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Abstrat

We present and disuss the generalized Laplae partial di�erential

equation in the de Sitter Universe (D) in several metris. From Pro-

jetive Relativity, we show that all angular di�erential equations have

solutions given by the spherial harmonis and all radial di�erential

equations an be written as a Riati ordinary di�erential equation.

When the radius of D goes to in�nity we reobtain the Minkowskian

results. In partiular, the radial equations predit the behavior of the

gravitational �eld in D.

We also solve the Laplae equation assoiated to the Prasad metri.

We disuss the so alled internal and external spaes that orrespond to

the symmetry groups SO

3;2

and SO

4;1

, respetively. Using hyperspher-

ial oordinates we show that both radial di�erential equations an be

led to the Riati ordinary di�erential equation. For the Prasad metri

with the radius of the universe independent of the parametrization, we

assoiate the solution of the temporal equation with quantum number

hyperharge to the internal struture and for the external struture,

we assoiate the energy eigenvalues. Again the radial �eld equation

an be led to the lassial ase in the limit proess of a at spaetime.
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1 Introdution

The de Sitter Universe (D), is a solution of Einstein's equation [1℄. In

this paper we present and disuss the Laplae di�erential equation in this

universe. Although it an be treated as a four-dimensional Riemannian

manifold, D is not the spae where Speial Relativity (SR) is valid, beause

this theory was developed in spaes endowed with Minkowski geometry.

We want to adapt SR to osmology, distinguishing absolute spaetime, the

e�etive seat of physial events, from the tangent relative spaetime in whih

phenomena seem to happen to every observer [2℄.

The orrespondene between D and Minkowski spaetime appears on-

struting homeomorphisms between these spaes by doing stereographi pro-

jetions, obtaining the Riemann [3℄, B�orner-D�urr [4℄ and Beltrami [3℄ met-

ris.

From the above metris, we solve the so alled generalized Laplae di�er-

ential equation. We introdue the spherial relativisti oordinates and we

onlude after separation of variables that the angular di�erential equation

is the same for all metris, and admits as solutions the spherial harmon-

is, while the radial di�erential equations di�er; for all of them the lassial

(Minkowskian) ase is obtained when r ! 1, where r is the radius of D.

Introduing a suitable hange of variables, all radial di�erential equations

an be led to a Riati equation [5℄.

For the other side, Aridiaono [3℄ proposed a natural extension of trans-

lations in a Minkowskian spaetime, whih an be thought as rotations in

the symmetry group SO

4;1

, restrited to the de Sitter universe D. We an

divide D in internal and external hyperspaes, assoiating with eah one, the

symmetry groups SO

4;1

and SO

3;2

, respetively. After parametrizing these

hyperspaes, we again solve the generalized Laplae equation, obtaining the

same onlusions we have gotten from the projetive metris.

This paper is organized as follows: in setion two we present the Laplae

di�erential equation with Riemann metri, solving the angular di�erential

equation in terms of spherial harmonis and reduing the radial di�eren-

tial equation to a Riati equation. In setion three we disuss the Laplae

equation in D with the Beltrami metri. The radial equation is again led to

a Riati equation. In setion four we present and disuss the B�orner-D�urr

metri. In setion �ve we present the Laplae di�erential equation for the

Prasad metri, by the parametrization of the internal and external hyper-

spaes assoiated with D, solving the angular di�erential equation and re-

duing the radial di�erential �eld equation to a Riati equation. In setion

six we disuss the Laplae equation assoiated with another parametrization
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of D, getting similar results we have already obtained. Finally, we present

our onlusions.

