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Abstra
t

We show that if U is a 
onvex, balan
ed, open subset of the Bana
h spa
e

X 
onstru
ted by Tsirelson, then every proper, �nitely generated ideal of H(U)

has a 
ommon zero.

Introdu
tion

Let H(U) denote the algebra of all holomorphi
 fun
tions on an open subset

U of a lo
ally 
onvex spa
e E. H(U) will be always endowed with the 
ompa
t-

open topology.

A 
lassi
al theorem of Cartan [8℄ asserts that if U is a domain of holomorphy

in C

n

, then every proper, �nitely generated ideal of H(U) has a 
ommon zero.

S
hottenloher [26℄ has shown that the same 
on
lusion holds if U is a domain

of holomorphy in a (DFC)-spa
e, that is in a spa
e of the form E = F

0




, with F

Fr�e
het.

On the other hand we have proved in [19℄ that if U is a polynomially 
onvex

open set in a Fr�e
het spa
e with the approximation property, then every ideal

of H(U) without 
ommon zeros is dense in H(U). It follows from the results in

[20℄ that the same 
on
lusion holds if U is a polynomially 
onvex open set in a

quasi-
omplete lo
ally 
onvex spa
e with the approximation property. Moreover

S
hottenloher [25℄ has shown that the same 
on
lusion holds if U is a domain

of holomorphy in a separable Fr�e
het spa
e with the bounded approximation

property.

In [19℄ we gave an example of a proper ideal of H(E) without 
ommon zeros,

when E is any lo
ally 
onvex spa
e of stri
tly positive dimension. Thus the 
on-


lusion of Cartan's theorem is false in general if the ideal under 
onsideration

is not �nitely generated. But the following question, raised in [19℄, still remains

open: If U is a domain of holomorphy in a Fr�e
het spa
e, does every proper,

�nitely genetated ideal of H(U) have a 
ommon zero? Not only does this prob-

lem still remain open, but until now no example was known of a domain U in an

in�nite dimensional Fr�e
het spa
e with the property that every proper, �nitely

generated ideal of H(U) has a 
ommon zero.
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In this paper we remedy this situation in part by proving that if U is a


onvex, balan
ed, open set in the Bana
h spa
e X 
onstru
ted by Tsirelson [27℄,

then every proper, �nitely generated ideal of H(U) has a 
ommon zero.

In Se
tion 1 we obtain a similar result for the Fr�e
het algebra H

b

(U) of all

holomorphi
 fun
tions of bounded type on U . A key ingredient in the proof is

a theorem of Arens [4℄ for Fr�e
het algebras.

In Se
tion 2 we obtain our main result. Sin
e H(U) is not a Fr�e
het algebra,

we redu
e the study of the problem in H(U) to the study of a similar problem

in a suitable Fr�e
het subalgebra of H(U).

We refer to the books of Dineen [10℄ or the author [21℄ for ba
kground

information from in�nite dimensional 
omplex analysis.

1. Holomorphi
 Fun
tion of Bounded Type on Tsirelson's Spa
e

If E and F are 
omplex Bana
h spa
es, then P(

m

E;F ) denotes the Bana
h

spa
e of all 
ontinuous m-homogeneous polynomials from E into F . P

f

(

m

E;F )

denotes the subspa
e of P(

m

E;F ) generated by all polynomials of the form

P (x) = (�(x))

m

b, with � 2 E

0

and b 2 F . And P(E;F ) denotes the ve
tor

spa
e of all 
ontinuous polynomials from E into F . When F = C we write

P(

m

E);P

f

(

m

E) and P(E) instead of P(

m

E;C);P

f

(

m

E;C) and P(E;C), re-

spe
tively.

If U is an open subset of E, then a set A � U is said to be U-bounded if

A is bounded and is bounded away from the boundary of U . H

b

(U ;F ) denotes

the ve
tor spa
e of all holomorphi
 mappings f : U ! F whi
h are bounded

on U -bounded sets. H

b

(U ;F ) is a Fr�e
het spa
e for the topology of uniform


onvergen
e on U -bounded sets. When F = C we write H

b

(U) instead of

H

b

(U ;C). Thus H

b

(U) is a Fr�e
het algebra.

It is well known, and easy to see, that P(

m

E;F ) is a 
omplemented subspa
e

of H

b

(U ;F ). Let d

U

(x) denote the distan
e from x to the boundary of U for

ea
h x 2 U , and let d

U

(A) = inf

x2A

d

U

(x) for ea
h A � U . Then ea
h of the

sets

U

n

= fx 2 U : jjxjj < n and d

U

(x) > 2

�n

g

is U -bounded, and ea
h U -bounded set is 
ontained in some U

n

. One 
an readily

see that d

U

n+1

(U

n

) � 2

�(n+1)

, and hen
e it follows that �

n

U

n

� U

n+1

, when

�

n

= 1 + 1=n2

n+1

.

