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Abstract

We present and discuss the generalized Laplace partial differential
equation in the de Sitter Universe (D) in several metrics. From Pro-
jective Relativity, we show that all angular differential equations have
solutions given by the spherical harmonics and all radial differential
equations can be written as a Riccati ordinary differential equation.
When the radius of D goes to infinity we reobtain the Minkowskian
results. In particular, the radial equations predict the behavior of the
gravitational field in D.

We also solve the Laplace equation associated to the Prasad metric.
We discuss the so called internal and external spaces that correspond to
the symmetry groups SOs » and SOy 1, respectively. Using hyperspher-
ical coordinates we show that both radial differential equations can be
led to the Riccati ordinary differential equation. For the Prasad metric
with the radius of the universe independent of the parametrization, we
associate the solution of the temporal equation with quantum number
hypercharge to the internal structure and for the external structure,
we associate the energy eigenvalues. Again the radial field equation
can be led to the classical case in the limit process of a flat spacetime.



1 Introduction

The de Sitter Universe (D), is a solution of Einstein’s equation [1]. In
this paper we present and discuss the Laplace differential equation in this
universe. Although it can be treated as a four-dimensional Riemannian
manifold, D is not the space where Special Relativity (SR) is valid, because
this theory was developed in spaces endowed with Minkowski geometry.
We want to adapt SR to cosmology, distinguishing absolute spacetime, the
effective seat of physical events, from the tangent relative spacetime in which
phenomena seem to happen to every observer [2].

The correspondence between D and Minkowski spacetime appears con-
structing homeomorphisms between these spaces by doing stereographic pro-
jections, obtaining the Riemann [3], Borner-Diurr [4] and Beltrami [3] met-
rics.

From the above metrics, we solve the so called generalized Laplace differ-
ential equation. We introduce the spherical relativistic coordinates and we
conclude after separation of variables that the angular differential equation
is the same for all metrics, and admits as solutions the spherical harmon-
ics, while the radial differential equations differ; for all of them the classical
(Minkowskian) case is obtained when r — oo, where r is the radius of D.
Introducing a suitable change of variables, all radial differential equations
can be led to a Riccati equation [5].

For the other side, Arcidiacono [3] proposed a natural extension of trans-
lations in a Minkowskian spacetime, which can be thought as rotations in
the symmetry group SOy 1, restricted to the de Sitter universe D. We can
divide D in internal and external hyperspaces, associating with each one, the
symmetry groups SO41 and SO3 2, respectively. After parametrizing these
hyperspaces, we again solve the generalized Laplace equation, obtaining the
same conclusions we have gotten from the projective metrics.

This paper is organized as follows: in section two we present the Laplace
differential equation with Riemann metric, solving the angular differential
equation in terms of spherical harmonics and reducing the radial differen-
tial equation to a Riccati equation. In section three we discuss the Laplace
equation in D with the Beltrami metric. The radial equation is again led to
a Riccati equation. In section four we present and discuss the Borner-Diirr
metric. In section five we present the Laplace differential equation for the
Prasad metric, by the parametrization of the internal and external hyper-
spaces associated with D, solving the angular differential equation and re-
ducing the radial differential field equation to a Riccati equation. In section
six we discuss the Laplace equation associated with another parametrization



of D, getting similar results we have already obtained. Finally, we present
our conclusions.

2 The Riemann metric

The stereographic projection of D on the Euclidean space Es3, which is a
tangent hyperplane to D, originates the Riemann metric *

4y2

ds? = ———
4r2 + p?

(dz? + dy? + dz*).

Let us make a change of variables, introducing spherical coordinates
(p,0,¢) in E5. The Riemann metric transforms into

4r?

ds* = ———
4r2 + p?

(dp* + p*df? + p*sin®0dp?)

Substituting the tensor components above in the generalized Laplacian
[6] we obtain the Laplace equation:
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Consider the following separation of variables:

0. (1)

® = R(p)Y (6, ) = RY.
It is possible to separate eq.(1) in radial and angular parts, yielding:

d p?  dR
ap2 Lyl Akt
U+ (4r2 + p2)1/2 dp

] = kR 2)

and

1 90 /. 0Y 1 0%y
090 <s1n 0—> — + kY =0 (3)

00 sin%6 dp?
where k is a constant.

