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Abstract

The interest here is the comparison of sequences within or between groups.

Sequences are considered on an individual basis, i.e., all possible pairwise compar-

isons within and across groups are performed. We develop a categorical analysis-

of-variance framework based on Hamming distances, the proportion of positions

at which two aligned sequences di�er, and estimate the variability between, within

and across groups. We assume that the sequences are independent, but the posi-

tions may not be. In this context U-statistics are utilized to represent the average

distance between and within groups as well as the overall distance. The total sum

of squares is decomposed into within-, between- and across-group sums of squares.

The latter term is new: it does not appear in the classical set-up. Generalized-U-

statistics theory (Puri & Sen, 1971; Lee, 1990; Sen & Singer, 1993) is used to �nd

the asymptotic distributions of each sum of squares. Test statistics are developed

to assess homogeneity among groups.

1. Introduction The focus here lies in the comparison of sequences. The se-

quences are considered on an individual basis in the sence that they are compared to

each other: all possible pairwise comparisons within and across groups are performed.

�
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We develop an analysis-of-variance framework based on Hamming distances and esti-

mate the variability between, within and across groups (Section 2). In the within sum

of squares, we are estimating the variability among individuals within a group around

the average distance within this group. In the across sum of squares, we are estimating

the variability of individuals across two groups with respect to the average distance

between those groups. In the between sum of squares, we estimate the variability in

the group average distances around the overall distance.

Weir (1990a) describes an analysis of variance for the genetic variation in the

population, in particular for the amount of observed heterozygosity. The variance of

the estimate of the average heterozygosity is broken down to show the contribution of

populations, loci and individuals by setting out the calculations in a framework similar

to that of an analysis of variance. Our situation is a little di�erent because we would like

to construct a categorical analysis of variance based on Hamming distances (Seillier-

Moiseiwitsch et al., 1994 and references therein), assuming that the sequences are

independent, but the positions may not be. The Hamming distance is the proportion

of positions at which two aligned sequences di�er.

In this context U-statistics are utilized to represent the average distance between

and within groups as well as the overall distance (Sections 3 and 4). The total sum of

squares is decomposed into within-, between- and across-group sums of squares. The

latter term is new: it does not appear in the classical set-up. Generalized-U-statistics

theory (Puri & Sen, 1971; Lee, 1990; Sen & Singer, 1993) is used to �nd the asymptotic

distributions of each sum of squares. In Section 5 test statistics are developed to assess

homogeneity among groups. The power of the tests are discussed in Section 6. Finally,

a data analysis is shown in Section 7.

2. The Total Sum of Squares and its decomposition Let X

g

i

=

(X

g

i1

; X

g

i2

; : : : ; X

g

ik

)

0

be a random vector representing sequence i of group g. Suppose

i = 1; : : : ; N , k = 1; : : : ;K and g = 1; : : : ; G. So, X

g

ik

represents either the amino acid

or the nucleotide present at position k of sequence i in group g (e.g., at the nucleotide

level, x

g

ik

2 fA; C; T; Gg).

Consider X

g

1

i

and X

g

2

j

.

De�nition 1

The Hamming Distance D

(g

1

g

2

)

ij

is a descriptive statistic for sequence comparison de-

�ned by

D

(g

1

;g

2

)

ij

=

1

K

K

X

k=1

II(X

g

1

ik

6= X

g

2

jk

) (2.1)

=

1

K

� (number of positions where X

g

1

i

and X

g

2

j

di�er);
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and when g

1

= g

2

= g,

D

g

ij

=

1

K

K

X

k=1

II(X

g

ik

6= X

g

jk

) :

Let �

g

k

= PfX

g

ik

6= X

g

jk

g and

�

�

g

�

=

1

K

P

K

k=1

�

g

k

. Then,

E[D

g

ij

] =

1

K

K

X

k=1

E[II(X

g

ik

6= X

g

jk

)] =

1

K

K

X

k=1

�

g

k

=

�

�

g

�

:

De�ne the average distance within a group as

�

D

g

�

=

�

N

2

�

�1

X

1�i<j�N

D

g

ij

=

�

N

2

�

�1

1

K

X

1�i<j�N

K

X

k=1

II(X

g

ik

6= X

g

jk

)

which is a U-statistic of degree 2 (Lee, 1990). The average distance between two groups

is

�

D

(g

1

;g

2

)

�

=

1

N

2

N

X

i=1

N

X

j=1

D

(g

1

;g

2

)

ij

=

1

N

2

K

N

X

i=1

N

X

j=1

K

X

k=1

II(X

g

1

ik

6= X

g

2

jk

)

which is a two-sample U-statistics of degree (1,1) (Hoe�ding, 1948; Puri & Sen, 1971;

Lee, 1990). The overall distance is

�

D

�

=

�

G

�

N

2

�

+N

2

�

G

2

��

�1

0

@

G

X

g=1

X

1�i<j�N

D

g

ij

+

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

D

(g

1

;g

2

)

ij

1

A

=

�

NG

2

�

�1

0

@

G

X

g=1

�

N

2

�

�

D

g

�

+

X

1�g

1

<g

2

�G

N

2

�

D

(g

1

;g

2

)

�

1

A

which is a linear combination of U-statistics.