If U is balan
ed, then one 
an readily see that ea
h U

n

is 
ir
ular, that is

e

i�

U

n

� U

n

for every � 2 R. Then it follows from the Cau
hy inequalities that

the Taylor series of ea
h f 2 H

b

(U ;F ) at the origin 
onverges uniformly on ea
h

U

n

. In parti
ular P(E;F ) is dense in H

b

(U ;F ).

If U is 
onvex, then one 
an readily see than ea
h U

n

is 
onvex as well. Thus

if U is 
onvex and balan
ed, then U

n

is 
onvex and balan
ed as soon as 0 2 U

n

.

If a 2 U , then Æ

a

denotes the homomorphism f 2 H

b

(U) ! f(a) 2 C. The

homomorphisms Æ

a

, with a 2 U , are 
alled evaluations.
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1.1. Theorem. Let E be a re
exive Bana
h spa
e su
h that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a 
onvex, balan
ed, open subset of

E. Then ea
h 
ontinuous homomorphism T : H

b

(U)! C is an evaluation.

Proof. The te
hnique of the proof goes ba
k to a paper of Isidro [17, Props.

3 and 4℄, or even to an earlier paper of Dineen [9, Prop. 24℄, and has been the

model for the proofs of results of this kind. Sin
e T is 
ontinuous, there are

n 2 N and 
 > 0 su
h that

(1) jT (f)j � 
jjf jj

U

n

for every f 2 H

b

(U). In parti
ular T jP(

m

E) is 
ontinuous for every m 2 N.

Sin
e E is re
exive, there is a unique a 2 E su
h that T (f) = f(a) for every

f 2 E

0

, and therefore for every f 2 P

f

(

m

E) and m 2 N. Sin
e P

f

(

m

E) is

dense in P(

m

E), it follows that T (f) = f(a) for every f 2 P(E). A routine

argument shows that we may assume that 
 = 1 in (1). Then it follows that

a 2 U

ÆÆ

n

= U

n

� U . Sin
e P(E) is dense in H

b

(U), it follows that T (f) = f(a)

for every f 2 H

b

(U), as asserted.

We should mention that the �rst result of this kind was obtained by Mi
hael

in 1968. That result is stated without proof in the introdu
tion to the se
ond

printing of his 
elebrated memoir [18℄.

Theorem 1.1 has the following 
onverse.

1.2. Theorem. Let U be a 
onvex, balan
ed, open subset of a Bana
h spa
e

E. If ea
h 
ontinuous homomorphism T : H

b

(U)! C is an evaluation, then E

is re
exive and every P 2 P(E) is weakly 
ontinuous on bounded sets.

Proof. We follows an argument of Aron, Cole and Gamelin [5, Th. 7.2℄.

Let A

n

denote the normed algebra (H

b

(U); jj � jj

U

n

), and let S(A

n

) denote the

spe
trum of A

n

. It follows from the hypothesis that

S(A

n

) � S(H

b

(U)) = fÆ

a

: a 2 Ug:

If T = Æ

a

2 S(A

n

), then jf(a)j = jT (f)j � jjf jj

U

n

for every f 2 H

b

(U), and

therefore a 2 U

ÆÆ

n

= U

n

. Thus

S(A

n

) = fÆ

a

: a 2 U

n

g:

Sin
e S(A

n

) is 
ompa
t for the Gelfand topology, we see that U

n

is 
ompa
t

for the weak topology �(U;H

b

(U)). Hen
e the weak topologies �(U;H

b

(U)) and

�(E;E

0

) indu
e the same topology on ea
h U

n

. Thus ea
h U

n

is weakly 
ompa
t,

and ea
h f 2 H

b

(U) is weakly 
ontinuous on ea
h U

n

. Sin
e B(0; 2

�n

) � U

n

for

n large enough, we 
on
lude that E is re
exive, and ea
h P 2 P(E) is weakly


ontinuous on bounded sets.

When U = E, Theorems 1.1 and 1.2 are due to Aron, Cole and Gamelin [5,

Th. 7.2℄.
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1.3. Remark. If E is a re
exive Bana
h spa
e with the approximation

property, then the following 
onditions are equivalent:

(a) P

f

(

m

E) is dense in P(

m

E) for every m 2 N.

(b) Every P 2 P(E) is weakly 
ontinuous on bounded sets.

(
) P(

m

E) is re
exive for every m 2 N.

The equivalen
e (a) , (b) follows from [6, Th. 2.9℄ and [7, Prop. 2.7℄.

