usion), problems of 
ow in a 
hannel, swirling 
ow problems, porous

medium problems, a nonlinear biharmoni
 problem and the driven 
avity problem.

The obje
tive of this study is to introdu
e a globalization pro
edure. The underlying

quasi-Newton methods are the dis
rete Newton method, the Stationary Newton

method, the sparse Broyden (S
hubert) method, the variation due to Bogle and

Perkins [4℄, Li's method [52℄, a 
ombination of Li with S
hubert, the row-s
aling

method [36℄, Broyden's good method, COLUM and ICUM (
alled LMC and LMI

respe
tively in that study).

None of the above 
ited studies 
ontradi
ts the 
ommon belief that Newton's

method is the most robust algorithm for solving nonlinear systems. Con
erning glob-

alization pro
edures, experiments re
ommend to be 
autions, be
ause many times

the attempts to redu
e the sum of squares lead to 
onvergen
e to lo
al-nonglobal

minimizers. As a matter of fa
t, the simple stabilization pro
edure that 
onsists in

not letting the step-length to be too large (see Se
tion 6) is, frequently, very e�e
tive

to turn a divergent algorithmi
 sequen
e into a 
onvergent one.

When 
onvergen
e is maintained, quasi-Newton 
orre
tions usually improve sub-

stantially the performan
e of Newton's method. The amount of this improvement

depends of the Ja
obian stru
ture. In the problems 
onsidered in the above 
ited

studies, methods that do not save linear algebra, like Broyden-sparse, must be dis-


arded, sin
e its 
omputational 
ost per iteration is roughly the same as Newton's.

Pra
ti
ally all quasi-Newton 
orre
tions are more e�e
tive than the Stationary New-

ton method. A

ording to [58℄, ICUM ranks �rst, but there seems to be little di�er-

en
e between this method and BGM or COLUM. Up to our knowledge there are no

published numeri
al studies for large-s
ale problems where Broyden's bad method

BBM is in
luded.

10 Con
lusions and perspe
tives

In re
ent years, quasi-Newton methods for solving square smooth nonlinear systems

have been out of the mainstream of numeri
al analysis resear
h. A popular s
ienti�


journal on Numeri
al Analysis published 4 papers on the subje
t before 1970, 10

between 1971 and 1980, 11 in the eighties and none from 1991 to 1999. Sometimes,
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resear
h in a family of numeri
al te
hniques be
omes out-of-fashion after its in
or-

poration to ordinary pra
ti
e of problem solvers in Physi
s, Chemistry, Engineering

and Industry. Other times, promising algorithms are 
ompletely forgotten, both in

resear
h and appli
ations.

The situation of the area surveyed in this paper is perhaps intermediate. The


lassi
al paper [20℄ is 
ited in most works 
on
erning quasi-Newton methods for

nonlinear systems. While this survey was being written it had been 
ited 361 times

in indexed s
ienti�
 journals. The last 100 
itations go from 1992 to the present

days. 42 of these 
itations 
ome from non-mathemati
al journals. It must be warned

that, many times, the Dennis-Mor�e paper [20℄ is 
ited in 
onne
tion to quasi-Newton

methods for minimization problems, and not for nonlinear systems. Sin
e the ev-

eryday pra
ti
e in Physi
s, Chemistry and Engineering in
ludes the resolution of

nonlinear systems using Newton's method, we are tempted to 
on
lude that the

penetration of the quasi-Newton te
hnology in appli
ations, although existing, has

not been as intense at the potentiality of the te
hnique deserves.

In the Introdu
tion of most quasi-Newton papers, it was stressed that the their

main motivation was to avoid 
omputation of 
umbersome derivatives. However,

even before the boom of automati
 di�erentiation, pra
titioners found that, for

many of their problems, 
omputing derivatives was not as diÆ
ult or 
ostly as

stated in the quasi-Newton literature. They also veri�ed that beginning a quasi-

Newton pro
ess with B

0

= I, or some other arbitrary matrix, lead very often to

disastrous results and, so, the 
omputation of an initial Ja
obian was almost always

ne
essary. After writing a Ja
obian subroutine, it seemed reasonably to use it at

every iteration (Newton's method) or every m iterations, repeating the old Ja
obian

in the remaining ones (Newton's method with re�nements).