The Total Sum of Squares can be decomposed as

TSS =

G

X

g=1

X

1�i<j�N

(D

g

ij

�

�

D

�

)

2

+

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

(D

(g

1

;g

2

)

ij

�

�

D

�

)

2

(2.2)

=

G

X

g=1

X

1�i<j�N

(D

g

ij

�

�

D

g

�

)

2

+

G

X

g=1

X

1�i<j�N

(

�

D

g

�

�

�

D

�

)

2

+

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

(D

(g

1

;g

2

)

ij

�

�

D

(g

1

;g

2

)

�

)

2

+

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

(

�

D

(g

1

;g

2

)

�

�

�

D

�

)

2

= WSS +BSS +AWSS +ABSS

where WSS stands for Within Sum of Squares, BSS for Between Sum of Squares,

AWSS for Across Within Sum of Squares and ABSS for Across Between Sum of

Squares
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3.Connections Between Sums of Squares and U-statistics Since

we have G groups of N sequences, we can disregard the group clustering and think of

the sequences as a random sample of size NG. Then

TSS =

X

1�i<j�NG

(D

ij

�

�

D

�

)

2

=

�

NG(NG� 1)

2

� 1

��

NG(NG�1)

2

2

�

�1

X

i<j; i

0

<j

0

i�i

0

or j�j

0

(D

ij

�D

i

0

j

0

)

2

2

(3.3)

WSS =

G

X

g=1

X

1�i<j�N

(D

g

ij

�

�

D

g

�

)

2

=

�

N(N � 1)

2

� 1

��

N(N�1)

2

2

�

�1

G

X

g=1

X

i<j; i

0

<j

0

i�i

0

or j�j

0

(D

g

ij

�D

g

i

0

j

0

)

2

2

(3.4)

and

AWSS =

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

(D

(g

1

;g

2

)

ij

�

�

D

(g

1

;g

2

)

�

)

2

= (N

2

� 1)

�

N

2

2

�

�1

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

N

X

i

0

=1

N

X

j

0

=1

i�i

0

or j�j

0

(D

(g

1

;g

2

)

ij

�D

(g

1

;g

2

)

i

0

j

0

)

2

2

(3.5)

The above sums of squares can also be expressed as linear combinations of U-statistics

(Pinheiro, 1997). For instance, WSS is a linear combination of one-sample U-statistics

of degrees 3 and 4, and AWSS is a linear combination of two-sample U-statistics of

degrees (2,2) and (2,1).

4. Asymptotic Distributions and decompositions of U-statistics

Let U

n

be a U-statistic of degreem with kernel �(X

1

; : : : ; X

m

) and E(U

n

) = �(F ) = �.

U

n

= U(X

1

; : : : ; X

n

) =

�

n

m

�

�1

X

1�i

1

<���<i

m

�n

�(X

i

1

; : : : ; X

i

m

); n � m (4.6)

where

�(F ) = E

F

f�(X

1

; : : : ; X

m

)g =

Z

: : :

Z

�(x

1

; : : : ; x

m

) dF (x

1

) : : : dF (x

m

)

Let

	

c

(x

1

; : : : ; x

c

) � Ef�(x

1

; : : : ; x

c

; X

c+1

; : : : ; X

m

)g (4.7)
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c

(x

1

; : : : ; x

c

) � Ef�(x

1

; : : : ; x

c

; X

c+1

; : : : ; X

m

)� �g; (4.8)

�

c

� Ef 

2

c

(X

1

; : : : ; X

c

)g = Ef	

2

c

(X

1

; : : : ; X

c

)g � �

2

and �

0

� 0: (4.9)

Theorem 1

The function 	

c

de�ned in (4.7) has the properties

(i) 	

c

(x

1

; : : : ; x

c

) = Ef	

d

(x

1

; : : : ; x

c

; X

c+1

; : : : ; X

d

)g for 1 � c < d � m,

(ii) Ef	

c

(x

1

; : : : ; x

c

)g = Ef�(X

1

; : : : ; X

m

)g.

The proof appears in Lee (1990, p. 11).

By (4.6) and (4.8),

Var(U

n

) =

�

n

m

�

�2

m

X

c=0

(c)

X

Covf�(X

i

1

; : : : ; X

i

m

)�(X

j

1

; : : : ; X

j

m

)g

where

P

(c)

stands for summation over all subscripts such that

1 � i

1

< i

2

< � � � < i

m

� n; 1 � j

1

< j

2

< � � � < j

m

� n;

and exactly c equations i

k

= j

h

are satis�ed. By (4.9), each term in

P

(c)

is equal to

�

c

. The number of terms in

P

(c)

is

n(n� 1) � � � (n� 2m+ c+ 1)

c!(m� c)!(m� c)!

=

�

m

c

��

n�m

m� c

��

n

m

�

(4.10)

Since �

0

= 0,

Var(U

n

) =

�

n

m

�

�1

m

X

c=1

�

m

c

��

n�m

m� c

�

�

c

(4.11)

Hoe�ding (1948) obtained the inequality: 0 � �

c

�

c

d

�

d

1 � c < d � m, which leads

to

m

2

n

�

1

� Var(U

n

) �

m

n

�

m

Now, from (4.11) and (4.10)

Var(U

n

) =

m

2

n

�

n�m

n� 1

�

� � �

�

n� 2m+ 2

n�m+ 1

�

�

1

+ � � �

+

m!

n(n� 1) : : : (n�m+ 1)

�

m

Hence nVar(U

n

) is a decreasing function of n which tends to its lower bound m

2

�

1

as

n increases, i.e.,

Var(U

n

) =

m

2

n

�

1

+O(n

�2

) (4.12)
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Therefore, if E(�

2

) <1 and �

1

> 0,

n

1=2

(U

n

� �)

d

�! N(0;m

2

�

1

); (Hoe�ding, 1948) (4:13)

We may rewrite (4.6) as

U

n

= n

�[m]

X

1�i

1

6=���6=i

m

�n

Z

R

pm

� � �

Z

�(x

1

; : : : ; x

m

)

m

Y

j=1

d(c(x

j

�X

i

j

));

where n

�[m]

= (n

[m]

)

�1

= fn : : : (n�m+ 1)g

�1

.

