
ON MAXIMAL CURVES HAVING CLASSICAL

WEIERSTRASS GAPS

ARNALDO GARCIA AND FERNANDO TORRES

Abstract. We study geometrical properties of maximal curves over the �nite �eld

F

q

2

with q

2

elements having classical Weierstrass gaps. We obtain in particular that

the support of the Frobenius divisor associated to the linear system j(q + 1)P j, P

being a F

q

2

-rational point, is equal to the union of the set of Weierstrass points (for

the canonical divisor) with the set of F

q

2

-rational points of the curve.

1. Introduction

The theory of equations over �nite �elds (or the theory of congruences) is the basis for

classical number theory. Its foundations were done, among others, by mathematicians

like Fermat, Euler, Lagrange, Gauss, and Galois, see Dickson's book [D]. Historically,

the object of the �rst investigations in this theory were the congruences of the special

form

y

2

� f(x) (modulo a prime number) ;(1.1)

where f(x) is a polynomial (or rational function) with integer coe�cients. Such con-

gruences were used to get results such as the representability of integers as sum of four

squares, or the distribution of pairs of quadratic residues, or even the estimation of the

sum of Legendre's quadratic residues symbols.

Poincar�e suggested that the study of congruences in two variables should use the meth-

ods of the theory of algebraic functions. E. Artin then constructed a theory of quadratic

extensions of the �eld F

p

(x), p a prime, by adjoining the roots of congruence (1.1) and

introduced a zeta-function for this �eld in analogy with Dedekind's zeta-function for

quadratic extensions of the �eld of rational numbers. Assuming that Riemann's hy-

pothesis was valid for his zeta-function, Artin conjectured an upper bound for the

number of solutions of congruences such as in (1.1) above. Artin's conjecture was then

proved by Hasse for polynomials f(x) of degrees 3 and 4 over arbitrary �nite �elds,

and widely generalized by A. Weil as follows. Let X be a projective geometrically

irreducible nonsingular algebraic curve of genus g, de�ned over a �nite �eld F

`

with `
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2 A. GARCIA AND F. TORRES

elements. Then,

j#X(F

`

)� (`+ 1)j � 2g

p

` ;(1.2)

where X(F

`

) denotes the set of F

`

-rational points of the curve X. Inequality (1.2) is

equivalent to the validity of Riemann's hypothesis for the zeta-function associated to

the curveX. Bombieri [B] gave an elementary proof of (1.2) following ideas of Stepanov,

Postnikov and Manin that were used to treat the special case of hyperelliptic curves;

see [Ste, Chapter 5].

The interest on curves over �nite �elds with many rational points was renewed after

Goppa's construction of codes with good parameters from such curves, see [Go]. Num-

ber of solutions of congruences in two variables has other applications such as estimates

of exponential sums over �nite �elds [Mo], �nite geometries [H], correlations of shift

register sequences [L-N].

Here we will be interested in maximal curves over F

`

with ` = q

2

, that is curves X

attaining Hasse-Weil's upper bound:

#X(F

q

2

) = q

2

+ 1 + 2gq :

It is often the case that maximal curves are special (and interesting) from other points

of view. For example, it is often the case that they have large automorphism groups,

see [K] and [Sti], and that they are nonclassical for the canonical linear series [FGT].

A central problem is the classi�cation of maximal curves over F

q

2

of a given genus.

Besides the action of the Frobenius morphism on the Jacobian of a maximal curve

[FGT, Corollary 1.2], a central role in the classi�cation problem is played by St�ohr-

Voloch's approach [SV] to the Hasse-Weil's bound (1.2). Roughly speaking, instead of

bounding the number of �xed points of the Frobenius morphism on the curve, St�ohr-

Voloch's approach bounds the number of points whose image under the Frobenius

morphism lies on the osculating hyperplane at the point. Their theory of Frobenius

orders is quite similar to Weierstrass point theory in prime characteristic, as introduced

by F.K. Schmidt [Sch].