2 The Riemann metri

The stereographi projetion of D on the Eulidean spae E

3

, whih is a

tangent hyperplane to D, originates the Riemann metri

1

ds

2

=

4r

2

4r

2

+ �

2

(dx

2

+ dy

2

+ dz

2

):

Let us make a hange of variables, introduing spherial oordinates

(�; �; ') in E

3

. The Riemann metri transforms into

ds

2

=

4r

2

4r

2

+ �

2

(d�

2

+ �

2

d�

2

+ �

2

sin

2

�d'

2

)

Substituting the tensor omponents above in the generalized Laplaian

[6℄ we obtain the Laplae equation:

r

2

� =

(4r

2

+ �

2

)

3=2

4r

2

�

2

�

��

"

�

2

(4r

2

+ �

2

)

1=2

��

��

#

+

(4r

2

+ �

2

)

4r

2

�

2

sin �

�

��

�

sin �

��

��

�

+

(4r

2

+ �

2

)

4r

2

�

2

sin

2

�

�

2

�

�'

2

= 0: (1)

Consider the following separation of variables:

� = R(�)Y (�; ') � RY:

It is possible to separate eq.(1) in radial and angular parts, yielding:

(4r

2

+ �

2

)

1=2

d

d�

"

�

2

(4r

2

+ �

2

)

1=2

dR

d�

#

= kR (2)

and

1

sin �

�

��

�

sin �

�Y

��

�

+

1

sin

2

�

�

2

Y

�'

2

+ kY = 0 (3)

where k is a onstant.

1

From now on, the symbol of the intrinsi metri tensor produt will be omited; we

won't distinguish ds

2

= g

ij

dx

i

dx

j

and ds

2

= g

ij

dx

i


 dx

j

.
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In eqs.(2) and (3) the onstant fator k is restrited to the values k =

`(`+1), where ` = 0; 1; 2 : : : Otherwise, there would be a disontinuity when

the azimuthal angle takes the values � = ��, sine the series solution of

the angular azimuthal equation would have values going to in�nity at these

points. We have hosen integer values for k sine for suh values, the series

degenerates in polynomials whih are ontinuous solutions on the whole real

line [7, 8℄.

With the separation Y = Y (�; ') = �(�)�('), we an further separate

eq.(3), obtaining

sin �

�

d

d�

�

sin �

d�

d�

�

+ sin

2

�[`(`+ 1)℄ = �

1

�

d

2

�

d'

2

(4)

Eah side of eq.(4) has a di�erent independent variable; let the separation

onstant be m

2

, with the ondition �` � m � `, where m 2 Z. This hoie

is made beause of the onservation of the rotational symmetry of �: in eah

diretion, � has a unique value. So

�(') = Ae

�im'

(5)

where A is a onstant.

The other equation is

1

sin �

d

d�

�

sin �

d�

d�

�

+

"

`(`+ 1)�

m

2

sin

2

�

#

� = 0 (6)

whih is the assoiated Legendre di�erential equation, whose solutions regu-

lar at the origin are P

l

m

(os �), namely the assoiated Legendre funtions.

Introduing the spherial harmonis de�ned by Y (�; ') = P

l

m

(os �)e

�im'

,

we obtain the solutions of the angular di�erential equation.

2

The radial di�erential equation an be written as

�

2

d

2

R

d�

2

+

 

2��

�

3

4r

2

+ �

2

!

dR

d�

+ `(`+ 1)R = 0 (7)

Considering the following hange of variable:

1

R

dR

d�

= �:

2

In the present ase m 2 N , what is very useful in Quantum Mehanis, but it is

also possible to exist a magneti quantum number suh that m � 0. Besides, a more

preise de�nition of the spherial harmonis is the one with a normalization fator, given

by Y (�; ') = (�1)

m

�

2`+ 1

4�

(`� jmj)!

(`+ jmj)!

�

1=2

P

l

jmj

(os �)e

�im'

.
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we an write

�

2

�

0

= ��

2

�

2

+

 

2��

�

3

4r

2

+ �

2

!

� + `(`+ 1); (8)

whih is a Riati equation.