Writing d(c(x

j

�X

i

j

)) = dF (x

j

) + d[c(x

j

�X

i

j

)� F (x

j

)]; 1 � j � m, we obtain

U

n

= �(F ) +

m

X

h=1

�

m

h

�

U

n;h

n � m (4.14)

where

U

n;h

= n

�[h]

X

1�i

1

6=���6=i

h

�n

Z

R

ph

� � �

Z

	

h

(x

1

; : : : ; x

h

)

h

Y

j=1

d[c(x

j

�X

i

j

)� F (x

j

)]

for 1 � h � m. Further, if we write

	

�

h

(x

1

; : : : ; x

h

) = 	

h

(x

1

; : : : ; x

h

)�

h

X

j=1

	

h�1

(x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

h

)

+ � � �+ (�1)

h

�(F ); 8 (x

1

; : : : ; x

h

) 2 R

ph

; (4.15)

for 1 � h � m, we obtain

U

n;h

=

�

n

h

�

�1

X

1�i

1

<���<i

h

�n

	

�

h

(X

i

1

; : : : ; X

i

h

); 1 � h � m (4.16)

and the U

n;h

are themselves U-statistics. From direct computation, E(U

n;h

) = 0; 8 1 �

h � m and

Var(U

n;h

) = E(U

2

n;h

) = O(n

�h

); h = 1; 2; : : : ;m; (4.17)

and we can write

U

n

= �(F ) +

m

n

n

X

i=1

[	

1

(X

i

)� �(F )] +O

p

(n

�1

) (4.18)

Let fX

(j)

i

; i � 1g; j = 1; : : : ; c (� 2) be independent sequences of independent

random vectors, where X

(j)

i

has a distribution function F

(j)

(x); x 2 R

p

, for j =

1; : : : ; c. Let F = (F

(1)

; : : : ; F

(c)

) and �(X

(j)

i

; 1 � i � m

j

; 1 � j � c) be a Borel-

measurable kernel of degree m = (m

1

; : : : ;m

c

), where without loss of generality we

assume that � is symmetric in the m

j

(� 1) arguments of the jth set, for j = 1; : : : ; c.

Let m

0

= m

1

+ � � �+m

c

and

�(F) =

Z

R

m

0

� � �

Z

�(x

(j)

i

; 1 � i � m

j

; 1 � j � c)

c

Y

j=1

m

j

Y

i=1

dF

(j)

(x

(j)

i

) (4.19)
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De�nition 2

For a set of samples of sizes n = (n

1

; n

2

; : : : ; n

c

) with n

j

� m

j

; 1 � j � c, the

generalized U-statistic for �(F) is

U(n) =

c

Y

j=1

�

n

j

m

j

�

�1

�

X

(n)

�(X

(j)

�

; � = i

j1

; : : : ; i

jm

j

; 1 � j � c); (4.20)

where the summation

P

�

(n)

extends over all 1 � i

j1

< : : : < i

jm

j

� n

j

; 1 � j � c.

U(n) is an unbiased estimator of �(F).

Now, for every d

j

: 0 � d

j

� m

j

; 1 � j � c, let d = (d

1

; : : : ; d

c

) and

	

d

1

:::d

c

(x

(j)

1

; : : : ;x

(j)

d

j

; 1 � j � c) � E(�(x

(j)

1

; : : : ;x

(j)

d

j

;X

(j)

d

j

+1

; : : : ;X

(j)

m

j

; 1 � j � c))

(4.21)

so that 	

0

= �(F) and 	

m

= �. Then

�

d

(F) = E

�

	

2

d

(X

(j)

1

; : : : ;X

(j)

d

j

; 1 � j � c)

�

� �

2

(F); 0 � d �m (4.22)

so that �

0

(F) = 0. Then, for every n �m (Sen, 1981),

Var [U(n)] =

c

X

j=1

n

�1

j

�

2

j

[1 +O(n

�1

0

)] (4.23)

where n

0

= min(n

1

; : : : ; n

c

) and

�

2

j

= m

2

j

�

�

j1

;:::;�

jc

(F) j = 1; : : : ; c (4.24)

with �

��

= 1 or 0 according to whether � = � or not.

The decomposition for U(n) can be developed similarly to the one-sample U-

statistic. For a two-sample U-statistic of degree (m

1

;m

2

), we have

U(n

1

; n

2

) = �(F) +

m

1

n

1

n

1

X

i=1

[	

10

(X

i

)� �(F)] +

m

2

n

2

n

2

X

i=1

[	

01

(Y

i

)� �(F)]

+ O

p

(n

�1

0

) (4.25)

where n

0

= min(n

1

; n

2

).

The above expression can be generalized for multiple-sample U-statistics. For

instance, the decomposition for a three-sample and four-sample U-statistics are as

follows

U(n

1

; n

2

; n

3

) = �(F) +

m

1

n

1

n

1

X

i=1

[	

100

(X

i

)� �(F)] +

m

2

n

2

n

2

X

i=1

[	

010

(Y

i

)� �(F)]

+

m

3

n

3

n

3

X

i=1

[	

001

(Z

i

)� �(F)] +O

p

(n

�1

0

) (4.26)
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where n

0

= min(n

1

; n

2

; n

3

) and

U(n

1

; n

2

; n

3

; n

4

) = �(F) +

m

1

n

1

n

1

X

i=1

[	

1000

(X

i

)� �(F)] +

m

2

n

2

n

2

X

i=1

[	

0100

(Y

i

)� �(F)]

+

m

3

n

3

n

3

X

i=1

[	

0010

(Z

i

)� �(F)] +

m

4

n

4

n

4

X

i=1

[	

0001

(W

i

)� �(F)]

+ O

p

(n

�1

0

) (4.27)

where n

0

= min(n

1

; n

2

; n

3

; n

4

).

4. Combining the U-statistics We can write

WSS =

(N � 2)

3

G

X

g=1

[U

(3)

1;1

+U

(3)

1;2

+U

(3)

1;3

]

+

(N � 2)(N � 3)

12

G

X

g=1

[U

(4)

2;1

+U

(4)

2;2

+U

(4)

2;3

]

where

U

(3)

1;1

=

�

N

3

�

�1

X

i<j<j

0

(D

g

ij

�D

g

ij

0

)

2

; U

(3)

1;2

=

�

N

3

�

�1

X

i<i

0

<j

(D

g

ij

�D

g

i

0

j

)

2

and

U

(3)

1;3

=

�

N

3

�

�1

X

i<j<j

0

(D

g

ij

�D

g

jj

0

)

2

are one-sample U-statistics of degree 3 and

U

(4)

2;1

=

�

N

4

�

�1

X

i<j<i

0

<j

0

(D

g

ij

�D

g

i

0

j

0

)

2

; U

(4)