The equivalen
e (a) , (
) follows from [1, Th. 7℄. In [22, Prop. 5.3℄ Ryan

had 
laimed that 
onditions (b) and (
) are always equivalent, without any

assumption on the approximation property. But his proof of the impli
ation

(
) ) (b) is in
omplete, and until now it seems to be unknown whether this

impli
ation is true in general.

Following Farmer [10℄ we will say that a Bana
h spa
e E is polynomially

re
exive if P(

m

E) is re
exive for every m 2 N.

1.4. Examples. (a) Tsirelson [27℄ 
onstru
ted a re
exive Bana
h spa
e X ,

with an un
onditional basis, whi
h 
ontains no subspa
e isomorphi
 to any `

p

.

Alen
ar, Aron and Dineen [2℄ proved that X is polynomially re
exive.

(b)

e




n

�

X is a polynomially re
exive Bana
h spa
e with a basis. Indeed, sin
e

X has a basis,

e




n

�

X has a basis as well, by [14℄. And P(

m

e




n

�

X) is re
exive,

sin
e

L(

m

e




n

�

X) = (

e




m

�

(

e




n

�

X)))

0

= (

e




mn

�

X)

0

= L(

mn

X);

and L(

mn

X) is re
exive, by [3℄. Moreover Alen
ar, Aron and Fri
ke [3℄ have

shown that

e




n

�

X is not isomorphi
 to X when n > 1.

Let A be a 
ommutative Fr�e
het algebra with a unit element, and let x

1

; : : : ; x

p

2 A. The joint spe
trum of x

1

; : : : ; x

p

is the set �(x

1

; : : : ; x

p

) of all (�

1

; : : : ; �

p

) 2

C

p

su
h that the elements x

1

� �

1

; : : : ; x

p

� �

p

generate a proper ideal. A the-

orem of Arens (see [4℄ or [21, Prop. 32.13℄) asserts that

�(x

1

; : : : ; x

p

) = f(T (x

1

); : : : ; T (x

p

)) : T 2 S(A)g:

By 
ombining Theorem 1.1 and Arens' theorem we get the following.

1.5 Theorem. Let E be a re
exive Bana
h spa
e su
h that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a 
onvex, balan
ed, open subset

of E. Then given f

1

; : : : ; f

p

2 H

b

(U), without 
ommon zeros, we 
an �nd

g

1

; : : : ; g

p

2 H

b

(U) su
h that

P

p

j=1

f

j

g

j

= 1.

Proof. It follows from Theorem 1.1 that

(T (f

1

); : : : ; T (f

p

)) 6= (0; : : : ; 0)

for every T 2 S(H

b

(U)). By Arens' theorem the point (0; : : : ; 0) does not lie

in the joint spe
trum of f

1

; : : : ; f

p

. Hen
e the fun
tions f

1

; : : : ; f

p

generate the

improper ideal.

As a further appli
ation of Theorem 1.1 we obtain the following.
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1.6. Theorem. Let E be a re
exive Bana
h spa
e su
h that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a 
onvex, balan
ed, open subset of

E, and let V be an open subset of a Bana
h spa
e F . Then for ea
h 
ontinuous

homomorphism T : H

b

(U)! H

b

(V ) there exists a unique mapping H : V ! U

su
h that T (f) = f Æ H for every f 2 H

b

(U). The mapping H belongs to

H

b

(V ;E).

Proof. If y 2 V , then the mapping Æ

y

Æ T : H

b

(U) ! C is a 
ontinuous

homomorphism. Thus by Theorem 1.1 there exists a unique point H(y) 2 U

su
h that Æ

y

Æ T (f) = f(H(y)) for every f 2 H

b

(U). Thus we have found a

mapping H : V ! U with the property that

(2) T (f) = f ÆH

for every f 2 H

b

(U), and in parti
ular for every f 2 E

0

. Uniqueness of H

follows at on
e from (2). It follows also from (2) that f ÆH is holomorphi
 for

every f 2 E

0

. Thus H is holomorphi
, by [21, Theorem 8.12℄. Finally if B is a

V -bounded set, then it follows also from (2) that H(B) is weakly bounded, and

therefore bounded. Thus H 2 H

b

(V ;E), as asserted.

The mappings of the form f 2 H

b

(U) ! f ÆH 2 H

b

(V ) are 
alled 
ompo-

sition operators. They have been systemati
ally studied in [12℄, [13℄, [15℄ and

[16℄.

2. Holomorphi
 Fun
tions on Tsirelson's Spa
e

Theorem 1.5 was derived from Theorem 1.1 with the aid of Arens' theorem.