Besides, in eq.(8) we an arry out the limit

lim

r!1

"

�

2

d

2

R

d�

2

+

 

2��

�

3

4r

2

+ �

2

!

dR

d�

+ `(`+ 1)R

#

= �

2

d

2

R

d�

2

+2�

dR

d�

+`(`+1)R

=

d

d�

�

�

2

dR

d�

�

+ `(`+ 1)R = 0

In the partiular ase where k = 0, onsidering that the partile (whih

is desribed by a radial wave funtion) is in its ground state (` = 0), one

returns to the lassial ase, sine

d

d�

�

�

2

dR

d�

�

= 0. In this ase, the salar

�eld (or salar potential) has spherial symmetry, and an be written as

� = �(�):

3 The Beltrami metri

An observer O at an arbitrary position in the de Sitter Universe (D) observes

every event from its own referential, whih is a tangent hyperspae to D.

Consider, for example, a light pulse. The luminous pulse follows the intrinsi

geodesi of D, but the observer loates it in a diretion tangent to S

4

.

To onstrut a faithful representation of events in eah one of the in�nite

tangent hyperspaes we need to establish a relation between the absolute

oordinates �

�

(� = 0; 1; : : : ; 4) in D and the relative oordinates x

�

(� =

0; 1; 2; 3) in P

3+1

, the so-alled projetive Castelnuovo spaetime[9℄.

Among plenty of possibilities, Beltrami hose doing a stereographi pro-

jetion from the enter of D on a tangent hyperplane to D at the south pole

(0; 0; 0; 0;�r). We an verify the relations

�

4

=

r

A

and �

�

=

x

�

A

; (9)

where A � (1 +

�

2

r

2

)

1=2

, �

2

� x

�

x

�

= �x

2

0

+ x

2

1

+ x

2

2

+ x

2

3

and r is the radius

the universe. To a Pythagorean metri in D there orresponds a projetive

metri [10℄ in P

3+1

assoiated with the same line element:

ds

2

= d�

a

d�

a

= A

�4

[A

2

dx

i

dx

i

�

1

r

2

(x

i

dx

i

)

2

℄; with a = 0; 1; 2; 3: (10)
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The assoiated Laplae di�erential equation is expressed as

r

2

� =

(r

2

+ �

2

)

2

r

4

�

2

�

��

�

�

2

��

��

�

+

(r

2

+ �

2

)

r

2

�

2

sin �

�

��

�

sin �

��

��

�

+

(r

2

+ �

2

)

�

2

r

2

sin

2

�

�

2

�

�'

2

= 0

After separation of variables, the angular di�erential equation has the same

solution as the Riemann metri [6℄.

The radial di�erential equation is

(r

2

+ �

2

)

�

2

r

2

d

2

R

dr

2

+

2�

r

2

(r

2

+ �

2

)

dR

d�

� `(`+ 1)R = 0 (11)

It is important to verify the limit of the equations, when the radius

of the de Sitter manifold approahes in�nity, whih must agree with the

relativisti observations on the free (null divergene) Minkowski spaetime.

Indeed, when r ! 1 we obtain

d

d�

�

�

2

dR

d�

�

= 0, leading to the lassial

�eld ase.

Introduing the same hange of variable done in the ase of Riemannian

metri,

� =

1

R

dR

d�

;

we an write eq.(11) as

�

2

�

0

= ��

2

�

2

� 2��+ `(`+ 1)

r

2

r

2

+ �

2

; (12)

whih is a Riati equation.

4 The B�orner-D�urr metri

This metri is obtained by the parametrization of the hyperboloid [4℄:

�

a

�

ab

�

b

= �r

2

; with �

ab

= diag(1;�1;�1;�1;�1) a; b = 0; : : : ; 4

with onformal oordinates (x

�

; � = 0; 1; 2; 3). It an be done by a stereo-

graphi projetion from the north pole (0; 0; 0; 0; r) into a tangent hyperplane

on the south pole (0; 0; 0; 0;�r) :

�

�

= �(x

2

)x

�

; �

4

= �r�(x

2

)

 

1 +

x

2

4r

2

!
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with �(x

2

) =

 

1�

x

2

4r

2

!

�1

; x

2

= x

�

x

�

= �x

2

0

+ x

2

1

+ x

2

2

+ x

2

3

.