The genus of a maximal curve over F

q

2

satis�es [Ih], [Sti-X], [FT1]

g � (q � 1)

2

=4 or g = (q � 1)q=2 :

Maximal curves with genus (q� 1)q=2 have been characterized, see [R-Sti]. Up to F

q

2

-

isomorphism, there is just one maximal curve over F

q

2

with this genus, the so-called

Hermitian curve which can be given by the a�ne equation y

q

+ y = x

q+1

. Maximal

curves with the next highest genus (q� 1)

2

=4, q odd, have also been characterized; see

[FGT, Theorem 3.1]. Again, up to F

q

2

-isomorphism, there is just one maximal curve

with this genus and it can be given by y

q

+ y = x

(q+1)=2

. In the latter case, the proof of

the uniqueness involves the study of the interplay between the canonical divisor and the

divisor D := j(q+1)P

0

j on the curve, P

0

being a F

q

2

-rational point, via St�ohr-Voloch's
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approach to the Hasse-Weil bound. Here we study further the interplay between these

divisors and we prove that the support of the F

q

2

-Frobenius divisor associated to D is

contained in the union of the set of F

q

2

-rational points and the set of Weierstrass points

of the curve (see Theorem 2.1). This inclusion turned out to be an equality (Theorem

3.7) in the case of maximal curves having classical Weierstrass gaps. This answers the

following interesting question at the set-theoretical level,

Question 1.1. For a maximal curve X over F

q

2

with classical Weierstrass gaps, holds

it that

S

D

= (n+ 1)

X

P2X(F

q

2

)

P +R

K

X

?

Above S

D

is the F

q

2

-Frobenius divisor associated to the linear system D (see [SV]),

and R

K

X

is the rami�cation divisor associated to the canonical linear system K

X

of

X (whose support consists of exactly the Weierstrass points of X). Remark 2.3 gives

computational evidence and Theorem 2.1 gives set-theoretical evidence to the question.

Moreover, Examples 2.4 and 3.8 give a positive answer to the question for a class of

hyperelliptic maximal curves.

We recall that the genus g of a maximal curve over F

q

2

satis�es g � q� n, n+ 1 being

the projective dimension of the linear system D, and g = q�n if the curve has classical

Weierstrass gaps [FGT, Proposition 1.7(i)]. So while in [FGT] we were interested in

maximal curves with high genus, here on the contrary we are mainly interested on

maximal curves with the smallest possible genus.

We end up the paper by giving examples of maximal curves with classical Weierstrass

gaps and with Remark 4.1 which suggests the investigation of maximal curves in a

more restricted class.

2. Maximal curves

We use the following terminology and notations:

� A curve over F

q

2

is a projective geometrically irreducible nonsingular algebraic

curve de�ned over F

q

2

.

� For X a maximal curve over F

q

2

and P

0

2 X(F

q

2

) we set

D := j(q + 1)P

0

j; n+ 1 := dim(D) :

� For a F

q

2

-linear system L on X j F

q

2

we denote by R

L

(resp. S

L

= S

(L;q

2

)

) the

rami�cation divisor (resp. the F

q

2

-Frobenius divisor) associated to L; the notation

j

i

(P ) (resp. L

i

(P )) stands for the ith (D; P )-order (resp. ith D-osculating space

at P ); see [SV].

� We denote by K = K

X

the canonical linear system on X. Recall that W

X

:=

Supp(R

K

) is the set of Weierstrass points of X.
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� For P 2 X, m

i

= m

i

(P ) denotes the ith non-gap at P , with m

0

(P ) := 0, and

H(P ) the Weierstrass semigroup at P . Recall that a curve X is classical i�

m

1

(P ) = g + 1 for each P 62 W

X

, g being the genus of X.

� Fr

X

denotes the Frobenius morphism on X relative to F

q

2

.

Fundamental Linear Equivalence (FGT, Corollary 1.2). For X j F

q

2

a maximal

curve, P

0

2 X(F

q

2

) and P 2 X, we have the following linear equivalence:

qP + Fr

X

(P ) � (q + 1)P

0

:

It follows that n + 1 is independent of P

0

2 X(F

q

2

), that m

n+1

(P ) = q + 1 for each

P 2 X(F

q

2

), and that

m

0

(P ) = 0 < : : : < m

n

(P ) � q < m

n+1

(P ) for each P 2 X :(2.1)

Therefore the following numbers are (D; P )-orders for P 62 X(F

q

2

) [FGT, Prop. 1.5(ii)]:

q �m

i

(P ) for i = 0; 1; : : : ; n :(2.2)

In addition, m

n

(P ) = q for each P 2 X(F

q

2

) [ (X nX(F

q

4

)) [FGT, Prop. 1.5(v)].

Theorem 2.1. For X jF

q

2

a maximal curve, we have

Supp(S

D

) � W

X

[X(F

q

2

) :

Proof. Let P 62 W

X

[X(F

q

2

). Then m

i

(P ) is independent of P and �

i

:= q�m

n�i

(P )

(i = 0; : : : ; n) are the F

q

2

-Frobenius orders of D [FT2, x2.2]. Furthermore, by (2.2),

there exists I = I(P ) 2 Z

+

such that

�

0

< : : : < �

I�1

< j

I

(P ) < �

I

< : : : < �

n

(�)

are the (D; P )-orders.