'From now on, the symbol of the intrinsic metric tensor product will be omited; we
won’t distinguish ds® = g;jdz’da’ and ds® = gi;dx’ @ da’.



In egs.(2) and (3) the constant factor k is restricted to the values k =
(£+1), where £ =0,1,2... Otherwise, there would be a discontinuity when
the azimuthal angle takes the values § = 4, since the series solution of
the angular azimuthal equation would have values going to infinity at these
points. We have chosen integer values for k£ since for such values, the series
degenerates in polynomials which are continuous solutions on the whole real
line [7, 8].

With the separation Y = Y (6,¢) = ©(0)¢(p), we can further separate
eq.(3), obtaining
: 2
%d% [sin@%] + sin20[e(0 + 1)] = —%Z—Sﬁ (@)
Each side of eq.(4) has a different independent variable; let the separation
constant be m?, with the condition —¢ < m < ¢, where m € Z. This choice
is made because of the conservation of the rotational symmetry of ¢: in each
direction, ¢ has a unique value. So

b(p) = Ae™™? (5)

where A is a constant.
The other equation is

1 d ( i 0d@> .
sinfdo \" " do
which is the associated Legendre differential equation, whose solutions regu-
lar at the origin are P;"(cos @), namely the associated Legendre functions.
Introducing the spherical harmonics defined by Y (6, ¢) = P,"(cos §)e*m?,

we obtain the solutions of the angular differential equation.?
The radial differential equation can be written as

2

(e+1) —

]@:0 (6)

sinZ6

d’R p? dR
2
— 20— ———|—+Ll+1)R=0 7
Considering the following change of variable:
LdR _
Rdp — "

2In the present case m € N, what is very useful in Quantum Mechanics, but it is
also possible to exist a magnetic quantum number such that m < 0. Besides, a more
precise definition of the spherical harmonics is the one with a normalization factor, given

1/2
by Y (8, ) = (-1)™ {2154: 1 Eﬁ%}:l;:] P (cos §)eime .
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we can write

3

2 2 2 1Y
= 2p— — 1
PN P +<p 4T2+p2>n+€(€+ )s (8)

which is a Riccati equation.
Besides, in eq.(8) we can carry out the limit

d’R 0 dR d’R _ dR
lim |p? ==+ (20— —— | == + L+ 1)R| = p* == +2p—+L((+1
ri%lo[pdpfr(p w2y ) dp AT VE =gty HUE DR
d [ ,dR
= = (pPP==) 4L+ 1)R=0
dp<pdp>+(+)

In the particular case where k = 0, considering that the particle (which
is described by a radial wave function) is in its ground state (¢ = 0), one

dR

2d_> = 0. In this case, the scalar
0

field (or scalar potential) has spherical symmetry, and can be written as

¢ = ¢(p).

returns to the classical case, since T (p

3 The Beltrami metric

An observer O at an arbitrary position in the de Sitter Universe (D) observes
every event from its own referential, which is a tangent hyperspace to D.
Consider, for example, a light pulse. The luminous pulse follows the intrinsic
geodesic of D, but the observer locates it in a direction tangent to S*.

To construct a faithful representation of events in each one of the infinite
tangent hyperspaces we need to establish a relation between the absolute
coordinates £* (o = 0,1,...,4) in D and the relative coordinates z# (u =
0,1,2,3) in P34, the so-called projective Castelnuovo spacetimel[9].

