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Abstrat

We show that if U is a onvex, balaned, open subset of the Banah spae

X onstruted by Tsirelson, then every proper, �nitely generated ideal of H(U)

has a ommon zero.

Introdution

Let H(U) denote the algebra of all holomorphi funtions on an open subset

U of a loally onvex spae E. H(U) will be always endowed with the ompat-

open topology.

A lassial theorem of Cartan [8℄ asserts that if U is a domain of holomorphy

in C

n

, then every proper, �nitely generated ideal of H(U) has a ommon zero.

Shottenloher [26℄ has shown that the same onlusion holds if U is a domain

of holomorphy in a (DFC)-spae, that is in a spae of the form E = F

0



, with F

Fr�ehet.

On the other hand we have proved in [19℄ that if U is a polynomially onvex

open set in a Fr�ehet spae with the approximation property, then every ideal

of H(U) without ommon zeros is dense in H(U). It follows from the results in

[20℄ that the same onlusion holds if U is a polynomially onvex open set in a

quasi-omplete loally onvex spae with the approximation property. Moreover

Shottenloher [25℄ has shown that the same onlusion holds if U is a domain

of holomorphy in a separable Fr�ehet spae with the bounded approximation

property.

In [19℄ we gave an example of a proper ideal of H(E) without ommon zeros,

when E is any loally onvex spae of stritly positive dimension. Thus the on-

lusion of Cartan's theorem is false in general if the ideal under onsideration

is not �nitely generated. But the following question, raised in [19℄, still remains

open: If U is a domain of holomorphy in a Fr�ehet spae, does every proper,

�nitely genetated ideal of H(U) have a ommon zero? Not only does this prob-

lem still remain open, but until now no example was known of a domain U in an

in�nite dimensional Fr�ehet spae with the property that every proper, �nitely

generated ideal of H(U) has a ommon zero.
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In this paper we remedy this situation in part by proving that if U is a

onvex, balaned, open set in the Banah spae X onstruted by Tsirelson [27℄,

then every proper, �nitely generated ideal of H(U) has a ommon zero.

In Setion 1 we obtain a similar result for the Fr�ehet algebra H

b

(U) of all

holomorphi funtions of bounded type on U . A key ingredient in the proof is

a theorem of Arens [4℄ for Fr�ehet algebras.

In Setion 2 we obtain our main result. Sine H(U) is not a Fr�ehet algebra,

we redue the study of the problem in H(U) to the study of a similar problem

in a suitable Fr�ehet subalgebra of H(U).

We refer to the books of Dineen [10℄ or the author [21℄ for bakground

information from in�nite dimensional omplex analysis.

1. Holomorphi Funtion of Bounded Type on Tsirelson's Spae

If E and F are omplex Banah spaes, then P(

m

E;F ) denotes the Banah

spae of all ontinuous m-homogeneous polynomials from E into F . P

f

(

m

E;F )

denotes the subspae of P(

m

E;F ) generated by all polynomials of the form

P (x) = (�(x))

m

b, with � 2 E

0

and b 2 F . And P(E;F ) denotes the vetor

spae of all ontinuous polynomials from E into F . When F = C we write

P(

m

E);P

f

(

m

E) and P(E) instead of P(

m

E;C);P

f

(

m

E;C) and P(E;C), re-

spetively.

If U is an open subset of E, then a set A � U is said to be U-bounded if

A is bounded and is bounded away from the boundary of U . H

b

(U ;F ) denotes

the vetor spae of all holomorphi mappings f : U ! F whih are bounded

on U -bounded sets. H

b

(U ;F ) is a Fr�ehet spae for the topology of uniform

onvergene on U -bounded sets. When F = C we write H

b

(U) instead of

H

b

(U ;C). Thus H

b

(U) is a Fr�ehet algebra.

It is well known, and easy to see, that P(

m

E;F ) is a omplemented subspae

of H

b

(U ;F ). Let d

U

(x) denote the distane from x to the boundary of U for

eah x 2 U , and let d

U

(A) = inf

x2A

d

U

(x) for eah A � U . Then eah of the

sets

U

n

= fx 2 U : jjxjj < n and d

U

(x) > 2

�n

g

is U -bounded, and eah U -bounded set is ontained in some U

n

. One an readily

see that d

U

n+1

(U

n

) � 2

�(n+1)

, and hene it follows that �

n

U

n

� U

n+1

, when

�

n

= 1 + 1=n2

n+1

.