Claim. Fr

X

(P ) 2 L

I

(P ) n L

I�1

(P ).

Proof. (Claim) For i = 0; 1; : : : ; n let u

n�i

2

�

F

q

2

(X), where

�

F

q

2

stands for the algebraic

closure of F

q

2

, be such that div(u

n�i

) = D

i

�m

i

(P )P , with D

i

� 0, P 62 Supp(D

i

) and

let u 2

�

F

q

2

(X) be such that div(u) = qP + Fr

X

(P )� (q + 1)P

0

(cf. the Fundamental

Linear Equivalence). Then

div(uu

n�i

) + (q + 1)P

0

= (q �m

i

(P ))P + Fr

X

(P ) +D

i

:(��)

By considering the morphism � with homogeneous coordinates v and uu

n�i

, i =

0; 1; : : : ; n, where v 2

�

F

q

2

(X) is such that div(v) + (q + 1)P

0

= j

I

(P )P + D

v

,

with D

v

� 0, P 62 Supp(D

v

), we see from [SV, Proof of Thm. 1.1] and (��) that

Fr

X

(P ) 2 L

I

(P ). Now (loc. cit.) if Fr

X

(P ) 2 L

I�1

(P ), then Fr

X

(P ) 2 Supp(D

v

) and

by the Fundamental Linear Equivalence we would have q � j

I

(P ) = m

i

(P ) for some

i = 0; 1; : : : ; n, a contradiction.
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To �nish the proof of the theorem, notice that the claim and (�) imply the following

linear relation

D

j

I

(P )

�(P ) = a�(Fr

X

(P )) +

I�1

X

i=0

a

i

D

�

i

�(P ) ;(� � �)

where a 6= 0; a

i

2

�

F

q

2

and D

j

�(P ) is the vector whose coordinates are evaluations at P

of the Hasse derivatives (with respect to a local parameter at P ) of the homogeneous

coordinates of the morphism � de�ned above. Now suppose that P 2 Supp(S

D

). Then,

the following vectors would be linearly dependent

�(Fr

X

(P )); D

�

0

�(P ); D

�

1

�(P ); : : : ; D

�

n

�(P ) :

From the linear relation in (� � �) we then conclude that the following vectors would

be linearly dependent

D

j

I

(P )

�(P ); D

�

0

�(P ); D

�

1

�(P ); : : : ; D

�

n

�(P )

and this contradicts the fact that the elements in (�) are the (D; P )-orders.

Remark 2.2. Recall that X(F

q

2

) � Supp(R

D

) [FGT, Thm 1.4] and that these sets

may be di�erent from each other [FGT, Example 1.6]. So in general we have that

Supp(S

D

) � W

X

[X(F

q

2

) � W

X

[ Supp(R

D

);

where the last inclusion may be proper.

Remark 2.3. Suppose that X is both maximal and classical. Then, by considering

P 62 W

X

, from (2.1) we have that g = q�n and that the D-orders are 0; : : : ; n�1; �

n

�

n and q (cf. [FGT, Prop. 1.5(ii), Prop. 1.7]). We also have that the F

q

2

-Frobenius

orders of D are 0; : : : ; n� 1; q ([FT2, x2.2]). Since [SV, p. 9]

deg(S

D

) =

n

X

i=0

�

i

(2g � 2) + (q

2

+ n+ 1)(q + 1) ;

after some computations we �nd that

deg(S

D

) = (n+ 1)#X(F

q

2

) + deg(R

K

X

) :(2.3)

This together with Theorem 2.1 suggest Question 1.1 in the introduction.

Example 2.4. Here we are going to show that the equality in Question 1.1 holds for

certain hyperelliptic maximal curves. Let X j F

q

2

be such a curve of genus g > 1. By

considering the unique linear system g

1

2

on X and the maximality of X we see that

q � 2g; furthermore, it is well known that X is classical. We set W := W

X

and we

restrict our attention to the case where one has

W � X(F

q

2

) and q odd :

(The case q even will we considered in Example 3.8.) There are two types of F

q

2

-rational

points: either P 2 W or P 62 W.
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Let P 2 W. Setting t := q�2g, the �rst (n+2)-non-gaps ofX at P are 0; 2; : : : ; 2g; 2g+

1; : : : ; 2g + t; 2g + t + 1 and hence, by [FGT, Prop. 1.5(iii)], the (D; P )-orders are

0; 1; : : : ; t+1; t+ 3; : : : ; 2g+ t� 1; 2g+ t+ 1. So [SV, Prop. 2.4(a)] implies v

P

(S

D

) �

q + (g � 1)(g � 2)=2.