Among plenty of possibilities, Beltrami chose doing a stereographic pro-
jection from the center of D on a tangent hyperplane to D at the south pole
(0,0,0,0,—7). We can verify the relations

T ot

§4=Z and f”zza (9)

2
where A = (1+ p—2)1/2, p? = atz, = —af + 23+ 23 + 2% and r is the radius
the universe. To a Pythagorean metric in D there corresponds a projective
metric [10] in P34 associated with the same line element:

, 1
ds® = devde, = A~ A da'dx; — ﬁ(:ridxi)2], with ¢ =0,1,2,3. (10)



The associated Laplace differential equation is expressed as

2, _ (2401?20 ( 508\ (P4p) 0 (. 08 (" +p°) ¢
Vo= (o) a6 (95 ) ey

p?r2sin6 8—902 N

r2p2 sinf 60
After separation of variables, the angular differential equation has the same

solution as the Riemann metric [6].
The radial differential equation is

S e+ )R =0 (11)

It is important to verify the limit of the equations, when the radius
of the de Sitter manifold approaches infinity, which must agree with the
relativistic observations on the free (null divergence) Minkowski spacetime.
d dR

Indeed, when r — oo we obtain o <p2d—> = 0, leading to the classical
P P

field case.

Introducing the same change of variable done in the case of Riemannian
metric,

1dR
M= R%J
we can write eq.(11) as
2
pu = —p?p® = 2pp + L(L + 1)m, (12)

which is a Riccati equation.

4  The Borner-Durr metric

This metric is obtained by the parametrization of the hyperboloid [4]:

E9nap® = —1r?, with 74 = diag(1,—1,—-1,—-1,—1)  a,b=0,...,4

with conformal coordinates (z*,u = 0,1,2,3). It can be done by a stereo-
graphic projection from the north pole (0,0, 0,0, 7) into a tangent hyperplane
on the south pole (0,0,0,0,—7) :

4r2

2
¢ = (@), = —r((a?) (1 + —)



-1
2
x
—z) 1? = rtz, = —z} + 2% + 23 + 13,
Substituting the metric tensor in the Laplace differential equation we
obtain?

with ¢(z?) = <1

[89(sin 00p) + L} + 12 (9tt¢> =0

sin%6 C

1 1
V2p = —((a? (—8 20 -
¢ C(:I" ) ,02 p(P p¢) + :02 sin @
Using the method of separation of variables, we obtain the same angular
differential equation, although the former equations are partial differential
ones and can be written as follows:

2 P2 2
9 (p*0,A) + L3074 = —kA (13)
where k is a constant.

Now, introducing A(p,t) = R(p)T'(t) and substituting in eq.(13), we
obtain two ordinary differential equations as follows:

114d 9dR k 9
- -2 il I 14
Rp?dp <p dp> 2 14
and
1 1d*T
cTar = 15)
where a? is a constant.

The solution of eq.(15) is an exponential and for the other ordinary
differential equation we introduce the same change of variable and we obtain
! 2 k 2

iz =—,u2——,u+§+a

p (16)

which is also a Riccati equation.

5 The Prasad metric

The de Sitter Universe (D) can be described as the sum p; 4 po where g; is
the external space and g9 is the internal one. To each of these spaces there
correspond the symmetry groups SO4; and SO3 5 respectively[11].

3We have done the change of variables xo — ict, where ¢ and t have dimensions of

velocity and time, respectively. From now on, we introduce the notation: J; =

8_4'



5.1 The external space ()

This hyperspace has constant curvature 1/R? and has a quadratic form
associated with it, as follows:

R? = (1) + (32)? + (w3)® — (24)” + (w5)".

A possible parametrization [11] for the above quadratic form is

1 = Rsinxsinfcospcosht
x9 = Rsinysinfsinpcosht
x3 = Rsinycosfcosht

x4y = Rsinht

x5 = Rcosycosht

allowing us to write the line element as

ds?. = R* cosh? t[dx* + sin® x(d0* + sin® 0dp?)] — R*dt* (17)

For this metric tensor we obtain the Laplace differential equation

;2
(R? cosh? tsin? x)V%¢p = %&(coshz)’ t0pp) — Oy (sin® x Oy B)+
+ L0y (sin60yd) + —=—3,06 = 0 (18)
sing 7YY sin?g 777

After writing the scalar field ¢ as

¢(X7 t,0, ‘;0) = F(X? t)Y(ev ‘:0)

we can separate the Laplace differential equation in two partial differential
equations: one of these has the solution known yet (spherical harmonics)
while the another is

1 1
9y (cosh® to,I') — Oy (sin® x0, I') —
cosht k(cos L) sin? y (1" X O T) sin® y

with £=10,1,2,3...
Relatively to eq.(19), we consider the functional product

I(x,t) = H(x)(?)