Substituting the metri tensor in the Laplae di�erential equation we

obtain

3

r

2

� = ��(x

2

)

�

1

�

2

�

�

(�

2

�

�

�) +

1

�

2

sin �

�

�

�

(sin ��

�

�) +

1

sin

2

�

�

+

1



2

�

tt

�

�

= 0

Using the method of separation of variables, we obtain the same angular

di�erential equation, although the former equations are partial di�erential

ones and an be written as follows:

�

�

�

�

2

�

�

A

�

+

�

2



2

�

t

2

A = �kA (13)

where k is a onstant.

Now, introduing A(�; t) = R(�)T (t) and substituting in eq.(13), we

obtain two ordinary di�erential equations as follows:

1

R

1

�

2

d

d�

�

�

2

dR

d�

�

�

k

�

2

= a

2

(14)

and

1



2

1

T

d

2

T

dt

2

= a

2

: (15)

where a

2

is a onstant.

The solution of eq.(15) is an exponential and for the other ordinary

di�erential equation we introdue the same hange of variable and we obtain

�

0

= ��

2

�

2

�

�+

k

�

2

+ a

2

: (16)

whih is also a Riati equation.

5 The Prasad metri

The de Sitter Universe (D) an be desribed as the sum }

1

+}

2

where }

1

is

the external spae and }

2

is the internal one. To eah of these spaes there

orrespond the symmetry groups SO

4;1

and SO

3;2

respetively[11℄.

3

We have done the hange of variables x

0

! it, where  and t have dimensions of

veloity and time, respetively. From now on, we introdue the notation: �

�

�

�

�

�

:
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5.1 The external spae (}

1

)

This hyperspae has onstant urvature 1=R

2

and has a quadrati form

assoiated with it, as follows:

R

2

= (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

� (x

4

)

2

+ (x

5

)

2

:

A possible parametrization [11℄ for the above quadrati form is

x

1

= R sin� sin � os' osh t

x

2

= R sin� sin � sin' osh t

x

3

= R sin� os � osh t

x

4

= R sinh t

x

5

= R os� osh t

allowing us to write the line element as

ds

2

+

= R

2

osh

2

t[d�

2

+ sin

2

�(d�

2

+ sin

2

�d'

2

)℄�R

2

dt

2

(17)

For this metri tensor we obtain the Laplae di�erential equation

(R

2

osh

2

t sin

2

�)r

2

� =

sin

2

�

osh t

�

t

(osh

3

t�

t

�)� �

t

(sin

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

� = 0: (18)

After writing the salar �eld � as

�(�; t; �; ') = �(�; t)Y (�; ')

we an separate the Laplae di�erential equation in two partial di�erential

equations: one of these has the solution known yet (spherial harmonis)

while the another is

1

osh t

�

t

(osh

3

t�

t

�)�

1

sin

2

�

�

�

(sin

2

��

�

�)�

`(`+ 1)

sin

2

�

� = 0; (19)

with ` = 0; 1; 2; 3 : : :

Relatively to eq.(19), we onsider the funtional produt

�(�; t) = �(�)
(t)
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and suppose that the separation onstant

4

is �

2

. Then, eq.(19) an be

separated in two ordinary di�erential equations:

1

sin

2

�

d

d�

�

sin

2

�

d�

d�

�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0 (20)

and

1

osh t

d

dt

�

osh

3

t

d


dt

�

� �

2


 = 0: (21)

We emphasize eq.(20), namely, the radial one.

5

We an rewrite eq.(20)

as

d

2

�

d�

2

+ 2 ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0: (22)

Introduing the variable j � os�, we obtain [12℄

d

2

�

dj

2

(1� j

2

)� 3j

d�

dj

� �

2

�+

`(`+ 1)

1� j

2

� = 0 (23)

We an rewrite eq.(23) as

�

0

= ��

2

+

1

1� j

2

�

3j�+ �

2

�

`(`+ 1)

1� j

2

�

(24)

whih is a Riati equation.

