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Abstract

We show that if U is a convex, balanced, open subset of the Banach space
X constructed by Tsirelson, then every proper, finitely generated ideal of H(U)
has a common zero.

Introduction

Let H(U) denote the algebra of all holomorphic functions on an open subset
U of a locally convex space E. H(U) will be always endowed with the compact-
open topology.

A classical theorem of Cartan [8] asserts that if U is a domain of holomorphy
in C", then every proper, finitely generated ideal of H(U) has a common zero.
Schottenloher [26] has shown that the same conclusion holds if U is a domain
of holomorphy in a (DFC)-space, that is in a space of the form F = F/, with F'
Fréchet.

On the other hand we have proved in [19] that if U is a polynomially convez
open set in a Fréchet space with the approximation property, then every ideal
of H(U) without common zeros is dense in H(U). It follows from the results in
[20] that the same conclusion holds if U is a polynomially convex open set in a
quasi-complete locally convex space with the approximation property. Moreover
Schottenloher [25] has shown that the same conclusion holds if U is a domain
of holomorphy in a separable Fréchet space with the bounded approximation
property.

In [19] we gave an example of a proper ideal of #(E) without common zeros,
when FE is any locally convex space of strictly positive dimension. Thus the con-
clusion of Cartan’s theorem is false in general if the ideal under consideration
is not finitely generated. But the following question, raised in [19], still remains
open: If U is a domain of holomorphy in a Fréchet space, does every proper,
finitely genetated ideal of H(U) have a common zero? Not only does this prob-
lem still remain open, but until now no example was known of a domain U in an
infinite dimensional Fréchet space with the property that every proper, finitely
generated ideal of H(U) has a common zero.
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In this paper we remedy this situation in part by proving that if U is a
convez, balanced, open set in the Banach space X constructed by Tsirelson [27],
then every proper, finitely generated ideal of H(U) has a common zero.

In Section 1 we obtain a similar result for the Fréchet algebra H;(U) of all
holomorphic functions of bounded type on U. A key ingredient in the proof is
a theorem of Arens [4] for Fréchet algebras.

In Section 2 we obtain our main result. Since H(U) is not a Fréchet algebra,
we reduce the study of the problem in H(U) to the study of a similar problem
in a suitable Fréchet subalgebra of H(U).

We refer to the books of Dineen [10] or the author [21] for background
information from infinite dimensional complex analysis.

1. Holomorphic Function of Bounded Type on Tsirelson’s Space

If E and F are complex Banach spaces, then P(™E; F') denotes the Banach
space of all continuous m-homogeneous polynomials from E into F. P;("™E; F)
denotes the subspace of P(™E; F) generated by all polynomials of the form
P(z) = (¢(z))™b, with ¢ € E' and b € F. And P(E;F) denotes the vector
space of all continuous polynomials from E into F. When F' = C we write
P(ME),Ps(™E) and P(FE) instead of P(™E;C),Ps(™E;C) and P(E;C), re-
spectively.

If U is an open subset of E, then a set A C U is said to be U-bounded if
A is bounded and is bounded away from the boundary of U. H;(U; F) denotes
the vector space of all holomorphic mappings f : U — F which are bounded
on U-bounded sets. H,(U; F) is a Fréchet space for the topology of uniform
convergence on U-bounded sets. When F = C we write H,(U) instead of
Hy(U; C). Thus H;y(U) is a Fréchet algebra.

It is well known, and easy to see, that P(™E; F) is a complemented subspace
of Hy(U; F). Let dy(x) denote the distance from z to the boundary of U for
each z € U, and let dy(A) = inf,ca dy(z) for each A C U. Then each of the
sets

Up={z€U:|z|]| <n and dy(z) >27"}

is U-bounded, and each U-bounded set is contained in some U,,. One can readily
see that dy,,,(Un) > 2-(n+1) “and hence it follows that p,U, C U,41, when
pn =1+ 1/n27HL,

If U is balanced, then one can readily see that each U, is circular, that is
eU,, C U, for every 8 € R. Then it follows from the Cauchy inequalities that
the Taylor series of each f € H;,(U; F') at the origin converges uniformly on each
U,. In particular P(E; F) is dense in H,(U; F').

If U is convex, then one can readily see than each U, is convex as well. Thus
if U is convex and balanced, then U,, is convex and balanced as soon as 0 € U,,.

If @ € U, then §, denotes the homomorphism f € H,(U) — f(a) € C. The
homomorphisms d,, with a € U, are called evaluations.



1.1. Theorem. Let E be a reflexive Banach space such that Py(™E) is
dense in P(™E) for every m € N. Let U be a convez, balanced, open subset of
E. Then each continuous homomorphism T : Hy(U) — C is an evaluation.