and suppose that the separation constant? is a?. Then, eq.(19) can be
separated in two ordinary differential equations:

1 d .o dll (£ +1) 9
— — —— I —a’ll =0 20
sinZXdX <sm de> + sinzx @ (20)
and 1 d 0
— Wi ) —a?Q=0. 21
cosht dt <COS t dt ) @ 0 (21)

We emphasize eq.(20), namely, the radial one.> We can rewrite eq.(20)
as

dZ—H + 2cot da + Lﬁ—i— D
dx? de sin? x

Introducing the variable j = cos x, we obtain [12]

T — o?T1 = 0. (22)

d?11 dIl (¢ +1)
— (1 =53 =3j— -l + —HII = 2
We can rewrite eq.(23) as
. L +1)
! 2 2
_ _ 24
i e R (24)

which is a Riccati equation.

5.2 The internal space ()

This hyperspace has a negative constant curvature —1/r% and can be charac-
terized by the symmetry group SOs3 2. To this group is associated a quadratic
form
.’L‘%—l—.’L‘%-l—LEg —xi—x% = —r2
Prasad [11] proposed the following parametrization with nonstatic coor-
dinates:

x1 = rsinhxsinfcosycost
x9 = rsinhxsinfsinpcost
3 = rsinhycosfcost
T4 = rsint
rg = rcoshycost
‘0=0,1,2,3,... corresponds to the eingenvalue spectrum of Gegenbauer equation.

(21)? + (22)* + (x3)?
2
radius of D, it is the so-called adimensional normalized radius.

5The variable x is defined by siny =

. Although siny is not the



Then, we can write the line element as follows:
ds® = 12 cos® t{dx? + sinh? x(d#? + sin® 0dy?)] — r2dt>. (25)

The generalized Laplace differential equation can be written as

2
2 cos? tsinh? V2 = — S;ES f@t(cos:)’ tOrp) + Oy (sinh? x0, ¢)+
+—0y(sin8yd) + ——0,, = 0 (26)
sing Yl sin? 7

Defining the funcional product

d(p,t,0,0) = Ap,1)Y (0, p) = AY,

we can separate eq.(26) in radial-temporal and angular equations:

1sinh2X 3 1 . -
"X easy Orlcos”1OA) + Oy (sinh” x0y¢) = £(£ + 1) (27)
and
¥ g 0009) + 3 rg0sed = 4+ (28)
Y sin@ A Y sin2g #e% T .

where ¢ = 0,1,2,--- It is also worthwhile to mention here that eq.(28) is
exactly the angular equation obtained in the precedent case (the internal
space g1). Once again we separate eq.(27) in radial and temporal equations
(we will emphasize the radial equation only).

Taking A(x,t) = ZE(x)V(t) we get two ordinary differential equations

11 d [ ,dU\

Tt () = (29)
and 11 d d2\ L+ 1)
=) +

- - 1 h2 —> — = — 2. 30

2 sinh? y dx <s1n XdX sinh? y b (30)

where 3 is the separation constant® . Introducing m = cosh y and defining
u(m) = %% we can write eq.(30) as

1 0+ 1)
! 2 2
=—p" + 3myp + 57 — 31
W=—nt 1 [ B =T (31)
which is also a Riccati equation.
68=0,1,2,3,... corresponds to the eingenvalue spectrum of Gegenbauer equation.
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6 The Prasad metric with radius of the Universe
independent of the parametrization

In the former case (section 5), with the hyperbolic parametrization of D, the
classical radial field equations were not obtained in the limit » — oco. With
a new temporal parametrization we are able to obtain the classical case in
this limit.

The group that characterizes the external space D is SOy 1, while the
internal space D_ is only affected by the symmetry group SO332. Using
cartesian coordinates, we can express[5] the internal and external line ele-
ments,

dsi =dz1? + dzo? + dzs? — dzy® + dzs?,

ds® = dz1? 4 dzo? + ds? — day? — dag.