2;2

=

�

N

4

�

�1

X

i<i

0

<j<j

0

(D

g

ij

�D

g

i

0

j

0

)

2

and

U

(4)

2;3

=

�

N

4

�

X

i<i

0

<j

0

<j

(D

g

ij

�D

g

i

0

j

0

)

2

are one-sample U-statistics of degree 4. The expected value of WSS is

E(WSS) =

G

X

g=1

(N � 2)

�

�

g1

+

(N � 3)

4

�

g2

�

:

Under H

0

, there is homogeneity among groups, i.e., for any g, �

g

k

= �

k

and

�

g

k

1

k

2

= �

k

1

k

2

, thus

E

0

(WSS) = G(N � 2)

�

�

1

+

(N � 3)

4

�

2

�

where

�

1

=

2

K

2

2

4

K

X

k=1

�

k

+

X

k

1

6=k

2

�

k

1

k

2

�

K

X

k=1

�

k

(i; j; i; j

0

)�

X

k

1

6=k

2

�

k

1

k

2

(i; j; i; j

0

))

3

5

(4.28)
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and

�

2

=

2

K

2

8

<

:

K

X

k=1

�

k

(1� �

k

) +

X

k

1

6=k

2

(�

k

1

k

2

� �

k

1

�

k

2

)

9

=

;

(4.29)

Note that

�

k

= P(X

ik

6= X

jk

) =

C�1

X

c=0

p

k

(c)[1� p

k

(c)] (4.30)

�

k

1

k

2

= P(X

ik

1

6= X

jk

1

;X

ik

2

6= X

jk

2

)

=

C�1

X

c

1

;c

2

=0

p

k

1

k

2

(c

1

; c

2

)

2

6

4

C�1

X

c

3

=0

c

3

6=c

1

C�1

X

c

4

=0

c

4

6=c

2

p

k

1

k

2

(c

3

; c

4

)

3

7

5

(4.31)

Decomposing WSS, under H

0

,

WSS = G(N � 2)

�

�

1

+

(N � 3)

4

�

2

�

+ (N � 2)

3

N

G

N

X

i=1

[	

(1)1

(X

i

)� �

1

] +O

p

(1)

+

(N � 2)(N � 3)

N

G

N

X

i=1

[	

(2)1

(X

i

)� �

2

] +O

p

(N) (4.32)

and the associated mean square expression is

WMS �

WSS

G

�

N

2

� =

2WSS

GN(N � 1)

=

(N � 2)(N � 3)

N(N � 1)2

(

�

2

+

4

N

N

X

i=1

[	

(2)1

(X

i

)� �

2

]

)

+O

p

(N

�1

) (4.33)

with

E

0

(WMS) =

�

2

2

+O(N

�1

)

and

Var

0

(WMS) =

4(N � 2)

2

(N � 3)

2

GN

2

(N � 1)

2

�

(2)

1

N

+O(N

�2

)

For AWSS,

AWSS =

X

1�g

1

<g

2

�G

�

(N � 1)

2

4

�

U

(2;2)

4;1

+U

(2;2)

4;2

�

+

(N � 1)

2

�

U

(2;1)

5;2

+U

(1;2)

5;1

�

�

9



where

U

(2;2)

4;1

=

��

N

2

��

N

2

��

�1

X

i 6=i

0

X

j 6=j

0

j 6=i

0

(D

(g

1

;g

2

)

ij

�D

(g

1

;g

2

)

i

0

j

0

)

2

and

U

(2;2)

4;2

=

��

N

2

��

N

2

��

�1

X

i6=j

i6=i

0

X

j 6=j

0

(D

(g

1

;g

2

)

ij

�D

(g

1

;g

2

)

i

0

j

0

)

2

are two-sample U-statistcis of degree (2,2) and

U

(1;2)

5;1

=

��

N

1

��

N

2

��

�1

N

X

i=1

i6=j

0

X

1�j; j

0

�N

j 6=j

0

(D

(g

1

;g

2

)

ij

�D

(g

1

;g

2

)

ij

0

)

2

and

U

(2;1)

5;2

=

��

N

2

��

N

1

��

�1

N

X

j=1

j 6=i

0

X

i 6=i

0

(D

(g

1

;g

2

)

ij

�D

(g

1

;g

2

)

i

0

j

)

2

are two sample U-statistics of degree (1,2) and (2,1), respectively.

E(AWSS) = (N � 1)

X

1�g

1

<g

2

�G

�

(N � 1)

2

�

(g

1

;g

2

)4

+ �

(g

1

;g

2

)5

�

and under H

0

E

0

(AWSS) =

G(G� 1)(N � 1)

2

�

(N � 1)

2

�

4

+ �

5

�

where �

4

= �

2

is given by (4.29) and �

5

= �

1

is given by (4.28).

AWSS can be decomposed as

AWSS =

X

1�g

1

<g

2

�G

"

(N � 1)

2

2

 

�

(g

1

;g

2

)4

+

2

N

N

X

i=1

(	

(4)10

(X

g

1

i

)� �

(g

1

;g

2

)4

)

+

2

N

N

X

j=1

(	

(4)01

(X

g

2

j

)� �

(g

1

;g

2

)4

) +O

p

(N

�1

)

1

A

+

(N � 1)

2

 

2�

(g

1

;g

2

)5

+

1

N

N

X

i=1

(	

(5)10

(X

g

1

i

)� �

(g

1

;g

2

)5

)

+

2

N

N

X

j=1

(	

(5)01

(X

g

1

j

)� �

(g

1

;g

2

)5

) +

2

N

N

X

i=1

(	

(5)10

(X

g

1

i

)� �

(g

1

;g

2

)5

)

+

1

N

N

X

j=1

(	

(5)01

(X

g

2

j

)� �

(g

1

;g

2

)5

) +O

p

(N

�1

)

1

A

#

(4.34)

The associated mean-square expression is

AWMS =

AWSS

�

G

2

�

N

2

=

2AWSS

N

2

G(G� 1)

10



=

(N � 1)

2

N

2

G(G� 1)

X

1�g

1

<g

2

�G

"