Proof. The technique of the proof goes back to a paper of Isidro [17, Props.
3 and 4], or even to an earlier paper of Dineen [9, Prop. 24], and has been the
model for the proofs of results of this kind. Since T is continuous, there are
n € N and ¢ > 0 such that

®) TNl < dlfllw.

for every f € Hy(U). In particular T|P(™E) is continuous for every m € N.
Since E is reflexive, there is a unique a € E such that T'(f) = f(a) for every
f € E', and therefore for every f € Ps(™E) and m € N. Since P;(™E) is
dense in P(™E), it follows that T(f) = f(a) for every f € P(E). A routine
argument shows that we may assume that ¢ = 1 in (1). Then it follows that
a € U® =U, CU. Since P(E) is dense in H,;(U), it follows that T'(f) = f(a)
for every f € Hy(U), as asserted.

We should mention that the first result of this kind was obtained by Michael
in 1968. That result is stated without proof in the introduction to the second
printing of his celebrated memoir [18].

Theorem 1.1 has the following converse.

1.2. Theorem. Let U be a convex, balanced, open subset of a Banach space
E. If each continuous homomorphism T : Hy(U) — C is an evaluation, then E
is reflexive and every P € P(E) is weakly continuous on bounded sets.

Proof. We follows an argument of Aron, Cole and Gamelin [5, Th. 7.2].
Let A, denote the normed algebra (Hy(U), || - |lz—), and let S(A,) denote the
spectrum of A,,. It follows from the hypothesis that

S(A,) C S(Ho(U)) = {8, :a € U}.

IfT =6, € S(An), then |f(a)| = [T'(f)| < [|f|lg for every f € Hy(U), and
therefore a € U, = U,. Thus

S(Ap) = {0, :a €U}

Since S(A,) is compact for the Gelfand topology, we see that U, is compact
for the weak topology o(U, Hy(U)). Hence the weak topologies o(U, Hy(U)) and
o(E, E') induce the same topology on each U,,. Thus each U, is weakly compact,
and each f € Hy(U) is weakly continuous on each U,,. Since B(0;2™") C U, for
n large enough, we conclude that E is reflexive, and each P € P(E) is weakly
continuous on bounded sets.

When U = E, Theorems 1.1 and 1.2 are due to Aron, Cole and Gamelin [5,
Th. 7.2].



1.3. Remark. If F is a reflexive Banach space with the approximation
property, then the following conditions are equivalent:

(a) Pr(™E) is dense in P(™E) for every m € N.

(b) Every P € P(E) is weakly continuous on bounded sets.

(c) P(™E) is reflexive for every m € N.

The equivalence (a) < (b) follows from [6, Th. 2.9] and [7, Prop. 2.7].
The equivalence (a) < (c) follows from [1, Th. 7]. In [22, Prop. 5.3] Ryan
had claimed that conditions (b) and (c) are always equivalent, without any
assumption on the approximation property. But his proof of the implication
(¢) = (b) is incomplete, and until now it seems to be unknown whether this
implication is true in general.

Following Farmer [10] we will say that a Banach space E is polynomially
reflexive if P("™E) is reflexive for every m € N.

1.4. Examples. (a) Tsirelson [27] constructed a reflexive Banach space X,
with an unconditional basis, which contains no subspace isomorphic to any ¢P.
Alencar, Aron and Dineen [2] proved that X is polynomially reflexive.

(b) é);‘X is a polynomially reflexive Banach space with a basis. Indeed, since
X has a basis, ®”X has a basis as well, by [14]. And P(™®"X) is reflexive,
since

L(MBRX) = (27 (27 X)) = (@7 X)" = L(""X),

and £(™"X) is reflexive, by [3]. Moreover Alencar, Aron and Fricke [3] have
shown that ®7X is not isomorphic to X when n > 1.

Let A be a commutative Fréchet algebra with a unit element, and let «1,. ..,z
€ A. The joint spectrum of 1, ..., xpistheset o(x1,...,zp) ofall (A1, ..., Ap) €
C? such that the elements z; — A1, ..., 2, — A, generate a proper ideal. A the-

orem of Arens (see [4] or [21, Prop. 32.13]) asserts that
o(1,...,xp) = {(T(z1),...,T(xp)) : T € S(A)}.
By combining Theorem 1.1 and Arens’ theorem we get the following.

1.5 Theorem. Let E be a reflexive Banach space such that Py(™E) is
dense in P(™E) for every m € N. Let U be a convez, balanced, open subset
of E. Then given fi,...,f, € Ho(U), without common zeros, we can find

g1y 9p € Hy(U) such that 335_, fig; = 1.
Proof. It follows from Theorem 1.1 that

(T'(f1),---,T(fp)) # (0,...,0)

for every T' € S(Hy(U)). By Arens’ theorem the point (0,...,0) does not lie
in the joint spectrum of fy,..., f,. Hence the functions fi,..., f, generate the
improper ideal.

As a further application of Theorem 1.1 we obtain the following.



1.6. Theorem. Let E be a reflexive Banach space such that Py(™E) is
dense in P(™E) for every m € N. Let U be a convez, balanced, open subset of
E, and let V be an open subset of a Banach space F'. Then for each continuous
homomorphism T : Hy(U) — Hp(V') there exists a unique mapping H : V — U
such that T(f) = f o H for every f € Hy(U). The mapping H belongs to
Ho(V; E).