From the transformations proposed by Tolman[13]

w5 & 14 = Ry exp[&t/R](1 —r?/R3)Y?
for Dy and

x4 + iz = R_exp[+it/R_](1 + 7“2/1?,2_)1/2

for D_, we can substitute these expressions in the expressions for the line
elements, obtaining

dr?
ds? = —————— +r2dh* + r? sin® Odp? — (1 F r?/R2%)dt?
T 1Fr2/R.2 p”— (1Fr°/RY)
The generalized Laplace differential equation is

10

r2 Or

o 1 o (. O0Y
2 2\ O v v
r(LF Asr )87" +r28in2080 (Sm080>+

1 2 1 2
r2sin® 0 0p? 1 F ApLr? Ot?

where Ay = 1/R%.
Let 9(r,t,0,¢p) =Y (0,9)I'(r,t). Then we can separate eq.(32) as

190
I'or

r 2 r
7‘2(1 :|:A:|:’I“2)8— — " 0

1
o) T Tarao o~ UHY (33)
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and for the non-angular equation we obtain the same equation that we have
gotten formerly.
If we put I'(r,t) = S(r)T'(t), we obtain from eq.(33)

10°T

T o2
where B is a separation constant. If we are on the internal structure of
(D), the temporal equation above has an oscillatory solution

T_(t) = 7_exp(+iHt/R_),

associated with the quantum number hypercharge (H)[11]. In case we are
treating D, time will have an exponential character described by the equa-
tion associated with the energy eigenvalues (F)

Ty (t) = 71 exp(£Et/Ry)
For the radial equations we can write

2
]-:Flézl:lr i T2(1:l:A:|:’l"2)§ _ Z(E—I—l)
r dr

(1FALr®)S = BS.  (34)

r r2

These equations can be transformed in a classical field equation (for
example, the electric or the gravitational fields in D). From the definition
Ay = 1/R3%, it is obvious that in the limit where R — oo, Ay — 0. Using
some results of Quantum Mechanics in hyperspherical universes in D, with
B =Y?/R%, and in D_,with B = E*/R%, in the limit where Ry — co we
obtain B — 0. Therefore the radial field equation can be written as

1 d ([ ,dR
2dr ( %) =0 (35)

in the ground state, where ¢ = 0.
With the change of variable

1dR _
Rdp "

we can transform eq.(34) in two Riccati equations:

) ) (2 2Mf> 0L+1) B
=0 —n + -
r2(LF Agr?) 1 F Aypr?

r:F 1FAr2

(36)
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7 Conclusions

For the Riemann, Beltrami and Prasad metrics, the classical case

1d
p? dp

) @]

is obtained when we substitute in all radial equations the limit where the
manifold radius approaches infinity.

All the three Laplace equations exhibit the same angular equation from
the Riemann (section 2), Beltrami (section 3) and Borner-Dirr (section 4)
projective metrics. With regard to the radial equations, we have obtained
for each metric a second order ordinary differential equation, which we have
led into a Riccati differential equation.

We have treated the Prasad metric separately because it comes from
a parameterized metric in Projective Relativity. Using these parametriza-
tions, D is shared in internal and external spaces. The radial differential
field equations, obtained from the Laplace differential equation, have differ-
ent signs, but both are led to similars Riccati equations, different from each
other only by the name of the substitution variable. In the first case, with
the parametrization, the classical case of a spherically symmetric scalar field
cannot be obtained by making the radius of D approach infinity. This was
expected because in cartesian coordinates the radius of D is independent
of the coordinates, while in curvilinear ones the parametrization constrains
the radius of D: it is the radial parametric coordinate. Thus the informa-
tion about the radius is lost, because the Laplace differential equation is
homogeneous. In the last treatment, with the parametrization independent
of the radius of the Universe, the classical field case is obtained. Finally, by
a suitable change of variables, all radial differential field equations can be
led to a Riccati equation.

Besides, we have gotten important results on Quantum Mechanics. The
temporal equation from the corresponding metrics associates quantum num-
bers and energy eigenvalues with the internal and external structures of D.

At last, since the Laplace-Beltrami generates a wave partial differential
equation (the metric is Lorentzian (3,1)), if we put in all the three Prasad
metrics the coordinate ¢t = 0 the wave differential equation is led to a
Laplace differential equation.
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