If U is balaned, then one an readily see that eah U

n

is irular, that is

e

i�

U

n

� U

n

for every � 2 R. Then it follows from the Cauhy inequalities that

the Taylor series of eah f 2 H

b

(U ;F ) at the origin onverges uniformly on eah

U

n

. In partiular P(E;F ) is dense in H

b

(U ;F ).

If U is onvex, then one an readily see than eah U

n

is onvex as well. Thus

if U is onvex and balaned, then U

n

is onvex and balaned as soon as 0 2 U

n

.

If a 2 U , then Æ

a

denotes the homomorphism f 2 H

b

(U) ! f(a) 2 C. The

homomorphisms Æ

a

, with a 2 U , are alled evaluations.
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1.1. Theorem. Let E be a reexive Banah spae suh that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a onvex, balaned, open subset of

E. Then eah ontinuous homomorphism T : H

b

(U)! C is an evaluation.

Proof. The tehnique of the proof goes bak to a paper of Isidro [17, Props.

3 and 4℄, or even to an earlier paper of Dineen [9, Prop. 24℄, and has been the

model for the proofs of results of this kind. Sine T is ontinuous, there are

n 2 N and  > 0 suh that

(1) jT (f)j � jjf jj

U

n

for every f 2 H

b

(U). In partiular T jP(

m

E) is ontinuous for every m 2 N.

Sine E is reexive, there is a unique a 2 E suh that T (f) = f(a) for every

f 2 E

0

, and therefore for every f 2 P

f

(

m

E) and m 2 N. Sine P

f

(

m

E) is

dense in P(

m

E), it follows that T (f) = f(a) for every f 2 P(E). A routine

argument shows that we may assume that  = 1 in (1). Then it follows that

a 2 U

ÆÆ

n

= U

n

� U . Sine P(E) is dense in H

b

(U), it follows that T (f) = f(a)

for every f 2 H

b

(U), as asserted.

We should mention that the �rst result of this kind was obtained by Mihael

in 1968. That result is stated without proof in the introdution to the seond

printing of his elebrated memoir [18℄.

Theorem 1.1 has the following onverse.

1.2. Theorem. Let U be a onvex, balaned, open subset of a Banah spae

E. If eah ontinuous homomorphism T : H

b

(U)! C is an evaluation, then E

is reexive and every P 2 P(E) is weakly ontinuous on bounded sets.

Proof. We follows an argument of Aron, Cole and Gamelin [5, Th. 7.2℄.

Let A

n

denote the normed algebra (H

b

(U); jj � jj

U

n

), and let S(A

n

) denote the

spetrum of A

n

. It follows from the hypothesis that

S(A

n

) � S(H

b

(U)) = fÆ

a

: a 2 Ug:

If T = Æ

a

2 S(A

n

), then jf(a)j = jT (f)j � jjf jj

U

n

for every f 2 H

b

(U), and

therefore a 2 U

ÆÆ

n

= U

n

. Thus

S(A

n

) = fÆ

a

: a 2 U

n

g:

Sine S(A

n

) is ompat for the Gelfand topology, we see that U

n

is ompat

for the weak topology �(U;H

b

(U)). Hene the weak topologies �(U;H

b

(U)) and

�(E;E

0

) indue the same topology on eah U

n

. Thus eah U

n

is weakly ompat,

and eah f 2 H

b

(U) is weakly ontinuous on eah U

n

. Sine B(0; 2

�n

) � U

n

for

n large enough, we onlude that E is reexive, and eah P 2 P(E) is weakly

ontinuous on bounded sets.

When U = E, Theorems 1.1 and 1.2 are due to Aron, Cole and Gamelin [5,

Th. 7.2℄.
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1.3. Remark. If E is a reexive Banah spae with the approximation

property, then the following onditions are equivalent:

(a) P

f

(

m

E) is dense in P(

m

E) for every m 2 N.

(b) Every P 2 P(E) is weakly ontinuous on bounded sets.

() P(

m

E) is reexive for every m 2 N.

The equivalene (a) , (b) follows from [6, Th. 2.9℄ and [7, Prop. 2.7℄.