�

(g

1

;g

2

)4

+

2

N

N

X

i=1

(	

(4)10

(X

g

1

i

)� �

(g

1

;g

2

)4

)

+

2

N

N

X

j=1

(	

(4)01

(X

g

2

j

)� �

(g

1

;g

2

)4

)

3

5

+O

p

(N

�1

) (4.35)

E

0

(AWMS) =

�

4

2

+O(N

�1

)

Note that E

0

(AWMS) = E

0

(WMS) since under H

0

, �

4

= �

2

,

Var

0

(AWMS) =

(N � 1)

4

2N

4

G(G� 1)

�

4

N

�

(4)

10

+

4

N

�

(4)

01

�

+O(N

�2

)

Now

BSS =

N(N � 1)

2

G

X

g=1

(

�

D

g

�

�

�

D

�

)

2

=

N(N � 1)

2

D

0

1

D

1

where D

1

is the G� 1 vector

D

1

= (

�

D

1

�

�

�

D

�

: : :

�

D

G

�

�

�

D

�

)

0

Note that

E(

�

D

g

�

) =

1

K

�

N

2

�

X

1�i<j�N

E(D

g

ij

) =

1

K

K

X

k=1

�

g

k

=

�

�

g

�

E(

�

D

(g

1

;g

2

)

�

) =

1

K

K

X

k=1

�

(g

1

;g

2

)

k

=

�

�

(g

1

;g

2

)

�

and

E(

�

D

�

) =

(N � 1)

G(NG� 1)

G

X

g=1

�

�

g

�

+

2N

G(NG � 1)

X

1�g

1

<g

2

�G

�

�

(g

1

;g

2

)

�

Therefore,

�

1

� E(

�

D

g

�

�

�

D

�

) =

�

�

g

�

�

(N � 1)

G(NG � 1)

G

X

g=1

�

�

g

�

+

2N

G(NG� 1)

X

1�g

1

<g

2

�G

�

�

(g

1

;g

2

)

�

Since

�

D

g

�

is a U-statistic of degree 2,

Var(

�

D

g

�

) =

4

N

�

(12)

1

+O(N

�2

)

where �

(12)

1

� E[ 

2

(12)1

(X

g

i

)], and since

�

D

(g

1

;g

2

)

�

is a two-sample U-statistic of degree

(1; 1),

Var(

�

D

(g

1

;g

2

)

�

) =

1

N

�

(13)

10

+

1

N

�

(13)

01

+ O(N

�2

) (4.36)
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where �

(13)

10

� E[ 

2

(13)10

(X

g

1

i

)] and �

(13)

01

� E[ 

2

(13)01

(X

g

2

j

)]. Under H

0

,

 

2

(12)1

(x

i

) =

1

K

2

K

X

k=1

P

2

(X

jk

6= x

ik

) +

�

�

�

�

�

2

�

2

K

�

�

�

K

X

k=1

P(X

jk

6= x

ik

)

+

1

K

2

X

k

1

6=k

2

P(X

jk

1

6= x

ik

1

;X

jk

2

6= x

ik

2

)

We are assuming that under H

0

there is homogeneity across or within groups, i.e.,

�

1

k

= �

2

k

= � � � = �

G

k

= �

k

and �

(g

1

;g

2

)

k

= �

g

k

= �

k

. Therefore, under H

0

,

p

N

�

�

D

g

�

�

�

�

�

�

d

�! N(0; 4�

(12)

1

) (4.37)

and



�1

13

�

�

D

(g

1

;g

2

)

�

�

�

�

�

�

d

�! N(0; 1) (4.38)

where 

2

13

=

1

N

�

(13)

10

+

1

N

�

(13)

01

=

2

N

�

(12)

1

by (4.36).

If

�

D

�

is a linear combination of normal variables, then

�

D

�

also follows a normal

distribution.

�

D

�

=

(N � 1)

G(NG� 1)

G

X

g=1

�

D

g

�

+

2N

G(NG� 1)

X

1�g

1

<g

2

�G

�

D

(g

1

;g

2

)

�

Under H

0

,

�

1

� E

0

(

�

D

�

) =

(N � 1)

�

�

�

+N(G� 1)

�

�

�

(NG� 1)

=

�

�

�

�

2

1

� Var

0

(

�

D

�

)

+

4N

2

G

2

(NG� 1)

2

=

(N � 1)

2

G(NG � 1)

2

4

N

�

(12)

1

+

2N

2

(G� 1)

G(NG� 1)

2

��

1

N

(�

(13)

10

+ �

(13)

01

)

�

+ 2(G� 2)

1

N

�

(13;1;13;2)

10

�

+

2N(N � 1)

G

2

(NG� 1)

2

G(G� 1)

2

N

�

(12;13)

1

where �

(13;1;13;2)

10

= Ef 

(13;1)10

(X

g

1

i

) 

(13;2)10

(X

g

1

i

)g and

 

(13;2)10

(x

g

1

i

) = E[�

13;2

(x

g

1

i

;X

g

3

j

)�

�

�

(g

1

;g

3

)

]. Under H

0

,

 

(12)1

(X

i

) =  

(13)10

(X

i

) =  

(13)01

(X

j

) =  

(13;1)10

(X

i

) =  

(13;2)10

(X

i

). Therefore,

�

(12)

1

= �

(13)

10

= �

(31)

01

= �

(13;1;13;2)

10

= �

(12;13)

1

and

�

2

1

= [(N � 1)

2

+N(G� 1)(NG� 1)]

4�

(12)

1

NG(NG� 1)

2

(4.39)

Hence, under H

0

,

�

�1

1

�

�

D

�

�

�

�

�

�

d

�! N(0; 1)

12



Now

�

1

= E

0

(

�

D

g

�

�

�

D

�

) =

�

�

�

�

�

�

�

= 0 (4.40)

and

�

2

1

� Var

0

(

�

D

g

�

�

�

D

�

)

=

�

1� 2

(N � 1)

G(NG� 1)

�

4

N

�

(12)

1

+ �

2

1

�

4N(G� 1)

G(NG� 1)

2

N

�

(12;13)

1

(4.41)

where �

(12;13)

1

� Ef 

(12)1

(X

g

1

i

) 

(13)10

(X

g

1

i

)g = �

(12)

1

, since  

(12)1

(X

i

) =  

(13)10

(X

i

)

under H

0

.

