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Abstra
t

We present and dis
uss the generalized Lapla
e partial di�erential

equation in the de Sitter Universe (D) in several metri
s. From Pro-

je
tive Relativity, we show that all angular di�erential equations have

solutions given by the spheri
al harmoni
s and all radial di�erential

equations 
an be written as a Ri

ati ordinary di�erential equation.

When the radius of D goes to in�nity we reobtain the Minkowskian

results. In parti
ular, the radial equations predi
t the behavior of the

gravitational �eld in D.

We also solve the Lapla
e equation asso
iated to the Prasad metri
.

We dis
uss the so 
alled internal and external spa
es that 
orrespond to

the symmetry groups SO

3;2

and SO

4;1

, respe
tively. Using hyperspher-

i
al 
oordinates we show that both radial di�erential equations 
an be

led to the Ri

ati ordinary di�erential equation. For the Prasad metri


with the radius of the universe independent of the parametrization, we

asso
iate the solution of the temporal equation with quantum number

hyper
harge to the internal stru
ture and for the external stru
ture,

we asso
iate the energy eigenvalues. Again the radial �eld equation


an be led to the 
lassi
al 
ase in the limit pro
ess of a 
at spa
etime.
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1 Introdu
tion

The de Sitter Universe (D), is a solution of Einstein's equation [1℄. In

this paper we present and dis
uss the Lapla
e di�erential equation in this

universe. Although it 
an be treated as a four-dimensional Riemannian

manifold, D is not the spa
e where Spe
ial Relativity (SR) is valid, be
ause

this theory was developed in spa
es endowed with Minkowski geometry.

We want to adapt SR to 
osmology, distinguishing absolute spa
etime, the

e�e
tive seat of physi
al events, from the tangent relative spa
etime in whi
h

phenomena seem to happen to every observer [2℄.

The 
orresponden
e between D and Minkowski spa
etime appears 
on-

stru
ting homeomorphisms between these spa
es by doing stereographi
 pro-

je
tions, obtaining the Riemann [3℄, B�orner-D�urr [4℄ and Beltrami [3℄ met-

ri
s.

From the above metri
s, we solve the so 
alled generalized Lapla
e di�er-

ential equation. We introdu
e the spheri
al relativisti
 
oordinates and we


on
lude after separation of variables that the angular di�erential equation

is the same for all metri
s, and admits as solutions the spheri
al harmon-

i
s, while the radial di�erential equations di�er; for all of them the 
lassi
al

(Minkowskian) 
ase is obtained when r ! 1, where r is the radius of D.

Introdu
ing a suitable 
hange of variables, all radial di�erential equations


an be led to a Ri

ati equation [5℄.

For the other side, Ar
idia
ono [3℄ proposed a natural extension of trans-

lations in a Minkowskian spa
etime, whi
h 
an be thought as rotations in

the symmetry group SO

4;1

, restri
ted to the de Sitter universe D. We 
an

divide D in internal and external hyperspa
es, asso
iating with ea
h one, the

symmetry groups SO

4;1

and SO

3;2

, respe
tively. After parametrizing these

hyperspa
es, we again solve the generalized Lapla
e equation, obtaining the

same 
on
lusions we have gotten from the proje
tive metri
s.

This paper is organized as follows: in se
tion two we present the Lapla
e

di�erential equation with Riemann metri
, solving the angular di�erential

equation in terms of spheri
al harmoni
s and redu
ing the radial di�eren-

tial equation to a Ri

ati equation. In se
tion three we dis
uss the Lapla
e

equation in D with the Beltrami metri
. The radial equation is again led to

a Ri

ati equation. In se
tion four we present and dis
uss the B�orner-D�urr

metri
. In se
tion �ve we present the Lapla
e di�erential equation for the

Prasad metri
, by the parametrization of the internal and external hyper-

spa
es asso
iated with D, solving the angular di�erential equation and re-

du
ing the radial di�erential �eld equation to a Ri

ati equation. In se
tion

six we dis
uss the Lapla
e equation asso
iated with another parametrization
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of D, getting similar results we have already obtained. Finally, we present

our 
on
lusions.