5.2 The internal spae (}

2

)

This hyperspae has a negative onstant urvature �1=r

2

and an be hara-

terized by the symmetry group SO

3;2

. To this group is assoiated a quadrati

form

x

2

1

+ x

2

2

+ x

2

3

� x

2

4

� x

2

6

= �r

2

:

Prasad [11℄ proposed the following parametrization with nonstati oor-

dinates:

x

1

= r sinh� sin � os' os t

x

2

= r sinh� sin � sin' os t

x

3

= r sinh� os � os t

x

4

= r sin t

x

6

= r osh� os t

4

� = 0; 1; 2; 3; : : : orresponds to the eingenvalue spetrum of Gegenbauer equation.

5

The variable � is de�ned by sin� =

(x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

R

2

. Although sin� is not the

radius of D, it is the so-alled adimensional normalized radius.
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Then, we an write the line element as follows:

ds

2

�

= r

2

os

2

t[d�

2

+ sinh

2

�(d�

2

+ sin

2

�d'

2

)℄� r

2

dt

2

: (25)

The generalized Laplae di�erential equation an be written as

r

2

os

2

t sinh

2

�r

2

� = �

sin

2

�

os t

�

t

(os

3

t�

t

�) + �

�

(sinh

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

= 0 (26)

De�ning the funional produt

�(�; t; �; ') = �(�; t)Y (�; ') � �Y;

we an separate eq.(26) in radial-temporal and angular equations:

�

1

�

sinh

2

�

os t

�

t

(os

3

t�

t

�) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1) (27)

and

1

Y

1

sin �

�

�

(sin ��

�

�) +

1

Y

1

sin

2

�

�

''

� = �`(`+ 1): (28)

where ` = 0; 1; 2; � � � It is also worthwhile to mention here that eq.(28) is

exatly the angular equation obtained in the preedent ase (the internal

spae }

1

). One again we separate eq.(27) in radial and temporal equations

(we will emphasize the radial equation only).

Taking �(�; t) = �(�)	(t) we get two ordinary di�erential equations

1

	

1

os t

d

dt

�

os

3

t

d	

dt

�

= �

2

(29)

and

1

�

1

sinh

2

�

d

d�

�

sinh

2

�

d�

d�

�

�

`(`+ 1)

sinh

2

�

= ��

2

: (30)

where �

2

is the separation onstant

6

. Introduing m = osh� and de�ning

�(m) =

1

�

d�(m)

dm

we an write eq.(30) as

�

0

= ��

2

+

1

1�m

2

�

3m�+ �

2

�

`(`+ 1)

1�m

2

�

; (31)

whih is also a Riati equation.

6

� = 0; 1; 2; 3; : : : orresponds to the eingenvalue spetrum of Gegenbauer equation.
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6 The Prasad metri with radius of the Universe

independent of the parametrization

In the former ase (setion 5), with the hyperboli parametrization of D, the

lassial radial �eld equations were not obtained in the limit r !1. With

a new temporal parametrization we are able to obtain the lassial ase in

this limit.

The group that haraterizes the external spae D

+

is SO

4;1

, while the

internal spae D

�

is only a�eted by the symmetry group SO

3;2

. Using

artesian oordinates, we an express[5℄ the internal and external line ele-

ments,

ds

2

+

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

+ dx

5

2

;

ds

2

�

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

� dx

6

2

:

From the transformations proposed by Tolman[13℄

x

5

� x

4

= R

+

exp[�t=R

+

℄(1� r

2

=R

2

+

)

1=2

for D

+

and

x

4

� ix

6

= R

�

exp[�it=R

�

℄(1 + r

2

=R

2

�

)

1=2

for D

�

, we an substitute these expressions in the expressions for the line

elements, obtaining

ds

2

�

=

dr

2

1� r

2

=R

�

2

+ r

2

d�

2

+ r

2

sin

2

�d'

2

� (1� r

2

=R

2

�

)dt

2

The generalized Laplae di�erential equation is

1

r

2

�

�r

�

r

2

(1� �

�

r

2

)

� 

�r

�

+

1

r

2

sin

2

�

�

��

�

sin �

� 

��

�

+

1

r

2

sin

2

�

�

2

 

�'

2

�

1

1� �

�

r

2

�

2

 

�t

2

= 0; (32)

where �

�

� 1=R

2

�

.