In pra
ti
al problems in whi
h the Ja
obian 
an be 
omputed but its stru
ture

is too bad for fa
torization, the modern tenden
y is to use the inexa
t-Newton ap-

proa
h [17℄, in whi
h an iterative linear solver is used for solving the Newtonian lin-

ear equation J(x

k

)s = �F (x

k

) up to some pre
ision whi
h is suÆ
ient to guarantee


onvergen
e of the nonlinear solver. Moreover, the inexa
t-Newton te
hnology �ts

well with global 
onvergen
e requirements. Probably, many users felt disappointed

when they tried to globalize quasi-Newton methods by the mere introdu
tion of a

damping parameter and ba
ktra
king pro
edures. See [22℄.

However, a reasonable s
ope of problems exists, for whi
h quasi-Newton methods

that save linear algebra are quite e�e
tive and, probably, outperform inexa
t-Newton

algorithms. This is the 
ase of large-s
ale problems in whi
h the Ja
obian 
an be


omputed, its fa
torization is a�ordable but it is very 
ostly in 
omparison to the

single updating pro
edures of rank-one methods. The re
ipe for those 
ases is to

begin with a Newtonian iteration, and to 
ontinue with some 
heap rank-one method
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as far as this is e�e
tive. Unfortunately, a 
ode like that must be prepared to return

to Newtonian iterations, a disappointing fa
t for those who hoped that quasi-Newton

te
hniques 
ould always repla
e Newton.

Quasi-Newton methods for solving large-s
ale nonlinear systems will be largely

used in appli
ations when both numeri
al analysts and potential users be 
ons
ious

about their real advantages and limitations. Our point of view is that rank-one

algorithms provide, in many 
ases, eÆ
ient and e
onomi
 ways to re�ne a basi


(�rst) Newtonian iteration. If we are right, questions often negle
ted in the quasi-

Newton literature, as \when should one restart?" must be answered, in spite of its

poor theoreti
al 
harm.

We �nish this survey stating 10 open problems, some of whi
h were in
identally

mentioned in the text.

1. It is well known that, under the usual nonsingularity and Lips
hitz assump-

tions, the matri
es B

k

generated by Broyden's good method do not ne
essarily


onverge to J(x

�

). Does this sequen
e of matri
es always have a limit? What

happens with the sequen
es fB

k

g 
orresponding to other methods?

2. Convergen
e theorems for least-
hange update and other quasi-Newton meth-

ods say that there exist "; Æ > 0 su
h that x

k

! x

�

superlinearly when-

ever kx

0

� x

�

k and kB

0

� J(x

�

)k � Æ. Is this superlinear 
onvergen
e uni-

form? In other words, for whi
h methods 
an we prove that \there exist

"; Æ > 0 and a sequen
e of positive numbers "

k

! 0 su
h that whenever

kx

0

� x

�

k and kB

0

� J(x

�

)k � Æ, the sequen
e x

k


onverges to x

�

and

kx

k+1

� x

�

k � "

k

kx

k

� x

�

k for all k"?

3. Is it possible to prove lo
al 
onvergen
e without restarts of methods like

COLUM and ICUM? What about superlinear 
onvergen
e?

4. Are there reasonable suÆ
ient 
onditions under whi
h the 
onvergen
e of

Broyden-like methods for linear systems takes pla
e in less than 2n iterations?

5. It is generally a

epted that the Dennis-Marwil method (and some other sim-

ilar dire
t fa
torization algorithms) enjoys lo
al 
onvergen
e only if periodi


Ja
obian restarts are performed. However, no 
ounter-example showing that

lo
al 
onvergen
e without the restarting 
ondition might not hold is known.

Does a 
ounter-example exist in the linear 
ase?

6. Does there exist a 
heap and theoreti
ally justi�ed pro
edure for modifying

the LU fa
torization of B

0

when a null or very small pivot is found?
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7. Is it possible to prove that Assumption 4 ne
essarily holds for the 
hoi
e (48)

of V (x; z)?

8. Whi
h are the properties of dire
t-se
ant-update and stru
tured quasi-Newton

methods when applied to linear systems?

9. The order of 
onvergen
e of Newton's method with p re�nements (the Ja
o-

bian is repeated during p 
onse
utive iterations) is 2+p. See [75, 76, 88℄. This

means that kx

k+p+1

�x

�

k=kx

k

�x

�

k

2+p

is asymptoti
ally bounded. Can some-

thing better be expe
ted when, instead of repeating the previous Ja
obian, we

update it with a se
ant formula?

10. Many methods in the 
ourishing interior point �eld for mathemati
al program-

ming 
an be interpreted as 
lever damped Newton iterations on an homotopi


basis. Can they be improved by suitable quasi-Newton updates? (Up to our

knowledge, no attempt has been made in this sense, ex
ept the one in [23℄.)
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