Proof. If y € V, then the mapping 6, o T : Hy(U) = C is a continuous
homomorphism. Thus by Theorem 1.1 there exists a unique point H(y) € U
such that d§, o T'(f) = f(H(y)) for every f € H,(U). Thus we have found a
mapping H : V — U with the property that

2)  T(f)=FfoH

for every f € Hy(U), and in particular for every f € E’. Uniqueness of H
follows at once from (2). It follows also from (2) that f o H is holomorphic for
every f € E'. Thus H is holomorphic, by [21, Theorem 8.12]. Finally if B is a
V-bounded set, then it follows also from (2) that H(B) is weakly bounded, and
therefore bounded. Thus H € H,(V; E), as asserted.

The mappings of the form f € Hy(U) — fo H € Hy(V) are called compo-
sition operators. They have been systematically studied in [12], [13], [15] and
[16].

2. Holomorphic Functions on Tsirelson’s Space

Theorem 1.5 was derived from Theorem 1.1 with the aid of Arens’ theorem.
To obtain a similar result for #(U) we have to proceed differently, for H(U)
is not a Fréchet algebra. In order to apply Arens’ theorem we will introduce
certain Fréchet subalgebras of H(U), which are akin to H;(U).

Let U be an open subset of a Banach space E, and let & = (U,,)22; be an
increasing sequence of bounded, open subsets of E such that U = U5, U,, and
dy, ., (Un) > 0 for every n € N. Then we can easily find (p, )52, such that
pn > 1 and p,U,, C U,y for every n € N. Let H*°(U) denote the algebra of all
f € H(U) which are bounded on each U,. H*(U) is a Fréchet algebra for the
topology of uniform convergence on the sets U,. As in the case of H;(U) one
can readily see that P("™E) is a complemented subspace of H>(U) for every
m € N.

Assume that U is balanced and each U, is circular. Then it follows again
from the Cauchy inequalities that the Taylor series of each f € H>(U) at the
origin converges uniformly on each U,. In particular P(E) is dense in H> (i).
Then the proofs of Theorems 1.1 and 1.5 can be modified to yield the following
analogous result.



2.1. Lemma. Let E be a reflexive Banach space such that Ps(™E) is dense
in P(ME) for every m € N. Let U be a convez, balanced, open subset of E. Let
U = (U,)S,, be an increasing sequence of circular, bounded, open subsets of E
such that U = Uy Uy, and dy, ., (Uyp) > 0 for every n € N. Then:

(a) Each continuwous homomorphism T : H*(U) — C is an evaluation.

(b) Given fi,..., f, € H®(U), without common zeros, we can find g1, ..., gp
€ H®(U) such that 37%_, fig; = 1.

The increasing open covers U = (Uy)p2, such that dy, ,, (U,) > 0 for every
n € N, are called regular covers in [21]. They have been systematically utilized
by Schottenloher in [23] and [24].

The following lemma is essentially known (see [23, 2.7]), but we include it
here for the convenience of the reader.

2.2. Lemma. Let U be a balanced, open subset of a Banach space E.
Then each bounded subset F of H(U) is contained and bounded in H*(U), for
a suitable increasing sequence U = (Up)22 4 of circular, bounded, open subsets
of E such that U = U2 Uy, and dy, ., (Uyp) > 0 for every n € N.

Proof. Consider the sets
Vo=int{z € U : ||z|]| <n and |f(Ax)|<n for feF and |A| <1},

U,={z €V, :dy,(z) >27"}.

Since every bounded subset of H(U) is locally bounded, it follows that U =
U2 Vi, and therefore U = U2, U,,. Clearly dy, ., (U,) > 27"+ for every
n € N. Since U is balanced, each V,, is balanced as well, and hence it follows
that each U, is circular.

2.3. Theorem. Let E be a reflexive Banach space such that Py(™E) is
dense in P(™E) for everym € N. Let U be a convez, balanced, open subset of E.

Then given f1,..., fp € H(U), without common zeros, we can find g1,...,gp €
H(U) such that Z?:l figi = 1.

Proof. By Lemma 2.2 fi,...,f, € H*(U) for a suitable increasing
sequence U = (Up)°2, of circular, bounded, open subsets of E such that

U = UyL,Uy, and dy,,, (Un) > 0 for every n € N. By Lemma 2.1 we can
find gi,...,gp € H>(U) C H(U) such that 3-5_, fjg; = 1.

We have established our main results for convex, balanced, open sets, and
we do not know whether the results are valid for more general domains, for
instance for polynomially convex open sets. This would require some strong
form of polynomial approximation to replace Taylor series expansions.

I would like to thank my colleagues Raymundo Alencar, Klaus Floret, Mario
Matos and Sueli Roversi for some helpful conversations.
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with the comment on the proof of Theorem 1.1.
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