Then,

�

2

1

= f(N � 1)

2

+ (NG� 1)[N(G� 1) + (NG� 1)(G� 2)]g

4�

(12)

1

NG(NG� 1)

2

(4.42)

So,

�

�1

1

(

�

D

g

�

�

�

D

�

)

d

�! N(0; 1)

Since BSS is a quadratic form of normal random variables,

BSS =

N(N � 1)

2

D

0

1

D

1

�

N(N � 1)

2

G

X

g=1

�

g

�

�

2

1

�

g

which is a linear combination of �

2

1

random variables, where �

g

's are the characteristic

roots of Var(D

1

) = �

1

. Note that the diagonal elements of �

1

are �

2

1

and the o�-

diagonal elements, under H

0

, are

Cov

0

(

�

D

g

1

�

�

�

D

�

;

�

D

g

2

�

�

�

D

�

)

=

�

(N � 1)

2

� (NG� 1)(NG+N � 2)

(NG� 1)

�

4�

(12)

1

NG(NG� 1)

< 0

since (NG� 1)(NG+N � 2) > (N � 1)

2

.

Now,

E

0

(BSS) =

N(N � 1)

2

trace(�

1

) =

N(N � 1)

2

G�

2

1

and

Var

0

(BSS) =

N

2

(N � 1)

2

4

trace(�

1

)

2

Let

BMS =

BSS

G

�

N

2

� =

1

G

D

0

1

D

1

13



Then

E

0

(BMS) =

1

G

E

0

(BSS) = �

2

1

and

Var

0

(BMS) =

1

G

2

Var

0

(BSS) =

1

G

2

trace(�

1

)

2

For ABSS we have,

ABSS =

X

1�g

1

<g

2

�G

N

X

i=1

N

X

j=1

(

�

D

(g

1

;g

2

)

�

�

�

D

�

)

2

= N

2

D

2

D

2

where D

2

= (

�

D

(1;2)

�

�

�

D

�

;

�

D

(1;3)

�

�

�

D

�

; : : : ;

�

D

(G�1;G)

�

�

�

D

�

)

0

is a

G(G�1)

2

� 1 vector.

Let

�

2

� E(

�

D

(g

1

;g

2

)

�

�

�

D

�

) =

�

�

(g

1

;g

2

)

�

�

(N � 1)

G(NG� 1)

G

X

g=1

�

�

g

�

�

2N

G(NG� 1)

X

1�g

1

<g

2

�G

�

�

(g

1

;g

2

)

�

Under H

0

,

�

2

= E

0

(

�

D

(g

1

;g

2

)

�

�

�

D

�

) =

�

�

�

�

�

�

�

= 0 (4.43)

and

�

2

2

� Var(

�

D

(g

1

;g

2

)

�

�

�

D

�

)

= Var(

�

D

(g

1

;g

2

)

�

) + Var(

�

D

�

)� 2Cov(

�

D

(g

1

;g

2

)

�

;

�

D

�

)

=

1

N

�

�

(13)

10

+ �

(13)

01

�

+ �

2

1

�

4(N � 1)

G(NG� 1)

2

N

�

(12;13)

1

�

4N

G(NG� 1)

�

1

N

(�

(13)

10

+ �

(13)

01

) + 2(G� 2)

1

N

�

(13;1;13;2)

10

�

(4.44)

Note that under H

0

there is homogeneity among groups,

	

(13)10

(x

i

) = 	

(13)01

(x

j

) = 	

(13;1)10

(x

i

) = 	

(13;2)10

(x

i

) =

1

K

K

X

k=1

P(X

ik

6= x

jk

)

since the sequences are i.i.d.

Therefore, 	

(13;1)10

(x

i

)	

(13;2)10

(x

i

) = 	

2

(13)10

(x

i

) and

�

(13;1;13;2)

10

= �

(13)

10

= �

(13)

01

= �

(12)

1

= �

(12;13)

1

So, under H

0

,

�

2

2

= f2(N � 1)

2

+ (NG� 1)[2N(G� 1) + (NG� 1)(G� 4)]g

2�

(12)

1

NG(NG� 1)

2

(4.45)
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As in BSS,

ABSS � N

2

G(G�1)=2

X

i=1

�

i

�

�

2

1

�

i

where �

i

's are the characteristic roots of �

2

= Var(D

2

). The diagonal elements of �

2

are �

2

2

and, if all groups are di�erent, the o�-diagonal elements are

Cov(

�

D

(g

1

;g

2

)

�

�

�

D

�

;

�

D

(g

3

;g

4

)

�

�

�

D

�

)

= [(N � 1)

2

� (NG� 1)(NG+N � 2)]

4�

(12)

1

NG(NG� 1)

2

< 0

and if g

1

= g

2

or g

1

= g

3

or g

2

= g

3

,

Cov(

�

D

(g

1

;g

2

)

�

�

�

D

�

;

�

D

(g

1

;g

3

)

�

�

�

D

�

)

= f4(N � 1)

2

+ (NG� 1)[4N(G� 1) + (G� 8)(NG� 1)]g

�

(12)

1

NG(NG� 1)

2

:

Now

E

0

(ABSS) = N

2

trace(�

2

) = N

2

G(G� 1)

2

�

2

2

Var

0

(ABSS) = N

4

trace(�

2

)

2

The corresponding mean-square term is de�ned as

ABMS =

ABSS

N

2

�

G

2

� =

2

G(G� 1)

D

0

2

D

2

Then

E

0

(ABMS) =

2

G(G� 1)

trace(�

2

) = �

2

2

Var

0

(ABMS) =

4

G

2

(G� 1)

2

trace(�

2

)

2

5. Test Statistics One alternative is to compare WMS with AWMS. Let

T

1

=

WMS

AWMS

. Under H

0

,

WMS

AWMS

=

(N�2)(N�3)

2N(N�1)

n

�

2

+

4

N

P

N

i=1

(	

(2)1

(X

i

)� �

2

)

o

+O

p

(N

�1

)

(N�1)

2

2N

2

n

�

2

4

N

P

N

i=1

(	

(2)1

(X

i

)� �

2

)

o

+O

p

(N

�1

)

But,

WMS

AWMS

p

! 1 as N !1, i.e, asymptotically the distribution of

WMS

AWMS

is degener-

ate.