The equivalene (a) , () follows from [1, Th. 7℄. In [22, Prop. 5.3℄ Ryan

had laimed that onditions (b) and () are always equivalent, without any

assumption on the approximation property. But his proof of the impliation

() ) (b) is inomplete, and until now it seems to be unknown whether this

impliation is true in general.

Following Farmer [10℄ we will say that a Banah spae E is polynomially

reexive if P(

m

E) is reexive for every m 2 N.

1.4. Examples. (a) Tsirelson [27℄ onstruted a reexive Banah spae X ,

with an unonditional basis, whih ontains no subspae isomorphi to any `

p

.

Alenar, Aron and Dineen [2℄ proved that X is polynomially reexive.

(b)

e




n

�

X is a polynomially reexive Banah spae with a basis. Indeed, sine

X has a basis,

e




n

�

X has a basis as well, by [14℄. And P(

m

e




n

�

X) is reexive,

sine

L(

m

e




n

�

X) = (

e




m

�

(

e




n

�

X)))

0

= (

e




mn

�

X)

0

= L(

mn

X);

and L(

mn

X) is reexive, by [3℄. Moreover Alenar, Aron and Frike [3℄ have

shown that

e




n

�

X is not isomorphi to X when n > 1.

Let A be a ommutative Fr�ehet algebra with a unit element, and let x

1

; : : : ; x

p

2 A. The joint spetrum of x

1

; : : : ; x

p

is the set �(x

1

; : : : ; x

p

) of all (�

1

; : : : ; �

p

) 2

C

p

suh that the elements x

1

� �

1

; : : : ; x

p

� �

p

generate a proper ideal. A the-

orem of Arens (see [4℄ or [21, Prop. 32.13℄) asserts that

�(x

1

; : : : ; x

p

) = f(T (x

1

); : : : ; T (x

p

)) : T 2 S(A)g:

By ombining Theorem 1.1 and Arens' theorem we get the following.

1.5 Theorem. Let E be a reexive Banah spae suh that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a onvex, balaned, open subset

of E. Then given f

1

; : : : ; f

p

2 H

b

(U), without ommon zeros, we an �nd

g

1

; : : : ; g

p

2 H

b

(U) suh that

P

p

j=1

f

j

g

j

= 1.

Proof. It follows from Theorem 1.1 that

(T (f

1

); : : : ; T (f

p

)) 6= (0; : : : ; 0)

for every T 2 S(H

b

(U)). By Arens' theorem the point (0; : : : ; 0) does not lie

in the joint spetrum of f

1

; : : : ; f

p

. Hene the funtions f

1

; : : : ; f

p

generate the

improper ideal.

As a further appliation of Theorem 1.1 we obtain the following.
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1.6. Theorem. Let E be a reexive Banah spae suh that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a onvex, balaned, open subset of

E, and let V be an open subset of a Banah spae F . Then for eah ontinuous

homomorphism T : H

b

(U)! H

b

(V ) there exists a unique mapping H : V ! U

suh that T (f) = f Æ H for every f 2 H

b

(U). The mapping H belongs to

H

b

(V ;E).

Proof. If y 2 V , then the mapping Æ

y

Æ T : H

b

(U) ! C is a ontinuous

homomorphism. Thus by Theorem 1.1 there exists a unique point H(y) 2 U

suh that Æ

y

Æ T (f) = f(H(y)) for every f 2 H

b

(U). Thus we have found a

mapping H : V ! U with the property that

(2) T (f) = f ÆH

for every f 2 H

b

(U), and in partiular for every f 2 E

0

. Uniqueness of H

follows at one from (2). It follows also from (2) that f ÆH is holomorphi for

every f 2 E

0

. Thus H is holomorphi, by [21, Theorem 8.12℄. Finally if B is a

V -bounded set, then it follows also from (2) that H(B) is weakly bounded, and

therefore bounded. Thus H 2 H

b

(V ;E), as asserted.

The mappings of the form f 2 H

b

(U) ! f ÆH 2 H

b

(V ) are alled ompo-

sition operators. They have been systematially studied in [12℄, [13℄, [15℄ and

[16℄.

2. Holomorphi Funtions on Tsirelson's Spae

Theorem 1.5 was derived from Theorem 1.1 with the aid of Arens' theorem.