2 The Riemann metri


The stereographi
 proje
tion of D on the Eu
lidean spa
e E

3

, whi
h is a

tangent hyperplane to D, originates the Riemann metri


1

ds

2

=

4r

2

4r

2

+ �

2

(dx

2

+ dy

2

+ dz

2

):

Let us make a 
hange of variables, introdu
ing spheri
al 
oordinates

(�; �; ') in E

3

. The Riemann metri
 transforms into

ds

2

=

4r

2

4r

2

+ �

2

(d�

2

+ �

2

d�

2

+ �

2

sin

2

�d'

2

)

Substituting the tensor 
omponents above in the generalized Lapla
ian

[6℄ we obtain the Lapla
e equation:

r

2

� =

(4r

2

+ �

2

)

3=2

4r

2

�

2

�

��

"

�

2

(4r

2

+ �

2

)

1=2

��

��

#

+

(4r

2

+ �

2

)

4r

2

�

2

sin �

�

��

�

sin �

��

��

�

+

(4r

2

+ �

2

)

4r

2

�

2

sin

2

�

�

2

�

�'

2

= 0: (1)

Consider the following separation of variables:

� = R(�)Y (�; ') � RY:

It is possible to separate eq.(1) in radial and angular parts, yielding:

(4r

2

+ �

2

)

1=2

d

d�

"

�

2

(4r

2

+ �

2

)

1=2

dR

d�

#

= kR (2)

and

1

sin �

�

��

�

sin �

�Y

��

�

+

1

sin

2

�

�

2

Y

�'

2

+ kY = 0 (3)

where k is a 
onstant.

1

From now on, the symbol of the intrinsi
 metri
 tensor produ
t will be omited; we

won't distinguish ds

2

= g

ij

dx

i

dx

j

and ds

2

= g

ij

dx

i


 dx

j

.
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In eqs.(2) and (3) the 
onstant fa
tor k is restri
ted to the values k =

`(`+1), where ` = 0; 1; 2 : : : Otherwise, there would be a dis
ontinuity when

the azimuthal angle takes the values � = ��, sin
e the series solution of

the angular azimuthal equation would have values going to in�nity at these

points. We have 
hosen integer values for k sin
e for su
h values, the series

degenerates in polynomials whi
h are 
ontinuous solutions on the whole real

line [7, 8℄.

With the separation Y = Y (�; ') = �(�)�('), we 
an further separate

eq.(3), obtaining

sin �

�

d

d�

�

sin �

d�

d�

�

+ sin

2

�[`(`+ 1)℄ = �

1

�

d

2

�

d'

2

(4)

Ea
h side of eq.(4) has a di�erent independent variable; let the separation


onstant be m

2

, with the 
ondition �` � m � `, where m 2 Z. This 
hoi
e

is made be
ause of the 
onservation of the rotational symmetry of �: in ea
h

dire
tion, � has a unique value. So

�(') = Ae

�im'

(5)

where A is a 
onstant.

The other equation is

1

sin �

d

d�

�

sin �

d�

d�

�

+

"

`(`+ 1)�

m

2

sin

2

�

#

� = 0 (6)

whi
h is the asso
iated Legendre di�erential equation, whose solutions regu-

lar at the origin are P

l

m

(
os �), namely the asso
iated Legendre fun
tions.

Introdu
ing the spheri
al harmoni
s de�ned by Y (�; ') = P

l

m

(
os �)e

�im'

,

we obtain the solutions of the angular di�erential equation.

2

The radial di�erential equation 
an be written as

�

2

d

2

R

d�

2

+

 

2��

�

3

4r

2

+ �

2

!

dR

d�

+ `(`+ 1)R = 0 (7)

Considering the following 
hange of variable:

1

R

dR

d�

= �:

2

In the present 
ase m 2 N , what is very useful in Quantum Me
hani
s, but it is

also possible to exist a magneti
 quantum number su
h that m � 0. Besides, a more

pre
ise de�nition of the spheri
al harmoni
s is the one with a normalization fa
tor, given

by Y (�; ') = (�1)

m

�

2`+ 1

4�

(`� jmj)!

(`+ jmj)!

�

1=2

P

l

jmj

(
os �)e

�im'

.
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we 
an write

�

2

�

0

= ��

2

�

2

+

 

2��

�

3

4r

2

+ �

2

!

� + `(`+ 1); (8)

whi
h is a Ri

ati equation.