15



Let �

1

=

1

N

�

?

1

and �

2

=

1

N

�

?

2

. Under H

0

,

BMS =

BSS

G

�

N

2

� �

1

NG

G

X

g=1

�

?

1g

�

�

2

1

�

g

ABMS =

ABSS

N

2

�

G

2

� �

2

NG(G� 1)

G(G�1)=2

X

i=1

�

?

2i

�

�

2

1

�

i

where �

?

1g

's and �

?

2i

's are the characteristic roots of �

?

1

and �

?

2

, respectively. Also,

under H

0

, by theoretical results pertaining to U-statistics

p

N(WMS � �

2

=2)! N

�

0;

4

G

�

(2)

1

�

and

p

N(AWMS � �

2

=2)! N

�

0;

4

G(G� 1)

�

(2)

1

�

:

Thus,

BMS = O

p

(N

�1

) and ABMS = O

p

(N

�1

)

while

WMS = O

p

(N

�1=2

) and AWMS = O

p

(N

�1=2

)

De�ne

T

N;2

� N

�

BMS

WMS

�

and T

N;3

� N

�

ABMS

AWMS

�

:

Since, BMS and ABMS are the dominating terms in T

N;2

and T

N;3

, respectively, we

can write

T

N;2

=

2N(BMS)

�

2

+O

p

(N

�1=2

)

and

T

N;3

=

2N(ABMS)

�

2

+O

p

(N

�1=2

)

Therefore,

T

N;2

�

2

G�

2

G

X

g=1

�

?

1g

�

�

2

1

�

g

and

T

N;3

�

4

G(G� 1)�

2

G(G�1)=2

X

i=1

�

?

2i

�

�

2

1

�

i
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Because the elements of �

?

1

and �

?

2

are unknown, the characteristic roots of these

matrices are also unknown. Therefore, the above distributions do not have a closed

analytic form and we call upon resampling methods, such as the bootstrap, to generate

the reference distribution for the test statistic.

6. Power of the Tests

Lemma 1

Let T

n

be a vector of random variables that can be expressed as

T

n

= � +

1

p

n

U

n

+R

n

where R

n

= O

p

(n

�1

).

If Q(T) = T

0

AT is a quadratic form on T. Then,

Q(T) = T

0

AT = f� +

1

p

n

U

n

+R

n

g

0

Af� +

1

p

n

U

n

+R

n

g

= Q(�) +

2

p

n

�

0

AU

n

+

1

n

Q(U

n

) + 2�

0

AR

n

+O

p

(n

�3=2

)

If � = 0 then Q(T) =

1

n

Q(U

n

) +O

p

(n

�3=2

).

In our case, T = D

1

and the quadratic form is Q(D

1

) = D

0

1

D

1

. Note that we can

write,

D

0

1

D

1

=

G

X

g=1

(

�

D

g

�

�

�

D

�

)

2

=

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

)

2

+ 2 �

1

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

) +G�

2

1

Let V

N

= D

1

� �

1

, where �

1

is a vector G � 1 with elements �

1

. Then, E(V

N

) = 0

and Var(V

N

) = �

1

=

1

N

�

?

1

= O(N

�1

). Therefore,

Q(D

1

) = D

0

1

D

1

= V

0

N

V

N

+ 2�

0

1

V

N

+ �

0

1

�

1

Since

p

NV

N

� N(0;�

?

1

),

NV

0

N

V

N

�

G

X

g=1

�

?

g

�

�

2

1

�

g

where �

?

g

are the characteristic roots of �

?

1

. Also,

2

p

N�

0

1

V

N

� N(0; 4�

0

1

�

?

1

�

1

)

Now,

T

N;2

=

2N

G�

2

V

0

N

V

N

+

4

p

N�

0

1

G�

2

�

p

NV

N

�

+

2N

�

2

�

2

1

+O

p

(N

�1=2

)
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�

T

N;2

� 2N�

2

1

=�

2

4

p

N�

1

=(G�

2

)

�

=

N

P

G

g=1

(

�

D

g

�

�

�

D

�

� �

1

)

2

2

p

N�

1

+

p

N

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

) +O

p

(N

�1

)

Note that

N

P

G

g=1

(

�

D

g

�

�

�

D

�

� �

1

)

2

2

p

N�

1

= O

p

(N

�1=2

); since N

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

)

2

= O

p

(1)

and

p

N

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

) = O

p

(1); since

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

) = O

p

(N

�1=2

)

So, for a �xed �

1

6= 0, as N !1,

�

T

N;2

� 2N�

2

1

=�

2

4

p

N�

1

=(G�

2

)

�

=

p

N

G

X

g=1

(

�

D

g

�

�

�

D

�

� �

1

) +O

p

(N

�1=2

)

Thus,

P(T

N;2

> �

1

) = P

�

Z > G

(�

2

� 2N�

1

)

4

p

N

�

! 1; as N !1;

i.e., this test is consistent.

Now, consider a local alternative hypothesis. Let �

1

=

1

p

N



?

1

, where 

?

1

is a

constant. Then,

T

N;2

=

2N

G�

2

V

0

N

V

N

+

4

?

1

G�

2

"

p

N

G

X

g=1

�

�

D

g

�

�

�

D

�

�

1

p

N



?

1

�

#

+

2

�

2

(

?

1

)

2

+O

p

(N

�1=2

)

 

T

N;2

� 2 (

?

1

)

2

=�

2

4

?

1

=(G�

2

)

!

=

N

P

G

g=1

�

�

D

g

�

�

�

D

�

�

1

p

N



?

1

�

2

2

?

1

+

p

N

G

X

g=1

�

�

D

g

�

�

�

D

�

�

1

p

N



?