To obtain a similar result for H(U) we have to proeed di�erently, for H(U)

is not a Fr�ehet algebra. In order to apply Arens' theorem we will introdue

ertain Fr�ehet subalgebras of H(U), whih are akin to H

b

(U).

Let U be an open subset of a Banah spae E, and let U = (U

n

)

1

n=1

be an

inreasing sequene of bounded, open subsets of E suh that U = [

1

n=1

U

n

and

d

U

n+1

(U

n

) > 0 for every n 2 N. Then we an easily �nd (�

n

)

1

n=1

, suh that

�

n

> 1 and �

n

U

n

� U

n+1

for every n 2 N. Let H

1

(U) denote the algebra of all

f 2 H(U) whih are bounded on eah U

n

. H

1

(U) is a Fr�ehet algebra for the

topology of uniform onvergene on the sets U

n

. As in the ase of H

b

(U) one

an readily see that P(

m

E) is a omplemented subspae of H

1

(U) for every

m 2 N.

Assume that U is balaned and eah U

n

is irular. Then it follows again

from the Cauhy inequalities that the Taylor series of eah f 2 H

1

(U) at the

origin onverges uniformly on eah U

n

. In partiular P(E) is dense in H

1

(U).

Then the proofs of Theorems 1.1 and 1.5 an be modi�ed to yield the following

analogous result.
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2.1. Lemma. Let E be a reexive Banah spae suh that P

f

(

m

E) is dense

in P(

m

E) for every m 2 N. Let U be a onvex, balaned, open subset of E. Let

U = (U

n

)

1

n=1

, be an inreasing sequene of irular, bounded, open subsets of E

suh that U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N. Then:

(a) Eah ontinuous homomorphism T : H

1

(U)! C is an evaluation.

(b) Given f

1

; : : : ; f

p

2 H

1

(U), without ommon zeros, we an �nd g

1

; : : : ; g

p

2 H

1

(U) suh that

P

p

j=1

f

j

g

j

= 1.

The inreasing open overs U = (U

n

)

1

n=1

suh that d

U

n+1

(U

n

) > 0 for every

n 2 N, are alled regular overs in [21℄. They have been systematially utilized

by Shottenloher in [23℄ and [24℄.

The following lemma is essentially known (see [23, 2.7℄), but we inlude it

here for the onveniene of the reader.

2.2. Lemma. Let U be a balaned, open subset of a Banah spae E.

Then eah bounded subset F of H(U) is ontained and bounded in H

1

(U), for

a suitable inreasing sequene U = (U

n

)

1

n=1

of irular, bounded, open subsets

of E suh that U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N.

Proof. Consider the sets

V

n

= intfx 2 U : jjxjj < n and jf(�x)j < n for f 2 F and j�j � 1g;

U

n

= fx 2 V

n

: d

V

n

(x) > 2

�n

g:

Sine every bounded subset of H(U) is loally bounded, it follows that U =

[

1

n=1

V

n

, and therefore U = [

1

n=1

U

n

. Clearly d

U

n+1

(U

n

) � 2

�(n+1)

for every

n 2 N. Sine U is balaned, eah V

n

is balaned as well, and hene it follows

that eah U

n

is irular.

2.3. Theorem. Let E be a reexive Banah spae suh that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a onvex, balaned, open subset of E.

Then given f

1

; : : : ; f

p

2 H(U), without ommon zeros, we an �nd g

1

; : : : ; g

p

2

H(U) suh that

P

p

j=1

f

j

g

j

= 1.

Proof. By Lemma 2.2 f

1

; : : : ; f

p

2 H

1

(U) for a suitable inreasing

sequene U = (U

n

)

1

n=1

of irular, bounded, open subsets of E suh that

U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N. By Lemma 2.1 we an

�nd g

1

; : : : ; g

p

2 H

1

(U) � H(U) suh that

P

p

j=1

f

j

g

j

= 1.

We have established our main results for onvex, balaned, open sets, and

we do not know whether the results are valid for more general domains, for

instane for polynomially onvex open sets. This would require some strong

form of polynomial approximation to replae Taylor series expansions.

I would like to thank my olleagues Raymundo Alenar, Klaus Floret, M�ario

Matos and Sueli Roversi for some helpful onversations.
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