Besides, in eq.(8) we 
an 
arry out the limit

lim

r!1

"

�

2

d

2

R

d�

2

+

 

2��

�

3

4r

2

+ �

2

!

dR

d�

+ `(`+ 1)R

#

= �

2

d

2

R

d�

2

+2�

dR

d�

+`(`+1)R

=

d

d�

�

�

2

dR

d�

�

+ `(`+ 1)R = 0

In the parti
ular 
ase where k = 0, 
onsidering that the parti
le (whi
h

is des
ribed by a radial wave fun
tion) is in its ground state (` = 0), one

returns to the 
lassi
al 
ase, sin
e

d

d�

�

�

2

dR

d�

�

= 0. In this 
ase, the s
alar

�eld (or s
alar potential) has spheri
al symmetry, and 
an be written as

� = �(�):

3 The Beltrami metri


An observer O at an arbitrary position in the de Sitter Universe (D) observes

every event from its own referential, whi
h is a tangent hyperspa
e to D.

Consider, for example, a light pulse. The luminous pulse follows the intrinsi


geodesi
 of D, but the observer lo
ates it in a dire
tion tangent to S

4

.

To 
onstru
t a faithful representation of events in ea
h one of the in�nite

tangent hyperspa
es we need to establish a relation between the absolute


oordinates �

�

(� = 0; 1; : : : ; 4) in D and the relative 
oordinates x

�

(� =

0; 1; 2; 3) in P

3+1

, the so-
alled proje
tive Castelnuovo spa
etime[9℄.

Among plenty of possibilities, Beltrami 
hose doing a stereographi
 pro-

je
tion from the 
enter of D on a tangent hyperplane to D at the south pole

(0; 0; 0; 0;�r). We 
an verify the relations

�

4

=

r

A

and �

�

=

x

�

A

; (9)

where A � (1 +

�

2

r

2

)

1=2

, �

2

� x

�

x

�

= �x

2

0

+ x

2

1

+ x

2

2

+ x

2

3

and r is the radius

the universe. To a Pythagorean metri
 in D there 
orresponds a proje
tive

metri
 [10℄ in P

3+1

asso
iated with the same line element:

ds

2

= d�

a

d�

a

= A

�4

[A

2

dx

i

dx

i

�

1

r

2

(x

i

dx

i

)

2

℄; with a = 0; 1; 2; 3: (10)
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The asso
iated Lapla
e di�erential equation is expressed as

r

2

� =

(r

2

+ �

2

)

2

r

4

�

2

�

��

�

�

2

��

��

�

+

(r

2

+ �

2

)

r

2

�

2

sin �

�

��

�

sin �

��

��

�

+

(r

2

+ �

2

)

�

2

r

2

sin

2

�

�

2

�

�'

2

= 0

After separation of variables, the angular di�erential equation has the same

solution as the Riemann metri
 [6℄.

The radial di�erential equation is

(r

2

+ �

2

)

�

2

r

2

d

2

R

dr

2

+

2�

r

2

(r

2

+ �

2

)

dR

d�

� `(`+ 1)R = 0 (11)

It is important to verify the limit of the equations, when the radius

of the de Sitter manifold approa
hes in�nity, whi
h must agree with the

relativisti
 observations on the free (null divergen
e) Minkowski spa
etime.

Indeed, when r ! 1 we obtain

d

d�

�

�

2

dR

d�

�

= 0, leading to the 
lassi
al

�eld 
ase.

Introdu
ing the same 
hange of variable done in the 
ase of Riemannian

metri
,

� =

1

R

dR

d�

;

we 
an write eq.(11) as

�

2

�

0

= ��

2

�

2

� 2��+ `(`+ 1)

r

2

r

2

+ �

2

; (12)

whi
h is a Ri

ati equation.

4 The B�orner-D�urr metri


This metri
 is obtained by the parametrization of the hyperboloid [4℄:

�

a

�

ab

�

b

= �r

2

; with �

ab

= diag(1;�1;�1;�1;�1) a; b = 0; : : : ; 4

with 
onformal 
oordinates (x

�

; � = 0; 1; 2; 3). It 
an be done by a stereo-

graphi
 proje
tion from the north pole (0; 0; 0; 0; r) into a tangent hyperplane

on the south pole (0; 0; 0; 0;�r) :

�

�

= �(x

2

)x

�

; �

4

= �r�(x

2

)

 

1 +

x

2

4r

2

!
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with �(x

2

) =

 

1�

x

2

4r

2

!

�1

; x

2

= x

�

x

�

= �x

2

0

+ x

2

1

+ x

2

2

+ x

2

3

.