Let P 2 X(F

q

2

) n W. As in the previous case, here we �nd that v

P

(S

D

) � n + 1 =

q � g + 1.

Since #W = 2g + 2 (here we use q odd), then after some computations we have that

X

P2X(F

q

2

)

v

P

(S

D

) � deg(S

D

) = (2g � 2)(

(n� 1)n

2

+ q) + (q

2

+ n + 1)(q + 1) ;

hence that

S

D

=

X

P2W

(q +

(g � 1)(g � 2)

2

)P +

X

P2X(F

q

2

)nW

(n+ 1)P :

From this one concludes that the equality in Question 1.1 holds by using the fact that

the multiplicity of a Weierstrass point in the divisor R

K

is g(g � 1)=2.

3. Certain maximal curves

The curves we have in mind in this section are maximal curves having classical Weier-

strass gaps, however we will consider a more general setting. For a maximal curve

X jF

q

2

let us consider the following conditions:

(I) For Q

1

; Q

2

62 X(F

q

2

), H(Q

1

) \ [0; q] = H(Q

2

) \ [0; q]) H(Q

1

) = H(Q

2

).

(II) For Q 62 W

X

, m

i

(Q) = q � n+ i, i = 1; : : : ; n.

By (2.1) each maximal curve with g = q � n (e.g. a classical maximal curve) satis�es

Condition (I). Other examples are provided by maximal curves X j F

q

2

with W

X

�

X(F

q

2

); in this case W

X

= X(F

q

2

) whenever g > q � n [FT2, Corollary 2.3].

Condition (II) is satis�ed by classical maximal curves, by the Hermitian curve and by

some curves covered by this curve (see [G-Vi]).

For X jF

q

2

a maximal curve, denote by ~m

i

the ith non-gap at P 62 W

X

. If X satis�es

Condition (II), then, by (2.2) and [FGT, Thm. 1.4(i)], the D-orders are

0; : : : ; n�1; �

n

� n and �

n+1

= q; furthermore, by [FT2, x2.2], the F

q

2

-Frobenius orders

are 0; : : : ; n� 1 and q.

Proposition 3.1. For a maximal curve X jF

q

2

satisfying Condition (I), one has

W

X

n Supp(R

D

) � Supp(S

D

) :
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Proof. We �rst notice that, for Q 62 X(F

q

2

), Condition (I) implies

Q 2 W

X

, fm

1

(Q); : : : ; m

n

(Q)g 6= f ~m

1

; : : : ; ~m

n

g ;

we also notice that m

i

(Q) � ~m

i

for each i. Now let Q 2 W

X

n Supp(R

D

) and let

k 2 [1; n�1] be such that m

i

(Q) = ~m

i

for 1 � i < k and m

k

(Q) < ~m

k

. Then, by (2.2),

the D-orders (which are also the (D; Q)-orders since Q 62 Supp(R

D

)) are

�

0

=0 = q � ~m

n

< �

1

= 1 = q � ~m

n�1

: : : < �

n�k

= q � ~m

k

<

�

n�k+1

= q �m

k

(Q) < �

n�k+2

= q � ~m

k�1

< : : : < �

n+1

= q = q � ~m

0

so that m

i

(Q) = ~m

i

for k + 1 � i � n. As in the proof of the claim in Theorem 2.1,

we conclude that (for J = n� k)

Fr

X

(Q) 2 L

J

(Q) n L

J�1

(Q) :

We note also that �

J+1

is the D-order one should take out to get the F

q

2

-Frobenius

orders of D, hence �

i

= �

i

for i � J . We then conclude that the vectors

�(Fr

X

(Q)); D

�

0

�(Q); : : : ; D

�

J

�(Q)

are linearly dependent and this �nishes the proof.

Lemma 3.2. Let X j F

q

2

be a maximal curve satisfying both Conditions (I) and (II)

and let P 2 W

X

nX(F

q

2

) with j

n�1

(P ) = n� 1. Then m

1

(P ) = q � j

n

(P ).