Let  (r; t; �; ') = Y (�; ')�(r; t). Then we an separate eq.(32) as

1

�

�

�r

�

r

2

(1� �

�

r

2

)

��

�r

�

�

1

�

r

2

(1� �

�

r

2

)

�

2

�

�t

2

= `(`+ 1) (33)
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and for the non-angular equation we obtain the same equation that we have

gotten formerly.

If we put �(r; t) = S(r)T (t), we obtain from eq.(33)

1

T

�

2

T

�t

2

= �B:

where B is a separation onstant. If we are on the internal struture of

(D

�

), the temporal equation above has an osillatory solution

T

�

(t) = �

�

exp(�iHt=R

�

);

assoiated with the quantum number hyperharge (H)[11℄. In ase we are

treating D

+

, time will have an exponential harater desribed by the equa-

tion assoiated with the energy eigenvalues (E)

T

+

(t) = �

+

exp(�Et=R

+

)

For the radial equations we an write

1� �

�

r

2

r

2

d

dr

�

r

2

(1� �

�

r

2

)

dS

dr

�

�

`(`+ 1)

r

2

(1� �

�

r

2

)S = BS: (34)

These equations an be transformed in a lassial �eld equation (for

example, the eletri or the gravitational �elds in D). From the de�nition

�

�

= 1=R

2

�

, it is obvious that in the limit where R ! 1, �

�

! 0. Using

some results of Quantum Mehanis in hyperspherial universes in D

+

, with

B = Y

2

=R

2

�

, and in D

�

,with B = E

2

=R

2

+

, in the limit where R

�

! 1 we

obtain B ! 0. Therefore the radial �eld equation an be written as

1

r

2

d

dr

�

r

2

dR

dr

�

= 0 (35)

in the ground state, where ` = 0.

With the hange of variable

1

R

dR

d�

= �

we an transform eq.(34) in two Riati equations:

�

0

= ��

2

� �

�

2

r

�

2�

�

r

1� �

�

r

2

�

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

: (36)
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7 Conlusions

For the Riemann, Beltrami and Prasad metris, the lassial ase

1

�

2

d

d�

�

�

2

dR

d�

�

= 0

is obtained when we substitute in all radial equations the limit where the

manifold radius approahes in�nity.

All the three Laplae equations exhibit the same angular equation from

the Riemann (setion 2), Beltrami (setion 3) and B�orner-D�urr (setion 4)

projetive metris. With regard to the radial equations, we have obtained

for eah metri a seond order ordinary di�erential equation, whih we have

led into a Riati di�erential equation.

We have treated the Prasad metri separately beause it omes from

a parameterized metri in Projetive Relativity. Using these parametriza-

tions, D is shared in internal and external spaes. The radial di�erential

�eld equations, obtained from the Laplae di�erential equation, have di�er-

ent signs, but both are led to similars Riati equations, di�erent from eah

other only by the name of the substitution variable. In the �rst ase, with

the parametrization, the lassial ase of a spherially symmetri salar �eld

annot be obtained by making the radius of D approah in�nity. This was

expeted beause in artesian oordinates the radius of D is independent

of the oordinates, while in urvilinear ones the parametrization onstrains

the radius of D: it is the radial parametri oordinate. Thus the informa-

tion about the radius is lost, beause the Laplae di�erential equation is

homogeneous. In the last treatment, with the parametrization independent

of the radius of the Universe, the lassial �eld ase is obtained. Finally, by

a suitable hange of variables, all radial di�erential �eld equations an be

led to a Riati equation.

Besides, we have gotten important results on Quantum Mehanis. The

temporal equation from the orresponding metris assoiates quantum num-

bers and energy eigenvalues with the internal and external strutures of D.

At last, sine the Laplae-Beltrami generates a wave partial di�erential

equation (the metri is Lorentzian (3,1)), if we put in all the three Prasad

metris the oordinate t = 0 the wave di�erential equation is led to a

Laplae di�erential equation.
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