Substituting the metri
 tensor in the Lapla
e di�erential equation we

obtain

3

r

2

� = ��(x

2

)

�

1

�

2

�

�

(�

2

�

�

�) +

1

�

2

sin �

�

�

�

(sin ��

�

�) +

1

sin

2

�

�

+

1




2

�

tt

�

�

= 0

Using the method of separation of variables, we obtain the same angular

di�erential equation, although the former equations are partial di�erential

ones and 
an be written as follows:

�

�

�

�

2

�

�

A

�

+

�

2




2

�

t

2

A = �kA (13)

where k is a 
onstant.

Now, introdu
ing A(�; t) = R(�)T (t) and substituting in eq.(13), we

obtain two ordinary di�erential equations as follows:

1

R

1

�

2

d

d�

�

�

2

dR

d�

�

�

k

�

2

= a

2

(14)

and

1




2

1

T

d

2

T

dt

2

= a

2

: (15)

where a

2

is a 
onstant.

The solution of eq.(15) is an exponential and for the other ordinary

di�erential equation we introdu
e the same 
hange of variable and we obtain

�

0

= ��

2

�

2

�

�+

k

�

2

+ a

2

: (16)

whi
h is also a Ri

ati equation.

5 The Prasad metri


The de Sitter Universe (D) 
an be des
ribed as the sum }

1

+}

2

where }

1

is

the external spa
e and }

2

is the internal one. To ea
h of these spa
es there


orrespond the symmetry groups SO

4;1

and SO

3;2

respe
tively[11℄.

3

We have done the 
hange of variables x

0

! i
t, where 
 and t have dimensions of

velo
ity and time, respe
tively. From now on, we introdu
e the notation: �

�

�

�

�

�

:
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5.1 The external spa
e (}

1

)

This hyperspa
e has 
onstant 
urvature 1=R

2

and has a quadrati
 form

asso
iated with it, as follows:

R

2

= (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

� (x

4

)

2

+ (x

5

)

2

:

A possible parametrization [11℄ for the above quadrati
 form is

x

1

= R sin� sin � 
os' 
osh t

x

2

= R sin� sin � sin' 
osh t

x

3

= R sin� 
os � 
osh t

x

4

= R sinh t

x

5

= R 
os� 
osh t

allowing us to write the line element as

ds

2

+

= R

2


osh

2

t[d�

2

+ sin

2

�(d�

2

+ sin

2

�d'

2

)℄�R

2

dt

2

(17)

For this metri
 tensor we obtain the Lapla
e di�erential equation

(R

2


osh

2

t sin

2

�)r

2

� =

sin

2

�


osh t

�

t

(
osh

3

t�

t

�)� �

t

(sin

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

� = 0: (18)

After writing the s
alar �eld � as

�(�; t; �; ') = �(�; t)Y (�; ')

we 
an separate the Lapla
e di�erential equation in two partial di�erential

equations: one of these has the solution known yet (spheri
al harmoni
s)

while the another is

1


osh t

�

t

(
osh

3

t�

t

�)�

1

sin

2

�

�

�

(sin

2

��

�

�)�

`(`+ 1)

sin

2

�

� = 0; (19)

with ` = 0; 1; 2; 3 : : :

Relatively to eq.(19), we 
onsider the fun
tional produ
t

�(�; t) = �(�)
(t)
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and suppose that the separation 
onstant

4

is �

2

. Then, eq.(19) 
an be

separated in two ordinary di�erential equations:

1

sin

2

�

d

d�

�

sin

2

�

d�

d�

�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0 (20)

and

1


osh t

d

dt

�


osh

3

t

d


dt

�

� �

2


 = 0: (21)

We emphasize eq.(20), namely, the radial one.

5

We 
an rewrite eq.(20)

as

d

2

�

d�

2

+ 2 
ot�

d�

d�

+

`(`+ 1)

sin

2

�

�� �

2

� = 0: (22)

Introdu
ing the variable j � 
os�, we obtain [12℄

d

2

�

dj

2

(1� j

2

)� 3j

d�

dj

� �

2

�+

`(`+ 1)

1� j

2

� = 0 (23)

We 
an rewrite eq.(23) as

�

0

= ��

2

+

1

1� j

2

�

3j�+ �

2

�

`(`+ 1)

1� j

2

�

(24)

whi
h is a Ri

ati equation.

5.2 The internal spa
e (}

2

)

This hyperspa
e has a negative 
onstant 
urvature �1=r

2

and 
an be 
hara
-

terized by the symmetry group SO

3;2

. To this group is asso
iated a quadrati


form

x

2

1

+ x

2

2

+ x

2

3

� x

2

4

� x

2

6

= �r

2

:

Prasad [11℄ proposed the following parametrization with nonstati
 
oor-

dinates:

x

1

= r sinh� sin � 
os' 
os t

x

2

= r sinh� sin � sin' 
os t

x

3

= r sinh� 
os � 
os t

x

4

= r sin t

x

6

= r 
osh� 
os t

4

� = 0; 1; 2; 3; : : : 
orresponds to the eingenvalue spe
trum of Gegenbauer equation.