1

�

+O

p

(N

�1=2

)

Note that

N

P

G

g=1

�

�

D

g

�

�

�

D

�

�

1

p

N



?

1

�

2

2

?

1

= O

p

(1) and

p

N

G

X

g=1

�

�

D

g

�

�

�

D

�

�

1

p

N



?

1

�

= O

p

(1)

Therefore, T

N;2

no longer follows a Normal distribution as N !1. It is a convolution

of a linear combination of chi-square random variables and a normal random variable:

T

N;2

=

2N

G�

2

V

0

N

V

N

+

4

p

N

G�

2

(

?

1

)

0

V

N

+

2 (

?

1

)

2

�

2

+O

p

(N

�1=2

)

18



T

N;2

�

2

G�

2

G

X

g=1

�

?

1g

�

�

2

1

�

g

+N

�

0;

16

G

2

�

2

2

(

?

1

)

0

�

?

1



?

1

�

+

2 (

?

1

)

2

�

2

Now, let us �nd out whether V

0

N

V

N

and (

?

1

)

0

V

N

are independent. V

0

N

V

N

and

(

?

1

)

0

V

N

are independent if and only if (

?

1

)

0

�

1

= 0 (Searle, 1971).

Recall that

�

1

=

0

B

B

B

B

@

�

2

1

�

12

: : : �

12

�

12

�

2

1

: : : �

12

.

.

.

.

.

.

.

.

.

.

.

.

�

12

�

12

: : : �

2

1

1

C

C

C

C

A

where

�

2

1

= f(N � 1)

2

+ (NG� 1)[N(G� 1) + (NG� 1)(G� 2)]g

4�

(12)

1

NG(NG� 1)

2

and

�

12

= f(N � 1)

2

� (NG� 1)(NG+N � 2)g

4�

(12)

1

NG(NG� 1)

2

Then,

(

?

1

)

0

�

1

= 

?

1

[�

2

1

+ (G� 1)�

12

: : : �

2

1

+ (G� 1)�

12

]

and

�

2

1

+ (G� 1)�

12

= 0

, G(N � 1)

2

+ (NG� 1)[N(G� 1) + (NG� 1)(G� 2)

� (G� 1)(NG+N � 2)] = 0

, N = 1

So, V

0

N

V

N

and (

?

1

)

0

V

N

are independent if and only if N = 1, which is not the case

here.

Now, write

2

G�

2

h

NV

0

N

V

N

+ 2

p

N (

?

1

)

0

V

N

i

=

2

G�

2

h

(

p

NV

N

+ 

?

1

)

0

(

p

NV

N

+ 

?

1

)� (

?

1

)

0



?

1

i

and

T

N;2

=

2N

�

2

(BMS) =

2N

G�

2

D

0

1

D

1

=

2

G�

2

(

p

NV

N

+ 

?

1

)

0

(

p

NV

N

+ 

?

1

) +O

p

(N

�1=2

)
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Note that

p

NV

N

+ 

?

1

� N(

?

1

;�

?

1

) and

D

1

� N(�

1

;�

1

) or

p

ND

1

� N(

?

1

;�

?

1

):

The distribution of

p

ND

0

1

D

1

can also be derived the following way.

Let P be a G �G orthogonal matrix (i.e., P

0

P = I) such that P�

?

1

P

0

= �, where �

is a diagonal matrix, and

Y =

p

NPD

1

)

p

ND

1

= P

0

Y

Then,

Y � N(P

?

1

;�) and ND

0

1

D

1

= Y

0

PP

0

Y = Y

0

Y;

Hence,

ND

0

1

D

1

= Y

0

Y �

G

X

i=1

�

i

�

�

2

1

(�

i

)

�

(6.46)

where �

i

=

(�

?

1i

)

2

�

i

, �

i

's are the diagonal elements of the diagonal matrix � and �

?

1i

is

the ith row of the vector �

?

1

= P

?

1

. By (6.46),

T

N;2

=

2N

G�

2

D

0

1

D

1

�

2

G�

2

G

X

i=1

�

i

�

�

2

1

(�

i

)

�

i

Since we have a linear combination of non-central chi-square random variables,

when �

1

=



?

1

p

N

,

P(T

N;2

> �

1

)! 1 as N !1

As the distribution of T

N;3

is similar to the distribution of T

N;2

, the above results about

consistency and power of the test apply to T

N;3

.

7. Data analysis The data set consists of two groups of HIV infected individuals

(subtype B and not B) with 46 sequences (individuals) each. The nucleotide sequences

are all from epidemiologically independent individuals, which means that among the

individuals in our sample, one did not infect the other, i.e., they were not sharing the

same siringe, they were not partners. Since the sequences are in the nucleotide level,

there are therefore four categories. After aligning the sequences and discarding the

positions with no change, we end up with 155 positions.

Since the elements of �

?

1

and �

?

2

are unknown, the characteristic roots of these

matrices are also unknown and the distributions of the test statsitics do not have a

closed analytic form. In view of this, we call upon resampling techniques, such as the

bootstrap. Here is a summary of the procedure:

20



1. Compute the statistics T

N2

and T

N3

from the data set.

2. Sample 46 sequences to each group with replacement from the pooled sample,

i.e., the combined groups.

3. Recompute the test statistics T

N2

and T

N3

from this sample and store it.

4. Reapeat steps 2 and 3 R times (R should be at least 1,000).

The p-values for the tests are then

#T

0

N2

s � T

N2

obs

R

and

#T

0

N3

s � T

N3

obs

R

.

The results are

T

N2

obs = 20; 07 T

N3

obs = 4; 17

For R = 10; 000, the percentiles of the bootstrap distribution are given in Table 1

and the observed p-value for T

N2

and T

N3

are less than 1=10001. Therefore, we can

say that relative to the within-clade variation, there is signi�cant variability between

the two clades and similarly, relative to the across-within-clade, there is signi�cant

variability acroos-between the two clades.

Table 1: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95% 99%

T

N2

0.0002 0.0007 2.6799 4.1866

T

N3

0.0000 0.0000 0.0132 0.0520
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