Proof. By (2.2) we have that q �m

1

(P ) is a (D; P )-order with q �m

1

(P ) � j

n

(P ). If

q �m

1

(P ) < j

n

(P ) we would have q �m

1

(P ) � n � 1 so that m

i

(P ) = q � n + i for

i = 1; : : : ; n (see (2.1)). Consequently by Condition (II), H(P )\ [0; q] = H(Q)\ [0; q],

for Q 62 W

X

and hence H(P ) = H(Q) by Condition (I), i.e. P is not a Weierstrass

point, a contradiction.

Remark 3.3. Suppose that X satis�es both Conditions (I) and (II). Let

P 2 W

X

n Supp(R

D

). Then Lemma 3.2 implies m

1

(P ) = q � �

n

and from the proof of

Proposition 3.1, we have m

i

(P ) = q � n + i, i = 2; : : : ; n. Then

n � �

n

�

q + n� 2

2

;

where the last inequality follows from the fact that 2m

1

(P ) � m

2

(P ). Next we state a

criterion to ensure that �

n

= n, namely

W

X

n Supp(R

D

) 6= ; and p := char(F

q

2

) � g ) �

n

= n :

Indeed if �

n

> n, by the p-adic criterion [SV, Corollary 1.9], we would have �

n

� q � p

so that �

n

� n + g � p (see (2.1)), i.e. �

n

= n, a contradiction.

Lemma 3.4. Let X j F

q

2

be a maximal curve satisfying both Conditions (I) and (II)

and let P 2 X n X(F

q

2

) with j

n�1

(P ) = n � 1. Then the following statements are

equivalent:
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1. q � j

n

(P ) 2 H(P ).

2. P 2 Supp(S

D

).

Proof. (1)) (2) : If q � j

n

(P ) 2 H(P ), then as in the proof of the claim in Theorem

2.1 we have Fr

X

(P ) 2 L

n�1

(P ) and hence it belongs to Supp(S

D

) since 0; : : : ; n � 1

are the F

q

2

-Frobenius orders of D and j

n�1

(P ) = n� 1.

(2) ) (1) By Theorem 2.1 we have that P 2 W

X

and the result follows from Lemma

3.2.

Corollary 3.5. Let X jF

q

2

be a maximal curve satisfying both Conditions (I) and (II).

For P 2 X the following statements are equivalent:

1. P 62 Supp(S

D

).

2. The (D; P )-orders are 0; 1; : : : ; n� 1; j

n

and j

n+1

= q with q � j

n

62 H(P ).

Proof. By Lemma 3.4 we just need to show that (1) ) (2). Since 0; : : : ; n � 1 are

F

q

2

-Frobenius orders and in view of [FGT, Thm. 1.4(ii)], we see that j

n�1

(P ) > n� 1

or j

n+1

(P ) = q + 1 imply that P 2 Supp(S

D

). So the (D; P )-orders are as stated in

(2) and the result follows again from Lemma 3.4

From Theorem 2.1, Lemma 3.2 and Lemma 3.4, we obtain

Corollary 3.6. Let X jF

q

2

be a maximal curve satisfying both Conditions (I) and (II)

and P 2 X nX(F

q

2

) with j

n�1

(P ) = n� 1. The following statements are equivalent:

1. P 2 Supp(S

D

).

2. P 2 W

X

.

3. m

1

(P ) = q � j

n

(P ).

4. q � j

n

(P ) 2 H(P ).

Now we can state the main result of this section:

Theorem 3.7. For a maximal curve satisfying both Conditions (I) and (II), we have

Supp(S

D

) =W

X

[X(F

q

2

) :

Proof. From Theorem 2.1 and the fact that X(F

q

2

) � Supp(S

D

) it is enough to show

that

P 2 W

X

nX(F

q

2

) ) P 2 Supp(S

D

) :

If j

n�1

(P ) > n � 1, then P 2 Supp(S

D

) (see the proof of Corollary 3.5). So let now

j

n�1

(P ) = n� 1. Then again P 2 Supp(S

D

) as follows from Corollary 3.6.
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Example 3.8. We complement Example 2.4 by considering hyperelliptic maximal

curves of genus bigger than 1 over F

q

2

with q even. We are going to show that these

curves also satisfy the equality in Question 1.1. So let X be a such curve. By [FGT,

Proposition 1.7(ii)], #W

X

= 1; say W

X

= fQg. Then for at least (#X(F

q

2

) � 1)

F

q

2

-rational points P 2 X we have v

P

(S

D

) = n + 1, as follows from the computations

in Example 2.4 and [SV, Proposition 2.4(a)]. Furthermore Supp(S

D

) = fQg [X(F

q

2

)

by Theorem 3.7. Next we compute v

Q

(S

D

) by using Eq. (2.3). We consider two cases

according Q is F

q

2

-rational or not.