5

The variable � is de�ned by sin� =

(x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

R

2

. Although sin� is not the

radius of D, it is the so-
alled adimensional normalized radius.
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Then, we 
an write the line element as follows:

ds

2

�

= r

2


os

2

t[d�

2

+ sinh

2

�(d�

2

+ sin

2

�d'

2

)℄� r

2

dt

2

: (25)

The generalized Lapla
e di�erential equation 
an be written as

r

2


os

2

t sinh

2

�r

2

� = �

sin

2

�


os t

�

t

(
os

3

t�

t

�) + �

�

(sinh

2

��

�

�)+

+

1

sin �

�

�

(sin ��

�

�) +

1

sin

2

�

�

''

= 0 (26)

De�ning the fun
ional produ
t

�(�; t; �; ') = �(�; t)Y (�; ') � �Y;

we 
an separate eq.(26) in radial-temporal and angular equations:

�

1

�

sinh

2

�


os t

�

t

(
os

3

t�

t

�) +

1

�

�

�

(sinh

2

��

�

�) = `(`+ 1) (27)

and

1

Y

1

sin �

�

�

(sin ��

�

�) +

1

Y

1

sin

2

�

�

''

� = �`(`+ 1): (28)

where ` = 0; 1; 2; � � � It is also worthwhile to mention here that eq.(28) is

exa
tly the angular equation obtained in the pre
edent 
ase (the internal

spa
e }

1

). On
e again we separate eq.(27) in radial and temporal equations

(we will emphasize the radial equation only).

Taking �(�; t) = �(�)	(t) we get two ordinary di�erential equations

1

	

1


os t

d

dt

�


os

3

t

d	

dt

�

= �

2

(29)

and

1

�

1

sinh

2

�

d

d�

�

sinh

2

�

d�

d�

�

�

`(`+ 1)

sinh

2

�

= ��

2

: (30)

where �

2

is the separation 
onstant

6

. Introdu
ing m = 
osh� and de�ning

�(m) =

1

�

d�(m)

dm

we 
an write eq.(30) as

�

0

= ��

2

+

1

1�m

2

�

3m�+ �

2

�

`(`+ 1)

1�m

2

�

; (31)

whi
h is also a Ri

ati equation.

6

� = 0; 1; 2; 3; : : : 
orresponds to the eingenvalue spe
trum of Gegenbauer equation.
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6 The Prasad metri
 with radius of the Universe

independent of the parametrization

In the former 
ase (se
tion 5), with the hyperboli
 parametrization of D, the


lassi
al radial �eld equations were not obtained in the limit r !1. With

a new temporal parametrization we are able to obtain the 
lassi
al 
ase in

this limit.

The group that 
hara
terizes the external spa
e D

+

is SO

4;1

, while the

internal spa
e D

�

is only a�e
ted by the symmetry group SO

3;2

. Using


artesian 
oordinates, we 
an express[5℄ the internal and external line ele-

ments,

ds

2

+

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

+ dx

5

2

;

ds

2

�

= dx

1

2

+ dx

2

2

+ dx

3

2

� dx

4

2

� dx

6

2

:

From the transformations proposed by Tolman[13℄

x

5

� x

4

= R

+

exp[�t=R

+

℄(1� r

2

=R

2

+

)

1=2

for D

+

and

x

4

� ix

6

= R

�

exp[�it=R

�

℄(1 + r

2

=R

2

�

)

1=2

for D

�

, we 
an substitute these expressions in the expressions for the line

elements, obtaining

ds

2

�

=

dr

2

1� r

2

=R

�

2

+ r

2

d�

2

+ r

2

sin

2

�d'

2

� (1� r

2

=R

2

�

)dt

2

The generalized Lapla
e di�erential equation is

1

r

2

�

�r

�

r

2

(1� �

�

r

2

)

� 

�r

�

+

1

r

2

sin

2

�

�

��

�

sin �

� 

��

�

+

1

r

2

sin

2

�

�

2

 

�'

2

�

1

1� �

�

r

2

�

2

 

�t

2

= 0; (32)

where �

�

� 1=R

2

�

.