To obtain a similar result for H(U) we have to pro
eed di�erently, for H(U)

is not a Fr�e
het algebra. In order to apply Arens' theorem we will introdu
e


ertain Fr�e
het subalgebras of H(U), whi
h are akin to H

b

(U).

Let U be an open subset of a Bana
h spa
e E, and let U = (U

n

)

1

n=1

be an

in
reasing sequen
e of bounded, open subsets of E su
h that U = [

1

n=1

U

n

and

d

U

n+1

(U

n

) > 0 for every n 2 N. Then we 
an easily �nd (�

n

)

1

n=1

, su
h that

�

n

> 1 and �

n

U

n

� U

n+1

for every n 2 N. Let H

1

(U) denote the algebra of all

f 2 H(U) whi
h are bounded on ea
h U

n

. H

1

(U) is a Fr�e
het algebra for the

topology of uniform 
onvergen
e on the sets U

n

. As in the 
ase of H

b

(U) one


an readily see that P(

m

E) is a 
omplemented subspa
e of H

1

(U) for every

m 2 N.

Assume that U is balan
ed and ea
h U

n

is 
ir
ular. Then it follows again

from the Cau
hy inequalities that the Taylor series of ea
h f 2 H

1

(U) at the

origin 
onverges uniformly on ea
h U

n

. In parti
ular P(E) is dense in H

1

(U).

Then the proofs of Theorems 1.1 and 1.5 
an be modi�ed to yield the following

analogous result.
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2.1. Lemma. Let E be a re
exive Bana
h spa
e su
h that P

f

(

m

E) is dense

in P(

m

E) for every m 2 N. Let U be a 
onvex, balan
ed, open subset of E. Let

U = (U

n

)

1

n=1

, be an in
reasing sequen
e of 
ir
ular, bounded, open subsets of E

su
h that U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N. Then:

(a) Ea
h 
ontinuous homomorphism T : H

1

(U)! C is an evaluation.

(b) Given f

1

; : : : ; f

p

2 H

1

(U), without 
ommon zeros, we 
an �nd g

1

; : : : ; g

p

2 H

1

(U) su
h that

P

p

j=1

f

j

g

j

= 1.

The in
reasing open 
overs U = (U

n

)

1

n=1

su
h that d

U

n+1

(U

n

) > 0 for every

n 2 N, are 
alled regular 
overs in [21℄. They have been systemati
ally utilized

by S
hottenloher in [23℄ and [24℄.

The following lemma is essentially known (see [23, 2.7℄), but we in
lude it

here for the 
onvenien
e of the reader.

2.2. Lemma. Let U be a balan
ed, open subset of a Bana
h spa
e E.

Then ea
h bounded subset F of H(U) is 
ontained and bounded in H

1

(U), for

a suitable in
reasing sequen
e U = (U

n

)

1

n=1

of 
ir
ular, bounded, open subsets

of E su
h that U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N.

Proof. Consider the sets

V

n

= intfx 2 U : jjxjj < n and jf(�x)j < n for f 2 F and j�j � 1g;

U

n

= fx 2 V

n

: d

V

n

(x) > 2

�n

g:

Sin
e every bounded subset of H(U) is lo
ally bounded, it follows that U =

[

1

n=1

V

n

, and therefore U = [

1

n=1

U

n

. Clearly d

U

n+1

(U

n

) � 2

�(n+1)

for every

n 2 N. Sin
e U is balan
ed, ea
h V

n

is balan
ed as well, and hen
e it follows

that ea
h U

n

is 
ir
ular.

2.3. Theorem. Let E be a re
exive Bana
h spa
e su
h that P

f

(

m

E) is

dense in P(

m

E) for every m 2 N. Let U be a 
onvex, balan
ed, open subset of E.

Then given f

1

; : : : ; f

p

2 H(U), without 
ommon zeros, we 
an �nd g

1

; : : : ; g

p

2

H(U) su
h that

P

p

j=1

f

j

g

j

= 1.

Proof. By Lemma 2.2 f

1

; : : : ; f

p

2 H

1

(U) for a suitable in
reasing

sequen
e U = (U

n

)

1

n=1

of 
ir
ular, bounded, open subsets of E su
h that

U = [

1

n=1

U

n

and d

U

n+1

(U

n

) > 0 for every n 2 N. By Lemma 2.1 we 
an

�nd g

1

; : : : ; g

p

2 H

1

(U) � H(U) su
h that

P

p

j=1

f

j

g

j

= 1.

We have established our main results for 
onvex, balan
ed, open sets, and

we do not know whether the results are valid for more general domains, for

instan
e for polynomially 
onvex open sets. This would require some strong

form of polynomial approximation to repla
e Taylor series expansions.
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