If Q 2 X(F

q

2

), from (2.3) we have

v

Q

(S

D

) = deg(S

D

)� (n+ 1)(#X(F

q

2

)� 1) = deg(R

W

X

) + n+ 1 :

If Q 62 X(F

q

2

), from (2.3) we have

v

Q

(S

D

) = deg(S

D

)� (n+ 1)#X(F

q

2

) = deg(R

W

X

) :

From these computations follow the equality in Question 1.1 for hyperelliptic maximal

curves over F

q

2

with q even.

4. Examples

From [R-Sti], the unique maximal curve over F

q

2

of genus q(q � 1)=2 is the Hermitian

curve in P

2

(

�

F

q

2

) de�ned by

Y (Y

q�1

+ 1) = X

q+1

:

Let � : P

2

(

�

F

q

2

)! P

2

(

�

F

q

2

) be the morphism over F

q

2

given by

(x : y : 1) ! (y

q�1

: x

(q

2

�1)=m

: 1) with m a divisor of (q

2

� 1). Then the nonsingular

model of �(X) is a maximal curve over F

q

2

[La, Proposition 6] and �(X) is de�ned by

W

m

= Z(Z + 1)

q�1

:(4.1)

By the Riemann-Hurwitz relation, the genus g of this curve satis�es

g =

m� �

2

; where � = gcd (m; q � 1) :

These examples are the ones in [G-Sti-X, Corollary 4.9] (see also Lang's [L, Ch. I,x7]

and the references therein). Suppose one is interested in genus 4 maximal curves of

the type above. So m� � = 8 and since � divides m, we have that � = 1; 2; 4 or 8. As

an example, let � = 1 and hence m = 9. Since m = 9 divides (q

2

� 1) and moreover

� = 1 = gcd (m; q � 1), we must have that m divides (q + 1). So the prime power q

must be chosen in the following congruence class:

q � �1 (mod 9) :

With the above reasoning one obtains the following table which gives for a �xed genus

g (1 � g � 7) maximal curves over F

q

2

arising from curves of type (4.1).
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Genus m q Genus m q

g = 1 3 q � �1 (mod 3) g = 5 11 q � �1 (mod 11)

g = 1 4 q � �1 (mod 4) g = 5 12 q � �1 (mod 12)

g = 2 5 q � �1 (mod 5) g = 5 15 q � �4 (mod 15)

g = 2 6 q � �1 (mod 6) g = 5 20 q � 11 (mod 20)

g = 2 8 q � 5 (mod 8) g = 6 13 q � �1 (mod 13)

g = 3 7 q � �1 (mod 7) g = 6 14 q � �1 (mod 14)

g = 3 8 q � �1 (mod 4) g = 6 15 q � 4 (mod 15)

g = 3 12 q � 7 (mod 12) g = 6 24 q � 13 (mod 24)

g = 4 9 q � �1 (mod 9) g = 7 15 q � �1 (mod 15)

g = 4 10 q � �1 (mod 10) g = 7 16 q � �1 (mod 8)

g = 4 12 q � 5 (mod 12) g = 7 21 q � 8 (mod 21)

g = 4 16 q � 9 (mod 16) g = 7 28 q � 15 (mod 28)

By the Dirichlet theorem there are in�nitely many prime numbers in each of the con-

gruence classes above. Notice that the classicality of the curve is assured as soon as

char(F

q

2

) > 2g � 2.

Remark 4.1. We �nish this section with a more restricted class of classical maximal

curves . We consider maximal curves over F

q

2

where each rational point is not a

Weierstrass point, so that v

P

(R

D

) = 1 for each P 2 X(F

q

2

), and where

X(F

q

2

) = Supp(R

D

) :

Then from

deg(R

D

) = (

n(n + 1)

2

+ q)(2g � 2) + (n+ 2)(q + 1) = #X(F

q

2

) = (q + 1)

2

+ q(2g � 2)

we have that n(n+ 1)(g � 1) = (q + 1)(g � 1) and hence

g = 1 or q = n

2

+ n� 1 :

The only example we know of a curve with g > 1 in this restricted class of maximal

curves is the one over F

25

of genus 3 listed by Serre in [Se, Section 4]; in this example

n = 2 (cf. [FGT, Example 2.4(i)]).
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