Let  (r; t; �; ') = Y (�; ')�(r; t). Then we 
an separate eq.(32) as

1

�

�

�r

�

r

2

(1� �

�

r

2

)

��

�r

�

�

1

�

r

2

(1� �

�

r

2

)

�

2

�

�t

2

= `(`+ 1) (33)
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and for the non-angular equation we obtain the same equation that we have

gotten formerly.

If we put �(r; t) = S(r)T (t), we obtain from eq.(33)

1

T

�

2

T

�t

2

= �B:

where B is a separation 
onstant. If we are on the internal stru
ture of

(D

�

), the temporal equation above has an os
illatory solution

T

�

(t) = �

�

exp(�iHt=R

�

);

asso
iated with the quantum number hyper
harge (H)[11℄. In 
ase we are

treating D

+

, time will have an exponential 
hara
ter des
ribed by the equa-

tion asso
iated with the energy eigenvalues (E)

T

+

(t) = �

+

exp(�Et=R

+

)

For the radial equations we 
an write

1� �

�

r

2

r

2

d

dr

�

r

2

(1� �

�

r

2

)

dS

dr

�

�

`(`+ 1)

r

2

(1� �

�

r

2

)S = BS: (34)

These equations 
an be transformed in a 
lassi
al �eld equation (for

example, the ele
tri
 or the gravitational �elds in D). From the de�nition

�

�

= 1=R

2

�

, it is obvious that in the limit where R ! 1, �

�

! 0. Using

some results of Quantum Me
hani
s in hyperspheri
al universes in D

+

, with

B = Y

2

=R

2

�

, and in D

�

,with B = E

2

=R

2

+

, in the limit where R

�

! 1 we

obtain B ! 0. Therefore the radial �eld equation 
an be written as

1

r

2

d

dr

�

r

2

dR

dr

�

= 0 (35)

in the ground state, where ` = 0.

With the 
hange of variable

1

R

dR

d�

= �

we 
an transform eq.(34) in two Ri

ati equations:

�

0

= ��

2

� �

�

2

r

�

2�

�

r

1� �

�

r

2

�

+

`(`+ 1)

r

2

(1� �

�

r

2

)

+

B

1� �

�

r

2

: (36)
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7 Con
lusions

For the Riemann, Beltrami and Prasad metri
s, the 
lassi
al 
ase

1

�

2

d

d�

�

�

2

dR

d�

�

= 0

is obtained when we substitute in all radial equations the limit where the

manifold radius approa
hes in�nity.

All the three Lapla
e equations exhibit the same angular equation from

the Riemann (se
tion 2), Beltrami (se
tion 3) and B�orner-D�urr (se
tion 4)

proje
tive metri
s. With regard to the radial equations, we have obtained

for ea
h metri
 a se
ond order ordinary di�erential equation, whi
h we have

led into a Ri

ati di�erential equation.

We have treated the Prasad metri
 separately be
ause it 
omes from

a parameterized metri
 in Proje
tive Relativity. Using these parametriza-

tions, D is shared in internal and external spa
es. The radial di�erential

�eld equations, obtained from the Lapla
e di�erential equation, have di�er-

ent signs, but both are led to similars Ri

ati equations, di�erent from ea
h

other only by the name of the substitution variable. In the �rst 
ase, with

the parametrization, the 
lassi
al 
ase of a spheri
ally symmetri
 s
alar �eld


annot be obtained by making the radius of D approa
h in�nity. This was

expe
ted be
ause in 
artesian 
oordinates the radius of D is independent

of the 
oordinates, while in 
urvilinear ones the parametrization 
onstrains

the radius of D: it is the radial parametri
 
oordinate. Thus the informa-

tion about the radius is lost, be
ause the Lapla
e di�erential equation is

homogeneous. In the last treatment, with the parametrization independent

of the radius of the Universe, the 
lassi
al �eld 
ase is obtained. Finally, by

a suitable 
hange of variables, all radial di�erential �eld equations 
an be

led to a Ri

ati equation.

Besides, we have gotten important results on Quantum Me
hani
s. The

temporal equation from the 
orresponding metri
s asso
iates quantum num-

bers and energy eigenvalues with the internal and external stru
tures of D.

At last, sin
e the Lapla
e-Beltrami generates a wave partial di�erential

equation (the metri
 is Lorentzian (3,1)), if we put in all the three Prasad

metri
s the 
oordinate 
t = 0 the wave di�erential equation is led to a

Lapla
e di�erential equation.
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